1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 * ECC cipher suite support in OpenSSL originally developed by
113 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114 */
115 /* ====================================================================
116 * Copyright 2005 Nokia. All rights reserved.
117 *
118 * The portions of the attached software ("Contribution") is developed by
119 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120 * license.
121 *
122 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124 * support (see RFC 4279) to OpenSSL.
125 *
126 * No patent licenses or other rights except those expressly stated in
127 * the OpenSSL open source license shall be deemed granted or received
128 * expressly, by implication, estoppel, or otherwise.
129 *
130 * No assurances are provided by Nokia that the Contribution does not
131 * infringe the patent or other intellectual property rights of any third
132 * party or that the license provides you with all the necessary rights
133 * to make use of the Contribution.
134 *
135 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139 * OTHERWISE.
140 */
141
142 #ifndef OPENSSL_HEADER_SSL_INTERNAL_H
143 #define OPENSSL_HEADER_SSL_INTERNAL_H
144
145 #include <openssl/base.h>
146
147 #include <stdlib.h>
148
149 #include <initializer_list>
150 #include <limits>
151 #include <new>
152 #include <type_traits>
153 #include <utility>
154
155 #include <openssl/aead.h>
156 #include <openssl/curve25519.h>
157 #include <openssl/err.h>
158 #include <openssl/hpke.h>
159 #include <openssl/lhash.h>
160 #include <openssl/mem.h>
161 #include <openssl/span.h>
162 #include <openssl/ssl.h>
163 #include <openssl/stack.h>
164
165 #include "../crypto/err/internal.h"
166 #include "../crypto/internal.h"
167 #include "../crypto/lhash/internal.h"
168
169
170 #if defined(OPENSSL_WINDOWS)
171 // Windows defines struct timeval in winsock2.h.
172 OPENSSL_MSVC_PRAGMA(warning(push, 3))
173 #include <winsock2.h>
174 OPENSSL_MSVC_PRAGMA(warning(pop))
175 #else
176 #include <sys/time.h>
177 #endif
178
179
180 BSSL_NAMESPACE_BEGIN
181
182 struct SSL_CONFIG;
183 struct SSL_HANDSHAKE;
184 struct SSL_PROTOCOL_METHOD;
185 struct SSL_X509_METHOD;
186
187 // C++ utilities.
188
189 // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It
190 // returns nullptr on allocation error. It only implements single-object
191 // allocation and not new T[n].
192 //
193 // Note: unlike |new|, this does not support non-public constructors.
194 template <typename T, typename... Args>
New(Args &&...args)195 T *New(Args &&... args) {
196 void *t = OPENSSL_malloc(sizeof(T));
197 if (t == nullptr) {
198 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
199 return nullptr;
200 }
201 return new (t) T(std::forward<Args>(args)...);
202 }
203
204 // Delete behaves like |delete| but uses |OPENSSL_free| to release memory.
205 //
206 // Note: unlike |delete| this does not support non-public destructors.
207 template <typename T>
Delete(T * t)208 void Delete(T *t) {
209 if (t != nullptr) {
210 t->~T();
211 OPENSSL_free(t);
212 }
213 }
214
215 // All types with kAllowUniquePtr set may be used with UniquePtr. Other types
216 // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration.
217 namespace internal {
218 template <typename T>
219 struct DeleterImpl<T, typename std::enable_if<T::kAllowUniquePtr>::type> {
220 static void Free(T *t) { Delete(t); }
221 };
222 } // namespace internal
223
224 // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation
225 // error.
226 template <typename T, typename... Args>
227 UniquePtr<T> MakeUnique(Args &&... args) {
228 return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
229 }
230
231 #if defined(BORINGSSL_ALLOW_CXX_RUNTIME)
232 #define HAS_VIRTUAL_DESTRUCTOR
233 #define PURE_VIRTUAL = 0
234 #else
235 // HAS_VIRTUAL_DESTRUCTOR should be declared in any base class which defines a
236 // virtual destructor. This avoids a dependency on |_ZdlPv| and prevents the
237 // class from being used with |delete|.
238 #define HAS_VIRTUAL_DESTRUCTOR \
239 void operator delete(void *) { abort(); }
240
241 // PURE_VIRTUAL should be used instead of = 0 when defining pure-virtual
242 // functions. This avoids a dependency on |__cxa_pure_virtual| but loses
243 // compile-time checking.
244 #define PURE_VIRTUAL \
245 { abort(); }
246 #endif
247
248 // CONSTEXPR_ARRAY works around a VS 2015 bug where ranged for loops don't work
249 // on constexpr arrays.
250 #if defined(_MSC_VER) && !defined(__clang__) && _MSC_VER < 1910
251 #define CONSTEXPR_ARRAY const
252 #else
253 #define CONSTEXPR_ARRAY constexpr
254 #endif
255
256 // Array<T> is an owning array of elements of |T|.
257 template <typename T>
258 class Array {
259 public:
260 // Array's default constructor creates an empty array.
261 Array() {}
262 Array(const Array &) = delete;
263 Array(Array &&other) { *this = std::move(other); }
264
265 ~Array() { Reset(); }
266
267 Array &operator=(const Array &) = delete;
268 Array &operator=(Array &&other) {
269 Reset();
270 other.Release(&data_, &size_);
271 return *this;
272 }
273
274 const T *data() const { return data_; }
275 T *data() { return data_; }
276 size_t size() const { return size_; }
277 bool empty() const { return size_ == 0; }
278
279 const T &operator[](size_t i) const { return data_[i]; }
280 T &operator[](size_t i) { return data_[i]; }
281
282 T *begin() { return data_; }
283 const T *begin() const { return data_; }
284 T *end() { return data_ + size_; }
285 const T *end() const { return data_ + size_; }
286
287 void Reset() { Reset(nullptr, 0); }
288
289 // Reset releases the current contents of the array and takes ownership of the
290 // raw pointer supplied by the caller.
291 void Reset(T *new_data, size_t new_size) {
292 for (size_t i = 0; i < size_; i++) {
293 data_[i].~T();
294 }
295 OPENSSL_free(data_);
296 data_ = new_data;
297 size_ = new_size;
298 }
299
300 // Release releases ownership of the array to a raw pointer supplied by the
301 // caller.
302 void Release(T **out, size_t *out_size) {
303 *out = data_;
304 *out_size = size_;
305 data_ = nullptr;
306 size_ = 0;
307 }
308
309 // Init replaces the array with a newly-allocated array of |new_size|
310 // default-constructed copies of |T|. It returns true on success and false on
311 // error.
312 //
313 // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized.
314 bool Init(size_t new_size) {
315 Reset();
316 if (new_size == 0) {
317 return true;
318 }
319
320 if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
321 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
322 return false;
323 }
324 data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
325 if (data_ == nullptr) {
326 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
327 return false;
328 }
329 size_ = new_size;
330 for (size_t i = 0; i < size_; i++) {
331 new (&data_[i]) T;
332 }
333 return true;
334 }
335
336 // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns
337 // true on success and false on error.
338 bool CopyFrom(Span<const T> in) {
339 if (!Init(in.size())) {
340 return false;
341 }
342 OPENSSL_memcpy(data_, in.data(), sizeof(T) * in.size());
343 return true;
344 }
345
346 // Shrink shrinks the stored size of the array to |new_size|. It crashes if
347 // the new size is larger. Note this does not shrink the allocation itself.
348 void Shrink(size_t new_size) {
349 if (new_size > size_) {
350 abort();
351 }
352 for (size_t i = new_size; i < size_; i++) {
353 data_[i].~T();
354 }
355 size_ = new_size;
356 }
357
358 private:
359 T *data_ = nullptr;
360 size_t size_ = 0;
361 };
362
363 // GrowableArray<T> is an array that owns elements of |T|, backed by an
364 // Array<T>. When necessary, pushing will automatically trigger a resize.
365 //
366 // Note, for simplicity, this class currently differs from |std::vector| in that
367 // |T| must be efficiently default-constructible. Allocated elements beyond the
368 // end of the array are constructed and destructed.
369 template <typename T>
370 class GrowableArray {
371 public:
372 GrowableArray() = default;
373 GrowableArray(const GrowableArray &) = delete;
374 GrowableArray(GrowableArray &&other) { *this = std::move(other); }
375 ~GrowableArray() {}
376
377 GrowableArray &operator=(const GrowableArray &) = delete;
378 GrowableArray &operator=(GrowableArray &&other) {
379 size_ = other.size_;
380 other.size_ = 0;
381 array_ = std::move(other.array_);
382 return *this;
383 }
384
385 const T *data() const { return array_.data(); }
386 T *data() { return array_.data(); }
387 size_t size() const { return size_; }
388 bool empty() const { return size_ == 0; }
389
390 const T &operator[](size_t i) const { return array_[i]; }
391 T &operator[](size_t i) { return array_[i]; }
392
393 T *begin() { return array_.data(); }
394 const T *begin() const { return array_.data(); }
395 T *end() { return array_.data() + size_; }
396 const T *end() const { return array_.data() + size_; }
397
398 void clear() {
399 size_ = 0;
400 array_.Reset();
401 }
402
403 // Push adds |elem| at the end of the internal array, growing if necessary. It
404 // returns false when allocation fails.
405 bool Push(T elem) {
406 if (!MaybeGrow()) {
407 return false;
408 }
409 array_[size_] = std::move(elem);
410 size_++;
411 return true;
412 }
413
414 // CopyFrom replaces the contents of the array with a copy of |in|. It returns
415 // true on success and false on allocation error.
416 bool CopyFrom(Span<const T> in) {
417 if (!array_.CopyFrom(in)) {
418 return false;
419 }
420 size_ = in.size();
421 return true;
422 }
423
424 private:
425 // If there is no room for one more element, creates a new backing array with
426 // double the size of the old one and copies elements over.
427 bool MaybeGrow() {
428 if (array_.size() == 0) {
429 return array_.Init(kDefaultSize);
430 }
431 // No need to grow if we have room for one more T.
432 if (size_ < array_.size()) {
433 return true;
434 }
435 // Double the array's size if it's safe to do so.
436 if (array_.size() > std::numeric_limits<size_t>::max() / 2) {
437 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
438 return false;
439 }
440 Array<T> new_array;
441 if (!new_array.Init(array_.size() * 2)) {
442 return false;
443 }
444 for (size_t i = 0; i < array_.size(); i++) {
445 new_array[i] = std::move(array_[i]);
446 }
447 array_ = std::move(new_array);
448
449 return true;
450 }
451
452 // |size_| is the number of elements stored in this GrowableArray.
453 size_t size_ = 0;
454 // |array_| is the backing array. Note that |array_.size()| is this
455 // GrowableArray's current capacity and that |size_ <= array_.size()|.
456 Array<T> array_;
457 // |kDefaultSize| is the default initial size of the backing array.
458 static constexpr size_t kDefaultSize = 16;
459 };
460
461 // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array.
462 OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out);
463
464
465 // Protocol versions.
466 //
467 // Due to DTLS's historical wire version differences, we maintain two notions of
468 // version.
469 //
470 // The "version" or "wire version" is the actual 16-bit value that appears on
471 // the wire. It uniquely identifies a version and is also used at API
472 // boundaries. The set of supported versions differs between TLS and DTLS. Wire
473 // versions are opaque values and may not be compared numerically.
474 //
475 // The "protocol version" identifies the high-level handshake variant being
476 // used. DTLS versions map to the corresponding TLS versions. Protocol versions
477 // are sequential and may be compared numerically.
478
479 // ssl_protocol_version_from_wire sets |*out| to the protocol version
480 // corresponding to wire version |version| and returns true. If |version| is not
481 // a valid TLS or DTLS version, it returns false.
482 //
483 // Note this simultaneously handles both DTLS and TLS. Use one of the
484 // higher-level functions below for most operations.
485 bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version);
486
487 // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
488 // minimum and maximum enabled protocol versions, respectively.
489 bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version,
490 uint16_t *out_max_version);
491
492 // ssl_supports_version returns whether |hs| supports |version|.
493 bool ssl_supports_version(const SSL_HANDSHAKE *hs, uint16_t version);
494
495 // ssl_method_supports_version returns whether |method| supports |version|.
496 bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method,
497 uint16_t version);
498
499 // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in
500 // decreasing preference order. The version list is filtered to those whose
501 // protocol version is at least |extra_min_version|.
502 bool ssl_add_supported_versions(const SSL_HANDSHAKE *hs, CBB *cbb,
503 uint16_t extra_min_version);
504
505 // ssl_negotiate_version negotiates a common version based on |hs|'s preferences
506 // and the peer preference list in |peer_versions|. On success, it returns true
507 // and sets |*out_version| to the selected version. Otherwise, it returns false
508 // and sets |*out_alert| to an alert to send.
509 bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
510 uint16_t *out_version, const CBS *peer_versions);
511
512 // ssl_protocol_version returns |ssl|'s protocol version. It is an error to
513 // call this function before the version is determined.
514 uint16_t ssl_protocol_version(const SSL *ssl);
515
516 // Cipher suites.
517
518 BSSL_NAMESPACE_END
519
520 struct ssl_cipher_st {
521 // name is the OpenSSL name for the cipher.
522 const char *name;
523 // standard_name is the IETF name for the cipher.
524 const char *standard_name;
525 // id is the cipher suite value bitwise OR-d with 0x03000000.
526 uint32_t id;
527
528 // algorithm_* determine the cipher suite. See constants below for the values.
529 uint32_t algorithm_mkey;
530 uint32_t algorithm_auth;
531 uint32_t algorithm_enc;
532 uint32_t algorithm_mac;
533 uint32_t algorithm_prf;
534 };
535
536 BSSL_NAMESPACE_BEGIN
537
538 // Bits for |algorithm_mkey| (key exchange algorithm).
539 #define SSL_kRSA 0x00000001u
540 #define SSL_kECDHE 0x00000002u
541 // SSL_kPSK is only set for plain PSK, not ECDHE_PSK.
542 #define SSL_kPSK 0x00000004u
543 #define SSL_kGENERIC 0x00000008u
544
545 // Bits for |algorithm_auth| (server authentication).
546 #define SSL_aRSA 0x00000001u
547 #define SSL_aECDSA 0x00000002u
548 // SSL_aPSK is set for both PSK and ECDHE_PSK.
549 #define SSL_aPSK 0x00000004u
550 #define SSL_aGENERIC 0x00000008u
551
552 #define SSL_aCERT (SSL_aRSA | SSL_aECDSA)
553
554 // Bits for |algorithm_enc| (symmetric encryption).
555 #define SSL_3DES 0x00000001u
556 #define SSL_AES128 0x00000002u
557 #define SSL_AES256 0x00000004u
558 #define SSL_AES128GCM 0x00000008u
559 #define SSL_AES256GCM 0x00000010u
560 #define SSL_eNULL 0x00000020u
561 #define SSL_CHACHA20POLY1305 0x00000040u
562
563 #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
564
565 // Bits for |algorithm_mac| (symmetric authentication).
566 #define SSL_SHA1 0x00000001u
567 // SSL_AEAD is set for all AEADs.
568 #define SSL_AEAD 0x00000002u
569
570 // Bits for |algorithm_prf| (handshake digest).
571 #define SSL_HANDSHAKE_MAC_DEFAULT 0x1
572 #define SSL_HANDSHAKE_MAC_SHA256 0x2
573 #define SSL_HANDSHAKE_MAC_SHA384 0x4
574
575 // SSL_MAX_MD_SIZE is size of the largest hash function used in TLS, SHA-384.
576 #define SSL_MAX_MD_SIZE 48
577
578 // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal-
579 // preference groups. For TLS clients, the groups are moot because the server
580 // picks the cipher and groups cannot be expressed on the wire. However, for
581 // servers, the equal-preference groups allow the client's preferences to be
582 // partially respected. (This only has an effect with
583 // SSL_OP_CIPHER_SERVER_PREFERENCE).
584 //
585 // The equal-preference groups are expressed by grouping SSL_CIPHERs together.
586 // All elements of a group have the same priority: no ordering is expressed
587 // within a group.
588 //
589 // The values in |ciphers| are in one-to-one correspondence with
590 // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of
591 // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to
592 // indicate that the corresponding SSL_CIPHER is not the last element of a
593 // group, or 0 to indicate that it is.
594 //
595 // For example, if |in_group_flags| contains all zeros then that indicates a
596 // traditional, fully-ordered preference. Every SSL_CIPHER is the last element
597 // of the group (i.e. they are all in a one-element group).
598 //
599 // For a more complex example, consider:
600 // ciphers: A B C D E F
601 // in_group_flags: 1 1 0 0 1 0
602 //
603 // That would express the following, order:
604 //
605 // A E
606 // B -> D -> F
607 // C
608 struct SSLCipherPreferenceList {
609 static constexpr bool kAllowUniquePtr = true;
610
611 SSLCipherPreferenceList() = default;
612 ~SSLCipherPreferenceList();
613
614 bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers,
615 Span<const bool> in_group_flags);
616 bool Init(const SSLCipherPreferenceList &);
617
618 void Remove(const SSL_CIPHER *cipher);
619
620 UniquePtr<STACK_OF(SSL_CIPHER)> ciphers;
621 bool *in_group_flags = nullptr;
622 };
623
624 // AllCiphers returns an array of all supported ciphers, sorted by id.
625 Span<const SSL_CIPHER> AllCiphers();
626
627 // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
628 // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
629 // and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
630 // respectively. The MAC key length is zero except for legacy block and stream
631 // ciphers. It returns true on success and false on error.
632 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
633 size_t *out_mac_secret_len,
634 size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
635 uint16_t version, bool is_dtls);
636
637 // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and
638 // |cipher|.
639 const EVP_MD *ssl_get_handshake_digest(uint16_t version,
640 const SSL_CIPHER *cipher);
641
642 // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a
643 // newly-allocated |SSLCipherPreferenceList| containing the result. It returns
644 // true on success and false on failure. If |strict| is true, nonsense will be
645 // rejected. If false, nonsense will be silently ignored. An empty result is
646 // considered an error regardless of |strict|.
647 bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
648 const char *rule_str, bool strict);
649
650 // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth|
651 // values suitable for use with |key| in TLS 1.2 and below.
652 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key);
653
654 // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the
655 // server and, optionally, the client with a certificate.
656 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
657
658 // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a
659 // ServerKeyExchange message.
660 //
661 // This function may return false while still allowing |cipher| an optional
662 // ServerKeyExchange. This is the case for plain PSK ciphers.
663 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
664
665 // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
666 // length of an encrypted 1-byte record, for use in record-splitting. Otherwise
667 // it returns zero.
668 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
669
670 // ssl_choose_tls13_cipher returns an |SSL_CIPHER| corresponding with the best
671 // available from |cipher_suites| compatible with |version| and |group_id|. It
672 // returns NULL if there isn't a compatible cipher.
673 const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, uint16_t version,
674 uint16_t group_id);
675
676
677 // Transcript layer.
