• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ====================================================================
2  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    openssl-core@OpenSSL.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ====================================================================
48  *
49  * This product includes cryptographic software written by Eric Young
50  * (eay@cryptsoft.com).  This product includes software written by Tim
51  * Hudson (tjh@cryptsoft.com). */
52 
53 #include <openssl/ecdsa.h>
54 
55 #include <assert.h>
56 #include <string.h>
57 
58 #include <openssl/bn.h>
59 #include <openssl/err.h>
60 #include <openssl/mem.h>
61 #include <openssl/sha.h>
62 #include <openssl/type_check.h>
63 
64 #include "../../internal.h"
65 #include "../bn/internal.h"
66 #include "../ec/internal.h"
67 #include "internal.h"
68 
69 
70 // digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
71 // ECDSA. Note this value is not fully reduced modulo the order, only the
72 // correct number of bits.
digest_to_scalar(const EC_GROUP * group,EC_SCALAR * out,const uint8_t * digest,size_t digest_len)73 static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
74                              const uint8_t *digest, size_t digest_len) {
75   const BIGNUM *order = &group->order;
76   size_t num_bits = BN_num_bits(order);
77   // Need to truncate digest if it is too long: first truncate whole bytes.
78   size_t num_bytes = (num_bits + 7) / 8;
79   if (digest_len > num_bytes) {
80     digest_len = num_bytes;
81   }
82   OPENSSL_memset(out, 0, sizeof(EC_SCALAR));
83   for (size_t i = 0; i < digest_len; i++) {
84     out->bytes[i] = digest[digest_len - 1 - i];
85   }
86 
87   // If it is still too long, truncate remaining bits with a shift.
88   if (8 * digest_len > num_bits) {
89     bn_rshift_words(out->words, out->words, 8 - (num_bits & 0x7), order->width);
90   }
91 
92   // |out| now has the same bit width as |order|, but this only bounds by
93   // 2*|order|. Subtract the order if out of range.
94   //
95   // Montgomery multiplication accepts the looser bounds, so this isn't strictly
96   // necessary, but it is a cleaner abstraction and has no performance impact.
97   BN_ULONG tmp[EC_MAX_WORDS];
98   bn_reduce_once_in_place(out->words, 0 /* no carry */, order->d, tmp,
99                           order->width);
100 }
101 
ECDSA_SIG_new(void)102 ECDSA_SIG *ECDSA_SIG_new(void) {
103   ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
104   if (sig == NULL) {
105     return NULL;
106   }
107   sig->r = BN_new();
108   sig->s = BN_new();
109   if (sig->r == NULL || sig->s == NULL) {
110     ECDSA_SIG_free(sig);
111     return NULL;
112   }
113   return sig;
114 }
115 
ECDSA_SIG_free(ECDSA_SIG * sig)116 void ECDSA_SIG_free(ECDSA_SIG *sig) {
117   if (sig == NULL) {
118     return;
119   }
120 
121   BN_free(sig->r);
122   BN_free(sig->s);
123   OPENSSL_free(sig);
124 }
125 
ECDSA_SIG_get0_r(const ECDSA_SIG * sig)126 const BIGNUM *ECDSA_SIG_get0_r(const ECDSA_SIG *sig) {
127   return sig->r;
128 }
129 
ECDSA_SIG_get0_s(const ECDSA_SIG * sig)130 const BIGNUM *ECDSA_SIG_get0_s(const ECDSA_SIG *sig) {
131   return sig->s;
132 }
133 
ECDSA_SIG_get0(const ECDSA_SIG * sig,const BIGNUM ** out_r,const BIGNUM ** out_s)134 void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
135                     const BIGNUM **out_s) {
136   if (out_r != NULL) {
137     *out_r = sig->r;
138   }
139   if (out_s != NULL) {
140     *out_s = sig->s;
141   }
142 }
143 
ECDSA_SIG_set0(ECDSA_SIG * sig,BIGNUM * r,BIGNUM * s)144 int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
145   if (r == NULL || s == NULL) {
146     return 0;
147   }
148   BN_free(sig->r);
149   BN_free(sig->s);
150   sig->r = r;
151   sig->s = s;
152   return 1;
153 }
154 
ECDSA_do_verify(const uint8_t * digest,size_t digest_len,const ECDSA_SIG * sig,const EC_KEY * eckey)155 int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
156                     const ECDSA_SIG *sig, const EC_KEY *eckey) {
157   const EC_GROUP *group = EC_KEY_get0_group(eckey);
158   const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey);
159   if (group == NULL || pub_key == NULL || sig == NULL) {
160     OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
161     return 0;
162   }
163 
164   EC_SCALAR r, s, u1, u2, s_inv_mont, m;
165   if (BN_is_zero(sig->r) ||
166       !ec_bignum_to_scalar(group, &r, sig->r) ||
167       BN_is_zero(sig->s) ||
168       !ec_bignum_to_scalar(group, &s, sig->s)) {
169     OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
170     return 0;
171   }
172 
173   // s_inv_mont = s^-1 in the Montgomery domain.
