• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test.  They are subject to change without notice.
34 
35 // GOOGLETEST_CM0001 DO NOT DELETE
36 
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39 
40 #include "gtest/internal/gtest-port.h"
41 
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif  // GTEST_OS_LINUX
48 
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52 
53 #include <ctype.h>
54 #include <float.h>
55 #include <string.h>
56 #include <cstdint>
57 #include <iomanip>
58 #include <limits>
59 #include <map>
60 #include <set>
61 #include <string>
62 #include <type_traits>
63 #include <vector>
64 
65 #include "gtest/gtest-message.h"
66 #include "gtest/internal/gtest-filepath.h"
67 #include "gtest/internal/gtest-string.h"
68 #include "gtest/internal/gtest-type-util.h"
69 
70 // Due to C++ preprocessor weirdness, we need double indirection to
71 // concatenate two tokens when one of them is __LINE__.  Writing
72 //
73 //   foo ## __LINE__
74 //
75 // will result in the token foo__LINE__, instead of foo followed by
76 // the current line number.  For more details, see
77 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
78 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
79 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
80 
81 // Stringifies its argument.
82 // Work around a bug in visual studio which doesn't accept code like this:
83 //
84 //   #define GTEST_STRINGIFY_(name) #name
85 //   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
86 //   MACRO(, x, y)
87 //
88 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
89 // This is allowed by the spec.
90 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
91 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
92 
93 namespace proto2 {
94 class MessageLite;
95 }
96 
97 namespace testing {
98 
99 // Forward declarations.
100 
101 class AssertionResult;                 // Result of an assertion.
102 class Message;                         // Represents a failure message.
103 class Test;                            // Represents a test.
104 class TestInfo;                        // Information about a test.
105 class TestPartResult;                  // Result of a test part.
106 class UnitTest;                        // A collection of test suites.
107 
108 template <typename T>
109 ::std::string PrintToString(const T& value);
110 
111 namespace internal {
112 
113 struct TraceInfo;                      // Information about a trace point.
114 class TestInfoImpl;                    // Opaque implementation of TestInfo
115 class UnitTestImpl;                    // Opaque implementation of UnitTest
116 
117 // The text used in failure messages to indicate the start of the
118 // stack trace.
119 GTEST_API_ extern const char kStackTraceMarker[];
120 
121 // An IgnoredValue object can be implicitly constructed from ANY value.
122 class IgnoredValue {
123   struct Sink {};
124  public:
125   // This constructor template allows any value to be implicitly
126   // converted to IgnoredValue.  The object has no data member and
127   // doesn't try to remember anything about the argument.  We
128   // deliberately omit the 'explicit' keyword in order to allow the
129   // conversion to be implicit.
130   // Disable the conversion if T already has a magical conversion operator.
131   // Otherwise we get ambiguity.
132   template <typename T,
133             typename std::enable_if<!std::is_convertible<T, Sink>::value,
134                                     int>::type = 0>
IgnoredValue(const T &)135   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
136 };
137 
138 // Appends the user-supplied message to the Google-Test-generated message.
139 GTEST_API_ std::string AppendUserMessage(
140     const std::string& gtest_msg, const Message& user_msg);
141 
142 #if GTEST_HAS_EXCEPTIONS
143 
144 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
145 /* an exported class was derived from a class that was not exported */)
146 
147 // This exception is thrown by (and only by) a failed Google Test
148 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
149 // are enabled).  We derive it from std::runtime_error, which is for
150 // errors presumably detectable only at run time.  Since
151 // std::runtime_error inherits from std::exception, many testing
152 // frameworks know how to extract and print the message inside it.
153 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
154  public:
155   explicit GoogleTestFailureException(const TestPartResult& failure);
156 };
157 
GTEST_DISABLE_MSC_WARNINGS_POP_()158 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
159 
160 #endif  // GTEST_HAS_EXCEPTIONS
161 
162 namespace edit_distance {
163 // Returns the optimal edits to go from 'left' to 'right'.
164 // All edits cost the same, with replace having lower priority than
165 // add/remove.
166 // Simple implementation of the Wagner-Fischer algorithm.
