• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2018, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <openssl/hrss.h>
16 
17 #include <assert.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 
21 #include <openssl/bn.h>
22 #include <openssl/cpu.h>
23 #include <openssl/hmac.h>
24 #include <openssl/mem.h>
25 #include <openssl/rand.h>
26 #include <openssl/sha.h>
27 
28 #if defined(_MSC_VER)
29 #define RESTRICT
30 #else
31 #define RESTRICT restrict
32 #endif
33 
34 #include "../internal.h"
35 #include "internal.h"
36 
37 #if defined(OPENSSL_SSE2)
38 #include <emmintrin.h>
39 #endif
40 
41 #if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
42     (defined(__ARM_NEON__) || defined(__ARM_NEON))
43 #include <arm_neon.h>
44 #endif
45 
46 // This is an implementation of [HRSS], but with a KEM transformation based on
47 // [SXY]. The primary references are:
48 
49 // HRSS: https://eprint.iacr.org/2017/667.pdf
50 // HRSSNIST:
51 // https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
52 // SXY: https://eprint.iacr.org/2017/1005.pdf
53 // NTRUTN14:
54 // https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf
55 // NTRUCOMP: https://eprint.iacr.org/2018/1174
56 // SAFEGCD: https://gcd.cr.yp.to/papers.html#safegcd
57 
58 
59 // Vector operations.
60 //
61 // A couple of functions in this file can use vector operations to meaningful
62 // effect. If we're building for a target that has a supported vector unit,
63 // |HRSS_HAVE_VECTOR_UNIT| will be defined and |vec_t| will be typedefed to a
64 // 128-bit vector. The following functions abstract over the differences between
65 // NEON and SSE2 for implementing some vector operations.
66 
67 // TODO: MSVC can likely also be made to work with vector operations, but ^ must
68 // be replaced with _mm_xor_si128, etc.
69 #if defined(OPENSSL_SSE2) && (defined(__clang__) || !defined(_MSC_VER))
70 
71 #define HRSS_HAVE_VECTOR_UNIT
72 typedef __m128i vec_t;
73 
74 // vec_capable returns one iff the current platform supports SSE2.
vec_capable(void)75 static int vec_capable(void) { return 1; }
76 
77 // vec_add performs a pair-wise addition of four uint16s from |a| and |b|.
vec_add(vec_t a,vec_t b)78 static inline vec_t vec_add(vec_t a, vec_t b) { return _mm_add_epi16(a, b); }
79 
80 // vec_sub performs a pair-wise subtraction of four uint16s from |a| and |b|.
vec_sub(vec_t a,vec_t b)81 static inline vec_t vec_sub(vec_t a, vec_t b) { return _mm_sub_epi16(a, b); }
82 
83 // vec_mul multiplies each uint16_t in |a| by |b| and returns the resulting
84 // vector.
vec_mul(vec_t a,uint16_t b)85 static inline vec_t vec_mul(vec_t a, uint16_t b) {
86   return _mm_mullo_epi16(a, _mm_set1_epi16(b));
87 }
88 
89 // vec_fma multiplies each uint16_t in |b| by |c|, adds the result to |a|, and
90 // returns the resulting vector.
vec_fma(vec_t a,vec_t b,uint16_t c)91 static inline vec_t vec_fma(vec_t a, vec_t b, uint16_t c) {
92   return _mm_add_epi16(a, _mm_mullo_epi16(b, _mm_set1_epi16(c)));
93 }
94 
95 // vec3_rshift_word right-shifts the 24 uint16_t's in |v| by one uint16.
vec3_rshift_word(vec_t v[3])96 static inline void vec3_rshift_word(vec_t v[3]) {
97   // Intel's left and right shifting is backwards compared to the order in
98   // memory because they're based on little-endian order of words (and not just
99   // bytes). So the shifts in this function will be backwards from what one
100   // might expect.
101   const __m128i carry0 = _mm_srli_si128(v[0], 14);
102   v[0] = _mm_slli_si128(v[0], 2);
103 
104   const __m128i carry1 = _mm_srli_si128(v[1], 14);
105   v[1] = _mm_slli_si128(v[1], 2);
106   v[1] |= carry0;
107 
108   v[2] = _mm_slli_si128(v[2], 2);
109   v[2] |= carry1;
110 }
111 
112 // vec4_rshift_word right-shifts the 32 uint16_t's in |v| by one uint16.
vec4_rshift_word(vec_t v[4])113 static inline void vec4_rshift_word(vec_t v[4]) {
114   // Intel's left and right shifting is backwards compared to the order in
115   // memory because they're based on little-endian order of words (and not just
116   // bytes). So the shifts in this function will be backwards from what one
117   // might expect.
118   const __m128i carry0 = _mm_srli_si128(v[0], 14);
119   v[0] = _mm_slli_si128(v[0], 2);
120 
121   const __m128i carry1 = _mm_srli_si128(v[1], 14);
122   v[1] = _mm_slli_si128(v[1], 2);
123   v[1] |= carry0;
124 
125   const __m128i carry2 = _mm_srli_si128(v[2], 14);
126   v[2] = _mm_slli_si128(v[2], 2);
127   v[2] |= carry1;
128 
129   v[3] = _mm_slli_si128(v[3], 2);
130   v[3] |= carry2;
131 }
132 
133 // vec_merge_3_5 takes the final three uint16_t's from |left|, appends the first
134 // five from |right|, and returns the resulting vector.
vec_merge_3_5(vec_t left,vec_t right)135 static inline vec_t vec_merge_3_5(vec_t left, vec_t right) {
136   return _mm_srli_si128(left, 10) | _mm_slli_si128(right, 6);
137 }
138 
139 // poly3_vec_lshift1 left-shifts the 768 bits in |a_s|, and in |a_a|, by one
140 // bit.
poly3_vec_lshift1(vec_t a_s[6],vec_t a_a[6])141 static inline void poly3_vec_lshift1(vec_t a_s[6], vec_t a_a[6]) {
142   vec_t carry_s = {0};
143   vec_t carry_a = {0};
144 
145   for (int i = 0; i < 6; i++) {
146     vec_t next_carry_s = _mm_srli_epi64(a_s[i], 63);
147     a_s[i] = _mm_slli_epi64(a_s[i], 1);
148     a_s[i] |= _mm_slli_si128(next_carry_s, 8);
149     a_s[i] |= carry_s;
150     carry_s = _mm_srli_si128(next_carry_s, 8);
151 
152     vec_t next_carry_a = _mm_srli_epi64(a_a[i], 63);
153     a_a[i] = _mm_slli_epi64(a_a[i], 1);
154     a_a[i] |= _mm_slli_si128(next_carry_a, 8);
155     a_a[i] |= carry_a;
156     carry_a = _mm_srli_si128(next_carry_a, 8);
157   }
158 }
159 
160 // poly3_vec_rshift1 right-shifts the 768 bits in |a_s|, and in |a_a|, by one
161 // bit.
poly3_vec_rshift1(vec_t a_s[6],vec_t a_a[6])162 static inline void poly3_vec_rshift1(vec_t a_s[6], vec_t a_a[6]) {
163   vec_t carry_s = {0};
164   vec_t carry_a = {0};
165 
166   for (int i = 5; i >= 0; i--) {
167     const vec_t next_carry_s = _mm_slli_epi64(a_s[i], 63);
168     a_s[i] = _mm_srli_epi64(a_s[i], 1);
169     a_s[i] |= _mm_srli_si128(next_carry_s, 8);
170     a_s[i] |= carry_s;
171     carry_s = _mm_slli_si128(next_carry_s, 8);
172 
173     const vec_t next_carry_a = _mm_slli_epi64(a_a[i], 63);
174     a_a[i] = _mm_srli_epi64(a_a[i], 1);
175     a_a[i] |= _mm_srli_si128(next_carry_a, 8);
176     a_a[i] |= carry_a;
177     carry_a = _mm_slli_si128(next_carry_a, 8);
178   }
179 }
180 
181 // vec_broadcast_bit duplicates the least-significant bit in |a| to all bits in
182 // a vector and returns the result.
vec_broadcast_bit(vec_t a)183 static inline vec_t vec_broadcast_bit(vec_t a) {
184   return _mm_shuffle_epi32(_mm_srai_epi32(_mm_slli_epi64(a, 63), 31),
185                            0b01010101);
186 }
187 
188 // vec_get_word returns the |i|th uint16_t in |v|. (This is a macro because the
189 // compiler requires that |i| be a compile-time constant.)
190 #define vec_get_word(v, i) _mm_extract_epi16(v, i)
191 
192 #elif (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
193     (defined(__ARM_NEON__) || defined(__ARM_NEON))
194 
195 #define HRSS_HAVE_VECTOR_UNIT
196 typedef uint16x8_t vec_t;
197 
198 // These functions perform the same actions as the SSE2 function of the same
199 // name, above.
200 
vec_capable(void)201 static int vec_capable(void) { return CRYPTO_is_NEON_capable(); }
202 
vec_add(vec_t a,vec_t b)203 static inline vec_t vec_add(vec_t a, vec_t b) { return a + b; }
204 
vec_sub(vec_t a,vec_t b)205 static inline vec_t vec_sub(vec_t a, vec_t b) { return a - b; }
206 
vec_mul(vec_t a,uint16_t b)207 static inline vec_t vec_mul(vec_t a, uint16_t b) { return vmulq_n_u16(a, b); }
208 
vec_fma(vec_t a,vec_t b,uint16_t c)209 static inline vec_t vec_fma(vec_t a, vec_t b, uint16_t c) {
210   return vmlaq_n_u16(a, b, c);
211 }
212 
vec3_rshift_word(vec_t v[3])213 static inline void vec3_rshift_word(vec_t v[3]) {
214   const uint16x8_t kZero = {0};
215   v[2] = vextq_u16(v[1], v[2], 7);
216   v[1] = vextq_u16(v[0], v[1], 7);
217   v[0] = vextq_u16(kZero, v[0], 7);
218 }
219 
vec4_rshift_word(vec_t v[4])220 static inline void vec4_rshift_word(vec_t v[4]) {
221   const uint16x8_t kZero = {0};
222   v[3] = vextq_u16(v[2], v[3], 7);
223   v[2] = vextq_u16(v[1], v[2], 7);
224   v[1] = vextq_u16(v[0], v[1], 7);
225   v[0] = vextq_u16(kZero, v[0], 7);
226 }
227 
vec_merge_3_5(vec_t left,vec_t right)228 static inline vec_t vec_merge_3_5(vec_t left, vec_t right) {
229   return vextq_u16(left, right, 5);
230 }
231 
vec_get_word(vec_t v,unsigned i)232 static inline uint16_t vec_get_word(vec_t v, unsigned i) {
233   return v[i];
234 }
235 
236 #if !defined(OPENSSL_AARCH64)
237 
vec_broadcast_bit(vec_t a)238 static inline vec_t vec_broadcast_bit(vec_t a) {
239   a = (vec_t)vshrq_n_s16(((int16x8_t)a) << 15, 15);
240   return vdupq_lane_u16(vget_low_u16(a), 0);
241 }
242 
poly3_vec_lshift1(vec_t a_s[6],vec_t a_a[6])243 static inline void poly3_vec_lshift1(vec_t a_s[6], vec_t a_a[6]) {
244   vec_t carry_s = {0};
245   vec_t carry_a = {0};
246   const vec_t kZero = {0};
247 
248   for (int i = 0; i < 6; i++) {
249     vec_t next_carry_s = a_s[i] >> 15;
250     a_s[i] <<= 1;
251     a_s[i] |= vextq_u16(kZero, next_carry_s, 7);
252     a_s[i] |= carry_s;
253     carry_s = vextq_u16(next_carry_s, kZero, 7);
254 
255     vec_t next_carry_a = a_a[i] >> 15;
256     a_a[i] <<= 1;
257     a_a[i] |= vextq_u16(kZero, next_carry_a, 7);
258     a_a[i] |= carry_a;
259     carry_a = vextq_u16(next_carry_a, kZero, 7);
260   }
261 }
262 
poly3_vec_rshift1(vec_t a_s[6],vec_t a_a[6])263 static inline void poly3_vec_rshift1(vec_t a_s[6], vec_t a_a[6]) {
264   vec_t carry_s = {0};
265   vec_t carry_a = {0};
266   const vec_t kZero = {0};
267 
268   for (int i = 5; i >= 0; i--) {
269     vec_t next_carry_s = a_s[i] << 15;
270     a_s[i] >>= 1;
271     a_s[i] |= vextq_u16(next_carry_s, kZero, 1);
272     a_s[i] |= carry_s;
273     carry_s = vextq_u16(kZero, next_carry_s, 1);
274 
275     vec_t next_carry_a = a_a[i] << 15;
276     a_a[i] >>= 1;
277     a_a[i] |= vextq_u16(next_carry_a, kZero, 1);
278     a_a[i] |= carry_a;
279     carry_a = vextq_u16(kZero, next_carry_a, 1);
280   }
281 }
282 
283 #endif  // !OPENSSL_AARCH64
284 
285 #endif  // (ARM || AARCH64) && NEON
286 
287 // Polynomials in this scheme have N terms.
288 // #define N 701
289 
290 // Underlying data types and arithmetic operations.
291 // ------------------------------------------------
292 
293 // Binary polynomials.
294 
295 // poly2 represents a degree-N polynomial over GF(2). The words are in little-
296 // endian order, i.e. the coefficient of x^0 is the LSB of the first word. The
297 // final word is only partially used since N is not a multiple of the word size.