174   if (!ec_scalar_to_montgomery_inv_vartime(group, &s_inv_mont, &s)) {
175     OPENSSL_PUT_ERROR(ECDSA, ERR_R_INTERNAL_ERROR);
176     return 0;
177   }
178 
179   // u1 = m * s^-1 mod order
180   // u2 = r * s^-1 mod order
181   //
182   // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and
183   // |u2| will be taken out of Montgomery form, as desired.
184   digest_to_scalar(group, &m, digest, digest_len);
185   ec_scalar_mul_montgomery(group, &u1, &m, &s_inv_mont);
186   ec_scalar_mul_montgomery(group, &u2, &r, &s_inv_mont);
187 
188   EC_RAW_POINT point;
189   if (!ec_point_mul_scalar_public(group, &point, &u1, &pub_key->raw, &u2)) {
190     OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
191     return 0;
192   }
193 
194   if (!ec_cmp_x_coordinate(group, &point, &r)) {
195     OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
196     return 0;
197   }
198 
199   return 1;
200 }
201 
ecdsa_sign_impl(const EC_GROUP * group,int * out_retry,const EC_SCALAR * priv_key,const EC_SCALAR * k,const uint8_t * digest,size_t digest_len)202 static ECDSA_SIG *ecdsa_sign_impl(const EC_GROUP *group, int *out_retry,
203                                   const EC_SCALAR *priv_key, const EC_SCALAR *k,
204                                   const uint8_t *digest, size_t digest_len) {
205   *out_retry = 0;
206 
207   // Check that the size of the group order is FIPS compliant (FIPS 186-4
208   // B.5.2).
209   const BIGNUM *order = EC_GROUP_get0_order(group);
210   if (BN_num_bits(order) < 160) {
211     OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
212     return NULL;
213   }
214 
215   // Compute r, the x-coordinate of k * generator.
216   EC_RAW_POINT tmp_point;
217   EC_SCALAR r;
218   if (!ec_point_mul_scalar_base(group, &tmp_point, k) ||
219       !ec_get_x_coordinate_as_scalar(group, &r, &tmp_point)) {
220     return NULL;
221   }
222 
223   if (ec_scalar_is_zero(group, &r)) {
224     *out_retry = 1;
225     return NULL;
226   }
227 
228   // s = priv_key * r. Note if only one parameter is in the Montgomery domain,
229   // |ec_scalar_mod_mul_montgomery| will compute the answer in the normal
230   // domain.
231   EC_SCALAR s;
232   ec_scalar_to_montgomery(group, &s, &r);
233   ec_scalar_mul_montgomery(group, &s, priv_key, &s);
234 
235   // s = m + priv_key * r.
236   EC_SCALAR tmp;
237   digest_to_scalar(group, &tmp, digest, digest_len);
238   ec_scalar_add(group, &s, &s, &tmp);
239 
240   // s = k^-1 * (m + priv_key * r). First, we compute k^-1 in the Montgomery
241   // domain. This is |ec_scalar_to_montgomery| followed by
242   // |ec_scalar_inv0_montgomery|, but |ec_scalar_inv0_montgomery| followed by
243   // |ec_scalar_from_montgomery| is equivalent and slightly more efficient.
244   // Then, as above, only one parameter is in the Montgomery domain, so the
245   // result is in the normal domain. Finally, note k is non-zero (or computing r
246   // would fail), so the inverse must exist.