167 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
168 enum EditType { kMatch, kAdd, kRemove, kReplace };
169 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
170     const std::vector<size_t>& left, const std::vector<size_t>& right);
171 
172 // Same as above, but the input is represented as strings.
173 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
174     const std::vector<std::string>& left,
175     const std::vector<std::string>& right);
176 
177 // Create a diff of the input strings in Unified diff format.
178 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
179                                          const std::vector<std::string>& right,
180                                          size_t context = 2);
181 
182 }  // namespace edit_distance
183 
184 // Calculate the diff between 'left' and 'right' and return it in unified diff
185 // format.
186 // If not null, stores in 'total_line_count' the total number of lines found
187 // in left + right.
188 GTEST_API_ std::string DiffStrings(const std::string& left,
189                                    const std::string& right,
190                                    size_t* total_line_count);
191 
192 // Constructs and returns the message for an equality assertion
193 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
194 //
195 // The first four parameters are the expressions used in the assertion
196 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
197 // where foo is 5 and bar is 6, we have:
198 //
199 //   expected_expression: "foo"
200 //   actual_expression:   "bar"
201 //   expected_value:      "5"
202 //   actual_value:        "6"
203 //
204 // The ignoring_case parameter is true if and only if the assertion is a
205 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
206 // be inserted into the message.
207 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
208                                      const char* actual_expression,
209                                      const std::string& expected_value,
210                                      const std::string& actual_value,
211                                      bool ignoring_case);
212 
213 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
214 GTEST_API_ std::string GetBoolAssertionFailureMessage(
215     const AssertionResult& assertion_result,
216     const char* expression_text,
217     const char* actual_predicate_value,
218     const char* expected_predicate_value);
219 
220 // This template class represents an IEEE floating-point number
221 // (either single-precision or double-precision, depending on the
222 // template parameters).
223 //
224 // The purpose of this class is to do more sophisticated number
225 // comparison.  (Due to round-off error, etc, it's very unlikely that
226 // two floating-points will be equal exactly.  Hence a naive
227 // comparison by the == operation often doesn't work.)
228 //
229 // Format of IEEE floating-point:
230 //
231 //   The most-significant bit being the leftmost, an IEEE
232 //   floating-point looks like
233 //
234 //     sign_bit exponent_bits fraction_bits
235 //
236 //   Here, sign_bit is a single bit that designates the sign of the
237 //   number.
238 //
239 //   For float, there are 8 exponent bits and 23 fraction bits.
240 //
241 //   For double, there are 11 exponent bits and 52 fraction bits.
242 //
243 //   More details can be found at
244 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
245 //
246 // Template parameter:
247 //
248 //   RawType: the raw floating-point type (either float or double)
249 template <typename RawType>
250 class FloatingPoint {
251  public:
252   // Defines the unsigned integer type that has the same size as the
253   // floating point number.
254   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
255 
256   // Constants.
257 
258   // # of bits in a number.
259   static const size_t kBitCount = 8*sizeof(RawType);
260 
261   // # of fraction bits in a number.
262   static const size_t kFractionBitCount =
263     std::numeric_limits<RawType>::digits - 1;
264 
265   // # of exponent bits in a number.
266   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
267 
268   // The mask for the sign bit.
269   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
270 
271   // The mask for the fraction bits.
272   static const Bits kFractionBitMask =
273     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
274 
275   // The mask for the exponent bits.
276   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
277 
278   // How many ULP's (Units in the Last Place) we want to tolerate when
279   // comparing two numbers.  The larger the value, the more error we
280   // allow.  A 0 value means that two numbers must be exactly the same
281   // to be considered equal.
282   //
283   // The maximum error of a single floating-point operation is 0.5
284   // units in the last place.  On Intel CPU's, all floating-point
285   // calculations are done with 80-bit precision, while double has 64
286   // bits.  Therefore, 4 should be enough for ordinary use.
287   //
288   // See the following article for more details on ULP:
289   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
290   static const uint32_t kMaxUlps = 4;
291 
292   // Constructs a FloatingPoint from a raw floating-point number.
293   //
294   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
295   // around may change its bits, although the new value is guaranteed
296   // to be also a NAN.  Therefore, don't expect this constructor to
297   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)298   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
299 
300   // Static methods
301 
302   // Reinterprets a bit pattern as a floating-point number.