298 
299 // Defined in internal.h:
300 // struct poly2 {
301 //  crypto_word_t v[WORDS_PER_POLY];
302 // };
303 
hexdump(const void * void_in,size_t len)304 OPENSSL_UNUSED static void hexdump(const void *void_in, size_t len) {
305   const uint8_t *in = (const uint8_t *)void_in;
306   for (size_t i = 0; i < len; i++) {
307     printf("%02x", in[i]);
308   }
309   printf("\n");
310 }
311 
poly2_zero(struct poly2 * p)312 static void poly2_zero(struct poly2 *p) {
313   OPENSSL_memset(&p->v[0], 0, sizeof(crypto_word_t) * WORDS_PER_POLY);
314 }
315 
316 // word_reverse returns |in| with the bits in reverse order.
word_reverse(crypto_word_t in)317 static crypto_word_t word_reverse(crypto_word_t in) {
318 #if defined(OPENSSL_64_BIT)
319   static const crypto_word_t kMasks[6] = {
320     UINT64_C(0x5555555555555555),
321     UINT64_C(0x3333333333333333),
322     UINT64_C(0x0f0f0f0f0f0f0f0f),
323     UINT64_C(0x00ff00ff00ff00ff),
324     UINT64_C(0x0000ffff0000ffff),
325     UINT64_C(0x00000000ffffffff),
326   };
327 #else
328   static const crypto_word_t kMasks[5] = {
329     0x55555555,
330     0x33333333,
331     0x0f0f0f0f,
332     0x00ff00ff,
333     0x0000ffff,
334   };
335 #endif
336 
337   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kMasks); i++) {
338     in = ((in >> (1 << i)) & kMasks[i]) | ((in & kMasks[i]) << (1 << i));
339   }
340 
341   return in;
342 }
343 
344 // lsb_to_all replicates the least-significant bit of |v| to all bits of the
345 // word. This is used in bit-slicing operations to make a vector from a fixed
346 // value.
lsb_to_all(crypto_word_t v)347 static crypto_word_t lsb_to_all(crypto_word_t v) { return 0u - (v & 1); }
348 
349 // poly2_mod_phiN reduces |p| by Φ(N).
poly2_mod_phiN(struct poly2 * p)350 static void poly2_mod_phiN(struct poly2 *p) {
351   // m is the term at x^700, replicated to every bit.
352   const crypto_word_t m =
353       lsb_to_all(p->v[WORDS_PER_POLY - 1] >> (BITS_IN_LAST_WORD - 1));
354   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
355     p->v[i] ^= m;
356   }
357   p->v[WORDS_PER_POLY - 1] &= (UINT64_C(1) << (BITS_IN_LAST_WORD - 1)) - 1;
358 }
359 
360 // poly2_reverse_700 reverses the order of the first 700 bits of |in| and writes
361 // the result to |out|.
poly2_reverse_700(struct poly2 * out,const struct poly2 * in)362 static void poly2_reverse_700(struct poly2 *out, const struct poly2 *in) {
363   struct poly2 t;
364   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
365     t.v[i] = word_reverse(in->v[i]);
366   }
367 
368   static const size_t shift = BITS_PER_WORD - ((N-1) % BITS_PER_WORD);
369   for (size_t i = 0; i < WORDS_PER_POLY-1; i++) {
370     out->v[i] = t.v[WORDS_PER_POLY-1-i] >> shift;
371     out->v[i] |= t.v[WORDS_PER_POLY-2-i] << (BITS_PER_WORD - shift);
372   }
373   out->v[WORDS_PER_POLY-1] = t.v[0] >> shift;
374 }
375 
376 // poly2_cswap exchanges the values of |a| and |b| if |swap| is all ones.
poly2_cswap(struct poly2 * a,struct poly2 * b,crypto_word_t swap)377 static void poly2_cswap(struct poly2 *a, struct poly2 *b, crypto_word_t swap) {
378   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
379     const crypto_word_t sum = swap & (a->v[i] ^ b->v[i]);
380     a->v[i] ^= sum;
381     b->v[i] ^= sum;
382   }
383 }
384 
385 // poly2_fmadd sets |out| to |out| + |in| * m, where m is either
386 // |CONSTTIME_TRUE_W| or |CONSTTIME_FALSE_W|.
poly2_fmadd(struct poly2 * out,const struct poly2 * in,crypto_word_t m)387 static void poly2_fmadd(struct poly2 *out, const struct poly2 *in,
388                         crypto_word_t m) {
389   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
390     out->v[i] ^= in->v[i] & m;
391   }
392 }
393 
394 // poly2_lshift1 left-shifts |p| by one bit.
poly2_lshift1(struct poly2 * p)395 static void poly2_lshift1(struct poly2 *p) {
396   crypto_word_t carry = 0;
397   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
398     const crypto_word_t next_carry = p->v[i] >> (BITS_PER_WORD - 1);
399     p->v[i] <<= 1;
400     p->v[i] |= carry;
401     carry = next_carry;
402   }
403 }
404 
405 // poly2_rshift1 right-shifts |p| by one bit.
poly2_rshift1(struct poly2 * p)406 static void poly2_rshift1(struct poly2 *p) {
407   crypto_word_t carry = 0;
408   for (size_t i = WORDS_PER_POLY - 1; i < WORDS_PER_POLY; i--) {
409     const crypto_word_t next_carry = p->v[i] & 1;
410     p->v[i] >>= 1;
411     p->v[i] |= carry << (BITS_PER_WORD - 1);
412     carry = next_carry;
413   }
414 }
415 
416 // poly2_clear_top_bits clears the bits in the final word that are only for
417 // alignment.
poly2_clear_top_bits(struct poly2 * p)418 static void poly2_clear_top_bits(struct poly2 *p) {
419   p->v[WORDS_PER_POLY - 1] &= (UINT64_C(1) << BITS_IN_LAST_WORD) - 1;
420 }
421 
422 // poly2_top_bits_are_clear returns one iff the extra bits in the final words of
423 // |p| are zero.
poly2_top_bits_are_clear(const struct poly2 * p)424 static int poly2_top_bits_are_clear(const struct poly2 *p) {
425   return (p->v[WORDS_PER_POLY - 1] &
426           ~((UINT64_C(1) << BITS_IN_LAST_WORD) - 1)) == 0;
427 }
428 
429 // Ternary polynomials.
430 
431 // poly3 represents a degree-N polynomial over GF(3). Each coefficient is
432 // bitsliced across the |s| and |a| arrays, like this:
433 //
434 //   s  |  a  | value
435 //  -----------------
436 //   0  |  0  | 0
437 //   0  |  1  | 1
438 //   1  |  1  | -1 (aka 2)
439 //   1  |  0  | <invalid>
440 //
441 // ('s' is for sign, and 'a' is the absolute value.)
442 //
443 // Once bitsliced as such, the following circuits can be used to implement
444 // addition and multiplication mod 3:
445 //
446 //   (s3, a3) = (s1, a1) × (s2, a2)
447 //   a3 = a1 ∧ a2
448 //   s3 = (s1 ⊕ s2) ∧ a3
449 //
450 //   (s3, a3) = (s1, a1) + (s2, a2)
451 //   t = s1 ⊕ a2
452 //   s3 = t ∧ (s2 ⊕ a1)
453 //   a3 = (a1 ⊕ a2) ∨ (t ⊕ s2)
454 //
455 //   (s3, a3) = (s1, a1) - (s2, a2)
456 //   t = a1 ⊕ a2
457 //   s3 = (s1 ⊕ a2) ∧ (t ⊕ s2)
458 //   a3 = t ∨ (s1 ⊕ s2)
459 //
460 // Negating a value just involves XORing s by a.
461 //
462 // struct poly3 {
463 //   struct poly2 s, a;
464 // };
465 
poly3_print(const struct poly3 * in)466 OPENSSL_UNUSED static void poly3_print(const struct poly3 *in) {
467   struct poly3 p;
468   OPENSSL_memcpy(&p, in, sizeof(p));
469   p.s.v[WORDS_PER_POLY - 1] &= ((crypto_word_t)1 << BITS_IN_LAST_WORD) - 1;
470   p.a.v[WORDS_PER_POLY - 1] &= ((crypto_word_t)1 << BITS_IN_LAST_WORD) - 1;
471 
472   printf("{[");
473   for (unsigned i = 0; i < WORDS_PER_POLY; i++) {
474     if (i) {
475       printf(" ");
476     }
477     printf(BN_HEX_FMT2, p.s.v[i]);
478   }
479   printf("] [");
480   for (unsigned i = 0; i < WORDS_PER_POLY; i++) {
481     if (i) {
482       printf(" ");
483     }
484     printf(BN_HEX_FMT2, p.a.v[i]);
485   }
486   printf("]}\n");
487 }
488 
poly3_zero(struct poly3 * p)489 static void poly3_zero(struct poly3 *p) {
490   poly2_zero(&p->s);
491   poly2_zero(&p->a);
492 }
493 
494 // poly3_reverse_700 reverses the order of the first 700 terms of |in| and
495 // writes them to |out|.
poly3_reverse_700(struct poly3 * out,const struct poly3 * in)496 static void poly3_reverse_700(struct poly3 *out, const struct poly3 *in) {
497   poly2_reverse_700(&out->a, &in->a);
498   poly2_reverse_700(&out->s, &in->s);
499 }
500 
501 // poly3_word_mul sets (|out_s|, |out_a|) to (|s1|, |a1|) × (|s2|, |a2|).
poly3_word_mul(crypto_word_t * out_s,crypto_word_t * out_a,const crypto_word_t s1,const crypto_word_t a1,const crypto_word_t s2,const crypto_word_t a2)502 static void poly3_word_mul(crypto_word_t *out_s, crypto_word_t *out_a,
503                            const crypto_word_t s1, const crypto_word_t a1,
504                            const crypto_word_t s2, const crypto_word_t a2) {
505   *out_a = a1 & a2;
506   *out_s = (s1 ^ s2) & *out_a;
507 }
508 
509 // poly3_word_add sets (|out_s|, |out_a|) to (|s1|, |a1|) + (|s2|, |a2|).
poly3_word_add(crypto_word_t * out_s,crypto_word_t * out_a,const crypto_word_t s1,const crypto_word_t a1,const crypto_word_t s2,const crypto_word_t a2)510 static void poly3_word_add(crypto_word_t *out_s, crypto_word_t *out_a,
511                            const crypto_word_t s1, const crypto_word_t a1,
512                            const crypto_word_t s2, const crypto_word_t a2) {
513   const crypto_word_t t = s1 ^ a2;
514   *out_s = t & (s2 ^ a1);
515   *out_a = (a1 ^ a2) | (t ^ s2);
516 }
517 
518 // poly3_word_sub sets (|out_s|, |out_a|) to (|s1|, |a1|) - (|s2|, |a2|).
poly3_word_sub(crypto_word_t * out_s,crypto_word_t * out_a,const crypto_word_t s1,const crypto_word_t a1,const crypto_word_t s2,const crypto_word_t a2)519 static void poly3_word_sub(crypto_word_t *out_s, crypto_word_t *out_a,
520                            const crypto_word_t s1, const crypto_word_t a1,
521                            const crypto_word_t s2, const crypto_word_t a2) {
522   const crypto_word_t t = a1 ^ a2;
523   *out_s = (s1 ^ a2) & (t ^ s2);
524   *out_a = t | (s1 ^ s2);
525 }
526 
527 // poly3_mul_const sets |p| to |p|×m, where m = (ms, ma).
poly3_mul_const(struct poly3 * p,crypto_word_t ms,crypto_word_t ma)528 static void poly3_mul_const(struct poly3 *p, crypto_word_t ms,
529                             crypto_word_t ma) {
530   ms = lsb_to_all(ms);
531   ma = lsb_to_all(ma);
532 
533   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
534     poly3_word_mul(&p->s.v[i], &p->a.v[i], p->s.v[i], p->a.v[i], ms, ma);
535   }
536 }
537 
538 // poly3_fmadd sets |out| to |out| - |in|×m, where m is (ms, ma).
poly3_fmsub(struct poly3 * RESTRICT out,const struct poly3 * RESTRICT in,crypto_word_t ms,crypto_word_t ma)539 static void poly3_fmsub(struct poly3 *RESTRICT out,
540                         const struct poly3 *RESTRICT in, crypto_word_t ms,
541                         crypto_word_t ma) {
542   crypto_word_t product_s, product_a;
543   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
544     poly3_word_mul(&product_s, &product_a, in->s.v[i], in->a.v[i], ms, ma);
545     poly3_word_sub(&out->s.v[i], &out->a.v[i], out->s.v[i], out->a.v[i],
546                    product_s, product_a);
547   }
548 }
549 
550 // final_bit_to_all replicates the bit in the final position of the last word to
551 // all the bits in the word.
final_bit_to_all(crypto_word_t v)552 static crypto_word_t final_bit_to_all(crypto_word_t v) {
553   return lsb_to_all(v >> (BITS_IN_LAST_WORD - 1));
554 }
555 
556 // poly3_top_bits_are_clear returns one iff the extra bits in the final words of
557 // |p| are zero.
poly3_top_bits_are_clear(const struct poly3 * p)558 OPENSSL_UNUSED static int poly3_top_bits_are_clear(const struct poly3 *p) {
559   return poly2_top_bits_are_clear(&p->s) && poly2_top_bits_are_clear(&p->a);
560 }
561 
562 // poly3_mod_phiN reduces |p| by Φ(N).
poly3_mod_phiN(struct poly3 * p)563 static void poly3_mod_phiN(struct poly3 *p) {
564   // In order to reduce by Φ(N) we subtract by the value of the greatest
565   // coefficient.