247   ec_scalar_inv0_montgomery(group, &tmp, k);     // tmp = k^-1 R^2
248   ec_scalar_from_montgomery(group, &tmp, &tmp);  // tmp = k^-1 R
249   ec_scalar_mul_montgomery(group, &s, &s, &tmp);
250   if (ec_scalar_is_zero(group, &s)) {
251     *out_retry = 1;
252     return NULL;
253   }
254 
255   ECDSA_SIG *ret = ECDSA_SIG_new();
256   if (ret == NULL ||  //
257       !bn_set_words(ret->r, r.words, order->width) ||
258       !bn_set_words(ret->s, s.words, order->width)) {
259     ECDSA_SIG_free(ret);
260     return NULL;
261   }
262   return ret;
263 }
264 
ecdsa_sign_with_nonce_for_known_answer_test(const uint8_t * digest,size_t digest_len,const EC_KEY * eckey,const uint8_t * nonce,size_t nonce_len)265 ECDSA_SIG *ecdsa_sign_with_nonce_for_known_answer_test(const uint8_t *digest,
266                                                        size_t digest_len,
267                                                        const EC_KEY *eckey,
268                                                        const uint8_t *nonce,
269                                                        size_t nonce_len) {
270   if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
271     OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
272     return NULL;
273   }
274 
275   const EC_GROUP *group = EC_KEY_get0_group(eckey);
276   if (group == NULL || eckey->priv_key == NULL) {
277     OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
278     return NULL;
279   }
280   const EC_SCALAR *priv_key = &eckey->priv_key->scalar;
281 
282   EC_SCALAR k;
283   if (!ec_scalar_from_bytes(group, &k, nonce, nonce_len)) {
284     return NULL;
285   }
286   int retry_ignored;
287   return ecdsa_sign_impl(group, &retry_ignored, priv_key, &k, digest,
288                          digest_len);
289 }
290 
291 // This function is only exported for testing and is not called in production
292 // code.
ECDSA_sign_with_nonce_and_leak_private_key_for_testing(const uint8_t * digest,size_t digest_len,const EC_KEY * eckey,const uint8_t * nonce,size_t nonce_len)293 ECDSA_SIG *ECDSA_sign_with_nonce_and_leak_private_key_for_testing(
294     const uint8_t *digest, size_t digest_len, const EC_KEY *eckey,
295     const uint8_t *nonce, size_t nonce_len) {
296   return ecdsa_sign_with_nonce_for_known_answer_test(digest, digest_len, eckey,
297                                                      nonce, nonce_len);
298 }
299 
ECDSA_do_sign(const uint8_t * digest,size_t digest_len,const EC_KEY * eckey)300 ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
301                          const EC_KEY *eckey) {
302   if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
303     OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
304     return NULL;
305   }
306 
307   const EC_GROUP *group = EC_KEY_get0_group(eckey);
308   if (group == NULL || eckey->priv_key == NULL) {
309     OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
310     return NULL;
311   }
312   const BIGNUM *order = EC_GROUP_get0_order(group);
313   const EC_SCALAR *priv_key = &eckey->priv_key->scalar;
314 
315   // Pass a SHA512 hash of the private key and digest as additional data
316   // into the RBG. This is a hardening measure against entropy failure.
317   OPENSSL_STATIC_ASSERT(SHA512_DIGEST_LENGTH >= 32,
318                         "additional_data is too large for SHA-512");
319   SHA512_CTX sha;
320   uint8_t additional_data[SHA512_DIGEST_LENGTH];
321   SHA512_Init(&sha);
322   SHA512_Update(&sha, priv_key->words, order->width * sizeof(BN_ULONG));
323   SHA512_Update(&sha, digest, digest_len);
324   SHA512_Final(additional_data, &sha);
325 
326   for (;;) {
327     EC_SCALAR k;
328     if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
329       return NULL;
330     }
331 
332     int retry;
333     ECDSA_SIG *sig =
334         ecdsa_sign_impl(group, &retry, priv_key, &k, digest, digest_len);
335     if (sig != NULL || !retry) {
336       return sig;
337     }
338   }
339 }
340