303   //
304   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)305   static RawType ReinterpretBits(const Bits bits) {
306     FloatingPoint fp(0);
307     fp.u_.bits_ = bits;
308     return fp.u_.value_;
309   }
310 
311   // Returns the floating-point number that represent positive infinity.
Infinity()312   static RawType Infinity() {
313     return ReinterpretBits(kExponentBitMask);
314   }
315 
316   // Returns the maximum representable finite floating-point number.
317   static RawType Max();
318 
319   // Non-static methods
320 
321   // Returns the bits that represents this number.
bits()322   const Bits &bits() const { return u_.bits_; }
323 
324   // Returns the exponent bits of this number.
exponent_bits()325   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
326 
327   // Returns the fraction bits of this number.
fraction_bits()328   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
329 
330   // Returns the sign bit of this number.
sign_bit()331   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
332 
333   // Returns true if and only if this is NAN (not a number).
is_nan()334   bool is_nan() const {
335     // It's a NAN if the exponent bits are all ones and the fraction
336     // bits are not entirely zeros.
337     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
338   }
339 
340   // Returns true if and only if this number is at most kMaxUlps ULP's away
341   // from rhs.  In particular, this function:
342   //
343   //   - returns false if either number is (or both are) NAN.
344   //   - treats really large numbers as almost equal to infinity.
345   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)346   bool AlmostEquals(const FloatingPoint& rhs) const {
347     // The IEEE standard says that any comparison operation involving
348     // a NAN must return false.
349     if (is_nan() || rhs.is_nan()) return false;
350 
351     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
352         <= kMaxUlps;
353   }
354 
355  private:
356   // The data type used to store the actual floating-point number.
357   union FloatingPointUnion {
358     RawType value_;  // The raw floating-point number.
359     Bits bits_;      // The bits that represent the number.
360   };
361 
362   // Converts an integer from the sign-and-magnitude representation to
363   // the biased representation.  More precisely, let N be 2 to the
364   // power of (kBitCount - 1), an integer x is represented by the
365   // unsigned number x + N.
366   //
367   // For instance,
368   //
369   //   -N + 1 (the most negative number representable using
370   //          sign-and-magnitude) is represented by 1;
371   //   0      is represented by N; and
372   //   N - 1  (the biggest number representable using
373   //          sign-and-magnitude) is represented by 2N - 1.
374   //
375   // Read http://en.wikipedia.org/wiki/Signed_number_representations
376   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)377   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
378     if (kSignBitMask & sam) {
379       // sam represents a negative number.
380       return ~sam + 1;
381     } else {
382       // sam represents a positive number.
383       return kSignBitMask | sam;
384     }
385   }
386 
387   // Given two numbers in the sign-and-magnitude representation,
388   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)389   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
390                                                      const Bits &sam2) {
391     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
392     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
393     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
394   }
395 
396   FloatingPointUnion u_;
397 };
398 
399 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
400 // macro defined by <windows.h>.
401 template <>
Max()402 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
403 template <>
Max()404 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
405 
406 // Typedefs the instances of the FloatingPoint template class that we
407 // care to use.
408 typedef FloatingPoint<float> Float;
409 typedef FloatingPoint<double> Double;
410 
411 // In order to catch the mistake of putting tests that use different
412 // test fixture classes in the same test suite, we need to assign
413 // unique IDs to fixture classes and compare them.  The TypeId type is
414 // used to hold such IDs.  The user should treat TypeId as an opaque
415 // type: the only operation allowed on TypeId values is to compare
416 // them for equality using the == operator.
417 typedef const void* TypeId;
418 
419 template <typename T>
420 class TypeIdHelper {
421  public:
422   // dummy_ must not have a const type.  Otherwise an overly eager
423   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
424   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
425   static bool dummy_;
426 };
427 
428 template <typename T>
429 bool TypeIdHelper<T>::dummy_ = false;
430 
431 // GetTypeId<T>() returns the ID of type T.  Different values will be
432 // returned for different types.  Calling the function twice with the
433 // same type argument is guaranteed to return the same ID.
434 template <typename T>
GetTypeId()435 TypeId GetTypeId() {
436   // The compiler is required to allocate a different
437   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
438   // the template.  Therefore, the address of dummy_ is guaranteed to
439   // be unique.