566   const crypto_word_t factor_s = final_bit_to_all(p->s.v[WORDS_PER_POLY - 1]);
567   const crypto_word_t factor_a = final_bit_to_all(p->a.v[WORDS_PER_POLY - 1]);
568 
569   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
570     poly3_word_sub(&p->s.v[i], &p->a.v[i], p->s.v[i], p->a.v[i], factor_s,
571                    factor_a);
572   }
573 
574   poly2_clear_top_bits(&p->s);
575   poly2_clear_top_bits(&p->a);
576 }
577 
poly3_cswap(struct poly3 * a,struct poly3 * b,crypto_word_t swap)578 static void poly3_cswap(struct poly3 *a, struct poly3 *b, crypto_word_t swap) {
579   poly2_cswap(&a->s, &b->s, swap);
580   poly2_cswap(&a->a, &b->a, swap);
581 }
582 
poly3_lshift1(struct poly3 * p)583 static void poly3_lshift1(struct poly3 *p) {
584   poly2_lshift1(&p->s);
585   poly2_lshift1(&p->a);
586 }
587 
poly3_rshift1(struct poly3 * p)588 static void poly3_rshift1(struct poly3 *p) {
589   poly2_rshift1(&p->s);
590   poly2_rshift1(&p->a);
591 }
592 
593 // poly3_span represents a pointer into a poly3.
594 struct poly3_span {
595   crypto_word_t *s;
596   crypto_word_t *a;
597 };
598 
599 // poly3_span_add adds |n| words of values from |a| and |b| and writes the
600 // result to |out|.
poly3_span_add(const struct poly3_span * out,const struct poly3_span * a,const struct poly3_span * b,size_t n)601 static void poly3_span_add(const struct poly3_span *out,
602                            const struct poly3_span *a,
603                            const struct poly3_span *b, size_t n) {
604   for (size_t i = 0; i < n; i++) {
605     poly3_word_add(&out->s[i], &out->a[i], a->s[i], a->a[i], b->s[i], b->a[i]);
606   }
607 }
608 
609 // poly3_span_sub subtracts |n| words of |b| from |n| words of |a|.
poly3_span_sub(const struct poly3_span * a,const struct poly3_span * b,size_t n)610 static void poly3_span_sub(const struct poly3_span *a,
611                            const struct poly3_span *b, size_t n) {
612   for (size_t i = 0; i < n; i++) {
613     poly3_word_sub(&a->s[i], &a->a[i], a->s[i], a->a[i], b->s[i], b->a[i]);
614   }
615 }
616 
617 // poly3_mul_aux is a recursive function that multiplies |n| words from |a| and
618 // |b| and writes 2×|n| words to |out|. Each call uses 2*ceil(n/2) elements of
619 // |scratch| and the function recurses, except if |n| == 1, when |scratch| isn't
620 // used and the recursion stops. For |n| in {11, 22}, the transitive total
621 // amount of |scratch| needed happens to be 2n+2.
poly3_mul_aux(const struct poly3_span * out,const struct poly3_span * scratch,const struct poly3_span * a,const struct poly3_span * b,size_t n)622 static void poly3_mul_aux(const struct poly3_span *out,
623                           const struct poly3_span *scratch,
624                           const struct poly3_span *a,
625                           const struct poly3_span *b, size_t n) {
626   if (n == 1) {
627     crypto_word_t r_s_low = 0, r_s_high = 0, r_a_low = 0, r_a_high = 0;
628     crypto_word_t b_s = b->s[0], b_a = b->a[0];
629     const crypto_word_t a_s = a->s[0], a_a = a->a[0];
630 
631     for (size_t i = 0; i < BITS_PER_WORD; i++) {
632       // Multiply (s, a) by the next value from (b_s, b_a).
633       crypto_word_t m_s, m_a;
634       poly3_word_mul(&m_s, &m_a, a_s, a_a, lsb_to_all(b_s), lsb_to_all(b_a));
635       b_s >>= 1;
636       b_a >>= 1;
637 
638       if (i == 0) {
639         // Special case otherwise the code tries to shift by BITS_PER_WORD
640         // below, which is undefined.
641         r_s_low = m_s;
642         r_a_low = m_a;
643         continue;
644       }
645 
646       // Shift the multiplication result to the correct position.
647       const crypto_word_t m_s_low = m_s << i;
648       const crypto_word_t m_s_high = m_s >> (BITS_PER_WORD - i);
649       const crypto_word_t m_a_low = m_a << i;
650       const crypto_word_t m_a_high = m_a >> (BITS_PER_WORD - i);
651 
652       // Add into the result.
653       poly3_word_add(&r_s_low, &r_a_low, r_s_low, r_a_low, m_s_low, m_a_low);
654       poly3_word_add(&r_s_high, &r_a_high, r_s_high, r_a_high, m_s_high,
655                      m_a_high);
656     }
657 
658     out->s[0] = r_s_low;
659     out->s[1] = r_s_high;
660     out->a[0] = r_a_low;
661     out->a[1] = r_a_high;
662     return;
663   }
664 
665   // Karatsuba multiplication.
666   // https://en.wikipedia.org/wiki/Karatsuba_algorithm
667 
668   // When |n| is odd, the two "halves" will have different lengths. The first
669   // is always the smaller.
670   const size_t low_len = n / 2;
671   const size_t high_len = n - low_len;
672   const struct poly3_span a_high = {&a->s[low_len], &a->a[low_len]};
673   const struct poly3_span b_high = {&b->s[low_len], &b->a[low_len]};
674 
675   // Store a_1 + a_0 in the first half of |out| and b_1 + b_0 in the second
676   // half.
677   const struct poly3_span a_cross_sum = *out;
678   const struct poly3_span b_cross_sum = {&out->s[high_len], &out->a[high_len]};
679   poly3_span_add(&a_cross_sum, a, &a_high, low_len);
680   poly3_span_add(&b_cross_sum, b, &b_high, low_len);
681   if (high_len != low_len) {
682     a_cross_sum.s[low_len] = a_high.s[low_len];
683     a_cross_sum.a[low_len] = a_high.a[low_len];
684     b_cross_sum.s[low_len] = b_high.s[low_len];
685     b_cross_sum.a[low_len] = b_high.a[low_len];
686   }
687 
688   const struct poly3_span child_scratch = {&scratch->s[2 * high_len],
689                                            &scratch->a[2 * high_len]};
690   const struct poly3_span out_mid = {&out->s[low_len], &out->a[low_len]};
691   const struct poly3_span out_high = {&out->s[2 * low_len],
692                                       &out->a[2 * low_len]};
693 
694   // Calculate (a_1 + a_0) × (b_1 + b_0) and write to scratch buffer.
695   poly3_mul_aux(scratch, &child_scratch, &a_cross_sum, &b_cross_sum, high_len);
696   // Calculate a_1 × b_1.
697   poly3_mul_aux(&out_high, &child_scratch, &a_high, &b_high, high_len);
698   // Calculate a_0 × b_0.
699   poly3_mul_aux(out, &child_scratch, a, b, low_len);
700 
701   // Subtract those last two products from the first.
702   poly3_span_sub(scratch, out, low_len * 2);
703   poly3_span_sub(scratch, &out_high, high_len * 2);
704 
705   // Add the middle product into the output.
706   poly3_span_add(&out_mid, &out_mid, scratch, high_len * 2);
707 }
708 
709 // HRSS_poly3_mul sets |*out| to |x|×|y| mod Φ(N).
HRSS_poly3_mul(struct poly3 * out,const struct poly3 * x,const struct poly3 * y)710 void HRSS_poly3_mul(struct poly3 *out, const struct poly3 *x,
711                     const struct poly3 *y) {
712   crypto_word_t prod_s[WORDS_PER_POLY * 2];
713   crypto_word_t prod_a[WORDS_PER_POLY * 2];
714   crypto_word_t scratch_s[WORDS_PER_POLY * 2 + 2];
715   crypto_word_t scratch_a[WORDS_PER_POLY * 2 + 2];
716   const struct poly3_span prod_span = {prod_s, prod_a};
717   const struct poly3_span scratch_span = {scratch_s, scratch_a};
718   const struct poly3_span x_span = {(crypto_word_t *)x->s.v,
719                                     (crypto_word_t *)x->a.v};
720   const struct poly3_span y_span = {(crypto_word_t *)y->s.v,
721                                     (crypto_word_t *)y->a.v};
722 
723   poly3_mul_aux(&prod_span, &scratch_span, &x_span, &y_span, WORDS_PER_POLY);
724 
725   // |prod| needs to be reduced mod (��^n - 1), which just involves adding the
726   // upper-half to the lower-half. However, N is 701, which isn't a multiple of
727   // BITS_PER_WORD, so the upper-half vectors all have to be shifted before
728   // being added to the lower-half.
729   for (size_t i = 0; i < WORDS_PER_POLY; i++) {
730     crypto_word_t v_s = prod_s[WORDS_PER_POLY + i - 1] >> BITS_IN_LAST_WORD;
731     v_s |= prod_s[WORDS_PER_POLY + i] << (BITS_PER_WORD - BITS_IN_LAST_WORD);
732     crypto_word_t v_a = prod_a[WORDS_PER_POLY + i - 1] >> BITS_IN_LAST_WORD;
733     v_a |= prod_a[WORDS_PER_POLY + i] << (BITS_PER_WORD - BITS_IN_LAST_WORD);
734 
735     poly3_word_add(&out->s.v[i], &out->a.v[i], prod_s[i], prod_a[i], v_s, v_a);
736   }
737 
738   poly3_mod_phiN(out);
739 }
740 
741 #if defined(HRSS_HAVE_VECTOR_UNIT) && !defined(OPENSSL_AARCH64)
742 
743 // poly3_vec_cswap swaps (|a_s|, |a_a|) and (|b_s|, |b_a|) if |swap| is
744 // |0xff..ff|. Otherwise, |swap| must be zero.
poly3_vec_cswap(vec_t a_s[6],vec_t a_a[6],vec_t b_s[6],vec_t b_a[6],const vec_t swap)745 static inline void poly3_vec_cswap(vec_t a_s[6], vec_t a_a[6], vec_t b_s[6],
746                                    vec_t b_a[6], const vec_t swap) {
747   for (int i = 0; i < 6; i++) {
748     const vec_t sum_s = swap & (a_s[i] ^ b_s[i]);
749     a_s[i] ^= sum_s;
750     b_s[i] ^= sum_s;
751 
752     const vec_t sum_a = swap & (a_a[i] ^ b_a[i]);
753     a_a[i] ^= sum_a;
754     b_a[i] ^= sum_a;
755   }
756 }
757 
758 // poly3_vec_fmsub subtracts (|ms|, |ma|) × (|b_s|, |b_a|) from (|a_s|, |a_a|).
poly3_vec_fmsub(vec_t a_s[6],vec_t a_a[6],vec_t b_s[6],vec_t b_a[6],const vec_t ms,const vec_t ma)759 static inline void poly3_vec_fmsub(vec_t a_s[6], vec_t a_a[6], vec_t b_s[6],
760                                    vec_t b_a[6], const vec_t ms,
761                                    const vec_t ma) {
762   for (int i = 0; i < 6; i++) {
763     // See the bitslice formula, above.
764     const vec_t s = b_s[i];
765     const vec_t a = b_a[i];
766     const vec_t product_a = a & ma;
767     const vec_t product_s = (s ^ ms) & product_a;
768 
769     const vec_t out_s = a_s[i];
770     const vec_t out_a = a_a[i];
771     const vec_t t = out_a ^ product_a;
772     a_s[i] = (out_s ^ product_a) & (t ^ product_s);
773     a_a[i] = t | (out_s ^ product_s);
774   }
775 }
776 
777 // poly3_invert_vec sets |*out| to |in|^-1, i.e. such that |out|×|in| == 1 mod
778 // Φ(N).
poly3_invert_vec(struct poly3 * out,const struct poly3 * in)779 static void poly3_invert_vec(struct poly3 *out, const struct poly3 *in) {
780   // This algorithm is taken from section 7.1 of [SAFEGCD].
781   const vec_t kZero = {0};
782   const vec_t kOne = {1};
783   static const uint8_t kBottomSixtyOne[sizeof(vec_t)] = {
784       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f};
785 
786   vec_t v_s[6], v_a[6], r_s[6], r_a[6], f_s[6], f_a[6], g_s[6], g_a[6];
787   // v = 0
788   memset(&v_s, 0, sizeof(v_s));
789   memset(&v_a, 0, sizeof(v_a));
790   // r = 1
791   memset(&r_s, 0, sizeof(r_s));
792   memset(&r_a, 0, sizeof(r_a));
793   r_a[0] = kOne;
794   // f = all ones.
795   memset(f_s, 0, sizeof(f_s));
796   memset(f_a, 0xff, 5 * sizeof(vec_t));
797   memcpy(&f_a[5], kBottomSixtyOne, sizeof(kBottomSixtyOne));
798   // g is the reversal of |in|.