678
679 // SSLTranscript maintains the handshake transcript as a combination of a
680 // buffer and running hash.
681 class SSLTranscript {
682 public:
683 SSLTranscript();
684 ~SSLTranscript();
685
686 SSLTranscript(SSLTranscript &&other) = default;
687 SSLTranscript &operator=(SSLTranscript &&other) = default;
688
689 // Init initializes the handshake transcript. If called on an existing
690 // transcript, it resets the transcript and hash. It returns true on success
691 // and false on failure.
692 bool Init();
693
694 // InitHash initializes the handshake hash based on the PRF and contents of
695 // the handshake transcript. Subsequent calls to |Update| will update the
696 // rolling hash. It returns one on success and zero on failure. It is an error
697 // to call this function after the handshake buffer is released. This may be
698 // called multiple times to change the hash function.
699 bool InitHash(uint16_t version, const SSL_CIPHER *cipher);
700
701 // UpdateForHelloRetryRequest resets the rolling hash with the
702 // HelloRetryRequest construction. It returns true on success and false on
703 // failure. It is an error to call this function before the handshake buffer
704 // is released.
705 bool UpdateForHelloRetryRequest();
706
707 // CopyToHashContext initializes |ctx| with |digest| and the data thus far in
708 // the transcript. It returns true on success and false on failure. If the
709 // handshake buffer is still present, |digest| may be any supported digest.
710 // Otherwise, |digest| must match the transcript hash.
711 bool CopyToHashContext(EVP_MD_CTX *ctx, const EVP_MD *digest) const;
712
713 Span<const uint8_t> buffer() const {
714 return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data),
715 buffer_->length);
716 }
717
718 // FreeBuffer releases the handshake buffer. Subsequent calls to
719 // |Update| will not update the handshake buffer.
720 void FreeBuffer();
721
722 // DigestLen returns the length of the PRF hash.
723 size_t DigestLen() const;
724
725 // Digest returns the PRF hash. For TLS 1.1 and below, this is
726 // |EVP_md5_sha1|.
727 const EVP_MD *Digest() const;
728
729 // Update adds |in| to the handshake buffer and handshake hash, whichever is
730 // enabled. It returns true on success and false on failure.
731 bool Update(Span<const uint8_t> in);
732
733 // GetHash writes the handshake hash to |out| which must have room for at
734 // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to
735 // the number of bytes written. Otherwise, it returns false.
736 bool GetHash(uint8_t *out, size_t *out_len) const;
737
738 // GetFinishedMAC computes the MAC for the Finished message into the bytes
739 // pointed by |out| and writes the number of bytes to |*out_len|. |out| must
740 // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false
741 // on failure.
742 bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session,
743 bool from_server) const;
744
745 private:
746 // buffer_, if non-null, contains the handshake transcript.
747 UniquePtr<BUF_MEM> buffer_;
748 // hash, if initialized with an |EVP_MD|, maintains the handshake hash.
749 ScopedEVP_MD_CTX hash_;
750 };
751
752 // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret|
753 // as the secret and |label| as the label. |seed1| and |seed2| are concatenated
754 // to form the seed parameter. It returns true on success and false on failure.
755 bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
756 Span<const uint8_t> secret, Span<const char> label,
757 Span<const uint8_t> seed1, Span<const uint8_t> seed2);
758
759
760 // Encryption layer.
761
762 // SSLAEADContext contains information about an AEAD that is being used to
763 // encrypt an SSL connection.
764 class SSLAEADContext {
765 public:
766 SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher);
767 ~SSLAEADContext();
768 static constexpr bool kAllowUniquePtr = true;
769
770 SSLAEADContext(const SSLAEADContext &&) = delete;
771 SSLAEADContext &operator=(const SSLAEADContext &&) = delete;
772
773 // CreateNullCipher creates an |SSLAEADContext| for the null cipher.
774 static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls);
775
776 // Create creates an |SSLAEADContext| using the supplied key material. It
777 // returns nullptr on error. Only one of |Open| or |Seal| may be used with the
778 // resulting object, depending on |direction|. |version| is the normalized
779 // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef.
780 static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction,
781 uint16_t version, bool is_dtls,
782 const SSL_CIPHER *cipher,
783 Span<const uint8_t> enc_key,
784 Span<const uint8_t> mac_key,
785 Span<const uint8_t> fixed_iv);
786
787 // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the
788 // given cipher and version. The resulting object can be queried for various
789 // properties but cannot encrypt or decrypt data.
790 static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC(
791 uint16_t version, const SSL_CIPHER *cipher);
792
793 // SetVersionIfNullCipher sets the version the SSLAEADContext for the null
794 // cipher, to make version-specific determinations in the record layer prior
795 // to a cipher being selected.
796 void SetVersionIfNullCipher(uint16_t version);
797
798 // ProtocolVersion returns the protocol version associated with this
799 // SSLAEADContext. It can only be called once |version_| has been set to a
800 // valid value.
801 uint16_t ProtocolVersion() const;
802
803 // RecordVersion returns the record version that should be used with this
804 // SSLAEADContext for record construction and crypto.
805 uint16_t RecordVersion() const;
806
807 const SSL_CIPHER *cipher() const { return cipher_; }
808
809 // is_null_cipher returns true if this is the null cipher.
810 bool is_null_cipher() const { return !cipher_; }
811
812 // ExplicitNonceLen returns the length of the explicit nonce.
813 size_t ExplicitNonceLen() const;
814
815 // MaxOverhead returns the maximum overhead of calling |Seal|.
816 size_t MaxOverhead() const;
817
818 // SuffixLen calculates the suffix length written by |SealScatter| and writes
819 // it to |*out_suffix_len|. It returns true on success and false on error.
820 // |in_len| and |extra_in_len| should equal the argument of the same names
821 // passed to |SealScatter|.
822 bool SuffixLen(size_t *out_suffix_len, size_t in_len,
823 size_t extra_in_len) const;
824
825 // CiphertextLen calculates the total ciphertext length written by
826 // |SealScatter| and writes it to |*out_len|. It returns true on success and
827 // false on error. |in_len| and |extra_in_len| should equal the argument of
828 // the same names passed to |SealScatter|.
829 bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const;
830
831 // Open authenticates and decrypts |in| in-place. On success, it sets |*out|
832 // to the plaintext in |in| and returns true. Otherwise, it returns
833 // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|.
834 bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version,
835 const uint8_t seqnum[8], Span<const uint8_t> header,
836 Span<uint8_t> in);
837
838 // Seal encrypts and authenticates |in_len| bytes from |in| and writes the
839 // result to |out|. It returns true on success and false on error.
840 //
841 // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|.
842 bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type,
843 uint16_t record_version, const uint8_t seqnum[8],
844 Span<const uint8_t> header, const uint8_t *in, size_t in_len);
845
846 // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits
847 // the result between |out_prefix|, |out| and |out_suffix|. It returns one on
848 // success and zero on error.
849 //
850 // On successful return, exactly |ExplicitNonceLen| bytes are written to
851 // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to
852 // |out_suffix|.
853 //
854 // |extra_in| may point to an additional plaintext buffer. If present,
855 // |extra_in_len| additional bytes are encrypted and authenticated, and the
856 // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should
857 // be used to size |out_suffix| accordingly.
858 //
859 // If |in| and |out| alias then |out| must be == |in|. Other arguments may not
860 // alias anything.
861 bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix,
862 uint8_t type, uint16_t record_version,
863 const uint8_t seqnum[8], Span<const uint8_t> header,
864 const uint8_t *in, size_t in_len, const uint8_t *extra_in,
865 size_t extra_in_len);
866
867 bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const;
868
869 private:
870 // GetAdditionalData returns the additional data, writing into |storage| if
871 // necessary.
872 Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type,
873 uint16_t record_version,
874 const uint8_t seqnum[8],
875 size_t plaintext_len,
876 Span<const uint8_t> header);
877
878 const SSL_CIPHER *cipher_;
879 ScopedEVP_AEAD_CTX ctx_;
880 // fixed_nonce_ contains any bytes of the nonce that are fixed for all
881 // records.
882 uint8_t fixed_nonce_[12];
883 uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0;
884 // version_ is the wire version that should be used with this AEAD.
885 uint16_t version_;
886 // is_dtls_ is whether DTLS is being used with this AEAD.
887 bool is_dtls_;
888 // variable_nonce_included_in_record_ is true if the variable nonce
889 // for a record is included as a prefix before the ciphertext.
890 bool variable_nonce_included_in_record_ : 1;
891 // random_variable_nonce_ is true if the variable nonce is
892 // randomly generated, rather than derived from the sequence
893 // number.
894 bool random_variable_nonce_ : 1;
895 // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the
896 // variable nonce rather than prepended.
897 bool xor_fixed_nonce_ : 1;
898 // omit_length_in_ad_ is true if the length should be omitted in the
899 // AEAD's ad parameter.
900 bool omit_length_in_ad_ : 1;
901 // ad_is_header_ is true if the AEAD's ad parameter is the record header.
902 bool ad_is_header_ : 1;
903 };
904
905
906 // DTLS replay bitmap.
907
908 // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
909 // replayed packets. It should be initialized by zeroing every field.
910 struct DTLS1_BITMAP {
911 // map is a bit mask of the last 64 sequence numbers. Bit
912 // |1<<i| corresponds to |max_seq_num - i|.
913 uint64_t map = 0;
914 // max_seq_num is the largest sequence number seen so far as a 64-bit
915 // integer.
916 uint64_t max_seq_num = 0;
917 };
918
919
920 // Record layer.
921
922 // ssl_record_sequence_update increments the sequence number in |seq|. It
923 // returns true on success and false on wraparound.
924 bool ssl_record_sequence_update(uint8_t *seq, size_t seq_len);
925
926 // ssl_record_prefix_len returns the length of the prefix before the ciphertext
927 // of a record for |ssl|.
928 //
929 // TODO(davidben): Expose this as part of public API once the high-level
930 // buffer-free APIs are available.
931 size_t ssl_record_prefix_len(const SSL *ssl);
932
933 enum ssl_open_record_t {
934 ssl_open_record_success,
935 ssl_open_record_discard,
936 ssl_open_record_partial,
937 ssl_open_record_close_notify,
938 ssl_open_record_error,
939 };
940
941 // tls_open_record decrypts a record from |in| in-place.
942 //
943 // If the input did not contain a complete record, it returns
944 // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
945 // bytes necessary. It is guaranteed that a successful call to |tls_open_record|
946 // will consume at least that many bytes.
947 //
948 // Otherwise, it sets |*out_consumed| to the number of bytes of input
949 // consumed. Note that input may be consumed on all return codes if a record was
950 // decrypted.
951 //
952 // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
953 // record type and |*out| to the record body in |in|. Note that |*out| may be
954 // empty.
955 //
956 // If a record was successfully processed but should be discarded, it returns
957 // |ssl_open_record_discard|.
958 //
959 // If a record was successfully processed but is a close_notify, it returns
960 // |ssl_open_record_close_notify|.
961 //
962 // On failure or fatal alert, it returns |ssl_open_record_error| and sets
963 // |*out_alert| to an alert to emit, or zero if no alert should be emitted.
964 enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
965 Span<uint8_t> *out, size_t *out_consumed,
966 uint8_t *out_alert, Span<uint8_t> in);
967
968 // dtls_open_record implements |tls_open_record| for DTLS. It only returns
969 // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to
970 // zero. The caller should read one packet and try again.
971 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
972 Span<uint8_t> *out,
973 size_t *out_consumed,
974 uint8_t *out_alert, Span<uint8_t> in);
975
976 // ssl_seal_align_prefix_len returns the length of the prefix before the start
977 // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may
978 // use this to align buffers.
979 //
980 // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte
981 // record and is the offset into second record's ciphertext. Thus sealing a
982 // small record may result in a smaller output than this value.
983 //
984 // TODO(davidben): Is this alignment valuable? Record-splitting makes this a
985 // mess.
986 size_t ssl_seal_align_prefix_len(const SSL *ssl);
987
988 // tls_seal_record seals a new record of type |type| and body |in| and writes it
989 // to |out|. At most |max_out| bytes will be written. It returns true on success
990 // and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC
991 // 1/n-1 record splitting and may write two records concatenated.
992 //
993 // For a large record, the bulk of the ciphertext will begin
994 // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
995 // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
996 // bytes to |out|.
997 //
998 // |in| and |out| may not alias.
999 bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1000 uint8_t type, const uint8_t *in, size_t in_len);
1001
1002 enum dtls1_use_epoch_t {
1003 dtls1_use_previous_epoch,
1004 dtls1_use_current_epoch,
1005 };
1006
1007 // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
1008 // record.
1009 size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
1010
1011 // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
1012 // front of the plaintext when sealing a record in-place.
1013 size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
1014
1015 // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
1016 // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out|
1017 // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
1018 // ahead of |out|.
1019 bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1020 uint8_t type, const uint8_t *in, size_t in_len,
1021 enum dtls1_use_epoch_t use_epoch);
1022
1023 // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
1024 // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
1025 // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
1026 // appropriate.
1027 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
1028 Span<const uint8_t> in);
1029
1030
1031 // Private key operations.
1032
1033 // ssl_has_private_key returns whether |hs| has a private key configured.
1034 bool ssl_has_private_key(const SSL_HANDSHAKE *hs);
1035
1036 // ssl_private_key_* perform the corresponding operation on
1037 // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they
1038 // call the corresponding function or |complete| depending on whether there is a
1039 // pending operation. Otherwise, they implement the operation with
1040 // |EVP_PKEY|.
1041
1042 enum ssl_private_key_result_t ssl_private_key_sign(
1043 SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
1044 uint16_t sigalg, Span<const uint8_t> in);
1045
1046 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
1047 uint8_t *out,
1048 size_t *out_len,
1049 size_t max_out,
1050 Span<const uint8_t> in);
1051
1052 // ssl_private_key_supports_signature_algorithm returns whether |hs|'s private
1053 // key supports |sigalg|.
1054 bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
1055 uint16_t sigalg);
1056
1057 // ssl_public_key_verify verifies that the |signature| is valid for the public
1058 // key |pkey| and input |in|, using the signature algorithm |sigalg|.
1059 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
1060 uint16_t sigalg, EVP_PKEY *pkey,
1061 Span<const uint8_t> in);
1062
1063
1064 // Key shares.
1065
1066 // SSLKeyShare abstracts over Diffie-Hellman-like key exchanges.
1067 class SSLKeyShare {
1068 public:
1069 virtual ~SSLKeyShare() {}
1070 static constexpr bool kAllowUniquePtr = true;
1071 HAS_VIRTUAL_DESTRUCTOR
1072
1073 // Create returns a SSLKeyShare instance for use with group |group_id| or
1074 // nullptr on error.
1075 static UniquePtr<SSLKeyShare> Create(uint16_t group_id);
1076
1077 // Create deserializes an SSLKeyShare instance previously serialized by
1078 // |Serialize|.
1079 static UniquePtr<SSLKeyShare> Create(CBS *in);
1080
1081 // Serializes writes the group ID and private key, in a format that can be
1082 // read by |Create|.
1083 bool Serialize(CBB *out);
1084
1085 // GroupID returns the group ID.
1086 virtual uint16_t GroupID() const PURE_VIRTUAL;
1087
1088 // Offer generates a keypair and writes the public value to
1089 // |out_public_key|. It returns true on success and false on error.
1090 virtual bool Offer(CBB *out_public_key) PURE_VIRTUAL;
1091
1092 // Accept performs a key exchange against the |peer_key| generated by |Offer|.
1093 // On success, it returns true, writes the public value to |out_public_key|,
1094 // and sets |*out_secret| to the shared secret. On failure, it returns false
1095 // and sets |*out_alert| to an alert to send to the peer.
1096 //
1097 // The default implementation calls |Offer| and then |Finish|, assuming a key
1098 // exchange protocol where the peers are symmetric.
1099 virtual bool Accept(CBB *out_public_key, Array<uint8_t> *out_secret,
1100 uint8_t *out_alert, Span<const uint8_t> peer_key);
1101
1102 // Finish performs a key exchange against the |peer_key| generated by
1103 // |Accept|. On success, it returns true and sets |*out_secret| to the shared
1104 // secret. On failure, it returns false and sets |*out_alert| to an alert to
1105 // send to the peer.
1106 virtual bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert,
1107 Span<const uint8_t> peer_key) PURE_VIRTUAL;
1108
1109 // SerializePrivateKey writes the private key to |out|, returning true if
1110 // successful and false otherwise. It should be called after |Offer|.
1111 virtual bool SerializePrivateKey(CBB *out) { return false; }
1112
1113 // DeserializePrivateKey initializes the state of the key exchange from |in|,
1114 // returning true if successful and false otherwise.
1115 virtual bool DeserializePrivateKey(CBS *in) { return false; }
1116 };
1117
1118 struct NamedGroup {
1119 int nid;
1120 uint16_t group_id;
1121 const char name[8], alias[11];
1122 };
1123
1124 // NamedGroups returns all supported groups.
1125 Span<const NamedGroup> NamedGroups();
1126
1127 // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
1128 // sets |*out_group_id| to the group ID and returns true. Otherwise, it returns
1129 // false.
1130 bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
1131
1132 // ssl_name_to_group_id looks up the group corresponding to the |name| string of
1133 // length |len|. On success, it sets |*out_group_id| to the group ID and returns
1134 // true. Otherwise, it returns false.
1135 bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
1136
1137
1138 // Handshake messages.
1139
1140 struct SSLMessage {
1141 bool is_v2_hello;
1142 uint8_t type;
1143 CBS body;
1144 // raw is the entire serialized handshake message, including the TLS or DTLS
1145 // message header.
1146 CBS raw;
1147 };
1148
1149 // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
1150 // ChangeCipherSpec, in the longest handshake flight. Currently this is the
1151 // client's second leg in a full handshake when client certificates, NPN, and
1152 // Channel ID, are all enabled.
1153 #define SSL_MAX_HANDSHAKE_FLIGHT 7
1154
1155 extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE];
1156 extern const uint8_t kTLS12DowngradeRandom[8];
1157 extern const uint8_t kTLS13DowngradeRandom[8];
1158 extern const uint8_t kJDK11DowngradeRandom[8];
1159
1160 // ssl_max_handshake_message_len returns the maximum number of bytes permitted
1161 // in a handshake message for |ssl|.
1162 size_t ssl_max_handshake_message_len(const SSL *ssl);
1163
1164 // tls_can_accept_handshake_data returns whether |ssl| is able to accept more
1165 // data into handshake buffer.
1166 bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert);
1167
1168 // tls_has_unprocessed_handshake_data returns whether there is buffered
1169 // handshake data that has not been consumed by |get_message|.
1170 bool tls_has_unprocessed_handshake_data(const SSL *ssl);
1171
1172 // tls_append_handshake_data appends |data| to the handshake buffer. It returns
1173 // true on success and false on allocation failure.