440   return &(TypeIdHelper<T>::dummy_);
441 }
442 
443 // Returns the type ID of ::testing::Test.  Always call this instead
444 // of GetTypeId< ::testing::Test>() to get the type ID of
445 // ::testing::Test, as the latter may give the wrong result due to a
446 // suspected linker bug when compiling Google Test as a Mac OS X
447 // framework.
448 GTEST_API_ TypeId GetTestTypeId();
449 
450 // Defines the abstract factory interface that creates instances
451 // of a Test object.
452 class TestFactoryBase {
453  public:
~TestFactoryBase()454   virtual ~TestFactoryBase() {}
455 
456   // Creates a test instance to run. The instance is both created and destroyed
457   // within TestInfoImpl::Run()
458   virtual Test* CreateTest() = 0;
459 
460  protected:
TestFactoryBase()461   TestFactoryBase() {}
462 
463  private:
464   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
465 };
466 
467 // This class provides implementation of TeastFactoryBase interface.
468 // It is used in TEST and TEST_F macros.
469 template <class TestClass>
470 class TestFactoryImpl : public TestFactoryBase {
471  public:
CreateTest()472   Test* CreateTest() override { return new TestClass; }
473 };
474 
475 #if GTEST_OS_WINDOWS
476 
477 // Predicate-formatters for implementing the HRESULT checking macros
478 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
479 // We pass a long instead of HRESULT to avoid causing an
480 // include dependency for the HRESULT type.
481 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
482                                             long hr);  // NOLINT
483 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
484                                             long hr);  // NOLINT
485 
486 #endif  // GTEST_OS_WINDOWS
487 
488 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
489 using SetUpTestSuiteFunc = void (*)();
490 using TearDownTestSuiteFunc = void (*)();
491 
492 struct CodeLocation {
CodeLocationCodeLocation493   CodeLocation(const std::string& a_file, int a_line)
494       : file(a_file), line(a_line) {}
495 
496   std::string file;
497   int line;
498 };
499 
500 //  Helper to identify which setup function for TestCase / TestSuite to call.
501 //  Only one function is allowed, either TestCase or TestSute but not both.
502 
503 // Utility functions to help SuiteApiResolver
504 using SetUpTearDownSuiteFuncType = void (*)();
505 
GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a,SetUpTearDownSuiteFuncType def)506 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
507     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
508   return a == def ? nullptr : a;
509 }
510 
511 template <typename T>
512 //  Note that SuiteApiResolver inherits from T because
513 //  SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way
514 //  SuiteApiResolver can access them.
515 struct SuiteApiResolver : T {
516   // testing::Test is only forward declared at this point. So we make it a
517   // dependend class for the compiler to be OK with it.
518   using Test =
519       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
520 
GetSetUpCaseOrSuiteSuiteApiResolver521   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
522                                                         int line_num) {
523 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
524     SetUpTearDownSuiteFuncType test_case_fp =
525         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
526     SetUpTearDownSuiteFuncType test_suite_fp =
527         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
528 
529     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
530         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
531            "make sure there is only one present at "
532         << filename << ":" << line_num;
533 
534     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
535 #else
536     (void)(filename);
537     (void)(line_num);
538     return &T::SetUpTestSuite;
539 #endif
540   }
541 
GetTearDownCaseOrSuiteSuiteApiResolver542   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
543                                                            int line_num) {
544 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
545     SetUpTearDownSuiteFuncType test_case_fp =
546         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
547     SetUpTearDownSuiteFuncType test_suite_fp =
548         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
549 
550     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
551         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
552            " please make sure there is only one present at"
553         << filename << ":" << line_num;
554 
555     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
556 #else
557     (void)(filename);
558     (void)(line_num);
559     return &T::TearDownTestSuite;
560 #endif
561   }
562 };
563 
564 // Creates a new TestInfo object and registers it with Google Test;
565 // returns the created object.
566 //
567 // Arguments:
568 //
569 //   test_suite_name:  name of the test suite
570 //   name:             name of the test
571 //   type_param:       the name of the test's type parameter, or NULL if
572 //                     this is not a typed or a type-parameterized test.
573 //   value_param:      text representation of the test's value parameter,
574 //                     or NULL if this is not a type-parameterized test.