799   struct poly3 in_reversed;
800   poly3_reverse_700(&in_reversed, in);
801   g_s[5] = kZero;
802   memcpy(&g_s, &in_reversed.s.v, WORDS_PER_POLY * sizeof(crypto_word_t));
803   g_a[5] = kZero;
804   memcpy(&g_a, &in_reversed.a.v, WORDS_PER_POLY * sizeof(crypto_word_t));
805 
806   int delta = 1;
807 
808   for (size_t i = 0; i < (2*(N-1)) - 1; i++) {
809     poly3_vec_lshift1(v_s, v_a);
810 
811     const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1;
812     const crypto_word_t delta_is_non_negative = delta_sign_bit - 1;
813     const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta);
814     const vec_t g_has_constant_term = vec_broadcast_bit(g_a[0]);
815     const vec_t mask_w =
816         {delta_is_non_negative & delta_is_non_zero};
817     const vec_t mask = vec_broadcast_bit(mask_w) & g_has_constant_term;
818 
819     const vec_t c_a = vec_broadcast_bit(f_a[0] & g_a[0]);
820     const vec_t c_s = vec_broadcast_bit((f_s[0] ^ g_s[0]) & c_a);
821 
822     delta = constant_time_select_int(lsb_to_all(mask[0]), -delta, delta);
823     delta++;
824 
825     poly3_vec_cswap(f_s, f_a, g_s, g_a, mask);
826     poly3_vec_fmsub(g_s, g_a, f_s, f_a, c_s, c_a);
827     poly3_vec_rshift1(g_s, g_a);
828 
829     poly3_vec_cswap(v_s, v_a, r_s, r_a, mask);
830     poly3_vec_fmsub(r_s, r_a, v_s, v_a, c_s, c_a);
831   }
832 
833   assert(delta == 0);
834   memcpy(out->s.v, v_s, WORDS_PER_POLY * sizeof(crypto_word_t));
835   memcpy(out->a.v, v_a, WORDS_PER_POLY * sizeof(crypto_word_t));
836   poly3_mul_const(out, vec_get_word(f_s[0], 0), vec_get_word(f_a[0], 0));
837   poly3_reverse_700(out, out);
838 }
839 
840 #endif  // HRSS_HAVE_VECTOR_UNIT
841 
842 // HRSS_poly3_invert sets |*out| to |in|^-1, i.e. such that |out|×|in| == 1 mod
843 // Φ(N).
HRSS_poly3_invert(struct poly3 * out,const struct poly3 * in)844 void HRSS_poly3_invert(struct poly3 *out, const struct poly3 *in) {
845   // The vector version of this function seems slightly slower on AArch64, but
846   // is useful on ARMv7 and x86-64.
847 #if defined(HRSS_HAVE_VECTOR_UNIT) && !defined(OPENSSL_AARCH64)
848   if (vec_capable()) {
849     poly3_invert_vec(out, in);
850     return;
851   }
852 #endif
853 
854   // This algorithm is taken from section 7.1 of [SAFEGCD].
855   struct poly3 v, r, f, g;
856   // v = 0
857   poly3_zero(&v);
858   // r = 1
859   poly3_zero(&r);
860   r.a.v[0] = 1;
861   // f = all ones.
862   OPENSSL_memset(&f.s, 0, sizeof(struct poly2));
863   OPENSSL_memset(&f.a, 0xff, sizeof(struct poly2));
864   f.a.v[WORDS_PER_POLY - 1] >>= BITS_PER_WORD - BITS_IN_LAST_WORD;
865   // g is the reversal of |in|.
866   poly3_reverse_700(&g, in);
867   int delta = 1;
868 
869   for (size_t i = 0; i < (2*(N-1)) - 1; i++) {
870     poly3_lshift1(&v);
871 
872     const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1;
873     const crypto_word_t delta_is_non_negative = delta_sign_bit - 1;
874     const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta);
875     const crypto_word_t g_has_constant_term = lsb_to_all(g.a.v[0]);
876     const crypto_word_t mask =
877         g_has_constant_term & delta_is_non_negative & delta_is_non_zero;
878 
879     crypto_word_t c_s, c_a;
880     poly3_word_mul(&c_s, &c_a, f.s.v[0], f.a.v[0], g.s.v[0], g.a.v[0]);
881     c_s = lsb_to_all(c_s);
882     c_a = lsb_to_all(c_a);
883 
884     delta = constant_time_select_int(mask, -delta, delta);
885     delta++;
886 
887     poly3_cswap(&f, &g, mask);
888     poly3_fmsub(&g, &f, c_s, c_a);
889     poly3_rshift1(&g);
890 
891     poly3_cswap(&v, &r, mask);
892     poly3_fmsub(&r, &v, c_s, c_a);
893   }
894 
895   assert(delta == 0);
896   poly3_mul_const(&v, f.s.v[0], f.a.v[0]);
897   poly3_reverse_700(out, &v);
898 }
899 
900 // Polynomials in Q.
901 
902 // Coefficients are reduced mod Q. (Q is clearly not prime, therefore the
903 // coefficients do not form a field.)
904 #define Q 8192
905 
906 // VECS_PER_POLY is the number of 128-bit vectors needed to represent a
907 // polynomial.
908 #define COEFFICIENTS_PER_VEC (sizeof(vec_t) / sizeof(uint16_t))
909 #define VECS_PER_POLY ((N + COEFFICIENTS_PER_VEC - 1) / COEFFICIENTS_PER_VEC)
910 
911 // poly represents a polynomial with coefficients mod Q. Note that, while Q is a
912 // power of two, this does not operate in GF(Q). That would be a binary field
913 // but this is simply mod Q. Thus the coefficients are not a field.
914 //
915 // Coefficients are ordered little-endian, thus the coefficient of x^0 is the
916 // first element of the array.
917 struct poly {
918 #if defined(HRSS_HAVE_VECTOR_UNIT)
919   union {
920     // N + 3 = 704, which is a multiple of 64 and thus aligns things, esp for
921     // the vector code.
922     uint16_t v[N + 3];
923     vec_t vectors[VECS_PER_POLY];
924   };
925 #else
926   // Even if !HRSS_HAVE_VECTOR_UNIT, external assembly may be called that
927   // requires alignment.
928   alignas(16) uint16_t v[N + 3];
929 #endif
930 };
931 
poly_print(const struct poly * p)932 OPENSSL_UNUSED static void poly_print(const struct poly *p) {
933   printf("[");
934   for (unsigned i = 0; i < N; i++) {
935     if (i) {
936       printf(" ");
937     }
938     printf("%d", p->v[i]);
939   }
940   printf("]\n");
941 }
942 
943 // POLY_MUL_SCRATCH contains space for the working variables needed by
944 // |poly_mul|. The contents afterwards may be discarded, but the object may also
945 // be reused with future |poly_mul| calls to save heap allocations.
946 //
947 // This object must have 32-byte alignment.
948 struct POLY_MUL_SCRATCH {
949   union {
950     // This is used by |poly_mul_novec|.
951     struct {
952       uint16_t prod[2 * N];
953       uint16_t scratch[1318];
954     } novec;
955 
956 #if defined(HRSS_HAVE_VECTOR_UNIT)
957     // This is used by |poly_mul_vec|.
958     struct {
959       vec_t prod[VECS_PER_POLY * 2];
960       vec_t scratch[172];
961     } vec;
962 #endif
963 
964 #if defined(POLY_RQ_MUL_ASM)
965     // This is the space used by |poly_Rq_mul|.
966     uint8_t rq[POLY_MUL_RQ_SCRATCH_SPACE];
967 #endif
968   } u;
969 };
970 
971 #if defined(HRSS_HAVE_VECTOR_UNIT)
972 
973 // poly_mul_vec_aux is a recursive function that multiplies |n| words from |a|
974 // and |b| and writes 2×|n| words to |out|. Each call uses 2*ceil(n/2) elements
975 // of |scratch| and the function recurses, except if |n| < 3, when |scratch|
976 // isn't used and the recursion stops. If |n| == |VECS_PER_POLY| then |scratch|
977 // needs 172 elements.
poly_mul_vec_aux(vec_t * restrict out,vec_t * restrict scratch,const vec_t * restrict a,const vec_t * restrict b,const size_t n)978 static void poly_mul_vec_aux(vec_t *restrict out, vec_t *restrict scratch,
979                              const vec_t *restrict a, const vec_t *restrict b,
980                              const size_t n) {
981   // In [HRSS], the technique they used for polynomial multiplication is
982   // described: they start with Toom-4 at the top level and then two layers of
983   // Karatsuba. Karatsuba is a specific instance of the general Toom–Cook
984   // decomposition, which splits an input n-ways and produces 2n-1
985   // multiplications of those parts. So, starting with 704 coefficients (rounded
986   // up from 701 to have more factors of two), Toom-4 gives seven
987   // multiplications of degree-174 polynomials. Each round of Karatsuba (which
988   // is Toom-2) increases the number of multiplications by a factor of three
989   // while halving the size of the values being multiplied. So two rounds gives
990   // 63 multiplications of degree-44 polynomials. Then they (I think) form
991   // vectors by gathering all 63 coefficients of each power together, for each
992   // input, and doing more rounds of Karatsuba on the vectors until they bottom-
993   // out somewhere with schoolbook multiplication.
994   //
995   // I tried something like that for NEON. NEON vectors are 128 bits so hold
996   // eight coefficients. I wrote a function that did Karatsuba on eight
997   // multiplications at the same time, using such vectors, and a Go script that
998   // decomposed from degree-704, with Karatsuba in non-transposed form, until it
999   // reached multiplications of degree-44. It batched up those 81
1000   // multiplications into lots of eight with a single one left over (which was
1001   // handled directly).
1002   //
1003   // It worked, but it was significantly slower than the dumb algorithm used
1004   // below. Potentially that was because I misunderstood how [HRSS] did it, or
1005   // because Clang is bad at generating good code from NEON intrinsics on ARMv7.
1006   // (Which is true: the code generated by Clang for the below is pretty crap.)
1007   //
1008   // This algorithm is much simpler. It just does Karatsuba decomposition all
1009   // the way down and never transposes. When it gets down to degree-16 or
1010   // degree-24 values, they are multiplied using schoolbook multiplication and
1011   // vector intrinsics. The vector operations form each of the eight phase-
1012   // shifts of one of the inputs, point-wise multiply, and then add into the
1013   // result at the correct place. This means that 33% (degree-16) or 25%
1014   // (degree-24) of the multiplies and adds are wasted, but it does ok.
1015   if (n == 2) {
1016     vec_t result[4];
1017     vec_t vec_a[3];
1018     static const vec_t kZero = {0};
1019     vec_a[0] = a[0];
1020     vec_a[1] = a[1];
1021     vec_a[2] = kZero;
1022 
1023     result[0] = vec_mul(vec_a[0], vec_get_word(b[0], 0));
1024     result[1] = vec_mul(vec_a[1], vec_get_word(b[0], 0));
1025 
1026     result[1] = vec_fma(result[1], vec_a[0], vec_get_word(b[1], 0));
1027     result[2] = vec_mul(vec_a[1], vec_get_word(b[1], 0));
1028     result[3] = kZero;
1029 
1030     vec3_rshift_word(vec_a);
1031 
1032 #define BLOCK(x, y)                                                      \
1033   do {                                                                   \
1034     result[x + 0] =                                                      \
1035         vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \
1036     result[x + 1] =                                                      \
1037         vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \
1038     result[x + 2] =                                                      \
1039         vec_fma(result[x + 2], vec_a[2], vec_get_word(b[y / 8], y % 8)); \
1040   } while (0)
1041 
1042     BLOCK(0, 1);
1043     BLOCK(1, 9);
1044 
1045     vec3_rshift_word(vec_a);
1046 
1047     BLOCK(0, 2);
1048     BLOCK(1, 10);
1049 
1050     vec3_rshift_word(vec_a);
1051 
1052     BLOCK(0, 3);
1053     BLOCK(1, 11);
1054 
1055     vec3_rshift_word(vec_a);
1056 
1057     BLOCK(0, 4);
1058     BLOCK(1, 12);
1059 
1060     vec3_rshift_word(vec_a);
1061 
1062     BLOCK(0, 5);
1063     BLOCK(1, 13);
1064 
1065     vec3_rshift_word(vec_a);
1066 
1067     BLOCK(0, 6);
1068     BLOCK(1, 14);
1069 
1070     vec3_rshift_word(vec_a);
1071 
1072     BLOCK(0, 7);
1073     BLOCK(1, 15);
1074 
1075 #undef BLOCK
1076 
1077     memcpy(out, result, sizeof(result));
1078     return;
1079   }
1080 
1081   if (n == 3) {
1082     vec_t result[6];
1083     vec_t vec_a[4];
1084     static const vec_t kZero = {0};
1085     vec_a[0] = a[0];
1086     vec_a[1] = a[1];
1087     vec_a[2] = a[2];
1088     vec_a[3] = kZero;
1089 
1090     result[0] = vec_mul(a[0], vec_get_word(b[0], 0));
1091     result[1] = vec_mul(a[1], vec_get_word(b[0], 0));
1092     result[2] = vec_mul(a[2], vec_get_word(b[0], 0));
1093 
1094 #define BLOCK_PRE(x, y)                                                  \
1095   do {                                                                   \
1096     result[x + 0] =                                                      \
1097         vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \
1098     result[x + 1] =                                                      \
1099         vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \
1100     result[x + 2] = vec_mul(vec_a[2], vec_get_word(b[y / 8], y % 8));    \
1101   } while (0)
1102 
1103     BLOCK_PRE(1, 8);
1104     BLOCK_PRE(2, 16);
1105 
1106     result[5] = kZero;
1107 
1108     vec4_rshift_word(vec_a);
1109 
1110 #define BLOCK(x, y)                                                      \
1111   do {                                                                   \
1112     result[x + 0] =                                                      \
1113         vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \
1114     result[x + 1] =                                                      \
1115         vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \
1116     result[x + 2] =                                                      \
1117         vec_fma(result[x + 2], vec_a[2], vec_get_word(b[y / 8], y % 8)); \
1118     result[x + 3] =                                                      \
1119         vec_fma(result[x + 3], vec_a[3], vec_get_word(b[y / 8], y % 8)); \
1120   } while (0)
1121 
1122     BLOCK(0, 1);
1123     BLOCK(1, 9);
1124     BLOCK(2, 17);
1125 
1126     vec4_rshift_word(vec_a);
1127 
1128     BLOCK(0, 2);
1129     BLOCK(1, 10);
1130     BLOCK(2, 18);
1131 
1132     vec4_rshift_word(vec_a);
1133 
1134     BLOCK(0, 3);
1135     BLOCK(1, 11);
1136     BLOCK(2, 19);
1137 
1138     vec4_rshift_word(vec_a);
1139 
1140     BLOCK(0, 4);
1141     BLOCK(1, 12);
1142     BLOCK(2, 20);
1143 
1144     vec4_rshift_word(vec_a);
1145 
1146     BLOCK(0, 5);
1147     BLOCK(1, 13);
1148     BLOCK(2, 21);
1149 
1150     vec4_rshift_word(vec_a);
1151 
1152     BLOCK(0, 6);
1153     BLOCK(1, 14);
1154     BLOCK(2, 22);
1155 
1156     vec4_rshift_word(vec_a);
1157 
1158     BLOCK(0, 7);
1159     BLOCK(1, 15);
1160     BLOCK(2, 23);
1161 
1162 #undef BLOCK
1163 #undef BLOCK_PRE
1164 
1165     memcpy(out, result, sizeof(result));
1166 
1167     return;
1168   }
1169 
1170   // Karatsuba multiplication.