1174 bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data);
1175
1176 // dtls_has_unprocessed_handshake_data behaves like
1177 // |tls_has_unprocessed_handshake_data| for DTLS.
1178 bool dtls_has_unprocessed_handshake_data(const SSL *ssl);
1179
1180 // tls_flush_pending_hs_data flushes any handshake plaintext data.
1181 bool tls_flush_pending_hs_data(SSL *ssl);
1182
1183 struct DTLS_OUTGOING_MESSAGE {
1184 DTLS_OUTGOING_MESSAGE() {}
1185 DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete;
1186 DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete;
1187 ~DTLS_OUTGOING_MESSAGE() { Clear(); }
1188
1189 void Clear();
1190
1191 uint8_t *data = nullptr;
1192 uint32_t len = 0;
1193 uint16_t epoch = 0;
1194 bool is_ccs = false;
1195 };
1196
1197 // dtls_clear_outgoing_messages releases all buffered outgoing messages.
1198 void dtls_clear_outgoing_messages(SSL *ssl);
1199
1200
1201 // Callbacks.
1202
1203 // ssl_do_info_callback calls |ssl|'s info callback, if set.
1204 void ssl_do_info_callback(const SSL *ssl, int type, int value);
1205
1206 // ssl_do_msg_callback calls |ssl|'s message callback, if set.
1207 void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type,
1208 Span<const uint8_t> in);
1209
1210
1211 // Transport buffers.
1212
1213 class SSLBuffer {
1214 public:
1215 SSLBuffer() {}
1216 ~SSLBuffer() { Clear(); }
1217
1218 SSLBuffer(const SSLBuffer &) = delete;
1219 SSLBuffer &operator=(const SSLBuffer &) = delete;
1220
1221 uint8_t *data() { return buf_ + offset_; }
1222 size_t size() const { return size_; }
1223 bool empty() const { return size_ == 0; }
1224 size_t cap() const { return cap_; }
1225
1226 Span<uint8_t> span() { return MakeSpan(data(), size()); }
1227
1228 Span<uint8_t> remaining() {
1229 return MakeSpan(data() + size(), cap() - size());
1230 }
1231
1232 // Clear releases the buffer.
1233 void Clear();
1234
1235 // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such
1236 // that data written after |header_len| is aligned to a
1237 // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false
1238 // on error.
1239 bool EnsureCap(size_t header_len, size_t new_cap);
1240
1241 // DidWrite extends the buffer by |len|. The caller must have filled in to
1242 // this point.
1243 void DidWrite(size_t len);
1244
1245 // Consume consumes |len| bytes from the front of the buffer. The memory
1246 // consumed will remain valid until the next call to |DiscardConsumed| or
1247 // |Clear|.
1248 void Consume(size_t len);
1249
1250 // DiscardConsumed discards the consumed bytes from the buffer. If the buffer
1251 // is now empty, it releases memory used by it.
1252 void DiscardConsumed();
1253
1254 private:
1255 // buf_ is the memory allocated for this buffer.
1256 uint8_t *buf_ = nullptr;
1257 // offset_ is the offset into |buf_| which the buffer contents start at.
1258 uint16_t offset_ = 0;
1259 // size_ is the size of the buffer contents from |buf_| + |offset_|.
1260 uint16_t size_ = 0;
1261 // cap_ is how much memory beyond |buf_| + |offset_| is available.
1262 uint16_t cap_ = 0;
1263 // inline_buf_ is a static buffer for short reads.
1264 uint8_t inline_buf_[SSL3_RT_HEADER_LENGTH];
1265 // buf_allocated_ is true if |buf_| points to allocated data and must be freed
1266 // or false if it points into |inline_buf_|.
1267 bool buf_allocated_ = false;
1268 };
1269
1270 // ssl_read_buffer_extend_to extends the read buffer to the desired length. For
1271 // TLS, it reads to the end of the buffer until the buffer is |len| bytes
1272 // long. For DTLS, it reads a new packet and ignores |len|. It returns one on
1273 // success, zero on EOF, and a negative number on error.
1274 //
1275 // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
1276 // non-empty.
1277 int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
1278
1279 // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer|
1280 // to a record-processing function. If |ret| is a success or if the caller
1281 // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <=
1282 // 0.
1283 int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret,
1284 size_t consumed, uint8_t alert);
1285
1286 // ssl_write_buffer_flush flushes the write buffer to the transport. It returns
1287 // one on success and <= 0 on error. For DTLS, whether or not the write
1288 // succeeds, the write buffer will be cleared.
1289 int ssl_write_buffer_flush(SSL *ssl);
1290
1291
1292 // Certificate functions.
1293
1294 // ssl_has_certificate returns whether a certificate and private key are
1295 // configured.
1296 bool ssl_has_certificate(const SSL_HANDSHAKE *hs);
1297
1298 // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
1299 // by a TLS Certificate message. On success, it advances |cbs| and returns
1300 // true. Otherwise, it returns false and sets |*out_alert| to an alert to send
1301 // to the peer.
1302 //
1303 // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to
1304 // the certificate chain and the leaf certificate's public key
1305 // respectively. Otherwise, both will be set to nullptr.
1306 //
1307 // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
1308 // SHA-256 hash of the leaf to |out_leaf_sha256|.
1309 bool ssl_parse_cert_chain(uint8_t *out_alert,
1310 UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
1311 UniquePtr<EVP_PKEY> *out_pubkey,
1312 uint8_t *out_leaf_sha256, CBS *cbs,
1313 CRYPTO_BUFFER_POOL *pool);
1314
1315 // ssl_add_cert_chain adds |hs->ssl|'s certificate chain to |cbb| in the format
1316 // used by a TLS Certificate message. If there is no certificate chain, it emits
1317 // an empty certificate list. It returns true on success and false on error.
1318 bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb);
1319
1320 enum ssl_key_usage_t {
1321 key_usage_digital_signature = 0,
1322 key_usage_encipherment = 2,
1323 };
1324
1325 // ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in|
1326 // and returns true if doesn't specify a key usage or, if it does, if it
1327 // includes |bit|. Otherwise it pushes to the error queue and returns false.
1328 bool ssl_cert_check_key_usage(const CBS *in, enum ssl_key_usage_t bit);
1329
1330 // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
1331 // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns
1332 // nullptr and pushes to the error queue.
1333 UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in);
1334
1335 // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
1336 // TLS CertificateRequest message. On success, it returns a newly-allocated
1337 // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and
1338 // sets |*out_alert| to an alert to send to the peer.
1339 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
1340 uint8_t *out_alert,
1341 CBS *cbs);
1342
1343 // ssl_has_client_CAs returns there are configured CAs.
1344 bool ssl_has_client_CAs(const SSL_CONFIG *cfg);
1345
1346 // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
1347 // used by a TLS CertificateRequest message. It returns true on success and
1348 // false on error.
1349 bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb);
1350
1351 // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
1352 // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes
1353 // an error on the error queue.
1354 bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
1355 const CRYPTO_BUFFER *leaf);
1356
1357 // ssl_on_certificate_selected is called once the certificate has been selected.
1358 // It finalizes the certificate and initializes |hs->local_pubkey|. It returns
1359 // true on success and false on error.
1360 bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs);
1361
1362
1363 // TLS 1.3 key derivation.
1364
1365 // tls13_init_key_schedule initializes the handshake hash and key derivation
1366 // state, and incorporates the PSK. The cipher suite and PRF hash must have been
1367 // selected at this point. It returns true on success and false on error.
1368 bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk);
1369
1370 // tls13_init_early_key_schedule initializes the handshake hash and key
1371 // derivation state from |session| for use with 0-RTT. It returns one on success
1372 // and zero on error.
1373 bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs,
1374 const SSL_SESSION *session);
1375
1376 // tls13_advance_key_schedule incorporates |in| into the key schedule with
1377 // HKDF-Extract. It returns true on success and false on error.
1378 bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in);
1379
1380 // tls13_set_traffic_key sets the read or write traffic keys to
1381 // |traffic_secret|. The version and cipher suite are determined from |session|.
1382 // It returns true on success and false on error.
1383 bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level,
1384 enum evp_aead_direction_t direction,
1385 const SSL_SESSION *session,
1386 Span<const uint8_t> traffic_secret);
1387
1388 // tls13_derive_early_secret derives the early traffic secret. It returns true
1389 // on success and false on error.
1390 bool tls13_derive_early_secret(SSL_HANDSHAKE *hs);
1391
1392 // tls13_derive_handshake_secrets derives the handshake traffic secret. It
1393 // returns true on success and false on error.
1394 bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
1395
1396 // tls13_rotate_traffic_key derives the next read or write traffic secret. It
1397 // returns true on success and false on error.
1398 bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
1399
1400 // tls13_derive_application_secrets derives the initial application data traffic
1401 // and exporter secrets based on the handshake transcripts and |master_secret|.
1402 // It returns true on success and false on error.
1403 bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
1404
1405 // tls13_derive_resumption_secret derives the |resumption_secret|.
1406 bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
1407
1408 // tls13_export_keying_material provides an exporter interface to use the
1409 // |exporter_secret|.
1410 bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
1411 Span<const uint8_t> secret,
1412 Span<const char> label,
1413 Span<const uint8_t> context);
1414
1415 // tls13_finished_mac calculates the MAC of the handshake transcript to verify
1416 // the integrity of the Finished message, and stores the result in |out| and
1417 // length in |out_len|. |is_server| is true if this is for the Server Finished
1418 // and false for the Client Finished.
1419 bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
1420 bool is_server);
1421
1422 // tls13_derive_session_psk calculates the PSK for this session based on the
1423 // resumption master secret and |nonce|. It returns true on success, and false
1424 // on failure.
1425 bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce);
1426
1427 // tls13_write_psk_binder calculates the PSK binder value over |transcript| and
1428 // |msg|, and replaces the last bytes of |msg| with the resulting value. It
1429 // returns true on success, and false on failure. If |out_binder_len| is
1430 // non-NULL, it sets |*out_binder_len| to the length of the value computed.
1431 bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs,
1432 const SSLTranscript &transcript, Span<uint8_t> msg,
1433 size_t *out_binder_len);
1434
1435 // tls13_verify_psk_binder verifies that the handshake transcript, truncated up
1436 // to the binders has a valid signature using the value of |session|'s
1437 // resumption secret. It returns true on success, and false on failure.
1438 bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs,
1439 const SSL_SESSION *session, const SSLMessage &msg,
1440 CBS *binders);
1441
1442
1443 // Encrypted ClientHello.
1444
1445 struct ECHConfig {
1446 static constexpr bool kAllowUniquePtr = true;
1447 // raw contains the serialized ECHConfig.
1448 Array<uint8_t> raw;
1449 // The following fields alias into |raw|.
1450 Span<const uint8_t> public_key;
1451 Span<const uint8_t> public_name;
1452 Span<const uint8_t> cipher_suites;
1453 uint16_t kem_id = 0;
1454 uint8_t maximum_name_length = 0;
1455 uint8_t config_id = 0;
1456 };
1457
1458 class ECHServerConfig {
1459 public:
1460 static constexpr bool kAllowUniquePtr = true;
1461 ECHServerConfig() = default;
1462 ECHServerConfig(const ECHServerConfig &other) = delete;
1463 ECHServerConfig &operator=(ECHServerConfig &&) = delete;
1464
1465 // Init parses |ech_config| as an ECHConfig and saves a copy of |key|.
1466 // It returns true on success and false on error.
1467 bool Init(Span<const uint8_t> ech_config, const EVP_HPKE_KEY *key,
1468 bool is_retry_config);
1469
1470 // SetupContext sets up |ctx| for a new connection, given the specified
1471 // HPKE ciphersuite and encapsulated KEM key. It returns true on success and
1472 // false on error. This function may only be called on an initialized object.
1473 bool SetupContext(EVP_HPKE_CTX *ctx, uint16_t kdf_id, uint16_t aead_id,
1474 Span<const uint8_t> enc) const;
1475
1476 const ECHConfig &ech_config() const { return ech_config_; }
1477 bool is_retry_config() const { return is_retry_config_; }
1478
1479 private:
1480 ECHConfig ech_config_;
1481 ScopedEVP_HPKE_KEY key_;
1482 bool is_retry_config_ = false;
1483 };
1484
1485 enum ssl_client_hello_type_t {
1486 ssl_client_hello_unencrypted,
1487 ssl_client_hello_inner,
1488 ssl_client_hello_outer,
1489 };
1490
1491 // ECH_CLIENT_* are types for the ClientHello encrypted_client_hello extension.
1492 #define ECH_CLIENT_OUTER 0
1493 #define ECH_CLIENT_INNER 1
1494
1495 // ssl_decode_client_hello_inner recovers the full ClientHelloInner from the
1496 // EncodedClientHelloInner |encoded_client_hello_inner| by replacing its
1497 // outer_extensions extension with the referenced extensions from the
1498 // ClientHelloOuter |client_hello_outer|. If successful, it writes the recovered
1499 // ClientHelloInner to |out_client_hello_inner|. It returns true on success and
1500 // false on failure.
1501 OPENSSL_EXPORT bool ssl_decode_client_hello_inner(
1502 SSL *ssl, uint8_t *out_alert, Array<uint8_t> *out_client_hello_inner,
1503 Span<const uint8_t> encoded_client_hello_inner,
1504 const SSL_CLIENT_HELLO *client_hello_outer);
1505
1506 // ssl_client_hello_decrypt attempts to decrypt the |payload| and writes the
1507 // result to |*out|. |payload| must point into |client_hello_outer|. It returns
1508 // true on success and false on error. On error, it sets |*out_is_decrypt_error|
1509 // to whether the failure was due to a bad ciphertext.
1510 bool ssl_client_hello_decrypt(EVP_HPKE_CTX *hpke_ctx, Array<uint8_t> *out,
1511 bool *out_is_decrypt_error,
1512 const SSL_CLIENT_HELLO *client_hello_outer,
1513 Span<const uint8_t> payload);
1514
1515 #define ECH_CONFIRMATION_SIGNAL_LEN 8
1516
1517 // ssl_ech_confirmation_signal_hello_offset returns the offset of the ECH
1518 // confirmation signal in a ServerHello message, including the handshake header.
1519 size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl);
1520
1521 // ssl_ech_accept_confirmation computes the server's ECH acceptance signal,
1522 // writing it to |out|. The transcript portion is the concatenation of
1523 // |transcript| with |msg|. The |ECH_CONFIRMATION_SIGNAL_LEN| bytes from
1524 // |offset| in |msg| are replaced with zeros before hashing. This function
1525 // returns true on success, and false on failure.
1526 bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out,
1527 Span<const uint8_t> client_random,
1528 const SSLTranscript &transcript, bool is_hrr,
1529 Span<const uint8_t> msg, size_t offset);
1530
1531 // ssl_is_valid_ech_public_name returns true if |public_name| is a valid ECH
1532 // public name and false otherwise. It is exported for testing.
1533 OPENSSL_EXPORT bool ssl_is_valid_ech_public_name(
1534 Span<const uint8_t> public_name);
1535
1536 // ssl_is_valid_ech_config_list returns true if |ech_config_list| is a valid
1537 // ECHConfigList structure and false otherwise.
1538 bool ssl_is_valid_ech_config_list(Span<const uint8_t> ech_config_list);
1539
1540 // ssl_select_ech_config selects an ECHConfig and associated parameters to offer
1541 // on the client and updates |hs|. It returns true on success, whether an
1542 // ECHConfig was found or not, and false on internal error. On success, the
1543 // encapsulated key is written to |out_enc| and |*out_enc_len| is set to the
1544 // number of bytes written. If the function did not select an ECHConfig, the
1545 // encapsulated key is the empty string.
1546 bool ssl_select_ech_config(SSL_HANDSHAKE *hs, Span<uint8_t> out_enc,
1547 size_t *out_enc_len);
1548
1549 // ssl_ech_extension_body_length returns the length of the body of a ClientHello
1550 // ECH extension that encrypts |in_len| bytes with |aead| and an 'enc' value of
1551 // length |enc_len|. The result does not include the four-byte extension header.
1552 size_t ssl_ech_extension_body_length(const EVP_HPKE_AEAD *aead, size_t enc_len,
1553 size_t in_len);
1554
1555 // ssl_encrypt_client_hello constructs a new ClientHelloInner, adds it to the
1556 // inner transcript, and encrypts for inclusion in the ClientHelloOuter. |enc|
1557 // is the encapsulated key to include in the extension. It returns true on
1558 // success and false on error. If not offering ECH, |enc| is ignored and the
1559 // function will compute a GREASE ECH extension if necessary, and otherwise
1560 // return success while doing nothing.
1561 //
1562 // Encrypting the ClientHelloInner incorporates all extensions in the
1563 // ClientHelloOuter, so all other state necessary for |ssl_add_client_hello|
1564 // must already be computed.
1565 bool ssl_encrypt_client_hello(SSL_HANDSHAKE *hs, Span<const uint8_t> enc);
1566
1567
1568 // Delegated credentials.
1569
1570 // This structure stores a delegated credential (DC) as defined by
1571 // draft-ietf-tls-subcerts-03.
1572 struct DC {
1573 static constexpr bool kAllowUniquePtr = true;
1574 ~DC();
1575
1576 // Dup returns a copy of this DC and takes references to |raw| and |pkey|.
1577 UniquePtr<DC> Dup();
1578
1579 // Parse parses the delegated credential stored in |in|. If successful it
1580 // returns the parsed structure, otherwise it returns |nullptr| and sets
1581 // |*out_alert|.
1582 static UniquePtr<DC> Parse(CRYPTO_BUFFER *in, uint8_t *out_alert);
1583
1584 // raw is the delegated credential encoded as specified in draft-ietf-tls-
1585 // subcerts-03.
1586 UniquePtr<CRYPTO_BUFFER> raw;
1587
1588 // expected_cert_verify_algorithm is the signature scheme of the DC public
1589 // key.
1590 uint16_t expected_cert_verify_algorithm = 0;
1591
1592 // pkey is the public key parsed from |public_key|.
1593 UniquePtr<EVP_PKEY> pkey;
1594
1595 private:
1596 friend DC* New<DC>();
1597 DC();
1598 };
1599
1600 // ssl_signing_with_dc returns true if the peer has indicated support for
1601 // delegated credentials and this host has sent a delegated credential in
1602 // response. If this is true then we've committed to using the DC in the
1603 // handshake.
1604 bool ssl_signing_with_dc(const SSL_HANDSHAKE *hs);
1605
1606
1607 // Handshake functions.