575 //   code_location:    code location where the test is defined
576 //   fixture_class_id: ID of the test fixture class
577 //   set_up_tc:        pointer to the function that sets up the test suite
578 //   tear_down_tc:     pointer to the function that tears down the test suite
579 //   factory:          pointer to the factory that creates a test object.
580 //                     The newly created TestInfo instance will assume
581 //                     ownership of the factory object.
582 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
583     const char* test_suite_name, const char* name, const char* type_param,
584     const char* value_param, CodeLocation code_location,
585     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
586     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
587 
588 // If *pstr starts with the given prefix, modifies *pstr to be right
589 // past the prefix and returns true; otherwise leaves *pstr unchanged
590 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
591 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
592 
593 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
594 
595 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
596 /* class A needs to have dll-interface to be used by clients of class B */)
597 
598 // State of the definition of a type-parameterized test suite.
599 class GTEST_API_ TypedTestSuitePState {
600  public:
TypedTestSuitePState()601   TypedTestSuitePState() : registered_(false) {}
602 
603   // Adds the given test name to defined_test_names_ and return true
604   // if the test suite hasn't been registered; otherwise aborts the
605   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)606   bool AddTestName(const char* file, int line, const char* case_name,
607                    const char* test_name) {
608     if (registered_) {
609       fprintf(stderr,
610               "%s Test %s must be defined before "
611               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
612               FormatFileLocation(file, line).c_str(), test_name, case_name);
613       fflush(stderr);
614       posix::Abort();
615     }
616     registered_tests_.insert(
617         ::std::make_pair(test_name, CodeLocation(file, line)));
618     return true;
619   }
620 
TestExists(const std::string & test_name)621   bool TestExists(const std::string& test_name) const {
622     return registered_tests_.count(test_name) > 0;
623   }
624 
GetCodeLocation(const std::string & test_name)625   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
626     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
627     GTEST_CHECK_(it != registered_tests_.end());
628     return it->second;
629   }
630 
631   // Verifies that registered_tests match the test names in
632   // defined_test_names_; returns registered_tests if successful, or
633   // aborts the program otherwise.
634   const char* VerifyRegisteredTestNames(const char* test_suite_name,
635                                         const char* file, int line,
636                                         const char* registered_tests);
637 
638  private:
639   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
640 
641   bool registered_;
642   RegisteredTestsMap registered_tests_;
643 };
644 
645 //  Legacy API is deprecated but still available
646 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
647 using TypedTestCasePState = TypedTestSuitePState;
648 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
649 
GTEST_DISABLE_MSC_WARNINGS_POP_()650 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
651 
652 // Skips to the first non-space char after the first comma in 'str';
653 // returns NULL if no comma is found in 'str'.
654 inline const char* SkipComma(const char* str) {
655   const char* comma = strchr(str, ',');
656   if (comma == nullptr) {
657     return nullptr;
658   }
659   while (IsSpace(*(++comma))) {}
660   return comma;
661 }
662 
663 // Returns the prefix of 'str' before the first comma in it; returns
664 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)665 inline std::string GetPrefixUntilComma(const char* str) {
666   const char* comma = strchr(str, ',');
667   return comma == nullptr ? str : std::string(str, comma);
668 }
669 
670 // Splits a given string on a given delimiter, populating a given
671 // vector with the fields.
672 void SplitString(const ::std::string& str, char delimiter,
673                  ::std::vector< ::std::string>* dest);
674 
675 // The default argument to the template below for the case when the user does
676 // not provide a name generator.
677 struct DefaultNameGenerator {
678   template <typename T>
GetNameDefaultNameGenerator679   static std::string GetName(int i) {
680     return StreamableToString(i);
681   }
682 };
683 
684 template <typename Provided = DefaultNameGenerator>
685 struct NameGeneratorSelector {
686   typedef Provided type;
687 };
688 
689 template <typename NameGenerator>
GenerateNamesRecursively(internal::None,std::vector<std::string> *,int)690 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
691 
692 template <typename NameGenerator, typename Types>
GenerateNamesRecursively(Types,std::vector<std::string> * result,int i)693 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
694   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
695   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
696                                           i + 1);
697 }
698 
699 template <typename NameGenerator, typename Types>
GenerateNames()700 std::vector<std::string> GenerateNames() {
701   std::vector<std::string> result;
702   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
703   return result;
704 }
705 
706 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
707 // registers a list of type-parameterized tests with Google Test.  The
708 // return value is insignificant - we just need to return something
709 // such that we can call this function in a namespace scope.