1171   // https://en.wikipedia.org/wiki/Karatsuba_algorithm
1172 
1173   // When |n| is odd, the two "halves" will have different lengths. The first is
1174   // always the smaller.
1175   const size_t low_len = n / 2;
1176   const size_t high_len = n - low_len;
1177   const vec_t *a_high = &a[low_len];
1178   const vec_t *b_high = &b[low_len];
1179 
1180   // Store a_1 + a_0 in the first half of |out| and b_1 + b_0 in the second
1181   // half.
1182   for (size_t i = 0; i < low_len; i++) {
1183     out[i] = vec_add(a_high[i], a[i]);
1184     out[high_len + i] = vec_add(b_high[i], b[i]);
1185   }
1186   if (high_len != low_len) {
1187     out[low_len] = a_high[low_len];
1188     out[high_len + low_len] = b_high[low_len];
1189   }
1190 
1191   vec_t *const child_scratch = &scratch[2 * high_len];
1192   // Calculate (a_1 + a_0) × (b_1 + b_0) and write to scratch buffer.
1193   poly_mul_vec_aux(scratch, child_scratch, out, &out[high_len], high_len);
1194   // Calculate a_1 × b_1.
1195   poly_mul_vec_aux(&out[low_len * 2], child_scratch, a_high, b_high, high_len);
1196   // Calculate a_0 × b_0.
1197   poly_mul_vec_aux(out, child_scratch, a, b, low_len);
1198 
1199   // Subtract those last two products from the first.
1200   for (size_t i = 0; i < low_len * 2; i++) {
1201     scratch[i] = vec_sub(scratch[i], vec_add(out[i], out[low_len * 2 + i]));
1202   }
1203   if (low_len != high_len) {
1204     scratch[low_len * 2] = vec_sub(scratch[low_len * 2], out[low_len * 4]);
1205     scratch[low_len * 2 + 1] =
1206         vec_sub(scratch[low_len * 2 + 1], out[low_len * 4 + 1]);
1207   }
1208 
1209   // Add the middle product into the output.
1210   for (size_t i = 0; i < high_len * 2; i++) {
1211     out[low_len + i] = vec_add(out[low_len + i], scratch[i]);
1212   }
1213 }
1214 
1215 // poly_mul_vec sets |*out| to |x|×|y| mod (��^n - 1).
poly_mul_vec(struct POLY_MUL_SCRATCH * scratch,struct poly * out,const struct poly * x,const struct poly * y)1216 static void poly_mul_vec(struct POLY_MUL_SCRATCH *scratch, struct poly *out,
1217                          const struct poly *x, const struct poly *y) {
1218   OPENSSL_memset((uint16_t *)&x->v[N], 0, 3 * sizeof(uint16_t));
1219   OPENSSL_memset((uint16_t *)&y->v[N], 0, 3 * sizeof(uint16_t));
1220 
1221   OPENSSL_STATIC_ASSERT(sizeof(out->v) == sizeof(vec_t) * VECS_PER_POLY,
1222                         "struct poly is the wrong size");
1223   OPENSSL_STATIC_ASSERT(alignof(struct poly) == alignof(vec_t),
1224                         "struct poly has incorrect alignment");
1225 
1226   vec_t *const prod = scratch->u.vec.prod;
1227   vec_t *const aux_scratch = scratch->u.vec.scratch;
1228   poly_mul_vec_aux(prod, aux_scratch, x->vectors, y->vectors, VECS_PER_POLY);
1229 
1230   // |prod| needs to be reduced mod (��^n - 1), which just involves adding the
1231   // upper-half to the lower-half. However, N is 701, which isn't a multiple of
1232   // the vector size, so the upper-half vectors all have to be shifted before
1233   // being added to the lower-half.
1234   vec_t *out_vecs = (vec_t *)out->v;
1235 
1236   for (size_t i = 0; i < VECS_PER_POLY; i++) {
1237     const vec_t prev = prod[VECS_PER_POLY - 1 + i];
1238     const vec_t this = prod[VECS_PER_POLY + i];
1239     out_vecs[i] = vec_add(prod[i], vec_merge_3_5(prev, this));
1240   }
1241 
1242   OPENSSL_memset(&out->v[N], 0, 3 * sizeof(uint16_t));
1243 }
1244 
1245 #endif  // HRSS_HAVE_VECTOR_UNIT
1246 
1247 // poly_mul_novec_aux writes the product of |a| and |b| to |out|, using
1248 // |scratch| as scratch space. It'll use Karatsuba if the inputs are large
1249 // enough to warrant it. Each call uses 2*ceil(n/2) elements of |scratch| and
1250 // the function recurses, except if |n| < 64, when |scratch| isn't used and the
1251 // recursion stops. If |n| == |N| then |scratch| needs 1318 elements.
poly_mul_novec_aux(uint16_t * out,uint16_t * scratch,const uint16_t * a,const uint16_t * b,size_t n)1252 static void poly_mul_novec_aux(uint16_t *out, uint16_t *scratch,
1253                                const uint16_t *a, const uint16_t *b, size_t n) {
1254   static const size_t kSchoolbookLimit = 64;
1255   if (n < kSchoolbookLimit) {
1256     OPENSSL_memset(out, 0, sizeof(uint16_t) * n * 2);
1257     for (size_t i = 0; i < n; i++) {
1258       for (size_t j = 0; j < n; j++) {
1259         out[i + j] += (unsigned) a[i] * b[j];
1260       }
1261     }
1262 
1263     return;
1264   }
1265 
1266   // Karatsuba multiplication.
1267   // https://en.wikipedia.org/wiki/Karatsuba_algorithm
1268 
1269   // When |n| is odd, the two "halves" will have different lengths. The
1270   // first is always the smaller.
1271   const size_t low_len = n / 2;
1272   const size_t high_len = n - low_len;
1273   const uint16_t *const a_high = &a[low_len];
1274   const uint16_t *const b_high = &b[low_len];
1275 
1276   for (size_t i = 0; i < low_len; i++) {
1277     out[i] = a_high[i] + a[i];
1278     out[high_len + i] = b_high[i] + b[i];
1279   }
1280   if (high_len != low_len) {
1281     out[low_len] = a_high[low_len];
1282     out[high_len + low_len] = b_high[low_len];
1283   }
1284 
1285   uint16_t *const child_scratch = &scratch[2 * high_len];
1286   poly_mul_novec_aux(scratch, child_scratch, out, &out[high_len], high_len);
1287   poly_mul_novec_aux(&out[low_len * 2], child_scratch, a_high, b_high,
1288                      high_len);
1289   poly_mul_novec_aux(out, child_scratch, a, b, low_len);
1290 
1291   for (size_t i = 0; i < low_len * 2; i++) {
1292     scratch[i] -= out[i] + out[low_len * 2 + i];
1293   }
1294   if (low_len != high_len) {
1295     scratch[low_len * 2] -= out[low_len * 4];
1296     assert(out[low_len * 4 + 1] == 0);
1297   }
1298 
1299   for (size_t i = 0; i < high_len * 2; i++) {
1300     out[low_len + i] += scratch[i];
1301   }
1302 }
1303 
1304 // poly_mul_novec sets |*out| to |x|×|y| mod (��^n - 1).
poly_mul_novec(struct POLY_MUL_SCRATCH * scratch,struct poly * out,const struct poly * x,const struct poly * y)1305 static void poly_mul_novec(struct POLY_MUL_SCRATCH *scratch, struct poly *out,
1306                            const struct poly *x, const struct poly *y) {
1307   uint16_t *const prod = scratch->u.novec.prod;
1308   uint16_t *const aux_scratch = scratch->u.novec.scratch;
1309   poly_mul_novec_aux(prod, aux_scratch, x->v, y->v, N);
1310 
1311   for (size_t i = 0; i < N; i++) {
1312     out->v[i] = prod[i] + prod[i + N];
1313   }
1314   OPENSSL_memset(&out->v[N], 0, 3 * sizeof(uint16_t));
1315 }
1316 
poly_mul(struct POLY_MUL_SCRATCH * scratch,struct poly * r,const struct poly * a,const struct poly * b)1317 static void poly_mul(struct POLY_MUL_SCRATCH *scratch, struct poly *r,
1318                      const struct poly *a, const struct poly *b) {
1319 #if defined(POLY_RQ_MUL_ASM)
1320   const int has_avx2 = (OPENSSL_ia32cap_P[2] & (1 << 5)) != 0;
1321   if (has_avx2) {
1322     poly_Rq_mul(r->v, a->v, b->v, scratch->u.rq);
1323     return;
1324   }
1325 #endif
1326 
1327 #if defined(HRSS_HAVE_VECTOR_UNIT)
1328   if (vec_capable()) {
1329     poly_mul_vec(scratch, r, a, b);
1330     return;
1331   }
1332 #endif
1333 
1334   // Fallback, non-vector case.
1335   poly_mul_novec(scratch, r, a, b);
1336 }
1337 
1338 // poly_mul_x_minus_1 sets |p| to |p|×(�� - 1) mod (��^n - 1).
poly_mul_x_minus_1(struct poly * p)1339 static void poly_mul_x_minus_1(struct poly *p) {
1340   // Multiplying by (�� - 1) means negating each coefficient and adding in
1341   // the value of the previous one.
1342   const uint16_t orig_final_coefficient = p->v[N - 1];
1343 
1344   for (size_t i = N - 1; i > 0; i--) {
1345     p->v[i] = p->v[i - 1] - p->v[i];
1346   }
1347   p->v[0] = orig_final_coefficient - p->v[0];
1348 }
1349 
1350 // poly_mod_phiN sets |p| to |p| mod Φ(N).
poly_mod_phiN(struct poly * p)1351 static void poly_mod_phiN(struct poly *p) {
1352   const uint16_t coeff700 = p->v[N - 1];
1353 
1354   for (unsigned i = 0; i < N; i++) {
1355     p->v[i] -= coeff700;
1356   }
1357 }
1358 
1359 // poly_clamp reduces each coefficient mod Q.
poly_clamp(struct poly * p)1360 static void poly_clamp(struct poly *p) {
1361   for (unsigned i = 0; i < N; i++) {
1362     p->v[i] &= Q - 1;
1363   }
1364 }
1365 
1366 
1367 // Conversion functions
1368 // --------------------
1369 
1370 // poly2_from_poly sets |*out| to |in| mod 2.
poly2_from_poly(struct poly2 * out,const struct poly * in)1371 static void poly2_from_poly(struct poly2 *out, const struct poly *in) {
1372   crypto_word_t *words = out->v;
1373   unsigned shift = 0;
1374   crypto_word_t word = 0;
1375 
1376   for (unsigned i = 0; i < N; i++) {
1377     word >>= 1;
1378     word |= (crypto_word_t)(in->v[i] & 1) << (BITS_PER_WORD - 1);
1379     shift++;
1380 
1381     if (shift == BITS_PER_WORD) {
1382       *words = word;
1383       words++;
1384       word = 0;
1385       shift = 0;
1386     }
1387   }
1388 
1389   word >>= BITS_PER_WORD - shift;
1390   *words = word;
1391 }
1392 
1393 // mod3 treats |a| as a signed number and returns |a| mod 3.
mod3(int16_t a)1394 static uint16_t mod3(int16_t a) {
1395   const int16_t q = ((int32_t)a * 21845) >> 16;
1396   int16_t ret = a - 3 * q;
1397   // At this point, |ret| is in {0, 1, 2, 3} and that needs to be mapped to {0,
1398   // 1, 2, 0}.
1399   return ret & ((ret & (ret >> 1)) - 1);
1400 }
1401 
1402 // poly3_from_poly sets |*out| to |in|.
poly3_from_poly(struct poly3 * out,const struct poly * in)1403 static void poly3_from_poly(struct poly3 *out, const struct poly *in) {
1404   crypto_word_t *words_s = out->s.v;
1405   crypto_word_t *words_a = out->a.v;
1406   crypto_word_t s = 0;
1407   crypto_word_t a = 0;
1408   unsigned shift = 0;
1409 
1410   for (unsigned i = 0; i < N; i++) {
1411     // This duplicates the 13th bit upwards to the top of the uint16,
1412     // essentially treating it as a sign bit and converting into a signed int16.