1608
1609 enum ssl_hs_wait_t {
1610 ssl_hs_error,
1611 ssl_hs_ok,
1612 ssl_hs_read_server_hello,
1613 ssl_hs_read_message,
1614 ssl_hs_flush,
1615 ssl_hs_certificate_selection_pending,
1616 ssl_hs_handoff,
1617 ssl_hs_handback,
1618 ssl_hs_x509_lookup,
1619 ssl_hs_private_key_operation,
1620 ssl_hs_pending_session,
1621 ssl_hs_pending_ticket,
1622 ssl_hs_early_return,
1623 ssl_hs_early_data_rejected,
1624 ssl_hs_read_end_of_early_data,
1625 ssl_hs_read_change_cipher_spec,
1626 ssl_hs_certificate_verify,
1627 ssl_hs_hints_ready,
1628 };
1629
1630 enum ssl_grease_index_t {
1631 ssl_grease_cipher = 0,
1632 ssl_grease_group,
1633 ssl_grease_extension1,
1634 ssl_grease_extension2,
1635 ssl_grease_version,
1636 ssl_grease_ticket_extension,
1637 ssl_grease_ech_config_id,
1638 ssl_grease_last_index = ssl_grease_ech_config_id,
1639 };
1640
1641 enum tls12_server_hs_state_t {
1642 state12_start_accept = 0,
1643 state12_read_client_hello,
1644 state12_read_client_hello_after_ech,
1645 state12_select_certificate,
1646 state12_tls13,
1647 state12_select_parameters,
1648 state12_send_server_hello,
1649 state12_send_server_certificate,
1650 state12_send_server_key_exchange,
1651 state12_send_server_hello_done,
1652 state12_read_client_certificate,
1653 state12_verify_client_certificate,
1654 state12_read_client_key_exchange,
1655 state12_read_client_certificate_verify,
1656 state12_read_change_cipher_spec,
1657 state12_process_change_cipher_spec,
1658 state12_read_next_proto,
1659 state12_read_channel_id,
1660 state12_read_client_finished,
1661 state12_send_server_finished,
1662 state12_finish_server_handshake,
1663 state12_done,
1664 };
1665
1666 enum tls13_server_hs_state_t {
1667 state13_select_parameters = 0,
1668 state13_select_session,
1669 state13_send_hello_retry_request,
1670 state13_read_second_client_hello,
1671 state13_send_server_hello,
1672 state13_send_server_certificate_verify,
1673 state13_send_server_finished,
1674 state13_send_half_rtt_ticket,
1675 state13_read_second_client_flight,
1676 state13_process_end_of_early_data,
1677 state13_read_client_encrypted_extensions,
1678 state13_read_client_certificate,
1679 state13_read_client_certificate_verify,
1680 state13_read_channel_id,
1681 state13_read_client_finished,
1682 state13_send_new_session_ticket,
1683 state13_done,
1684 };
1685
1686 // handback_t lists the points in the state machine where a handback can occur.
1687 // These are the different points at which key material is no longer needed.
1688 enum handback_t {
1689 handback_after_session_resumption = 0,
1690 handback_after_ecdhe = 1,
1691 handback_after_handshake = 2,
1692 handback_tls13 = 3,
1693 handback_max_value = handback_tls13,
1694 };
1695
1696 // SSL_HANDSHAKE_HINTS contains handshake hints for a connection. See
1697 // |SSL_request_handshake_hints| and related functions.
1698 struct SSL_HANDSHAKE_HINTS {
1699 static constexpr bool kAllowUniquePtr = true;
1700
1701 Array<uint8_t> server_random;
1702
1703 uint16_t key_share_group_id = 0;
1704 Array<uint8_t> key_share_public_key;
1705 Array<uint8_t> key_share_secret;
1706
1707 uint16_t signature_algorithm = 0;
1708 Array<uint8_t> signature_input;
1709 Array<uint8_t> signature_spki;
1710 Array<uint8_t> signature;
1711
1712 Array<uint8_t> decrypted_psk;
1713 bool ignore_psk = false;
1714
1715 uint16_t cert_compression_alg_id = 0;
1716 Array<uint8_t> cert_compression_input;
1717 Array<uint8_t> cert_compression_output;
1718 };
1719
1720 struct SSL_HANDSHAKE {
1721 explicit SSL_HANDSHAKE(SSL *ssl);
1722 ~SSL_HANDSHAKE();
1723 static constexpr bool kAllowUniquePtr = true;
1724
1725 // ssl is a non-owning pointer to the parent |SSL| object.
1726 SSL *ssl;
1727
1728 // config is a non-owning pointer to the handshake configuration.
1729 SSL_CONFIG *config;
1730
1731 // wait contains the operation the handshake is currently blocking on or
1732 // |ssl_hs_ok| if none.
1733 enum ssl_hs_wait_t wait = ssl_hs_ok;
1734
1735 // state is the internal state for the TLS 1.2 and below handshake. Its
1736 // values depend on |do_handshake| but the starting state is always zero.
1737 int state = 0;
1738
1739 // tls13_state is the internal state for the TLS 1.3 handshake. Its values
1740 // depend on |do_handshake| but the starting state is always zero.
1741 int tls13_state = 0;
1742
1743 // min_version is the minimum accepted protocol version, taking account both
1744 // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs.
1745 uint16_t min_version = 0;
1746
1747 // max_version is the maximum accepted protocol version, taking account both
1748 // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs.
1749 uint16_t max_version = 0;
1750
1751 private:
1752 size_t hash_len_ = 0;
1753 uint8_t secret_[SSL_MAX_MD_SIZE] = {0};
1754 uint8_t early_traffic_secret_[SSL_MAX_MD_SIZE] = {0};
1755 uint8_t client_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1756 uint8_t server_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1757 uint8_t client_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1758 uint8_t server_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1759 uint8_t expected_client_finished_[SSL_MAX_MD_SIZE] = {0};
1760
1761 public:
1762 void ResizeSecrets(size_t hash_len);
1763
1764 // GetClientHello, on the server, returns either the normal ClientHello
1765 // message or the ClientHelloInner if it has been serialized to
1766 // |ech_client_hello_buf|. This function should only be called when the
1767 // current message is a ClientHello. It returns true on success and false on
1768 // error.
1769 //
1770 // Note that fields of the returned |out_msg| and |out_client_hello| point
1771 // into a handshake-owned buffer, so their lifetimes should not exceed this
1772 // SSL_HANDSHAKE.
1773 bool GetClientHello(SSLMessage *out_msg, SSL_CLIENT_HELLO *out_client_hello);
1774
1775 Span<uint8_t> secret() { return MakeSpan(secret_, hash_len_); }
1776 Span<const uint8_t> secret() const {
1777 return MakeConstSpan(secret_, hash_len_);
1778 }
1779 Span<uint8_t> early_traffic_secret() {
1780 return MakeSpan(early_traffic_secret_, hash_len_);
1781 }
1782 Span<uint8_t> client_handshake_secret() {
1783 return MakeSpan(client_handshake_secret_, hash_len_);
1784 }
1785 Span<uint8_t> server_handshake_secret() {
1786 return MakeSpan(server_handshake_secret_, hash_len_);
1787 }
1788 Span<uint8_t> client_traffic_secret_0() {
1789 return MakeSpan(client_traffic_secret_0_, hash_len_);
1790 }
1791 Span<uint8_t> server_traffic_secret_0() {
1792 return MakeSpan(server_traffic_secret_0_, hash_len_);
1793 }
1794 Span<uint8_t> expected_client_finished() {
1795 return MakeSpan(expected_client_finished_, hash_len_);
1796 }
1797
1798 union {
1799 // sent is a bitset where the bits correspond to elements of kExtensions
1800 // in extensions.cc. Each bit is set if that extension was sent in a
1801 // ClientHello. It's not used by servers.
1802 uint32_t sent = 0;
1803 // received is a bitset, like |sent|, but is used by servers to record
1804 // which extensions were received from a client.
1805 uint32_t received;
1806 } extensions;
1807
1808 // inner_extensions_sent, on clients that offer ECH, is |extensions.sent| for
1809 // the ClientHelloInner.
1810 uint32_t inner_extensions_sent = 0;
1811
1812 // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on.
1813 UniquePtr<ERR_SAVE_STATE> error;
1814
1815 // key_shares are the current key exchange instances. The second is only used
1816 // as a client if we believe that we should offer two key shares in a
1817 // ClientHello.
1818 UniquePtr<SSLKeyShare> key_shares[2];
1819
1820 // transcript is the current handshake transcript.
1821 SSLTranscript transcript;
1822
1823 // inner_transcript, on the client, is the handshake transcript for the
1824 // ClientHelloInner handshake. It is moved to |transcript| if the server
1825 // accepts ECH.
1826 SSLTranscript inner_transcript;
1827
1828 // inner_client_random is the ClientHello random value used with
1829 // ClientHelloInner.
1830 uint8_t inner_client_random[SSL3_RANDOM_SIZE] = {0};
1831
1832 // cookie is the value of the cookie received from the server, if any.
1833 Array<uint8_t> cookie;
1834
1835 // ech_client_outer contains the outer ECH extension to send in the
1836 // ClientHello, excluding the header and type byte.
1837 Array<uint8_t> ech_client_outer;
1838
1839 // ech_retry_configs, on the client, contains the retry configs from the
1840 // server as a serialized ECHConfigList.
1841 Array<uint8_t> ech_retry_configs;
1842
1843 // ech_client_hello_buf, on the server, contains the bytes of the
1844 // reconstructed ClientHelloInner message.
1845 Array<uint8_t> ech_client_hello_buf;
1846
1847 // key_share_bytes is the key_share extension that the client should send.
1848 Array<uint8_t> key_share_bytes;
1849
1850 // ecdh_public_key, for servers, is the key share to be sent to the client in
1851 // TLS 1.3.
1852 Array<uint8_t> ecdh_public_key;
1853
1854 // peer_sigalgs are the signature algorithms that the peer supports. These are
1855 // taken from the contents of the signature algorithms extension for a server
1856 // or from the CertificateRequest for a client.
1857 Array<uint16_t> peer_sigalgs;
1858
1859 // peer_supported_group_list contains the supported group IDs advertised by
1860 // the peer. This is only set on the server's end. The server does not
1861 // advertise this extension to the client.
1862 Array<uint16_t> peer_supported_group_list;
1863
1864 // peer_delegated_credential_sigalgs are the signature algorithms the peer
1865 // supports with delegated credentials.
1866 Array<uint16_t> peer_delegated_credential_sigalgs;
1867
1868 // peer_key is the peer's ECDH key for a TLS 1.2 client.
1869 Array<uint8_t> peer_key;
1870
1871 // extension_permutation is the permutation to apply to ClientHello
1872 // extensions. It maps indices into the |kExtensions| table into other
1873 // indices.
1874 Array<uint8_t> extension_permutation;
1875
1876 // cert_compression_alg_id, for a server, contains the negotiated certificate
1877 // compression algorithm for this client. It is only valid if
1878 // |cert_compression_negotiated| is true.
1879 uint16_t cert_compression_alg_id;
1880
1881 // ech_hpke_ctx is the HPKE context used in ECH. On the server, it is
1882 // initialized if |ech_status| is |ssl_ech_accepted|. On the client, it is
1883 // initialized if |selected_ech_config| is not nullptr.
1884 ScopedEVP_HPKE_CTX ech_hpke_ctx;
1885
1886 // server_params, in a TLS 1.2 server, stores the ServerKeyExchange
1887 // parameters. It has client and server randoms prepended for signing
1888 // convenience.
1889 Array<uint8_t> server_params;
1890
1891 // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
1892 // server when using a TLS 1.2 PSK key exchange.
1893 UniquePtr<char> peer_psk_identity_hint;
1894
1895 // ca_names, on the client, contains the list of CAs received in a
1896 // CertificateRequest message.
1897 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names;
1898
1899 // cached_x509_ca_names contains a cache of parsed versions of the elements of
1900 // |ca_names|. This pointer is left non-owning so only
1901 // |ssl_crypto_x509_method| needs to link against crypto/x509.
1902 STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr;
1903
1904 // certificate_types, on the client, contains the set of certificate types
1905 // received in a CertificateRequest message.
1906 Array<uint8_t> certificate_types;
1907
1908 // local_pubkey is the public key we are authenticating as.
1909 UniquePtr<EVP_PKEY> local_pubkey;
1910
1911 // peer_pubkey is the public key parsed from the peer's leaf certificate.
1912 UniquePtr<EVP_PKEY> peer_pubkey;
1913
1914 // new_session is the new mutable session being established by the current
1915 // handshake. It should not be cached.
1916 UniquePtr<SSL_SESSION> new_session;
1917
1918 // early_session is the session corresponding to the current 0-RTT state on
1919 // the client if |in_early_data| is true.
1920 UniquePtr<SSL_SESSION> early_session;
1921
1922 // ssl_ech_keys, for servers, is the set of ECH keys to use with this
1923 // handshake. This is copied from |SSL_CTX| to ensure consistent behavior as
1924 // |SSL_CTX| rotates keys.
1925 UniquePtr<SSL_ECH_KEYS> ech_keys;
1926
1927 // selected_ech_config, for clients, is the ECHConfig the client uses to offer
1928 // ECH, or nullptr if ECH is not being offered. If non-NULL, |ech_hpke_ctx|
1929 // will be initialized.
1930 UniquePtr<ECHConfig> selected_ech_config;
1931
1932 // new_cipher is the cipher being negotiated in this handshake.
1933 const SSL_CIPHER *new_cipher = nullptr;
1934
1935 // key_block is the record-layer key block for TLS 1.2 and earlier.
1936 Array<uint8_t> key_block;
1937
1938 // hints contains the handshake hints for this connection. If
1939 // |hints_requested| is true, this field is non-null and contains the pending
1940 // hints to filled as the predicted handshake progresses. Otherwise, this
1941 // field, if non-null, contains hints configured by the caller and will
1942 // influence the handshake on match.
1943 UniquePtr<SSL_HANDSHAKE_HINTS> hints;
1944
1945 // ech_is_inner, on the server, indicates whether the ClientHello contained an
1946 // inner ECH extension.
1947 bool ech_is_inner : 1;
1948
1949 // ech_authenticated_reject, on the client, indicates whether an ECH rejection
1950 // handshake has been authenticated.
1951 bool ech_authenticated_reject : 1;
1952
1953 // scts_requested is true if the SCT extension is in the ClientHello.
1954 bool scts_requested : 1;
1955
1956 // handshake_finalized is true once the handshake has completed, at which
1957 // point accessors should use the established state.
1958 bool handshake_finalized : 1;
1959
1960 // accept_psk_mode stores whether the client's PSK mode is compatible with our
1961 // preferences.
1962 bool accept_psk_mode : 1;
1963
1964 // cert_request is true if a client certificate was requested.
1965 bool cert_request : 1;
1966
1967 // certificate_status_expected is true if OCSP stapling was negotiated and the
1968 // server is expected to send a CertificateStatus message. (This is used on
1969 // both the client and server sides.)
1970 bool certificate_status_expected : 1;
1971
1972 // ocsp_stapling_requested is true if a client requested OCSP stapling.
1973 bool ocsp_stapling_requested : 1;
1974
1975 // delegated_credential_requested is true if the peer indicated support for
1976 // the delegated credential extension.
1977 bool delegated_credential_requested : 1;
1978
1979 // should_ack_sni is used by a server and indicates that the SNI extension
1980 // should be echoed in the ServerHello.
1981 bool should_ack_sni : 1;
1982
1983 // in_false_start is true if there is a pending client handshake in False
1984 // Start. The client may write data at this point.
1985 bool in_false_start : 1;
1986
1987 // in_early_data is true if there is a pending handshake that has progressed
1988 // enough to send and receive early data.
1989 bool in_early_data : 1;
1990
1991 // early_data_offered is true if the client sent the early_data extension.
1992 bool early_data_offered : 1;
1993
1994 // can_early_read is true if application data may be read at this point in the
1995 // handshake.
1996 bool can_early_read : 1;
1997
1998 // can_early_write is true if application data may be written at this point in
1999 // the handshake.
2000 bool can_early_write : 1;
2001
2002 // next_proto_neg_seen is one of NPN was negotiated.
2003 bool next_proto_neg_seen : 1;
2004
2005 // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent
2006 // or received.
2007 bool ticket_expected : 1;
2008
2009 // extended_master_secret is true if the extended master secret extension is
2010 // negotiated in this handshake.
2011 bool extended_master_secret : 1;
2012
2013 // pending_private_key_op is true if there is a pending private key operation
2014 // in progress.
2015 bool pending_private_key_op : 1;
2016
2017 // handback indicates that a server should pause the handshake after
2018 // finishing operations that require private key material, in such a way that
2019 // |SSL_get_error| returns |SSL_ERROR_HANDBACK|. It is set by
2020 // |SSL_apply_handoff|.
2021 bool handback : 1;
2022
2023 // hints_requested indicates the caller has requested handshake hints. Only
2024 // the first round-trip of the handshake will complete, after which the
2025 // |hints| structure can be serialized.
2026 bool hints_requested : 1;
2027
2028 // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid.
2029 bool cert_compression_negotiated : 1;
2030
2031 // apply_jdk11_workaround is true if the peer is probably a JDK 11 client
2032 // which implemented TLS 1.3 incorrectly.
2033 bool apply_jdk11_workaround : 1;
2034
2035 // can_release_private_key is true if the private key will no longer be used
2036 // in this handshake.
2037 bool can_release_private_key : 1;
2038
2039 // channel_id_negotiated is true if Channel ID should be used in this
2040 // handshake.
2041 bool channel_id_negotiated : 1;
2042
2043 // client_version is the value sent or received in the ClientHello version.
2044 uint16_t client_version = 0;
2045
2046 // early_data_read is the amount of early data that has been read by the
2047 // record layer.
2048 uint16_t early_data_read = 0;
2049
2050 // early_data_written is the amount of early data that has been written by the
2051 // record layer.
2052 uint16_t early_data_written = 0;
2053
2054 // ech_config_id is the ECH config sent by the client.
2055 uint8_t ech_config_id = 0;
2056
2057 // session_id is the session ID in the ClientHello.
2058 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
2059 uint8_t session_id_len = 0;
2060
2061 // grease_seed is the entropy for GREASE values.
2062 uint8_t grease_seed[ssl_grease_last_index + 1] = {0};
2063 };
2064
2065 UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl);
2066
2067 // ssl_check_message_type checks if |msg| has type |type|. If so it returns
2068 // one. Otherwise, it sends an alert and returns zero.
2069 bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type);
2070
2071 // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0
2072 // on error. It sets |out_early_return| to one if we've completed the handshake
2073 // early.
2074 int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return);
2075
2076 // The following are implementations of |do_handshake| for the client and
2077 // server.
2078 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs);
2079 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs);
2080 enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
2081 enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
2082
2083 // The following functions return human-readable representations of the TLS
2084 // handshake states for debugging.
2085 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs);
2086 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs);
2087 const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs);
2088 const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs);
2089
2090 // tls13_add_key_update queues a KeyUpdate message on |ssl|. The
2091 // |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or
2092 // |SSL_KEY_UPDATE_NOT_REQUESTED|.