710 //
711 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
712 // template parameter.  It's defined in gtest-type-util.h.
713 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
714 class TypeParameterizedTest {
715  public:
716   // 'index' is the index of the test in the type list 'Types'
717   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
718   // Types).  Valid values for 'index' are [0, N - 1] where N is the
719   // length of Types.
720   static bool Register(const char* prefix, const CodeLocation& code_location,
721                        const char* case_name, const char* test_names, int index,
722                        const std::vector<std::string>& type_names =
723                            GenerateNames<DefaultNameGenerator, Types>()) {
724     typedef typename Types::Head Type;
725     typedef Fixture<Type> FixtureClass;
726     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
727 
728     // First, registers the first type-parameterized test in the type
729     // list.
730     MakeAndRegisterTestInfo(
731         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
732          "/" + type_names[static_cast<size_t>(index)])
733             .c_str(),
734         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
735         GetTypeName<Type>().c_str(),
736         nullptr,  // No value parameter.
737         code_location, GetTypeId<FixtureClass>(),
738         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
739             code_location.file.c_str(), code_location.line),
740         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
741             code_location.file.c_str(), code_location.line),
742         new TestFactoryImpl<TestClass>);
743 
744     // Next, recurses (at compile time) with the tail of the type list.
745     return TypeParameterizedTest<Fixture, TestSel,
746                                  typename Types::Tail>::Register(prefix,
747                                                                  code_location,
748                                                                  case_name,
749                                                                  test_names,
750                                                                  index + 1,
751                                                                  type_names);
752   }
753 };
754 
755 // The base case for the compile time recursion.
756 template <GTEST_TEMPLATE_ Fixture, class TestSel>
757 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
758  public:
759   static bool Register(const char* /*prefix*/, const CodeLocation&,
760                        const char* /*case_name*/, const char* /*test_names*/,
761                        int /*index*/,
762                        const std::vector<std::string>& =
763                            std::vector<std::string>() /*type_names*/) {
764     return true;
765   }
766 };
767 
768 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
769                                                    CodeLocation code_location);
770 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
771     const char* case_name);
772 
773 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
774 // registers *all combinations* of 'Tests' and 'Types' with Google
775 // Test.  The return value is insignificant - we just need to return
776 // something such that we can call this function in a namespace scope.
777 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
778 class TypeParameterizedTestSuite {
779  public:
780   static bool Register(const char* prefix, CodeLocation code_location,
781                        const TypedTestSuitePState* state, const char* case_name,
782                        const char* test_names,
783                        const std::vector<std::string>& type_names =
784                            GenerateNames<DefaultNameGenerator, Types>()) {
785     RegisterTypeParameterizedTestSuiteInstantiation(case_name);
786     std::string test_name = StripTrailingSpaces(
787         GetPrefixUntilComma(test_names));
788     if (!state->TestExists(test_name)) {
789       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
790               case_name, test_name.c_str(),
791               FormatFileLocation(code_location.file.c_str(),
792                                  code_location.line).c_str());
793       fflush(stderr);
794       posix::Abort();
795     }
796     const CodeLocation& test_location = state->GetCodeLocation(test_name);
797 
798     typedef typename Tests::Head Head;
799 
800     // First, register the first test in 'Test' for each type in 'Types'.
801     TypeParameterizedTest<Fixture, Head, Types>::Register(
802         prefix, test_location, case_name, test_names, 0, type_names);
803 
804     // Next, recurses (at compile time) with the tail of the test list.
805     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
806                                       Types>::Register(prefix, code_location,
807                                                        state, case_name,
808                                                        SkipComma(test_names),
809                                                        type_names);
810   }
811 };
812 
813 // The base case for the compile time recursion.