1413     // The signed value is reduced mod 3, yielding {0, 1, 2}.
1414     const uint16_t v = mod3((int16_t)(in->v[i] << 3) >> 3);
1415     s >>= 1;
1416     const crypto_word_t s_bit = (crypto_word_t)(v & 2) << (BITS_PER_WORD - 2);
1417     s |= s_bit;
1418     a >>= 1;
1419     a |= s_bit | (crypto_word_t)(v & 1) << (BITS_PER_WORD - 1);
1420     shift++;
1421 
1422     if (shift == BITS_PER_WORD) {
1423       *words_s = s;
1424       words_s++;
1425       *words_a = a;
1426       words_a++;
1427       s = a = 0;
1428       shift = 0;
1429     }
1430   }
1431 
1432   s >>= BITS_PER_WORD - shift;
1433   a >>= BITS_PER_WORD - shift;
1434   *words_s = s;
1435   *words_a = a;
1436 }
1437 
1438 // poly3_from_poly_checked sets |*out| to |in|, which has coefficients in {0, 1,
1439 // Q-1}. It returns a mask indicating whether all coefficients were found to be
1440 // in that set.
poly3_from_poly_checked(struct poly3 * out,const struct poly * in)1441 static crypto_word_t poly3_from_poly_checked(struct poly3 *out,
1442                                              const struct poly *in) {
1443   crypto_word_t *words_s = out->s.v;
1444   crypto_word_t *words_a = out->a.v;
1445   crypto_word_t s = 0;
1446   crypto_word_t a = 0;
1447   unsigned shift = 0;
1448   crypto_word_t ok = CONSTTIME_TRUE_W;
1449 
1450   for (unsigned i = 0; i < N; i++) {
1451     const uint16_t v = in->v[i];
1452     // Maps {0, 1, Q-1} to {0, 1, 2}.
1453     uint16_t mod3 = v & 3;
1454     mod3 ^= mod3 >> 1;
1455     const uint16_t expected = (uint16_t)((~((mod3 >> 1) - 1)) | mod3) % Q;
1456     ok &= constant_time_eq_w(v, expected);
1457 
1458     s >>= 1;
1459     const crypto_word_t s_bit = (crypto_word_t)(mod3 & 2)
1460                                 << (BITS_PER_WORD - 2);
1461     s |= s_bit;
1462     a >>= 1;
1463     a |= s_bit | (crypto_word_t)(mod3 & 1) << (BITS_PER_WORD - 1);
1464     shift++;
1465 
1466     if (shift == BITS_PER_WORD) {
1467       *words_s = s;
1468       words_s++;
1469       *words_a = a;
1470       words_a++;
1471       s = a = 0;
1472       shift = 0;
1473     }
1474   }
1475 
1476   s >>= BITS_PER_WORD - shift;
1477   a >>= BITS_PER_WORD - shift;
1478   *words_s = s;
1479   *words_a = a;
1480 
1481   return ok;
1482 }
1483 
poly_from_poly2(struct poly * out,const struct poly2 * in)1484 static void poly_from_poly2(struct poly *out, const struct poly2 *in) {
1485   const crypto_word_t *words = in->v;
1486   unsigned shift = 0;
1487   crypto_word_t word = *words;
1488 
1489   for (unsigned i = 0; i < N; i++) {
1490     out->v[i] = word & 1;
1491     word >>= 1;
1492     shift++;
1493 
1494     if (shift == BITS_PER_WORD) {
1495       words++;
1496       word = *words;
1497       shift = 0;
1498     }
1499   }
1500 }
1501 
poly_from_poly3(struct poly * out,const struct poly3 * in)1502 static void poly_from_poly3(struct poly *out, const struct poly3 *in) {
1503   const crypto_word_t *words_s = in->s.v;
1504   const crypto_word_t *words_a = in->a.v;
1505   crypto_word_t word_s = ~(*words_s);
1506   crypto_word_t word_a = *words_a;
1507   unsigned shift = 0;
1508 
1509   for (unsigned i = 0; i < N; i++) {
1510     out->v[i] = (uint16_t)(word_s & 1) - 1;
1511     out->v[i] |= word_a & 1;
1512     word_s >>= 1;
1513     word_a >>= 1;
1514     shift++;
1515 
1516     if (shift == BITS_PER_WORD) {
1517       words_s++;
1518       words_a++;
1519       word_s = ~(*words_s);
1520       word_a = *words_a;
1521       shift = 0;
1522     }
1523   }
1524 }
1525 
1526 // Polynomial inversion
1527 // --------------------
1528 
1529 // poly_invert_mod2 sets |*out| to |in^-1| (i.e. such that |*out|×|in| = 1 mod
1530 // Φ(N)), all mod 2. This isn't useful in itself, but is part of doing inversion
1531 // mod Q.
poly_invert_mod2(struct poly * out,const struct poly * in)1532 static void poly_invert_mod2(struct poly *out, const struct poly *in) {
1533   // This algorithm is taken from section 7.1 of [SAFEGCD].
1534   struct poly2 v, r, f, g;
1535 
1536   // v = 0
1537   poly2_zero(&v);
1538   // r = 1
1539   poly2_zero(&r);
1540   r.v[0] = 1;
1541   // f = all ones.
1542   OPENSSL_memset(&f, 0xff, sizeof(struct poly2));
1543   f.v[WORDS_PER_POLY - 1] >>= BITS_PER_WORD - BITS_IN_LAST_WORD;
1544   // g is the reversal of |in|.
1545   poly2_from_poly(&g, in);
1546   poly2_mod_phiN(&g);
1547   poly2_reverse_700(&g, &g);
1548   int delta = 1;
1549 
1550   for (size_t i = 0; i < (2*(N-1)) - 1; i++) {
1551     poly2_lshift1(&v);
1552 
1553     const crypto_word_t delta_sign_bit = (delta >> (sizeof(delta) * 8 - 1)) & 1;
1554     const crypto_word_t delta_is_non_negative = delta_sign_bit - 1;
1555     const crypto_word_t delta_is_non_zero = ~constant_time_is_zero_w(delta);
1556     const crypto_word_t g_has_constant_term = lsb_to_all(g.v[0]);
1557     const crypto_word_t mask =
1558         g_has_constant_term & delta_is_non_negative & delta_is_non_zero;
1559 
1560     const crypto_word_t c = lsb_to_all(f.v[0] & g.v[0]);
1561 
1562     delta = constant_time_select_int(mask, -delta, delta);
1563     delta++;
1564 
1565     poly2_cswap(&f, &g, mask);
1566     poly2_fmadd(&g, &f, c);
1567     poly2_rshift1(&g);
1568 
1569     poly2_cswap(&v, &r, mask);
1570     poly2_fmadd(&r, &v, c);
1571   }
1572 
1573   assert(delta == 0);
1574   assert(f.v[0] & 1);
1575   poly2_reverse_700(&v, &v);
1576   poly_from_poly2(out, &v);
1577 }
1578 
1579 // poly_invert sets |*out| to |in^-1| (i.e. such that |*out|×|in| = 1 mod Φ(N)).
poly_invert(struct POLY_MUL_SCRATCH * scratch,struct poly * out,const struct poly * in)1580 static void poly_invert(struct POLY_MUL_SCRATCH *scratch, struct poly *out,
1581                         const struct poly *in) {
1582   // Inversion mod Q, which is done based on the result of inverting mod
1583   // 2. See [NTRUTN14] paper, bottom of page two.
1584   struct poly a, *b, tmp;
1585 
1586   // a = -in.
1587   for (unsigned i = 0; i < N; i++) {
1588     a.v[i] = -in->v[i];
1589   }
1590 
1591   // b = in^-1 mod 2.
1592   b = out;
1593   poly_invert_mod2(b, in);
1594 
1595   // We are working mod Q=2**13 and we need to iterate ceil(log_2(13))
1596   // times, which is four.
1597   for (unsigned i = 0; i < 4; i++) {
1598     poly_mul(scratch, &tmp, &a, b);
1599     tmp.v[0] += 2;
1600     poly_mul(scratch, b, b, &tmp);
1601   }
1602 }
1603 
1604 // Marshal and unmarshal functions for various basic types.
1605 // --------------------------------------------------------
1606 
1607 #define POLY_BYTES 1138
1608 
1609 // poly_marshal serialises all but the final coefficient of |in| to |out|.
poly_marshal(uint8_t out[POLY_BYTES],const struct poly * in)1610 static void poly_marshal(uint8_t out[POLY_BYTES], const struct poly *in) {
1611   const uint16_t *p = in->v;
1612 
1613   for (size_t i = 0; i < N / 8; i++) {
1614     out[0] = p[0];
1615     out[1] = (0x1f & (p[0] >> 8)) | ((p[1] & 0x07) << 5);
1616     out[2] = p[1] >> 3;
1617     out[3] = (3 & (p[1] >> 11)) | ((p[2] & 0x3f) << 2);
1618     out[4] = (0x7f & (p[2] >> 6)) | ((p[3] & 0x01) << 7);
1619     out[5] = p[3] >> 1;
1620     out[6] = (0xf & (p[3] >> 9)) | ((p[4] & 0x0f) << 4);
1621     out[7] = p[4] >> 4;
1622     out[8] = (1 & (p[4] >> 12)) | ((p[5] & 0x7f) << 1);
1623     out[9] = (0x3f & (p[5] >> 7)) | ((p[6] & 0x03) << 6);
1624     out[10] = p[6] >> 2;
1625     out[11] = (7 & (p[6] >> 10)) | ((p[7] & 0x1f) << 3);
1626     out[12] = p[7] >> 5;
1627 
1628     p += 8;
1629     out += 13;
1630   }
1631 
1632   // There are four remaining values.
1633   out[0] = p[0];
1634   out[1] = (0x1f & (p[0] >> 8)) | ((p[1] & 0x07) << 5);
1635   out[2] = p[1] >> 3;
1636   out[3] = (3 & (p[1] >> 11)) | ((p[2] & 0x3f) << 2);
1637   out[4] = (0x7f & (p[2] >> 6)) | ((p[3] & 0x01) << 7);
1638   out[5] = p[3] >> 1;
1639   out[6] = 0xf & (p[3] >> 9);
1640 }
1641 
1642 // poly_unmarshal parses the output of |poly_marshal| and sets |out| such that
1643 // all but the final coefficients match, and the final coefficient is calculated
1644 // such that evaluating |out| at one results in zero. It returns one on success
1645 // or zero if |in| is an invalid encoding.
poly_unmarshal(struct poly * out,const uint8_t in[POLY_BYTES])1646 static int poly_unmarshal(struct poly *out, const uint8_t in[POLY_BYTES]) {
1647   uint16_t *p = out->v;
1648 
1649   for (size_t i = 0; i < N / 8; i++) {
1650     p[0] = (uint16_t)(in[0]) | (uint16_t)(in[1] & 0x1f) << 8;
1651     p[1] = (uint16_t)(in[1] >> 5) | (uint16_t)(in[2]) << 3 |
1652            (uint16_t)(in[3] & 3) << 11;
1653     p[2] = (uint16_t)(in[3] >> 2) | (uint16_t)(in[4] & 0x7f) << 6;
1654     p[3] = (uint16_t)(in[4] >> 7) | (uint16_t)(in[5]) << 1 |
1655            (uint16_t)(in[6] & 0xf) << 9;
1656     p[4] = (uint16_t)(in[6] >> 4) | (uint16_t)(in[7]) << 4 |
1657            (uint16_t)(in[8] & 1) << 12;
1658     p[5] = (uint16_t)(in[8] >> 1) | (uint16_t)(in[9] & 0x3f) << 7;
1659     p[6] = (uint16_t)(in[9] >> 6) | (uint16_t)(in[10]) << 2 |
1660            (uint16_t)(in[11] & 7) << 10;
1661     p[7] = (uint16_t)(in[11] >> 3) | (uint16_t)(in[12]) << 5;
1662 
1663     p += 8;
1664     in += 13;
1665   }
1666 
1667   // There are four coefficients remaining.
1668   p[0] = (uint16_t)(in[0]) | (uint16_t)(in[1] & 0x1f) << 8;
1669   p[1] = (uint16_t)(in[1] >> 5) | (uint16_t)(in[2]) << 3 |
1670          (uint16_t)(in[3] & 3) << 11;
1671   p[2] = (uint16_t)(in[3] >> 2) | (uint16_t)(in[4] & 0x7f) << 6;
1672   p[3] = (uint16_t)(in[4] >> 7) | (uint16_t)(in[5]) << 1 |
1673          (uint16_t)(in[6] & 0xf) << 9;
1674 
1675   for (unsigned i = 0; i < N - 1; i++) {
1676     out->v[i] = (int16_t)(out->v[i] << 3) >> 3;
1677   }
1678 
1679   // There are four unused bits in the last byte. We require them to be zero.
1680   if ((in[6] & 0xf0) != 0) {
1681     return 0;
1682   }
1683 
1684   // Set the final coefficient as specifed in [HRSSNIST] 1.9.2 step 6.