2093 bool tls13_add_key_update(SSL *ssl, int update_requested);
2094
2095 // tls13_post_handshake processes a post-handshake message. It returns true on
2096 // success and false on failure.
2097 bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg);
2098
2099 bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg,
2100 bool allow_anonymous);
2101 bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg);
2102
2103 // tls13_process_finished processes |msg| as a Finished message from the
2104 // peer. If |use_saved_value| is true, the verify_data is compared against
2105 // |hs->expected_client_finished| rather than computed fresh.
2106 bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg,
2107 bool use_saved_value);
2108
2109 bool tls13_add_certificate(SSL_HANDSHAKE *hs);
2110
2111 // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the
2112 // handshake. If it returns |ssl_private_key_retry|, it should be called again
2113 // to retry when the signing operation is completed.
2114 enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs);
2115
2116 bool tls13_add_finished(SSL_HANDSHAKE *hs);
2117 bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg);
2118 bssl::UniquePtr<SSL_SESSION> tls13_create_session_with_ticket(SSL *ssl,
2119 CBS *body);
2120
2121 // ssl_setup_extension_permutation computes a ClientHello extension permutation
2122 // for |hs|, if applicable. It returns true on success and false on error.
2123 bool ssl_setup_extension_permutation(SSL_HANDSHAKE *hs);
2124
2125 // ssl_setup_key_shares computes client key shares and saves them in |hs|. It
2126 // returns true on success and false on failure. If |override_group_id| is zero,
2127 // it offers the default groups, including GREASE. If it is non-zero, it offers
2128 // a single key share of the specified group.
2129 bool ssl_setup_key_shares(SSL_HANDSHAKE *hs, uint16_t override_group_id);
2130
2131 bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
2132 Array<uint8_t> *out_secret,
2133 uint8_t *out_alert, CBS *contents);
2134 bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
2135 Span<const uint8_t> *out_peer_key,
2136 uint8_t *out_alert,
2137 const SSL_CLIENT_HELLO *client_hello);
2138 bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
2139
2140 bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
2141 uint8_t *out_alert,
2142 CBS *contents);
2143 bool ssl_ext_pre_shared_key_parse_clienthello(
2144 SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
2145 uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert,
2146 const SSL_CLIENT_HELLO *client_hello, CBS *contents);
2147 bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
2148
2149 // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
2150 // returns whether it's valid.
2151 bool ssl_is_sct_list_valid(const CBS *contents);
2152
2153 // ssl_write_client_hello_without_extensions writes a ClientHello to |out|,
2154 // up to the extensions field. |type| determines the type of ClientHello to
2155 // write. If |omit_session_id| is true, the session ID is empty.
2156 bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs,
2157 CBB *cbb,
2158 ssl_client_hello_type_t type,
2159 bool empty_session_id);
2160
2161 // ssl_add_client_hello constructs a ClientHello and adds it to the outgoing
2162 // flight. It returns true on success and false on error.
2163 bool ssl_add_client_hello(SSL_HANDSHAKE *hs);
2164
2165 struct ParsedServerHello {
2166 CBS raw;
2167 uint16_t legacy_version = 0;
2168 CBS random;
2169 CBS session_id;
2170 uint16_t cipher_suite = 0;
2171 uint8_t compression_method = 0;
2172 CBS extensions;
2173 };
2174
2175 // ssl_parse_server_hello parses |msg| as a ServerHello. On success, it writes
2176 // the result to |*out| and returns true. Otherwise, it returns false and sets
2177 // |*out_alert| to an alert to send to the peer.
2178 bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert,
2179 const SSLMessage &msg);
2180
2181 enum ssl_cert_verify_context_t {
2182 ssl_cert_verify_server,
2183 ssl_cert_verify_client,
2184 ssl_cert_verify_channel_id,
2185 };
2186
2187 // tls13_get_cert_verify_signature_input generates the message to be signed for
2188 // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
2189 // type of signature. It sets |*out| to a newly allocated buffer containing the
2190 // result. This function returns true on success and false on failure.
2191 bool tls13_get_cert_verify_signature_input(
2192 SSL_HANDSHAKE *hs, Array<uint8_t> *out,
2193 enum ssl_cert_verify_context_t cert_verify_context);
2194
2195 // ssl_is_valid_alpn_list returns whether |in| is a valid ALPN protocol list.
2196 bool ssl_is_valid_alpn_list(Span<const uint8_t> in);
2197
2198 // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server
2199 // selection for |hs->ssl|'s client preferences.
2200 bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs,
2201 Span<const uint8_t> protocol);
2202
2203 // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
2204 // true on successful negotiation or if nothing was negotiated. It returns false
2205 // and sets |*out_alert| to an alert on error.
2206 bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
2207 const SSL_CLIENT_HELLO *client_hello);
2208
2209 // ssl_get_local_application_settings looks up the configured ALPS value for
2210 // |protocol|. If found, it sets |*out_settings| to the value and returns true.
2211 // Otherwise, it returns false.
2212 bool ssl_get_local_application_settings(const SSL_HANDSHAKE *hs,
2213 Span<const uint8_t> *out_settings,
2214 Span<const uint8_t> protocol);
2215
2216 // ssl_negotiate_alps negotiates the ALPS extension, if applicable. It returns
2217 // true on successful negotiation or if nothing was negotiated. It returns false
2218 // and sets |*out_alert| to an alert on error.
2219 bool ssl_negotiate_alps(SSL_HANDSHAKE *hs, uint8_t *out_alert,
2220 const SSL_CLIENT_HELLO *client_hello);
2221
2222 struct SSLExtension {
2223 SSLExtension(uint16_t type_arg, bool allowed_arg = true)
2224 : type(type_arg), allowed(allowed_arg), present(false) {
2225 CBS_init(&data, nullptr, 0);
2226 }
2227
2228 uint16_t type;
2229 bool allowed;
2230 bool present;
2231 CBS data;
2232 };
2233
2234 // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
2235 // it. It writes the parsed extensions to pointers in |extensions|. On success,
2236 // it fills in the |present| and |data| fields and returns true. Otherwise, it
2237 // sets |*out_alert| to an alert to send and returns false. Unknown extensions
2238 // are rejected unless |ignore_unknown| is true.
2239 bool ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
2240 std::initializer_list<SSLExtension *> extensions,
2241 bool ignore_unknown);
2242
2243 // ssl_verify_peer_cert verifies the peer certificate for |hs|.
2244 enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs);
2245 // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a
2246 // session.
2247 enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs,
2248 bool send_alert);
2249
2250 enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs);
2251 bool ssl_send_finished(SSL_HANDSHAKE *hs);
2252 bool ssl_output_cert_chain(SSL_HANDSHAKE *hs);
2253
2254 // ssl_handshake_session returns the |SSL_SESSION| corresponding to the current
2255 // handshake. Note, in TLS 1.2 resumptions, this session is immutable.
2256 const SSL_SESSION *ssl_handshake_session(const SSL_HANDSHAKE *hs);
2257
2258 // ssl_done_writing_client_hello is called after the last ClientHello is written
2259 // by |hs|. It releases some memory that is no longer needed.
2260 void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs);
2261
2262
2263 // SSLKEYLOGFILE functions.
2264
2265 // ssl_log_secret logs |secret| with label |label|, if logging is enabled for
2266 // |ssl|. It returns true on success and false on failure.
2267 bool ssl_log_secret(const SSL *ssl, const char *label,
2268 Span<const uint8_t> secret);
2269
2270
2271 // ClientHello functions.
2272
2273 // ssl_client_hello_init parses |body| as a ClientHello message, excluding the
2274 // message header, and writes the result to |*out|. It returns true on success
2275 // and false on error. This function is exported for testing.
2276 OPENSSL_EXPORT bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out,
2277 Span<const uint8_t> body);
2278
2279 bool ssl_parse_client_hello_with_trailing_data(const SSL *ssl, CBS *cbs,
2280 SSL_CLIENT_HELLO *out);
2281
2282 bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
2283 CBS *out, uint16_t extension_type);
2284
2285 bool ssl_client_cipher_list_contains_cipher(
2286 const SSL_CLIENT_HELLO *client_hello, uint16_t id);
2287
2288
2289 // GREASE.
2290
2291 // ssl_get_grease_value returns a GREASE value for |hs|. For a given
2292 // connection, the values for each index will be deterministic. This allows the
2293 // same ClientHello be sent twice for a HelloRetryRequest or the same group be
2294 // advertised in both supported_groups and key_shares.
2295 uint16_t ssl_get_grease_value(const SSL_HANDSHAKE *hs,
2296 enum ssl_grease_index_t index);
2297
2298
2299 // Signature algorithms.
2300
2301 // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
2302 // algorithms and saves them on |hs|. It returns true on success and false on
2303 // error.
2304 bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
2305
2306 // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm
2307 // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on
2308 // success and false if |pkey| may not be used at those versions.
2309 bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey);
2310
2311 // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
2312 // with |hs|'s private key based on the peer's preferences and the algorithms
2313 // supported. It returns true on success and false on error.
2314 bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out);
2315
2316 // tls1_get_peer_verify_algorithms returns the signature schemes for which the
2317 // peer indicated support.
2318 //
2319 // NOTE: The related function |SSL_get0_peer_verify_algorithms| only has
2320 // well-defined behavior during the callbacks set by |SSL_CTX_set_cert_cb| and
2321 // |SSL_CTX_set_client_cert_cb|, or when the handshake is paused because of
2322 // them.
2323 Span<const uint16_t> tls1_get_peer_verify_algorithms(const SSL_HANDSHAKE *hs);
2324
2325 // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the
2326 // peer signature to |out|. It returns true on success and false on error.
2327 bool tls12_add_verify_sigalgs(const SSL_HANDSHAKE *hs, CBB *out);
2328
2329 // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
2330 // signature. It returns true on success and false on error, setting
2331 // |*out_alert| to an alert to send.
2332 bool tls12_check_peer_sigalg(const SSL_HANDSHAKE *hs, uint8_t *out_alert,
2333 uint16_t sigalg);
2334
2335
2336 // Underdocumented functions.
2337 //
2338 // Functions below here haven't been touched up and may be underdocumented.
2339
2340 #define TLSEXT_CHANNEL_ID_SIZE 128
2341
2342 // From RFC 4492, used in encoding the curve type in ECParameters
2343 #define NAMED_CURVE_TYPE 3
2344
2345 struct CERT {
2346 static constexpr bool kAllowUniquePtr = true;
2347
2348 explicit CERT(const SSL_X509_METHOD *x509_method);
2349 ~CERT();
2350
2351 UniquePtr<EVP_PKEY> privatekey;
2352
2353 // chain contains the certificate chain, with the leaf at the beginning. The
2354 // first element of |chain| may be NULL to indicate that the leaf certificate
2355 // has not yet been set.
2356 // If |chain| != NULL -> len(chain) >= 1
2357 // If |chain[0]| == NULL -> len(chain) >= 2.
2358 // |chain[1..]| != NULL
2359 UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain;
2360
2361 // x509_chain may contain a parsed copy of |chain[1..]|. This is only used as
2362 // a cache in order to implement “get0” functions that return a non-owning
2363 // pointer to the certificate chain.
2364 STACK_OF(X509) *x509_chain = nullptr;
2365
2366 // x509_leaf may contain a parsed copy of the first element of |chain|. This
2367 // is only used as a cache in order to implement “get0” functions that return
2368 // a non-owning pointer to the certificate chain.
2369 X509 *x509_leaf = nullptr;
2370
2371 // x509_stash contains the last |X509| object append to the chain. This is a
2372 // workaround for some third-party code that continue to use an |X509| object
2373 // even after passing ownership with an “add0” function.
2374 X509 *x509_stash = nullptr;
2375
2376 // key_method, if non-NULL, is a set of callbacks to call for private key
2377 // operations.
2378 const SSL_PRIVATE_KEY_METHOD *key_method = nullptr;
2379
2380 // x509_method contains pointers to functions that might deal with |X509|
2381 // compatibility, or might be a no-op, depending on the application.
2382 const SSL_X509_METHOD *x509_method = nullptr;
2383
2384 // sigalgs, if non-empty, is the set of signature algorithms supported by
2385 // |privatekey| in decreasing order of preference.
2386 Array<uint16_t> sigalgs;
2387
2388 // Certificate setup callback: if set is called whenever a
2389 // certificate may be required (client or server). the callback
2390 // can then examine any appropriate parameters and setup any
2391 // certificates required. This allows advanced applications
2392 // to select certificates on the fly: for example based on
2393 // supported signature algorithms or curves.
2394 int (*cert_cb)(SSL *ssl, void *arg) = nullptr;
2395 void *cert_cb_arg = nullptr;
2396
2397 // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
2398 // store is used instead.
2399 X509_STORE *verify_store = nullptr;
2400
2401 // Signed certificate timestamp list to be sent to the client, if requested
2402 UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
2403
2404 // OCSP response to be sent to the client, if requested.
2405 UniquePtr<CRYPTO_BUFFER> ocsp_response;
2406
2407 // sid_ctx partitions the session space within a shared session cache or
2408 // ticket key. Only sessions with a matching value will be accepted.
2409 uint8_t sid_ctx_length = 0;
2410 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
2411
2412 // Delegated credentials.
2413
2414 // dc is the delegated credential to send to the peer (if requested).
2415 UniquePtr<DC> dc = nullptr;
2416
2417 // dc_privatekey is used instead of |privatekey| or |key_method| to
2418 // authenticate the host if a delegated credential is used in the handshake.
2419 UniquePtr<EVP_PKEY> dc_privatekey = nullptr;
2420
2421 // dc_key_method, if not NULL, is used instead of |dc_privatekey| to
2422 // authenticate the host.
2423 const SSL_PRIVATE_KEY_METHOD *dc_key_method = nullptr;
2424 };
2425
2426 // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS.
2427 struct SSL_PROTOCOL_METHOD {
2428 bool is_dtls;
2429 bool (*ssl_new)(SSL *ssl);
2430 void (*ssl_free)(SSL *ssl);
2431 // get_message sets |*out| to the current handshake message and returns true
2432 // if one has been received. It returns false if more input is needed.
2433 bool (*get_message)(const SSL *ssl, SSLMessage *out);
2434 // next_message is called to release the current handshake message.
2435 void (*next_message)(SSL *ssl);
2436 // has_unprocessed_handshake_data returns whether there is buffered
2437 // handshake data that has not been consumed by |get_message|.
2438 bool (*has_unprocessed_handshake_data)(const SSL *ssl);
2439 // Use the |ssl_open_handshake| wrapper.
2440 ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed,
2441 uint8_t *out_alert, Span<uint8_t> in);
2442 // Use the |ssl_open_change_cipher_spec| wrapper.
2443 ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed,
2444 uint8_t *out_alert,
2445 Span<uint8_t> in);
2446 // Use the |ssl_open_app_data| wrapper.
2447 ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out,
2448 size_t *out_consumed, uint8_t *out_alert,
2449 Span<uint8_t> in);
2450 int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
2451 int len);
2452 int (*dispatch_alert)(SSL *ssl);
2453 // init_message begins a new handshake message of type |type|. |cbb| is the
2454 // root CBB to be passed into |finish_message|. |*body| is set to a child CBB
2455 // the caller should write to. It returns true on success and false on error.
2456 bool (*init_message)(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
2457 // finish_message finishes a handshake message. It sets |*out_msg| to the
2458 // serialized message. It returns true on success and false on error.
2459 bool (*finish_message)(const SSL *ssl, CBB *cbb,
2460 bssl::Array<uint8_t> *out_msg);
2461 // add_message adds a handshake message to the pending flight. It returns
2462 // true on success and false on error.
2463 bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg);
2464 // add_change_cipher_spec adds a ChangeCipherSpec record to the pending
2465 // flight. It returns true on success and false on error.
2466 bool (*add_change_cipher_spec)(SSL *ssl);
2467 // flush_flight flushes the pending flight to the transport. It returns one on
2468 // success and <= 0 on error.
2469 int (*flush_flight)(SSL *ssl);
2470 // on_handshake_complete is called when the handshake is complete.
2471 void (*on_handshake_complete)(SSL *ssl);
2472 // set_read_state sets |ssl|'s read cipher state and level to |aead_ctx| and
2473 // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic|
2474 // is the original secret. This function returns true on success and false on
2475 // error.
2476 bool (*set_read_state)(SSL *ssl, ssl_encryption_level_t level,
2477 UniquePtr<SSLAEADContext> aead_ctx,
2478 Span<const uint8_t> secret_for_quic);
2479 // set_write_state sets |ssl|'s write cipher state and level to |aead_ctx| and
2480 // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic|
2481 // is the original secret. This function returns true on success and false on
2482 // error.
2483 bool (*set_write_state)(SSL *ssl, ssl_encryption_level_t level,
2484 UniquePtr<SSLAEADContext> aead_ctx,
2485 Span<const uint8_t> secret_for_quic);
2486 };
2487
2488 // The following wrappers call |open_*| but handle |read_shutdown| correctly.
2489
2490 // ssl_open_handshake processes a record from |in| for reading a handshake
2491 // message.
2492 ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
2493 uint8_t *out_alert, Span<uint8_t> in);
2494
2495 // ssl_open_change_cipher_spec processes a record from |in| for reading a
2496 // ChangeCipherSpec.
2497 ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2498 uint8_t *out_alert,
2499 Span<uint8_t> in);
2500
2501 // ssl_open_app_data processes a record from |in| for reading application data.
2502 // On success, it returns |ssl_open_record_success| and sets |*out| to the
2503 // input. If it encounters a post-handshake message, it returns
2504 // |ssl_open_record_discard|. The caller should then retry, after processing any
2505 // messages received with |get_message|.
2506 ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
2507 size_t *out_consumed, uint8_t *out_alert,
2508 Span<uint8_t> in);
2509
2510 struct SSL_X509_METHOD {
2511 // check_client_CA_list returns one if |names| is a good list of X.509
2512 // distinguished names and zero otherwise. This is used to ensure that we can
2513 // reject unparsable values at handshake time when using crypto/x509.
2514 bool (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names);
2515
2516 // cert_clear frees and NULLs all X509 certificate-related state.
2517 void (*cert_clear)(CERT *cert);
2518 // cert_free frees all X509-related state.
2519 void (*cert_free)(CERT *cert);
2520 // cert_flush_cached_chain drops any cached |X509|-based certificate chain
2521 // from |cert|.
2522 // cert_dup duplicates any needed fields from |cert| to |new_cert|.
2523 void (*cert_dup)(CERT *new_cert, const CERT *cert);
2524 void (*cert_flush_cached_chain)(CERT *cert);
2525 // cert_flush_cached_chain drops any cached |X509|-based leaf certificate
2526 // from |cert|.
2527 void (*cert_flush_cached_leaf)(CERT *cert);
2528
2529 // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain|
2530 // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns
2531 // true on success or false on error.
2532 bool (*session_cache_objects)(SSL_SESSION *session);
2533 // session_dup duplicates any needed fields from |session| to |new_session|.