1685   uint32_t sum = 0;
1686   for (size_t i = 0; i < N - 1; i++) {
1687     sum += out->v[i];
1688   }
1689 
1690   out->v[N - 1] = (uint16_t)(0u - sum);
1691 
1692   return 1;
1693 }
1694 
1695 // mod3_from_modQ maps {0, 1, Q-1, 65535} -> {0, 1, 2, 2}. Note that |v| may
1696 // have an invalid value when processing attacker-controlled inputs.
mod3_from_modQ(uint16_t v)1697 static uint16_t mod3_from_modQ(uint16_t v) {
1698   v &= 3;
1699   return v ^ (v >> 1);
1700 }
1701 
1702 // poly_marshal_mod3 marshals |in| to |out| where the coefficients of |in| are
1703 // all in {0, 1, Q-1, 65535} and |in| is mod Φ(N). (Note that coefficients may
1704 // have invalid values when processing attacker-controlled inputs.)
poly_marshal_mod3(uint8_t out[HRSS_POLY3_BYTES],const struct poly * in)1705 static void poly_marshal_mod3(uint8_t out[HRSS_POLY3_BYTES],
1706                               const struct poly *in) {
1707   const uint16_t *coeffs = in->v;
1708 
1709   // Only 700 coefficients are marshaled because in[700] must be zero.
1710   assert(coeffs[N-1] == 0);
1711 
1712   for (size_t i = 0; i < HRSS_POLY3_BYTES; i++) {
1713     const uint16_t coeffs0 = mod3_from_modQ(coeffs[0]);
1714     const uint16_t coeffs1 = mod3_from_modQ(coeffs[1]);
1715     const uint16_t coeffs2 = mod3_from_modQ(coeffs[2]);
1716     const uint16_t coeffs3 = mod3_from_modQ(coeffs[3]);
1717     const uint16_t coeffs4 = mod3_from_modQ(coeffs[4]);
1718     out[i] = coeffs0 + coeffs1 * 3 + coeffs2 * 9 + coeffs3 * 27 + coeffs4 * 81;
1719     coeffs += 5;
1720   }
1721 }
1722 
1723 // HRSS-specific functions
1724 // -----------------------
1725 
1726 // poly_short_sample samples a vector of values in {0xffff (i.e. -1), 0, 1}.
1727 // This is the same action as the algorithm in [HRSSNIST] section 1.8.1, but
1728 // with HRSS-SXY the sampling algorithm is now a private detail of the
1729 // implementation (previously it had to match between two parties). This
1730 // function uses that freedom to implement a flatter distribution of values.
poly_short_sample(struct poly * out,const uint8_t in[HRSS_SAMPLE_BYTES])1731 static void poly_short_sample(struct poly *out,
1732                               const uint8_t in[HRSS_SAMPLE_BYTES]) {
1733   OPENSSL_STATIC_ASSERT(HRSS_SAMPLE_BYTES == N - 1,
1734                         "HRSS_SAMPLE_BYTES incorrect");
1735   for (size_t i = 0; i < N - 1; i++) {
1736     uint16_t v = mod3(in[i]);
1737     // Map {0, 1, 2} -> {0, 1, 0xffff}
1738     v |= ((v >> 1) ^ 1) - 1;
1739     out->v[i] = v;
1740   }
1741   out->v[N - 1] = 0;
1742 }
1743 
1744 // poly_short_sample_plus performs the T+ sample as defined in [HRSSNIST],
1745 // section 1.8.2.
poly_short_sample_plus(struct poly * out,const uint8_t in[HRSS_SAMPLE_BYTES])1746 static void poly_short_sample_plus(struct poly *out,
1747                                    const uint8_t in[HRSS_SAMPLE_BYTES]) {
1748   poly_short_sample(out, in);
1749 
1750   // sum (and the product in the for loop) will overflow. But that's fine
1751   // because |sum| is bound by +/- (N-2), and N < 2^15 so it works out.
1752   uint16_t sum = 0;
1753   for (unsigned i = 0; i < N - 2; i++) {
1754     sum += (unsigned) out->v[i] * out->v[i + 1];
1755   }
1756 
1757   // If the sum is negative, flip the sign of even-positioned coefficients. (See
1758   // page 8 of [HRSS].)
1759   sum = ((int16_t) sum) >> 15;
1760   const uint16_t scale = sum | (~sum & 1);
1761   for (unsigned i = 0; i < N; i += 2) {
1762     out->v[i] = (unsigned) out->v[i] * scale;
1763   }
1764 }
1765 
1766 // poly_lift computes the function discussed in [HRSS], appendix B.
poly_lift(struct poly * out,const struct poly * a)1767 static void poly_lift(struct poly *out, const struct poly *a) {
1768   // We wish to calculate a/(��-1) mod Φ(N) over GF(3), where Φ(N) is the
1769   // Nth cyclotomic polynomial, i.e. 1 + �� + … + ��^700 (since N is prime).
1770 
1771   // 1/(��-1) has a fairly basic structure that we can exploit to speed this up:
1772   //
1773   // R.<x> = PolynomialRing(GF(3)…)
1774   // inv = R.cyclotomic_polynomial(1).inverse_mod(R.cyclotomic_polynomial(n))
1775   // list(inv)[:15]
1776   //   [1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2]
1777   //
1778   // This three-element pattern of coefficients repeats for the whole
1779   // polynomial.
1780   //
1781   // Next define the overbar operator such that z̅ = z[0] +
1782   // reverse(z[1:]). (Index zero of a polynomial here is the coefficient
1783   // of the constant term. So index one is the coefficient of �� and so
1784   // on.)
1785   //
1786   // A less odd way to define this is to see that z̅ negates the indexes,
1787   // so z̅[0] = z[-0], z̅[1] = z[-1] and so on.
1788   //
1789   // The use of z̅ is that, when working mod (��^701 - 1), vz[0] = <v,
1790   // z̅>, vz[1] = <v, ��z̅>, …. (Where <a, b> is the inner product: the sum
1791   // of the point-wise products.) Although we calculated the inverse mod
1792   // Φ(N), we can work mod (��^N - 1) and reduce mod Φ(N) at the end.
1793   // (That's because (��^N - 1) is a multiple of Φ(N).)
1794   //
1795   // When working mod (��^N - 1), multiplication by �� is a right-rotation
1796   // of the list of coefficients.
1797   //
1798   // Thus we can consider what the pattern of z̅, ��z̅, ��^2z̅, … looks like:
1799   //
1800   // def reverse(xs):
1801   //   suffix = list(xs[1:])
1802   //   suffix.reverse()
1803   //   return [xs[0]] + suffix
1804   //
1805   // def rotate(xs):
1806   //   return [xs[-1]] + xs[:-1]
1807   //
1808   // zoverbar = reverse(list(inv) + [0])
1809   // xzoverbar = rotate(reverse(list(inv) + [0]))
1810   // x2zoverbar = rotate(rotate(reverse(list(inv) + [0])))
1811   //
1812   // zoverbar[:15]
1813   //   [1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1]
1814   // xzoverbar[:15]
1815   //   [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0]
1816   // x2zoverbar[:15]
1817   //   [2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]
1818   //
1819   // (For a formula for z̅, see lemma two of appendix B.)
1820   //
1821   // After the first three elements have been taken care of, all then have
1822   // a repeating three-element cycle. The next value (��^3z̅) involves
1823   // three rotations of the first pattern, thus the three-element cycle
1824   // lines up. However, the discontinuity in the first three elements
1825   // obviously moves to a different position. Consider the difference
1826   // between ��^3z̅ and z̅:
1827   //
1828   // [x-y for (x,y) in zip(zoverbar, x3zoverbar)][:15]
1829   //    [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1830   //
1831   // This pattern of differences is the same for all elements, although it
1832   // obviously moves right with the rotations.
1833   //
1834   // From this, we reach algorithm eight of appendix B.
1835 
1836   // Handle the first three elements of the inner products.
1837   out->v[0] = a->v[0] + a->v[2];
1838   out->v[1] = a->v[1];
1839   out->v[2] = -a->v[0] + a->v[2];
1840 
1841   // s0, s1, s2 are added into out->v[0], out->v[1], and out->v[2],
1842   // respectively. We do not compute s1 because it's just -(s0 + s1).
1843   uint16_t s0 = 0, s2 = 0;
1844   for (size_t i = 3; i < 699; i += 3) {
1845     s0 += -a->v[i] + a->v[i + 2];
1846     // s1 += a->v[i] - a->v[i + 1];
1847     s2 += a->v[i + 1] - a->v[i + 2];
1848   }
1849 
1850   // Handle the fact that the three-element pattern doesn't fill the
1851   // polynomial exactly (since 701 isn't a multiple of three).
1852   s0 -= a->v[699];
1853   // s1 += a->v[699] - a->v[700];
1854   s2 += a->v[700];
1855 
1856   // Note that s0 + s1 + s2 = 0.
1857   out->v[0] += s0;
1858   out->v[1] -= (s0 + s2); // = s1
1859   out->v[2] += s2;
1860 
1861   // Calculate the remaining inner products by taking advantage of the
1862   // fact that the pattern repeats every three cycles and the pattern of
1863   // differences moves with the rotation.
1864   for (size_t i = 3; i < N; i++) {
1865     out->v[i] = (out->v[i - 3] - (a->v[i - 2] + a->v[i - 1] + a->v[i]));
1866   }
1867 
1868   // Reduce mod Φ(N) by subtracting a multiple of out[700] from every
1869   // element and convert to mod Q. (See above about adding twice as
1870   // subtraction.)
1871   const crypto_word_t v = out->v[700];
1872   for (unsigned i = 0; i < N; i++) {
1873     const uint16_t vi_mod3 = mod3(out->v[i] - v);
1874     // Map {0, 1, 2} to {0, 1, 0xffff}.
1875     out->v[i] = (~((vi_mod3 >> 1) - 1)) | vi_mod3;
1876   }
1877 
1878   poly_mul_x_minus_1(out);
1879 }
1880 
1881 struct public_key {
1882   struct poly ph;
1883 };
1884 
1885 struct private_key {
1886   struct poly3 f, f_inverse;
1887   struct poly ph_inverse;
1888   uint8_t hmac_key[32];
1889 };
1890 
1891 // public_key_from_external converts an external public key pointer into an
1892 // internal one. Externally the alignment is only specified to be eight bytes
1893 // but we need 16-byte alignment. We could annotate the external struct with
1894 // that alignment but we can only assume that malloced pointers are 8-byte
1895 // aligned in any case. (Even if the underlying malloc returns values with
1896 // 16-byte alignment, |OPENSSL_malloc| will store an 8-byte size prefix and mess
1897 // that up.)
public_key_from_external(struct HRSS_public_key * ext)1898 static struct public_key *public_key_from_external(
1899     struct HRSS_public_key *ext) {
1900   OPENSSL_STATIC_ASSERT(
1901       sizeof(struct HRSS_public_key) >= sizeof(struct public_key) + 15,
1902       "HRSS public key too small");
1903 
1904   return align_pointer(ext->opaque, 16);
1905 }
1906 
1907 // private_key_from_external does the same thing as |public_key_from_external|,
1908 // but for private keys. See the comment on that function about alignment
1909 // issues.
private_key_from_external(struct HRSS_private_key * ext)1910 static struct private_key *private_key_from_external(
1911     struct HRSS_private_key *ext) {
1912   OPENSSL_STATIC_ASSERT(
1913       sizeof(struct HRSS_private_key) >= sizeof(struct private_key) + 15,
1914       "HRSS private key too small");
1915 
1916   return align_pointer(ext->opaque, 16);
1917 }
1918 
1919 // malloc_align32 returns a pointer to |size| bytes of 32-byte-aligned heap and
1920 // sets |*out_ptr| to a value that can be passed to |OPENSSL_free| to release
1921 // it. It returns NULL if out of memory.
malloc_align32(void ** out_ptr,size_t size)1922 static void *malloc_align32(void **out_ptr, size_t size) {
1923   void *ptr = OPENSSL_malloc(size + 31);
1924   if (!ptr) {
1925     *out_ptr = NULL;
1926     return NULL;
1927   }
1928 
1929   *out_ptr = ptr;
1930   return align_pointer(ptr, 32);
1931 }
1932 
HRSS_generate_key(struct HRSS_public_key * out_pub,struct HRSS_private_key * out_priv,const uint8_t in[HRSS_SAMPLE_BYTES+HRSS_SAMPLE_BYTES+32])1933 int HRSS_generate_key(
1934     struct HRSS_public_key *out_pub, struct HRSS_private_key *out_priv,
1935     const uint8_t in[HRSS_SAMPLE_BYTES + HRSS_SAMPLE_BYTES + 32]) {
1936   struct public_key *pub = public_key_from_external(out_pub);
1937   struct private_key *priv = private_key_from_external(out_priv);
1938 
1939   struct vars {
1940     struct POLY_MUL_SCRATCH scratch;
1941     struct poly f;
1942     struct poly pg_phi1;
1943     struct poly pfg_phi1;
1944     struct poly pfg_phi1_inverse;
1945   };
1946 
1947   void *malloc_ptr;
1948   struct vars *const vars = malloc_align32(&malloc_ptr, sizeof(struct vars));
1949   if (!vars) {
1950     // If the caller ignores the return value the output will still be safe.
1951     // The private key output is randomised in case it's later passed to
1952     // |HRSS_encap|.
1953     memset(out_pub, 0, sizeof(struct HRSS_public_key));
1954     RAND_bytes((uint8_t*) out_priv, sizeof(struct HRSS_private_key));
1955     return 0;
1956   }
1957 
1958   OPENSSL_memcpy(priv->hmac_key, in + 2 * HRSS_SAMPLE_BYTES,
1959                  sizeof(priv->hmac_key));
1960 
1961   poly_short_sample_plus(&vars->f, in);
1962   poly3_from_poly(&priv->f, &vars->f);
1963   HRSS_poly3_invert(&priv->f_inverse, &priv->f);
1964 
1965   // pg_phi1 is p (i.e. 3) × g × Φ(1) (i.e. ��-1).
1966   poly_short_sample_plus(&vars->pg_phi1, in + HRSS_SAMPLE_BYTES);
1967   for (unsigned i = 0; i < N; i++) {
1968     vars->pg_phi1.v[i] *= 3;
1969   }
1970   poly_mul_x_minus_1(&vars->pg_phi1);
1971 
1972   poly_mul(&vars->scratch, &vars->pfg_phi1, &vars->f, &vars->pg_phi1);
1973 
1974   poly_invert(&vars->scratch, &vars->pfg_phi1_inverse, &vars->pfg_phi1);
1975 
1976   poly_mul(&vars->scratch, &pub->ph, &vars->pfg_phi1_inverse, &vars->pg_phi1);
1977   poly_mul(&vars->scratch, &pub->ph, &pub->ph, &vars->pg_phi1);
1978   poly_clamp(&pub->ph);
1979 
1980   poly_mul(&vars->scratch, &priv->ph_inverse, &vars->pfg_phi1_inverse,
1981            &vars->f);
1982   poly_mul(&vars->scratch, &priv->ph_inverse, &priv->ph_inverse, &vars->f);
1983   poly_clamp(&priv->ph_inverse);
1984 
1985   OPENSSL_free(malloc_ptr);
1986   return 1;
1987 }
1988 
1989 static const char kSharedKey[] = "shared key";
1990 
HRSS_encap(uint8_t out_ciphertext[POLY_BYTES],uint8_t out_shared_key[32],const struct HRSS_public_key * in_pub,const uint8_t in[HRSS_SAMPLE_BYTES+HRSS_SAMPLE_BYTES])1991 int HRSS_encap(uint8_t out_ciphertext[POLY_BYTES], uint8_t out_shared_key[32],
1992                const struct HRSS_public_key *in_pub,
1993                const uint8_t in[HRSS_SAMPLE_BYTES + HRSS_SAMPLE_BYTES]) {
1994   const struct public_key *pub =
1995       public_key_from_external((struct HRSS_public_key *)in_pub);
1996 
1997   struct vars {
1998     struct POLY_MUL_SCRATCH scratch;
1999     struct poly m, r, m_lifted;
2000     struct poly prh_plus_m;
2001     SHA256_CTX hash_ctx;
2002     uint8_t m_bytes[HRSS_POLY3_BYTES];
2003     uint8_t r_bytes[HRSS_POLY3_BYTES];
2004   };
2005 
2006   void *malloc_ptr;
2007   struct vars *const vars = malloc_align32(&malloc_ptr, sizeof(struct vars));
2008   if (!vars) {
2009     // If the caller ignores the return value the output will still be safe.
2010     // The private key output is randomised in case it's used to encrypt and
2011     // transmit something.
2012     memset(out_ciphertext, 0, POLY_BYTES);
2013     RAND_bytes(out_shared_key, 32);
2014     return 0;
2015   }
2016 
2017   poly_short_sample(&vars->m, in);
2018   poly_short_sample(&vars->r, in + HRSS_SAMPLE_BYTES);
2019   poly_lift(&vars->m_lifted, &vars->m);
2020 
2021   poly_mul(&vars->scratch, &vars->prh_plus_m, &vars->r, &pub->ph);
2022   for (unsigned i = 0; i < N; i++) {
2023     vars->prh_plus_m.v[i] += vars->m_lifted.v[i];
2024   }
2025 
2026   poly_marshal(out_ciphertext, &vars->prh_plus_m);
2027 
2028   poly_marshal_mod3(vars->m_bytes, &vars->m);
2029   poly_marshal_mod3(vars->r_bytes, &vars->r);
2030 
2031   SHA256_Init(&vars->hash_ctx);
2032   SHA256_Update(&vars->hash_ctx, kSharedKey, sizeof(kSharedKey));
2033   SHA256_Update(&vars->hash_ctx, vars->m_bytes, sizeof(vars->m_bytes));
2034   SHA256_Update(&vars->hash_ctx, vars->r_bytes, sizeof(vars->r_bytes));
2035   SHA256_Update(&vars->hash_ctx, out_ciphertext, POLY_BYTES);
2036   SHA256_Final(out_shared_key, &vars->hash_ctx);
2037 
2038   OPENSSL_free(malloc_ptr);
2039   return 1;
2040 }
2041 
HRSS_decap(uint8_t out_shared_key[HRSS_KEY_BYTES],const struct HRSS_private_key * in_priv,const uint8_t * ciphertext,size_t ciphertext_len)2042 int HRSS_decap(uint8_t out_shared_key[HRSS_KEY_BYTES],
2043                 const struct HRSS_private_key *in_priv,
2044                 const uint8_t *ciphertext, size_t ciphertext_len) {
2045   const struct private_key *priv =
2046       private_key_from_external((struct HRSS_private_key *)in_priv);
2047 
2048   struct vars {
2049     struct POLY_MUL_SCRATCH scratch;
2050     uint8_t masked_key[SHA256_CBLOCK];
2051     SHA256_CTX hash_ctx;
2052     struct poly c;
2053     struct poly f, cf;
2054     struct poly3 cf3, m3;
2055     struct poly m, m_lifted;
2056     struct poly r;
2057     struct poly3 r3;
2058     uint8_t expected_ciphertext[HRSS_CIPHERTEXT_BYTES];
2059     uint8_t m_bytes[HRSS_POLY3_BYTES];
2060     uint8_t r_bytes[HRSS_POLY3_BYTES];
2061     uint8_t shared_key[32];
2062   };
2063 
2064   void *malloc_ptr;
2065   struct vars *const vars = malloc_align32(&malloc_ptr, sizeof(struct vars));
2066   if (!vars) {
2067     // If the caller ignores the return value the output will still be safe.
2068     // The private key output is randomised in case it's used to encrypt and
2069     // transmit something.
2070     RAND_bytes(out_shared_key, HRSS_KEY_BYTES);
2071     return 0;
2072   }
2073 
2074   // This is HMAC, expanded inline rather than using the |HMAC| function so that
2075   // we can avoid dealing with possible allocation failures and so keep this
2076   // function infallible.
2077   OPENSSL_STATIC_ASSERT(sizeof(priv->hmac_key) <= sizeof(vars->masked_key),
2078                         "HRSS HMAC key larger than SHA-256 block size");
2079   for (size_t i = 0; i < sizeof(priv->hmac_key); i++) {
2080     vars->masked_key[i] = priv->hmac_key[i] ^ 0x36;
2081   }
2082   OPENSSL_memset(vars->masked_key + sizeof(priv->hmac_key), 0x36,
2083                  sizeof(vars->masked_key) - sizeof(priv->hmac_key));
2084 
2085   SHA256_Init(&vars->hash_ctx);
2086   SHA256_Update(&vars->hash_ctx, vars->masked_key, sizeof(vars->masked_key));
2087   SHA256_Update(&vars->hash_ctx, ciphertext, ciphertext_len);
2088   uint8_t inner_digest[SHA256_DIGEST_LENGTH];
2089   SHA256_Final(inner_digest, &vars->hash_ctx);
2090 
2091   for (size_t i = 0; i < sizeof(priv->hmac_key); i++) {
2092     vars->masked_key[i] ^= (0x5c ^ 0x36);
2093   }
2094   OPENSSL_memset(vars->masked_key + sizeof(priv->hmac_key), 0x5c,
2095                  sizeof(vars->masked_key) - sizeof(priv->hmac_key));
2096 
2097   SHA256_Init(&vars->hash_ctx);
2098   SHA256_Update(&vars->hash_ctx, vars->masked_key, sizeof(vars->masked_key));
2099   SHA256_Update(&vars->hash_ctx, inner_digest, sizeof(inner_digest));
2100   OPENSSL_STATIC_ASSERT(HRSS_KEY_BYTES == SHA256_DIGEST_LENGTH,
2101                         "HRSS shared key length incorrect");
2102   SHA256_Final(out_shared_key, &vars->hash_ctx);
2103 
2104   // If the ciphertext is publicly invalid then a random shared key is still
2105   // returned to simply the logic of the caller, but this path is not constant
2106   // time.
2107   if (ciphertext_len != HRSS_CIPHERTEXT_BYTES ||
2108       !poly_unmarshal(&vars->c, ciphertext)) {
2109     goto out;
2110   }
2111 
2112   poly_from_poly3(&vars->f, &priv->f);
2113   poly_mul(&vars->scratch, &vars->cf, &vars->c, &vars->f);
2114   poly3_from_poly(&vars->cf3, &vars->cf);
2115   // Note that cf3 is not reduced mod Φ(N). That reduction is deferred.
2116   HRSS_poly3_mul(&vars->m3, &vars->cf3, &priv->f_inverse);
2117 
2118   poly_from_poly3(&vars->m, &vars->m3);
2119   poly_lift(&vars->m_lifted, &vars->m);
2120 
2121   for (unsigned i = 0; i < N; i++) {
2122     vars->r.v[i] = vars->c.v[i] - vars->m_lifted.v[i];
2123   }
2124   poly_mul(&vars->scratch, &vars->r, &vars->r, &priv->ph_inverse);
2125   poly_mod_phiN(&vars->r);
2126   poly_clamp(&vars->r);
2127 
2128   crypto_word_t ok = poly3_from_poly_checked(&vars->r3, &vars->r);
2129 
2130   // [NTRUCOMP] section 5.1 includes ReEnc2 and a proof that it's valid. Rather
2131   // than do an expensive |poly_mul|, it rebuilds |c'| from |c - lift(m)|
2132   // (called |b|) with:
2133   //   t = (−b(1)/N) mod Q
2134   //   c' = b + tΦ(N) + lift(m) mod Q
2135   //
2136   // When polynomials are transmitted, the final coefficient is omitted and
2137   // |poly_unmarshal| sets it such that f(1) == 0. Thus c(1) == 0. Also,
2138   // |poly_lift| multiplies the result by (x-1) and therefore evaluating a
2139   // lifted polynomial at 1 is also zero. Thus lift(m)(1) == 0 and so
2140   // (c - lift(m))(1) == 0.
2141   //
2142   // Although we defer the reduction above, |b| is conceptually reduced mod
2143   // Φ(N). In order to do that reduction one subtracts |c[N-1]| from every
2144   // coefficient. Therefore b(1) = -c[N-1]×N. The value of |t|, above, then is
2145   // just recovering |c[N-1]|, and adding tΦ(N) is simply undoing the reduction.
2146   // Therefore b + tΦ(N) + lift(m) = c by construction and we don't need to
2147   // recover |c| at all so long as we do the checks in
2148   // |poly3_from_poly_checked|.
2149   //
2150   // The |poly_marshal| here then is just confirming that |poly_unmarshal| is
2151   // strict and could be omitted.
2152 
2153   OPENSSL_STATIC_ASSERT(HRSS_CIPHERTEXT_BYTES == POLY_BYTES,
2154                         "ciphertext is the wrong size");
2155   assert(ciphertext_len == sizeof(vars->expected_ciphertext));
2156   poly_marshal(vars->expected_ciphertext, &vars->c);
2157 
2158   poly_marshal_mod3(vars->m_bytes, &vars->m);
2159   poly_marshal_mod3(vars->r_bytes, &vars->r);
2160 
2161   ok &= constant_time_is_zero_w(
2162       CRYPTO_memcmp(ciphertext, vars->expected_ciphertext,
2163                     sizeof(vars->expected_ciphertext)));
2164 
2165   SHA256_Init(&vars->hash_ctx);
2166   SHA256_Update(&vars->hash_ctx, kSharedKey, sizeof(kSharedKey));
2167   SHA256_Update(&vars->hash_ctx, vars->m_bytes, sizeof(vars->m_bytes));
2168   SHA256_Update(&vars->hash_ctx, vars->r_bytes, sizeof(vars->r_bytes));
2169   SHA256_Update(&vars->hash_ctx, vars->expected_ciphertext,
2170                 sizeof(vars->expected_ciphertext));
2171   SHA256_Final(vars->shared_key, &vars->hash_ctx);
2172 
2173   for (unsigned i = 0; i < sizeof(vars->shared_key); i++) {
2174     out_shared_key[i] =
2175         constant_time_select_8(ok, vars->shared_key[i], out_shared_key[i]);
2176   }
2177 
2178 out:
2179   OPENSSL_free(malloc_ptr);
2180   return 1;
2181 }
2182 
HRSS_marshal_public_key(uint8_t out[HRSS_PUBLIC_KEY_BYTES],const struct HRSS_public_key * in_pub)2183 void HRSS_marshal_public_key(uint8_t out[HRSS_PUBLIC_KEY_BYTES],
2184                              const struct HRSS_public_key *in_pub) {
2185   const struct public_key *pub =
2186       public_key_from_external((struct HRSS_public_key *)in_pub);
2187   poly_marshal(out, &pub->ph);
2188 }
2189 
HRSS_parse_public_key(struct HRSS_public_key * out,const uint8_t in[HRSS_PUBLIC_KEY_BYTES])2190 int HRSS_parse_public_key(struct HRSS_public_key *out,
2191                           const uint8_t in[HRSS_PUBLIC_KEY_BYTES]) {
2192   struct public_key *pub = public_key_from_external(out);
2193   if (!poly_unmarshal(&pub->ph, in)) {
2194     return 0;
2195   }
2196   OPENSSL_memset(&pub->ph.v[N], 0, 3 * sizeof(uint16_t));
2197   return 1;
2198 }
2199