2534 // It returns true on success or false on error.
2535 bool (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session);
2536 // session_clear frees any X509-related state from |session|.
2537 void (*session_clear)(SSL_SESSION *session);
2538 // session_verify_cert_chain verifies the certificate chain in |session|,
2539 // sets |session->verify_result| and returns true on success or false on
2540 // error.
2541 bool (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl,
2542 uint8_t *out_alert);
2543
2544 // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|.
2545 void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs);
2546 // ssl_new does any necessary initialisation of |hs|. It returns true on
2547 // success or false on error.
2548 bool (*ssl_new)(SSL_HANDSHAKE *hs);
2549 // ssl_free frees anything created by |ssl_new|.
2550 void (*ssl_config_free)(SSL_CONFIG *cfg);
2551 // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|.
2552 void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg);
2553 // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
2554 // necessary. On success, it updates |ssl|'s certificate configuration as
2555 // needed and returns true. Otherwise, it returns false.
2556 bool (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs);
2557 // ssl_ctx_new does any necessary initialisation of |ctx|. It returns true on
2558 // success or false on error.
2559 bool (*ssl_ctx_new)(SSL_CTX *ctx);
2560 // ssl_ctx_free frees anything created by |ssl_ctx_new|.
2561 void (*ssl_ctx_free)(SSL_CTX *ctx);
2562 // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|.
2563 void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl);
2564 };
2565
2566 // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using
2567 // crypto/x509.
2568 extern const SSL_X509_METHOD ssl_crypto_x509_method;
2569
2570 // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid
2571 // crypto/x509.
2572 extern const SSL_X509_METHOD ssl_noop_x509_method;
2573
2574 struct TicketKey {
2575 static constexpr bool kAllowUniquePtr = true;
2576
2577 uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0};
2578 uint8_t hmac_key[16] = {0};
2579 uint8_t aes_key[16] = {0};
2580 // next_rotation_tv_sec is the time (in seconds from the epoch) when the
2581 // current key should be superseded by a new key, or the time when a previous
2582 // key should be dropped. If zero, then the key should not be automatically
2583 // rotated.
2584 uint64_t next_rotation_tv_sec = 0;
2585 };
2586
2587 struct CertCompressionAlg {
2588 static constexpr bool kAllowUniquePtr = true;
2589
2590 ssl_cert_compression_func_t compress = nullptr;
2591 ssl_cert_decompression_func_t decompress = nullptr;
2592 uint16_t alg_id = 0;
2593 };
2594
2595 BSSL_NAMESPACE_END
2596
2597 DEFINE_LHASH_OF(SSL_SESSION)
2598
2599 BSSL_NAMESPACE_BEGIN
2600
2601 // An ssl_shutdown_t describes the shutdown state of one end of the connection,
2602 // whether it is alive or has been shutdown via close_notify or fatal alert.
2603 enum ssl_shutdown_t {
2604 ssl_shutdown_none = 0,
2605 ssl_shutdown_close_notify = 1,
2606 ssl_shutdown_error = 2,
2607 };
2608
2609 enum ssl_ech_status_t {
2610 // ssl_ech_none indicates ECH was not offered, or we have not gotten far
2611 // enough in the handshake to determine the status.
2612 ssl_ech_none,
2613 // ssl_ech_accepted indicates the server accepted ECH.
2614 ssl_ech_accepted,
2615 // ssl_ech_rejected indicates the server was offered ECH but rejected it.
2616 ssl_ech_rejected,
2617 };
2618
2619 struct SSL3_STATE {
2620 static constexpr bool kAllowUniquePtr = true;
2621
2622 SSL3_STATE();
2623 ~SSL3_STATE();
2624
2625 uint8_t read_sequence[8] = {0};
2626 uint8_t write_sequence[8] = {0};
2627
2628 uint8_t server_random[SSL3_RANDOM_SIZE] = {0};
2629 uint8_t client_random[SSL3_RANDOM_SIZE] = {0};
2630
2631 // read_buffer holds data from the transport to be processed.
2632 SSLBuffer read_buffer;
2633 // write_buffer holds data to be written to the transport.
2634 SSLBuffer write_buffer;
2635
2636 // pending_app_data is the unconsumed application data. It points into
2637 // |read_buffer|.
2638 Span<uint8_t> pending_app_data;
2639
2640 // partial write - check the numbers match
2641 unsigned int wnum = 0; // number of bytes sent so far
2642 int wpend_tot = 0; // number bytes written
2643 int wpend_type = 0;
2644 int wpend_ret = 0; // number of bytes submitted
2645 const uint8_t *wpend_buf = nullptr;
2646
2647 // read_shutdown is the shutdown state for the read half of the connection.
2648 enum ssl_shutdown_t read_shutdown = ssl_shutdown_none;
2649
2650 // write_shutdown is the shutdown state for the write half of the connection.
2651 enum ssl_shutdown_t write_shutdown = ssl_shutdown_none;
2652
2653 // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for
2654 // the receive half of the connection.
2655 UniquePtr<ERR_SAVE_STATE> read_error;
2656
2657 int total_renegotiations = 0;
2658
2659 // This holds a variable that indicates what we were doing when a 0 or -1 is
2660 // returned. This is needed for non-blocking IO so we know what request
2661 // needs re-doing when in SSL_accept or SSL_connect
2662 int rwstate = SSL_ERROR_NONE;
2663
2664 enum ssl_encryption_level_t read_level = ssl_encryption_initial;
2665 enum ssl_encryption_level_t write_level = ssl_encryption_initial;
2666
2667 // early_data_skipped is the amount of early data that has been skipped by the
2668 // record layer.
2669 uint16_t early_data_skipped = 0;
2670
2671 // empty_record_count is the number of consecutive empty records received.
2672 uint8_t empty_record_count = 0;
2673
2674 // warning_alert_count is the number of consecutive warning alerts
2675 // received.
2676 uint8_t warning_alert_count = 0;
2677
2678 // key_update_count is the number of consecutive KeyUpdates received.
2679 uint8_t key_update_count = 0;
2680
2681 // ech_status indicates whether ECH was accepted by the server.
2682 ssl_ech_status_t ech_status = ssl_ech_none;
2683
2684 // skip_early_data instructs the record layer to skip unexpected early data
2685 // messages when 0RTT is rejected.
2686 bool skip_early_data : 1;
2687
2688 // have_version is true if the connection's final version is known. Otherwise
2689 // the version has not been negotiated yet.
2690 bool have_version : 1;
2691
2692 // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
2693 // and future messages should use the record layer.
2694 bool v2_hello_done : 1;
2695
2696 // is_v2_hello is true if the current handshake message was derived from a
2697 // V2ClientHello rather than received from the peer directly.
2698 bool is_v2_hello : 1;
2699
2700 // has_message is true if the current handshake message has been returned
2701 // at least once by |get_message| and false otherwise.
2702 bool has_message : 1;
2703
2704 // initial_handshake_complete is true if the initial handshake has
2705 // completed.
2706 bool initial_handshake_complete : 1;
2707
2708 // session_reused indicates whether a session was resumed.
2709 bool session_reused : 1;
2710
2711 // delegated_credential_used is whether we presented a delegated credential to
2712 // the peer.
2713 bool delegated_credential_used : 1;
2714
2715 bool send_connection_binding : 1;
2716
2717 // channel_id_valid is true if, on the server, the client has negotiated a
2718 // Channel ID and the |channel_id| field is filled in.
2719 bool channel_id_valid : 1;
2720
2721 // key_update_pending is true if we have a KeyUpdate acknowledgment
2722 // outstanding.
2723 bool key_update_pending : 1;
2724
2725 // wpend_pending is true if we have a pending write outstanding.
2726 bool wpend_pending : 1;
2727
2728 // early_data_accepted is true if early data was accepted by the server.
2729 bool early_data_accepted : 1;
2730
2731 // alert_dispatch is true there is an alert in |send_alert| to be sent.
2732 bool alert_dispatch : 1;
2733
2734 // renegotiate_pending is whether the read half of the channel is blocked on a
2735 // HelloRequest.
2736 bool renegotiate_pending : 1;
2737
2738 // used_hello_retry_request is whether the handshake used a TLS 1.3
2739 // HelloRetryRequest message.
2740 bool used_hello_retry_request : 1;
2741
2742 // hs_buf is the buffer of handshake data to process.
2743 UniquePtr<BUF_MEM> hs_buf;
2744
2745 // pending_hs_data contains the pending handshake data that has not yet
2746 // been encrypted to |pending_flight|. This allows packing the handshake into
2747 // fewer records.
2748 UniquePtr<BUF_MEM> pending_hs_data;
2749
2750 // pending_flight is the pending outgoing flight. This is used to flush each
2751 // handshake flight in a single write. |write_buffer| must be written out
2752 // before this data.
2753 UniquePtr<BUF_MEM> pending_flight;
2754
2755 // pending_flight_offset is the number of bytes of |pending_flight| which have
2756 // been successfully written.
2757 uint32_t pending_flight_offset = 0;
2758
2759 // ticket_age_skew is the difference, in seconds, between the client-sent
2760 // ticket age and the server-computed value in TLS 1.3 server connections
2761 // which resumed a session.
2762 int32_t ticket_age_skew = 0;
2763
2764 // ssl_early_data_reason stores details on why 0-RTT was accepted or rejected.
2765 enum ssl_early_data_reason_t early_data_reason = ssl_early_data_unknown;
2766
2767 // aead_read_ctx is the current read cipher state.
2768 UniquePtr<SSLAEADContext> aead_read_ctx;
2769
2770 // aead_write_ctx is the current write cipher state.
2771 UniquePtr<SSLAEADContext> aead_write_ctx;
2772
2773 // hs is the handshake state for the current handshake or NULL if there isn't
2774 // one.
2775 UniquePtr<SSL_HANDSHAKE> hs;
2776
2777 uint8_t write_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2778 uint8_t read_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2779 uint8_t exporter_secret[SSL_MAX_MD_SIZE] = {0};
2780 uint8_t write_traffic_secret_len = 0;
2781 uint8_t read_traffic_secret_len = 0;
2782 uint8_t exporter_secret_len = 0;
2783
2784 // Connection binding to prevent renegotiation attacks
2785 uint8_t previous_client_finished[12] = {0};
2786 uint8_t previous_client_finished_len = 0;
2787 uint8_t previous_server_finished_len = 0;
2788 uint8_t previous_server_finished[12] = {0};
2789
2790 uint8_t send_alert[2] = {0};
2791
2792 // established_session is the session established by the connection. This
2793 // session is only filled upon the completion of the handshake and is
2794 // immutable.
2795 UniquePtr<SSL_SESSION> established_session;
2796
2797 // Next protocol negotiation. For the client, this is the protocol that we
2798 // sent in NextProtocol and is set when handling ServerHello extensions.
2799 //
2800 // For a server, this is the client's selected_protocol from NextProtocol and
2801 // is set when handling the NextProtocol message, before the Finished
2802 // message.
2803 Array<uint8_t> next_proto_negotiated;
2804
2805 // ALPN information
2806 // (we are in the process of transitioning from NPN to ALPN.)
2807
2808 // In a server these point to the selected ALPN protocol after the
2809 // ClientHello has been processed. In a client these contain the protocol
2810 // that the server selected once the ServerHello has been processed.
2811 Array<uint8_t> alpn_selected;
2812
2813 // hostname, on the server, is the value of the SNI extension.
2814 UniquePtr<char> hostname;
2815
2816 // For a server:
2817 // If |channel_id_valid| is true, then this contains the
2818 // verified Channel ID from the client: a P256 point, (x,y), where
2819 // each are big-endian values.
2820 uint8_t channel_id[64] = {0};
2821
2822 // Contains the QUIC transport params received by the peer.
2823 Array<uint8_t> peer_quic_transport_params;
2824
2825 // srtp_profile is the selected SRTP protection profile for
2826 // DTLS-SRTP.
2827 const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr;
2828 };
2829
2830 // lengths of messages
2831 #define DTLS1_COOKIE_LENGTH 256
2832
2833 #define DTLS1_RT_HEADER_LENGTH 13
2834
2835 #define DTLS1_HM_HEADER_LENGTH 12
2836
2837 #define DTLS1_CCS_HEADER_LENGTH 1
2838
2839 #define DTLS1_AL_HEADER_LENGTH 2
2840
2841 struct hm_header_st {
2842 uint8_t type;
2843 uint32_t msg_len;
2844 uint16_t seq;
2845 uint32_t frag_off;
2846 uint32_t frag_len;
2847 };
2848
2849 // An hm_fragment is an incoming DTLS message, possibly not yet assembled.
2850 struct hm_fragment {
2851 static constexpr bool kAllowUniquePtr = true;
2852
2853 hm_fragment() {}
2854 hm_fragment(const hm_fragment &) = delete;
2855 hm_fragment &operator=(const hm_fragment &) = delete;
2856
2857 ~hm_fragment();
2858
2859 // type is the type of the message.
2860 uint8_t type = 0;
2861 // seq is the sequence number of this message.
2862 uint16_t seq = 0;
2863 // msg_len is the length of the message body.
2864 uint32_t msg_len = 0;
2865 // data is a pointer to the message, including message header. It has length
2866 // |DTLS1_HM_HEADER_LENGTH| + |msg_len|.
2867 uint8_t *data = nullptr;
2868 // reassembly is a bitmask of |msg_len| bits corresponding to which parts of
2869 // the message have been received. It is NULL if the message is complete.
2870 uint8_t *reassembly = nullptr;
2871 };
2872
2873 struct OPENSSL_timeval {
2874 uint64_t tv_sec;
2875 uint32_t tv_usec;
2876 };
2877
2878 struct DTLS1_STATE {
2879 static constexpr bool kAllowUniquePtr = true;
2880
2881 DTLS1_STATE();
2882 ~DTLS1_STATE();
2883
2884 // has_change_cipher_spec is true if we have received a ChangeCipherSpec from
2885 // the peer in this epoch.
2886 bool has_change_cipher_spec : 1;
2887
2888 // outgoing_messages_complete is true if |outgoing_messages| has been
2889 // completed by an attempt to flush it. Future calls to |add_message| and
2890 // |add_change_cipher_spec| will start a new flight.
2891 bool outgoing_messages_complete : 1;
2892
2893 // flight_has_reply is true if the current outgoing flight is complete and has
2894 // processed at least one message. This is used to detect whether we or the
2895 // peer sent the final flight.
2896 bool flight_has_reply : 1;
2897
2898 uint8_t cookie[DTLS1_COOKIE_LENGTH] = {0};
2899 size_t cookie_len = 0;
2900
2901 // The current data and handshake epoch. This is initially undefined, and
2902 // starts at zero once the initial handshake is completed.
2903 uint16_t r_epoch = 0;
2904 uint16_t w_epoch = 0;
2905
2906 // records being received in the current epoch
2907 DTLS1_BITMAP bitmap;
2908
2909 uint16_t handshake_write_seq = 0;
2910 uint16_t handshake_read_seq = 0;
2911
2912 // save last sequence number for retransmissions
2913 uint8_t last_write_sequence[8] = {0};
2914 UniquePtr<SSLAEADContext> last_aead_write_ctx;
2915
2916 // incoming_messages is a ring buffer of incoming handshake messages that have
2917 // yet to be processed. The front of the ring buffer is message number
2918 // |handshake_read_seq|, at position |handshake_read_seq| %
2919 // |SSL_MAX_HANDSHAKE_FLIGHT|.
2920 UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
2921
2922 // outgoing_messages is the queue of outgoing messages from the last handshake
2923 // flight.
2924 DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
2925 uint8_t outgoing_messages_len = 0;
2926
2927 // outgoing_written is the number of outgoing messages that have been
2928 // written.
2929 uint8_t outgoing_written = 0;
2930 // outgoing_offset is the number of bytes of the next outgoing message have
2931 // been written.
2932 uint32_t outgoing_offset = 0;
2933
2934 unsigned mtu = 0; // max DTLS packet size
2935
2936 // num_timeouts is the number of times the retransmit timer has fired since
2937 // the last time it was reset.
2938 unsigned num_timeouts = 0;
2939
2940 // Indicates when the last handshake msg or heartbeat sent will
2941 // timeout.
2942 struct OPENSSL_timeval next_timeout = {0, 0};
2943
2944 // timeout_duration_ms is the timeout duration in milliseconds.
2945 unsigned timeout_duration_ms = 0;
2946 };
2947
2948 // An ALPSConfig is a pair of ALPN protocol and settings value to use with ALPS.
2949 struct ALPSConfig {
2950 Array<uint8_t> protocol;
2951 Array<uint8_t> settings;
2952 };
2953
2954 // SSL_CONFIG contains configuration bits that can be shed after the handshake
2955 // completes. Objects of this type are not shared; they are unique to a
2956 // particular |SSL|.
2957 //
2958 // See SSL_shed_handshake_config() for more about the conditions under which
2959 // configuration can be shed.
2960 struct SSL_CONFIG {
2961 static constexpr bool kAllowUniquePtr = true;
2962
2963 explicit SSL_CONFIG(SSL *ssl_arg);
2964 ~SSL_CONFIG();
2965
2966 // ssl is a non-owning pointer to the parent |SSL| object.
2967 SSL *const ssl = nullptr;
2968
2969 // conf_max_version is the maximum acceptable version configured by
2970 // |SSL_set_max_proto_version|. Note this version is not normalized in DTLS
2971 // and is further constrained by |SSL_OP_NO_*|.
2972 uint16_t conf_max_version = 0;
2973
2974 // conf_min_version is the minimum acceptable version configured by
2975 // |SSL_set_min_proto_version|. Note this version is not normalized in DTLS
2976 // and is further constrained by |SSL_OP_NO_*|.
2977 uint16_t conf_min_version = 0;
2978
2979 X509_VERIFY_PARAM *param = nullptr;
2980
2981 // crypto
2982 UniquePtr<SSLCipherPreferenceList> cipher_list;
2983
2984 // This is used to hold the local certificate used (i.e. the server
2985 // certificate for a server or the client certificate for a client).
2986 UniquePtr<CERT> cert;
2987
2988 int (*verify_callback)(int ok,
2989 X509_STORE_CTX *ctx) =
2990 nullptr; // fail if callback returns 0
2991
2992 enum ssl_verify_result_t (*custom_verify_callback)(
2993 SSL *ssl, uint8_t *out_alert) = nullptr;
2994 // Server-only: psk_identity_hint is the identity hint to send in
2995 // PSK-based key exchanges.
2996 UniquePtr<char> psk_identity_hint;
2997
2998 unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
2999 unsigned max_identity_len, uint8_t *psk,
3000 unsigned max_psk_len) = nullptr;
3001 unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3002 unsigned max_psk_len) = nullptr;
3003
3004 // for server side, keep the list of CA_dn we can use
3005 UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3006
3007 // cached_x509_client_CA is a cache of parsed versions of the elements of
3008 // |client_CA|.
3009 STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3010
3011 Array<uint16_t> supported_group_list; // our list
3012
3013 // channel_id_private is the client's Channel ID private key, or null if
3014 // Channel ID should not be offered on this connection.
3015 UniquePtr<EVP_PKEY> channel_id_private;
3016
3017 // For a client, this contains the list of supported protocols in wire
3018 // format.
3019 Array<uint8_t> alpn_client_proto_list;
3020
3021 // alps_configs contains the list of supported protocols to use with ALPS,
3022 // along with their corresponding ALPS values.
3023 GrowableArray<ALPSConfig> alps_configs;
3024
3025 // Contains the QUIC transport params that this endpoint will send.
3026 Array<uint8_t> quic_transport_params;
3027
3028 // Contains the context used to decide whether to accept early data in QUIC.
3029 Array<uint8_t> quic_early_data_context;
3030
3031 // verify_sigalgs, if not empty, is the set of signature algorithms
3032 // accepted from the peer in decreasing order of preference.
3033 Array<uint16_t> verify_sigalgs;
3034
3035 // srtp_profiles is the list of configured SRTP protection profiles for
3036 // DTLS-SRTP.
3037 UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3038
3039 // client_ech_config_list, if not empty, is a serialized ECHConfigList
3040 // structure for the client to use when negotiating ECH.
3041 Array<uint8_t> client_ech_config_list;
3042
3043 // verify_mode is a bitmask of |SSL_VERIFY_*| values.
3044 uint8_t verify_mode = SSL_VERIFY_NONE;
3045
3046 // ech_grease_enabled controls whether ECH GREASE may be sent in the
3047 // ClientHello.
3048 bool ech_grease_enabled : 1;
3049
3050 // Enable signed certificate time stamps. Currently client only.
3051 bool signed_cert_timestamps_enabled : 1;
3052
3053 // ocsp_stapling_enabled is only used by client connections and indicates
3054 // whether OCSP stapling will be requested.
3055 bool ocsp_stapling_enabled : 1;
3056
3057 // channel_id_enabled is copied from the |SSL_CTX|. For a server, it means
3058 // that we'll accept Channel IDs from clients. It is ignored on the client.
3059 bool channel_id_enabled : 1;
3060
3061 // If enforce_rsa_key_usage is true, the handshake will fail if the
3062 // keyUsage extension is present and incompatible with the TLS usage.
3063 // This field is not read until after certificate verification.
3064 bool enforce_rsa_key_usage : 1;
3065
3066 // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3067 // hash of the peer's certificate and then discard it to save memory and
3068 // session space. Only effective on the server side.
3069 bool retain_only_sha256_of_client_certs : 1;
3070
3071 // handoff indicates that a server should stop after receiving the
3072 // ClientHello and pause the handshake in such a way that |SSL_get_error|
3073 // returns |SSL_ERROR_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX|
3074 // element of the same name and may be cleared if the handoff is declined.
3075 bool handoff : 1;
3076
3077 // shed_handshake_config indicates that the handshake config (this object!)
3078 // should be freed after the handshake completes.
3079 bool shed_handshake_config : 1;
3080
3081 // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a
3082 // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806.
3083 bool jdk11_workaround : 1;
3084
3085 // QUIC drafts up to and including 32 used a different TLS extension
3086 // codepoint to convey QUIC's transport parameters.
3087 bool quic_use_legacy_codepoint : 1;
3088
3089 // permute_extensions is whether to permute extensions when sending messages.
3090 bool permute_extensions : 1;
3091 };
3092
3093 // From RFC 8446, used in determining PSK modes.
3094 #define SSL_PSK_DHE_KE 0x1
3095
3096 // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early
3097 // data that will be accepted. This value should be slightly below
3098 // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext.
3099 static const size_t kMaxEarlyDataAccepted = 14336;
3100
3101 UniquePtr<CERT> ssl_cert_dup(CERT *cert);
3102 void ssl_cert_clear_certs(CERT *cert);
3103 bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer);
3104 bool ssl_is_key_type_supported(int key_type);
3105 // ssl_compare_public_and_private_key returns true if |pubkey| is the public
3106 // counterpart to |privkey|. Otherwise it returns false and pushes a helpful
3107 // message on the error queue.
3108 bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
3109 const EVP_PKEY *privkey);
3110 bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey);
3111 bool ssl_get_new_session(SSL_HANDSHAKE *hs);
3112 int ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, const SSL_SESSION *session);
3113 int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx);
3114
3115 // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on
3116 // error.
3117 UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method);
3118
3119 // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table
3120 // keyed on session IDs.
3121 uint32_t ssl_hash_session_id(Span<const uint8_t> session_id);
3122
3123 // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over
3124 // the parsed data.
3125 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse(
3126 CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool);
3127
3128 // ssl_session_serialize writes |in| to |cbb| as if it were serialising a
3129 // session for Session-ID resumption. It returns one on success and zero on
3130 // error.
3131 OPENSSL_EXPORT int ssl_session_serialize(const SSL_SESSION *in, CBB *cbb);
3132
3133 // ssl_session_is_context_valid returns one if |session|'s session ID context
3134 // matches the one set on |hs| and zero otherwise.
3135 int ssl_session_is_context_valid(const SSL_HANDSHAKE *hs,
3136 const SSL_SESSION *session);
3137
3138 // ssl_session_is_time_valid returns one if |session| is still valid and zero if
3139 // it has expired.
3140 int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
3141
3142 // ssl_session_is_resumable returns one if |session| is resumable for |hs| and
3143 // zero otherwise.
3144 int ssl_session_is_resumable(const SSL_HANDSHAKE *hs,
3145 const SSL_SESSION *session);
3146
3147 // ssl_session_protocol_version returns the protocol version associated with
3148 // |session|. Note that despite the name, this is not the same as
3149 // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name.
3150 uint16_t ssl_session_protocol_version(const SSL_SESSION *session);
3151
3152 // ssl_session_get_digest returns the digest used in |session|.
3153 const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session);
3154
3155 void ssl_set_session(SSL *ssl, SSL_SESSION *session);
3156
3157 // ssl_get_prev_session looks up the previous session based on |client_hello|.
3158 // On success, it sets |*out_session| to the session or nullptr if none was
3159 // found. If the session could not be looked up synchronously, it returns
3160 // |ssl_hs_pending_session| and should be called again. If a ticket could not be
3161 // decrypted immediately it returns |ssl_hs_pending_ticket| and should also
3162 // be called again. Otherwise, it returns |ssl_hs_error|.
3163 enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs,
3164 UniquePtr<SSL_SESSION> *out_session,
3165 bool *out_tickets_supported,
3166 bool *out_renew_ticket,
3167 const SSL_CLIENT_HELLO *client_hello);
3168
3169 // The following flags determine which parts of the session are duplicated.
3170 #define SSL_SESSION_DUP_AUTH_ONLY 0x0
3171 #define SSL_SESSION_INCLUDE_TICKET 0x1
3172 #define SSL_SESSION_INCLUDE_NONAUTH 0x2
3173 #define SSL_SESSION_DUP_ALL \
3174 (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
3175
3176 // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
3177 // fields in |session| or nullptr on error. The new session is non-resumable and
3178 // must be explicitly marked resumable once it has been filled in.
3179 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session,
3180 int dup_flags);
3181
3182 // ssl_session_rebase_time updates |session|'s start time to the current time,
3183 // adjusting the timeout so the expiration time is unchanged.
3184 void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
3185
3186 // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
3187 // |session|'s timeout to |timeout| (measured from the current time). The
3188 // renewal is clamped to the session's auth_timeout.
3189 void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session,
3190 uint32_t timeout);
3191
3192 void ssl_update_cache(SSL *ssl);
3193
3194 void ssl_send_alert(SSL *ssl, int level, int desc);
3195 int ssl_send_alert_impl(SSL *ssl, int level, int desc);
3196 bool tls_get_message(const SSL *ssl, SSLMessage *out);
3197 ssl_open_record_t tls_open_handshake(SSL *ssl, size_t *out_consumed,
3198 uint8_t *out_alert, Span<uint8_t> in);
3199 void tls_next_message(SSL *ssl);
3200
3201 int tls_dispatch_alert(SSL *ssl);
3202 ssl_open_record_t tls_open_app_data(SSL *ssl, Span<uint8_t> *out,
3203 size_t *out_consumed, uint8_t *out_alert,
3204 Span<uint8_t> in);
3205 ssl_open_record_t tls_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
3206 uint8_t *out_alert,
3207 Span<uint8_t> in);
3208 int tls_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
3209 int len);
3210
3211 bool tls_new(SSL *ssl);
3212 void tls_free(SSL *ssl);
3213
3214 bool tls_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
3215 bool tls_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
3216 bool tls_add_message(SSL *ssl, Array<uint8_t> msg);
3217 bool tls_add_change_cipher_spec(SSL *ssl);
3218 int tls_flush_flight(SSL *ssl);
3219
3220 bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
3221 bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
3222 bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg);
3223 bool dtls1_add_change_cipher_spec(SSL *ssl);
3224 int dtls1_flush_flight(SSL *ssl);
3225
3226 // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
3227 // the pending flight. It returns true on success and false on error.
3228 bool ssl_add_message_cbb(SSL *ssl, CBB *cbb);
3229
3230 // ssl_hash_message incorporates |msg| into the handshake hash. It returns true
3231 // on success and false on allocation failure.
3232 bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg);
3233
3234 ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out,
3235 size_t *out_consumed, uint8_t *out_alert,
3236 Span<uint8_t> in);
3237 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
3238 uint8_t *out_alert,
3239 Span<uint8_t> in);
3240
3241 int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake,
3242 const uint8_t *buf, int len);
3243
3244 // dtls1_write_record sends a record. It returns one on success and <= 0 on
3245 // error.
3246 int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len,
3247 enum dtls1_use_epoch_t use_epoch);
3248
3249 int dtls1_retransmit_outgoing_messages(SSL *ssl);
3250 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
3251 CBS *out_body);
3252 bool dtls1_check_timeout_num(SSL *ssl);
3253
3254 void dtls1_start_timer(SSL *ssl);
3255 void dtls1_stop_timer(SSL *ssl);
3256 bool dtls1_is_timer_expired(SSL *ssl);
3257 unsigned int dtls1_min_mtu(void);
3258
3259 bool dtls1_new(SSL *ssl);
3260 void dtls1_free(SSL *ssl);
3261
3262 bool dtls1_get_message(const SSL *ssl, SSLMessage *out);
3263 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
3264 uint8_t *out_alert, Span<uint8_t> in);
3265 void dtls1_next_message(SSL *ssl);
3266 int dtls1_dispatch_alert(SSL *ssl);
3267
3268 // tls1_configure_aead configures either the read or write direction AEAD (as
3269 // determined by |direction|) using the keys generated by the TLS KDF. The
3270 // |key_block_cache| argument is used to store the generated key block, if
3271 // empty. Otherwise it's assumed that the key block is already contained within
3272 // it. It returns true on success or false on error.
3273 bool tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
3274 Array<uint8_t> *key_block_cache,
3275 const SSL_SESSION *session,
3276 Span<const uint8_t> iv_override);
3277
3278 bool tls1_change_cipher_state(SSL_HANDSHAKE *hs,
3279 evp_aead_direction_t direction);
3280 int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
3281 Span<const uint8_t> premaster);
3282
3283 // tls1_get_grouplist returns the locally-configured group preference list.
3284 Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl);
3285
3286 // tls1_check_group_id returns whether |group_id| is consistent with locally-
3287 // configured group preferences.
3288 bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id);
3289
3290 // tls1_get_shared_group sets |*out_group_id| to the first preferred shared
3291 // group between client and server preferences and returns true. If none may be
3292 // found, it returns false.
3293 bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
3294
3295 // tls1_set_curves converts the array of NIDs in |curves| into a newly allocated
3296 // array of TLS group IDs. On success, the function returns true and writes the
3297 // array to |*out_group_ids|. Otherwise, it returns false.
3298 bool tls1_set_curves(Array<uint16_t> *out_group_ids, Span<const int> curves);
3299
3300 // tls1_set_curves_list converts the string of curves pointed to by |curves|
3301 // into a newly allocated array of TLS group IDs. On success, the function
3302 // returns true and writes the array to |*out_group_ids|. Otherwise, it returns
3303 // false.
3304 bool tls1_set_curves_list(Array<uint16_t> *out_group_ids, const char *curves);
3305
3306 // ssl_add_clienthello_tlsext writes ClientHello extensions to |out| for |type|.
3307 // It returns true on success and false on failure. The |header_len| argument is
3308 // the length of the ClientHello written so far and is used to compute the
3309 // padding length. (It does not include the record header or handshake headers.)
3310 //
3311 // If |type| is |ssl_client_hello_inner|, this function also writes the
3312 // compressed extensions to |out_encoded|. Otherwise, |out_encoded| should be
3313 // nullptr.
3314 //
3315 // On success, the function sets |*out_needs_psk_binder| to whether the last
3316 // ClientHello extension was the pre_shared_key extension and needs a PSK binder
3317 // filled in. The caller should then update |out| and, if applicable,
3318 // |out_encoded| with the binder after completing the whole message.
3319 bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, CBB *out_encoded,
3320 bool *out_needs_psk_binder,
3321 ssl_client_hello_type_t type,
3322 size_t header_len);
3323
3324 bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
3325 bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
3326 const SSL_CLIENT_HELLO *client_hello);
3327 bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, const CBS *extensions);
3328
3329 #define tlsext_tick_md EVP_sha256
3330
3331 // ssl_process_ticket processes a session ticket from the client. It returns
3332 // one of:
3333 // |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and
3334 // |*out_renew_ticket| is set to whether the ticket should be renewed.
3335 // |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a
3336 // fresh ticket should be sent, but the given ticket cannot be used.
3337 // |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted.
3338 // Retry later.
3339 // |ssl_ticket_aead_error|: an error occured that is fatal to the connection.
3340 enum ssl_ticket_aead_result_t ssl_process_ticket(
3341 SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session,
3342 bool *out_renew_ticket, Span<const uint8_t> ticket,
3343 Span<const uint8_t> session_id);
3344
3345 // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies
3346 // the signature. If the key is valid, it saves the Channel ID and returns true.
3347 // Otherwise, it returns false.
3348 bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg);
3349
3350 // tls1_write_channel_id generates a Channel ID message and puts the output in
3351 // |cbb|. |ssl->channel_id_private| must already be set before calling. This
3352 // function returns true on success and false on error.
3353 bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb);
3354
3355 // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
3356 // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
3357 // true on success and false on failure.
3358 bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len);
3359
3360 // tls1_record_handshake_hashes_for_channel_id records the current handshake
3361 // hashes in |hs->new_session| so that Channel ID resumptions can sign that
3362 // data.
3363 bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs);
3364
3365 // ssl_can_write returns whether |ssl| is allowed to write.
3366 bool ssl_can_write(const SSL *ssl);
3367
3368 // ssl_can_read returns wheter |ssl| is allowed to read.
3369 bool ssl_can_read(const SSL *ssl);
3370
3371 void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock);
3372 void ssl_ctx_get_current_time(const SSL_CTX *ctx,
3373 struct OPENSSL_timeval *out_clock);
3374
3375 // ssl_reset_error_state resets state for |SSL_get_error|.
3376 void ssl_reset_error_state(SSL *ssl);
3377
3378 // ssl_set_read_error sets |ssl|'s read half into an error state, saving the
3379 // current state of the error queue.
3380 void ssl_set_read_error(SSL *ssl);
3381
3382 BSSL_NAMESPACE_END
3383
3384
3385 // Opaque C types.
3386 //
3387 // The following types are exported to C code as public typedefs, so they must
3388 // be defined outside of the namespace.
3389
3390 // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility
3391 // structure to support the legacy version-locked methods.
3392 struct ssl_method_st {
3393 // version, if non-zero, is the only protocol version acceptable to an
3394 // SSL_CTX initialized from this method.
3395 uint16_t version;
3396 // method is the underlying SSL_PROTOCOL_METHOD that initializes the
3397 // SSL_CTX.
3398 const bssl::SSL_PROTOCOL_METHOD *method;
3399 // x509_method contains pointers to functions that might deal with |X509|
3400 // compatibility, or might be a no-op, depending on the application.
3401 const bssl::SSL_X509_METHOD *x509_method;
3402 };
3403
3404 struct ssl_ctx_st {
3405 explicit ssl_ctx_st(const SSL_METHOD *ssl_method);
3406 ssl_ctx_st(const ssl_ctx_st &) = delete;
3407 ssl_ctx_st &operator=(const ssl_ctx_st &) = delete;
3408
3409 const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3410 const bssl::SSL_X509_METHOD *x509_method = nullptr;
3411
3412 // lock is used to protect various operations on this object.
3413 CRYPTO_MUTEX lock;
3414
3415 // conf_max_version is the maximum acceptable protocol version configured by
3416 // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS
3417 // and is further constrainted by |SSL_OP_NO_*|.
3418 uint16_t conf_max_version = 0;
3419
3420 // conf_min_version is the minimum acceptable protocol version configured by
3421 // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS
3422 // and is further constrainted by |SSL_OP_NO_*|.
3423 uint16_t conf_min_version = 0;
3424
3425 // quic_method is the method table corresponding to the QUIC hooks.
3426 const SSL_QUIC_METHOD *quic_method = nullptr;
3427
3428 bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list;
3429
3430 X509_STORE *cert_store = nullptr;
3431 LHASH_OF(SSL_SESSION) *sessions = nullptr;
3432 // Most session-ids that will be cached, default is
3433 // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited.
3434 unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3435 SSL_SESSION *session_cache_head = nullptr;
3436 SSL_SESSION *session_cache_tail = nullptr;
3437
3438 // handshakes_since_cache_flush is the number of successful handshakes since
3439 // the last cache flush.
3440 int handshakes_since_cache_flush = 0;
3441
3442 // This can have one of 2 values, ored together,
3443 // SSL_SESS_CACHE_CLIENT,
3444 // SSL_SESS_CACHE_SERVER,
3445 // Default is SSL_SESSION_CACHE_SERVER, which means only
3446 // SSL_accept which cache SSL_SESSIONS.
3447 int session_cache_mode = SSL_SESS_CACHE_SERVER;
3448
3449 // session_timeout is the default lifetime for new sessions in TLS 1.2 and
3450 // earlier, in seconds.
3451 uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3452
3453 // session_psk_dhe_timeout is the default lifetime for new sessions in TLS
3454 // 1.3, in seconds.
3455 uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT;
3456
3457 // If this callback is not null, it will be called each time a session id is
3458 // added to the cache. If this function returns 1, it means that the
3459 // callback will do a SSL_SESSION_free() when it has finished using it.
3460 // Otherwise, on 0, it means the callback has finished with it. If
3461 // remove_session_cb is not null, it will be called when a session-id is
3462 // removed from the cache. After the call, OpenSSL will SSL_SESSION_free()
3463 // it.
3464 int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr;
3465 void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr;
3466 SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len,
3467 int *copy) = nullptr;
3468
3469 CRYPTO_refcount_t references = 1;
3470
3471 // if defined, these override the X509_verify_cert() calls
3472 int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr;
3473 void *app_verify_arg = nullptr;
3474
3475 ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
3476 uint8_t *out_alert) = nullptr;
3477
3478 // Default password callback.
3479 pem_password_cb *default_passwd_callback = nullptr;
3480
3481 // Default password callback user data.
3482 void *default_passwd_callback_userdata = nullptr;
3483
3484 // get client cert callback
3485 int (*client_cert_cb)(SSL *ssl, X509 **out_x509,
3486 EVP_PKEY **out_pkey) = nullptr;
3487
3488 CRYPTO_EX_DATA ex_data;
3489
3490 // Default values used when no per-SSL value is defined follow
3491
3492 void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3493
3494 // what we put in client cert requests
3495 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3496
3497 // cached_x509_client_CA is a cache of parsed versions of the elements of
3498 // |client_CA|.
3499 STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3500
3501
3502 // Default values to use in SSL structures follow (these are copied by
3503 // SSL_new)
3504
3505 uint32_t options = 0;
3506 // Disable the auto-chaining feature by default. wpa_supplicant relies on this
3507 // feature, but require callers opt into it.
3508 uint32_t mode = SSL_MODE_NO_AUTO_CHAIN;
3509 uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3510
3511 bssl::UniquePtr<bssl::CERT> cert;
3512
3513 // callback that allows applications to peek at protocol messages
3514 void (*msg_callback)(int write_p, int version, int content_type,
3515 const void *buf, size_t len, SSL *ssl,
3516 void *arg) = nullptr;
3517 void *msg_callback_arg = nullptr;
3518
3519 int verify_mode = SSL_VERIFY_NONE;
3520 int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) =
3521 nullptr; // called 'verify_callback' in the SSL
3522
3523 X509_VERIFY_PARAM *param = nullptr;
3524
3525 // select_certificate_cb is called before most ClientHello processing and
3526 // before the decision whether to resume a session is made. See
3527 // |ssl_select_cert_result_t| for details of the return values.
3528 ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) =
3529 nullptr;
3530
3531 // dos_protection_cb is called once the resumption decision for a ClientHello
3532 // has been made. It returns one to continue the handshake or zero to
3533 // abort.
3534 int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr;
3535
3536 // Controls whether to verify certificates when resuming connections. They
3537 // were already verified when the connection was first made, so the default is
3538 // false. For now, this is only respected on clients, not servers.
3539 bool reverify_on_resume = false;
3540
3541 // Maximum amount of data to send in one fragment. actual record size can be
3542 // more than this due to padding and MAC overheads.
3543 uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3544
3545 // TLS extensions servername callback
3546 int (*servername_callback)(SSL *, int *, void *) = nullptr;
3547 void *servername_arg = nullptr;
3548
3549 // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the
3550 // first handshake and |ticket_key_prev| may be NULL at any time.
3551 // Automatically generated ticket keys are rotated as needed at handshake
3552 // time. Hence, all access must be synchronized through |lock|.
3553 bssl::UniquePtr<bssl::TicketKey> ticket_key_current;
3554 bssl::UniquePtr<bssl::TicketKey> ticket_key_prev;
3555
3556 // Callback to support customisation of ticket key setting
3557 int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv,
3558 EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr;
3559
3560 // Server-only: psk_identity_hint is the default identity hint to send in
3561 // PSK-based key exchanges.
3562 bssl::UniquePtr<char> psk_identity_hint;
3563
3564 unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3565 unsigned max_identity_len, uint8_t *psk,
3566 unsigned max_psk_len) = nullptr;
3567 unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3568 unsigned max_psk_len) = nullptr;
3569
3570
3571 // Next protocol negotiation information
3572 // (for experimental NPN extension).
3573
3574 // For a server, this contains a callback function by which the set of
3575 // advertised protocols can be provided.
3576 int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out,
3577 unsigned *out_len, void *arg) = nullptr;
3578 void *next_protos_advertised_cb_arg = nullptr;
3579 // For a client, this contains a callback function that selects the
3580 // next protocol from the list provided by the server.
3581 int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
3582 const uint8_t *in, unsigned in_len,
3583 void *arg) = nullptr;
3584 void *next_proto_select_cb_arg = nullptr;
3585
3586 // ALPN information
3587 // (we are in the process of transitioning from NPN to ALPN.)
3588
3589 // For a server, this contains a callback function that allows the
3590 // server to select the protocol for the connection.
3591 // out: on successful return, this must point to the raw protocol
3592 // name (without the length prefix).
3593 // outlen: on successful return, this contains the length of |*out|.
3594 // in: points to the client's list of supported protocols in
3595 // wire-format.
3596 // inlen: the length of |in|.
3597 int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len,
3598 const uint8_t *in, unsigned in_len,
3599 void *arg) = nullptr;
3600 void *alpn_select_cb_arg = nullptr;
3601
3602 // For a client, this contains the list of supported protocols in wire
3603 // format.
3604 bssl::Array<uint8_t> alpn_client_proto_list;
3605
3606 // SRTP profiles we are willing to do from RFC 5764
3607 bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3608
3609 // Defined compression algorithms for certificates.
3610 bssl::GrowableArray<bssl::CertCompressionAlg> cert_compression_algs;
3611
3612 // Supported group values inherited by SSL structure
3613 bssl::Array<uint16_t> supported_group_list;
3614
3615 // channel_id_private is the client's Channel ID private key, or null if
3616 // Channel ID should not be offered on this connection.
3617 bssl::UniquePtr<EVP_PKEY> channel_id_private;
3618
3619 // ech_keys contains the server's list of ECHConfig values and associated
3620 // private keys. This list may be swapped out at any time, so all access must
3621 // be synchronized through |lock|.
3622 bssl::UniquePtr<SSL_ECH_KEYS> ech_keys;
3623
3624 // keylog_callback, if not NULL, is the key logging callback. See
3625 // |SSL_CTX_set_keylog_callback|.
3626 void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr;
3627
3628 // current_time_cb, if not NULL, is the function to use to get the current
3629 // time. It sets |*out_clock| to the current time. The |ssl| argument is
3630 // always NULL. See |SSL_CTX_set_current_time_cb|.
3631 void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr;
3632
3633 // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate
3634 // memory.
3635 CRYPTO_BUFFER_POOL *pool = nullptr;
3636
3637 // ticket_aead_method contains function pointers for opening and sealing
3638 // session tickets.
3639 const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr;
3640
3641 // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL
3642 // compatibility.
3643 int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr;
3644 void *legacy_ocsp_callback_arg = nullptr;
3645
3646 // verify_sigalgs, if not empty, is the set of signature algorithms
3647 // accepted from the peer in decreasing order of preference.
3648 bssl::Array<uint16_t> verify_sigalgs;
3649
3650 // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3651 // hash of the peer's certificate and then discard it to save memory and
3652 // session space. Only effective on the server side.
3653 bool retain_only_sha256_of_client_certs : 1;
3654
3655 // quiet_shutdown is true if the connection should not send a close_notify on
3656 // shutdown.
3657 bool quiet_shutdown : 1;
3658
3659 // ocsp_stapling_enabled is only used by client connections and indicates
3660 // whether OCSP stapling will be requested.
3661 bool ocsp_stapling_enabled : 1;
3662
3663 // If true, a client will request certificate timestamps.
3664 bool signed_cert_timestamps_enabled : 1;
3665
3666 // channel_id_enabled is whether Channel ID is enabled. For a server, means
3667 // that we'll accept Channel IDs from clients. For a client, means that we'll
3668 // advertise support.
3669 bool channel_id_enabled : 1;
3670
3671 // grease_enabled is whether GREASE (RFC 8701) is enabled.
3672 bool grease_enabled : 1;
3673
3674 // permute_extensions is whether to permute extensions when sending messages.
3675 bool permute_extensions : 1;
3676
3677 // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN
3678 // protocols from the peer.
3679 bool allow_unknown_alpn_protos : 1;
3680
3681 // false_start_allowed_without_alpn is whether False Start (if
3682 // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN.
3683 bool false_start_allowed_without_alpn : 1;
3684
3685 // handoff indicates that a server should stop after receiving the
3686 // ClientHello and pause the handshake in such a way that |SSL_get_error|
3687 // returns |SSL_ERROR_HANDOFF|.
3688 bool handoff : 1;
3689
3690 // If enable_early_data is true, early data can be sent and accepted.
3691 bool enable_early_data : 1;
3692
3693 private:
3694 ~ssl_ctx_st();
3695 friend void SSL_CTX_free(SSL_CTX *);
3696 };
3697
3698 struct ssl_st {
3699 explicit ssl_st(SSL_CTX *ctx_arg);
3700 ssl_st(const ssl_st &) = delete;
3701 ssl_st &operator=(const ssl_st &) = delete;
3702 ~ssl_st();
3703
3704 // method is the method table corresponding to the current protocol (DTLS or
3705 // TLS).
3706 const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3707
3708 // config is a container for handshake configuration. Accesses to this field
3709 // should check for nullptr, since configuration may be shed after the
3710 // handshake completes. (If you have the |SSL_HANDSHAKE| object at hand, use
3711 // that instead, and skip the null check.)
3712 bssl::UniquePtr<bssl::SSL_CONFIG> config;
3713
3714 // version is the protocol version.
3715 uint16_t version = 0;
3716
3717 uint16_t max_send_fragment = 0;
3718
3719 // There are 2 BIO's even though they are normally both the same. This is so
3720 // data can be read and written to different handlers
3721
3722 bssl::UniquePtr<BIO> rbio; // used by SSL_read
3723 bssl::UniquePtr<BIO> wbio; // used by SSL_write
3724
3725 // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|.
3726 // Otherwise, it returns a value corresponding to what operation is needed to
3727 // progress.
3728 bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr;
3729
3730 bssl::SSL3_STATE *s3 = nullptr; // TLS variables
3731 bssl::DTLS1_STATE *d1 = nullptr; // DTLS variables
3732
3733 // callback that allows applications to peek at protocol messages
3734 void (*msg_callback)(int write_p, int version, int content_type,
3735 const void *buf, size_t len, SSL *ssl,
3736 void *arg) = nullptr;
3737 void *msg_callback_arg = nullptr;
3738
3739 // session info
3740
3741 // initial_timeout_duration_ms is the default DTLS timeout duration in
3742 // milliseconds. It's used to initialize the timer any time it's restarted.
3743 //
3744 // RFC 6347 states that implementations SHOULD use an initial timer value of 1
3745 // second.
3746 unsigned initial_timeout_duration_ms = 1000;
3747
3748 // session is the configured session to be offered by the client. This session
3749 // is immutable.
3750 bssl::UniquePtr<SSL_SESSION> session;
3751
3752 void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3753
3754 bssl::UniquePtr<SSL_CTX> ctx;
3755
3756 // session_ctx is the |SSL_CTX| used for the session cache and related
3757 // settings.
3758 bssl::UniquePtr<SSL_CTX> session_ctx;
3759
3760 // extra application data
3761 CRYPTO_EX_DATA ex_data;
3762
3763 uint32_t options = 0; // protocol behaviour
3764 uint32_t mode = 0; // API behaviour
3765 uint32_t max_cert_list = 0;
3766 bssl::UniquePtr<char> hostname;
3767
3768 // quic_method is the method table corresponding to the QUIC hooks.
3769 const SSL_QUIC_METHOD *quic_method = nullptr;
3770
3771 // renegotiate_mode controls how peer renegotiation attempts are handled.
3772 ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never;
3773
3774 // server is true iff the this SSL* is the server half. Note: before the SSL*
3775 // is initialized by either SSL_set_accept_state or SSL_set_connect_state,
3776 // the side is not determined. In this state, server is always false.
3777 bool server : 1;
3778
3779 // quiet_shutdown is true if the connection should not send a close_notify on
3780 // shutdown.
3781 bool quiet_shutdown : 1;
3782
3783 // If enable_early_data is true, early data can be sent and accepted.
3784 bool enable_early_data : 1;
3785 };
3786
3787 struct ssl_session_st {
3788 explicit ssl_session_st(const bssl::SSL_X509_METHOD *method);
3789 ssl_session_st(const ssl_session_st &) = delete;
3790 ssl_session_st &operator=(const ssl_session_st &) = delete;
3791
3792 CRYPTO_refcount_t references = 1;
3793
3794 // ssl_version is the (D)TLS version that established the session.
3795 uint16_t ssl_version = 0;
3796
3797 // group_id is the ID of the ECDH group used to establish this session or zero
3798 // if not applicable or unknown.
3799 uint16_t group_id = 0;
3800
3801 // peer_signature_algorithm is the signature algorithm used to authenticate
3802 // the peer, or zero if not applicable or unknown.
3803 uint16_t peer_signature_algorithm = 0;
3804
3805 // secret, in TLS 1.2 and below, is the master secret associated with the
3806 // session. In TLS 1.3 and up, it is the resumption PSK for sessions handed to
3807 // the caller, but it stores the resumption secret when stored on |SSL|
3808 // objects.
3809 int secret_length = 0;
3810 uint8_t secret[SSL_MAX_MASTER_KEY_LENGTH] = {0};
3811
3812 // session_id - valid?
3813 unsigned session_id_length = 0;
3814 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
3815 // this is used to determine whether the session is being reused in
3816 // the appropriate context. It is up to the application to set this,
3817 // via SSL_new
3818 uint8_t sid_ctx_length = 0;
3819 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
3820
3821 bssl::UniquePtr<char> psk_identity;
3822
3823 // certs contains the certificate chain from the peer, starting with the leaf
3824 // certificate.
3825 bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs;
3826
3827 const bssl::SSL_X509_METHOD *x509_method = nullptr;
3828
3829 // x509_peer is the peer's certificate.
3830 X509 *x509_peer = nullptr;
3831
3832 // x509_chain is the certificate chain sent by the peer. NOTE: for historical
3833 // reasons, when a client (so the peer is a server), the chain includes
3834 // |peer|, but when a server it does not.
3835 STACK_OF(X509) *x509_chain = nullptr;
3836
3837 // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that
3838 // omits the leaf certificate. This exists because OpenSSL, historically,
3839 // didn't include the leaf certificate in the chain for a server, but did for
3840 // a client. The |x509_chain| always includes it and, if an API call requires
3841 // a chain without, it is stored here.
3842 STACK_OF(X509) *x509_chain_without_leaf = nullptr;
3843
3844 // verify_result is the result of certificate verification in the case of
3845 // non-fatal certificate errors.
3846 long verify_result = X509_V_ERR_INVALID_CALL;
3847
3848 // timeout is the lifetime of the session in seconds, measured from |time|.
3849 // This is renewable up to |auth_timeout|.
3850 uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3851
3852 // auth_timeout is the non-renewable lifetime of the session in seconds,
3853 // measured from |time|.
3854 uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3855
3856 // time is the time the session was issued, measured in seconds from the UNIX
3857 // epoch.
3858 uint64_t time = 0;
3859
3860 const SSL_CIPHER *cipher = nullptr;
3861
3862 CRYPTO_EX_DATA ex_data; // application specific data
3863
3864 // These are used to make removal of session-ids more efficient and to
3865 // implement a maximum cache size.
3866 SSL_SESSION *prev = nullptr, *next = nullptr;
3867
3868 bssl::Array<uint8_t> ticket;
3869
3870 bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
3871
3872 // The OCSP response that came with the session.
3873 bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
3874
3875 // peer_sha256 contains the SHA-256 hash of the peer's certificate if
3876 // |peer_sha256_valid| is true.
3877 uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0};
3878
3879 // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or
3880 // SHA-2, depending on TLS version) for the original, full handshake that
3881 // created a session. This is used by Channel IDs during resumption.
3882 uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0};
3883 uint8_t original_handshake_hash_len = 0;
3884
3885 uint32_t ticket_lifetime_hint = 0; // Session lifetime hint in seconds
3886
3887 uint32_t ticket_age_add = 0;
3888
3889 // ticket_max_early_data is the maximum amount of data allowed to be sent as
3890 // early data. If zero, 0-RTT is disallowed.
3891 uint32_t ticket_max_early_data = 0;
3892
3893 // early_alpn is the ALPN protocol from the initial handshake. This is only
3894 // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT
3895 // resumptions. For the current connection's ALPN protocol, see
3896 // |alpn_selected| on |SSL3_STATE|.
3897 bssl::Array<uint8_t> early_alpn;
3898
3899 // local_application_settings, if |has_application_settings| is true, is the
3900 // local ALPS value for this connection.
3901 bssl::Array<uint8_t> local_application_settings;
3902
3903 // peer_application_settings, if |has_application_settings| is true, is the
3904 // peer ALPS value for this connection.
3905 bssl::Array<uint8_t> peer_application_settings;
3906
3907 // extended_master_secret is whether the master secret in this session was
3908 // generated using EMS and thus isn't vulnerable to the Triple Handshake
3909 // attack.
3910 bool extended_master_secret : 1;
3911
3912 // peer_sha256_valid is whether |peer_sha256| is valid.
3913 bool peer_sha256_valid : 1; // Non-zero if peer_sha256 is valid
3914
3915 // not_resumable is used to indicate that session resumption is disallowed.
3916 bool not_resumable : 1;
3917
3918 // ticket_age_add_valid is whether |ticket_age_add| is valid.
3919 bool ticket_age_add_valid : 1;
3920
3921 // is_server is whether this session was created by a server.
3922 bool is_server : 1;
3923
3924 // is_quic indicates whether this session was created using QUIC.
3925 bool is_quic : 1;
3926
3927 // has_application_settings indicates whether ALPS was negotiated in this
3928 // session.
3929 bool has_application_settings : 1;
3930
3931 // quic_early_data_context is used to determine whether early data must be
3932 // rejected when performing a QUIC handshake.
3933 bssl::Array<uint8_t> quic_early_data_context;
3934
3935 private:
3936 ~ssl_session_st();
3937 friend void SSL_SESSION_free(SSL_SESSION *);
3938 };
3939
3940 struct ssl_ech_keys_st {
3941 ssl_ech_keys_st() = default;
3942 ssl_ech_keys_st(const ssl_ech_keys_st &) = delete;
3943 ssl_ech_keys_st &operator=(const ssl_ech_keys_st &) = delete;
3944
3945 bssl::GrowableArray<bssl::UniquePtr<bssl::ECHServerConfig>> configs;
3946 CRYPTO_refcount_t references = 1;
3947
3948 private:
3949 ~ssl_ech_keys_st() = default;
3950 friend void SSL_ECH_KEYS_free(SSL_ECH_KEYS *);
3951 };
3952
3953 #endif // OPENSSL_HEADER_SSL_INTERNAL_H
3954