814 template <GTEST_TEMPLATE_ Fixture, typename Types>
815 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
816  public:
817   static bool Register(const char* /*prefix*/, const CodeLocation&,
818                        const TypedTestSuitePState* /*state*/,
819                        const char* /*case_name*/, const char* /*test_names*/,
820                        const std::vector<std::string>& =
821                            std::vector<std::string>() /*type_names*/) {
822     return true;
823   }
824 };
825 
826 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
827 
828 // Returns the current OS stack trace as an std::string.
829 //
830 // The maximum number of stack frames to be included is specified by
831 // the gtest_stack_trace_depth flag.  The skip_count parameter
832 // specifies the number of top frames to be skipped, which doesn't
833 // count against the number of frames to be included.
834 //
835 // For example, if Foo() calls Bar(), which in turn calls
836 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
837 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
838 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
839     UnitTest* unit_test, int skip_count);
840 
841 // Helpers for suppressing warnings on unreachable code or constant
842 // condition.
843 
844 // Always returns true.
845 GTEST_API_ bool AlwaysTrue();
846 
847 // Always returns false.
AlwaysFalse()848 inline bool AlwaysFalse() { return !AlwaysTrue(); }
849 
850 // Helper for suppressing false warning from Clang on a const char*
851 // variable declared in a conditional expression always being NULL in
852 // the else branch.
853 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr854   ConstCharPtr(const char* str) : value(str) {}
855   operator bool() const { return true; }
856   const char* value;
857 };
858 
859 // Helper for declaring std::string within 'if' statement
860 // in pre C++17 build environment.
861 struct TrueWithString {
862   TrueWithString() = default;
TrueWithStringTrueWithString863   explicit TrueWithString(const char* str) : value(str) {}
TrueWithStringTrueWithString864   explicit TrueWithString(const std::string& str) : value(str) {}
865   explicit operator bool() const { return true; }
866   std::string value;
867 };
868 
869 // A simple Linear Congruential Generator for generating random
870 // numbers with a uniform distribution.  Unlike rand() and srand(), it
871 // doesn't use global state (and therefore can't interfere with user
872 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
873 // but it's good enough for our purposes.
874 class GTEST_API_ Random {
875  public:
876   static const uint32_t kMaxRange = 1u << 31;
877 
Random(uint32_t seed)878   explicit Random(uint32_t seed) : state_(seed) {}
879 
Reseed(uint32_t seed)880   void Reseed(uint32_t seed) { state_ = seed; }
881 
882   // Generates a random number from [0, range).  Crashes if 'range' is
883   // 0 or greater than kMaxRange.
884   uint32_t Generate(uint32_t range);
885 
886  private:
887   uint32_t state_;
888   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
889 };
890 
891 // Turns const U&, U&, const U, and U all into U.
892 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
893   typename std::remove_const<typename std::remove_reference<T>::type>::type
894 
895 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
896 // that's true if and only if T has methods DebugString() and ShortDebugString()
897 // that return std::string.
898 template <typename T>
899 class HasDebugStringAndShortDebugString {
900  private:
901   template <typename C>
902   static constexpr auto CheckDebugString(C*) -> typename std::is_same<
903       std::string, decltype(std::declval<const C>().DebugString())>::type;
904   template <typename>
905   static constexpr std::false_type CheckDebugString(...);
906 
907   template <typename C>
908   static constexpr auto CheckShortDebugString(C*) -> typename std::is_same<
909       std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
910   template <typename>
911   static constexpr std::false_type CheckShortDebugString(...);
912 
913   using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
914   using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
915 
916  public:
917   static constexpr bool value =
918       HasDebugStringType::value && HasShortDebugStringType::value;
919 };
920 
921 template <typename T>
922 constexpr bool HasDebugStringAndShortDebugString<T>::value;
923 
924 // When the compiler sees expression IsContainerTest<C>(0), if C is an
925 // STL-style container class, the first overload of IsContainerTest
926 // will be viable (since both C::iterator* and C::const_iterator* are
927 // valid types and NULL can be implicitly converted to them).  It will
928 // be picked over the second overload as 'int' is a perfect match for
929 // the type of argument 0.  If C::iterator or C::const_iterator is not
930 // a valid type, the first overload is not viable, and the second
931 // overload will be picked.  Therefore, we can determine whether C is
932 // a container class by checking the type of IsContainerTest<C>(0).
933 // The value of the expression is insignificant.
934 //
935 // In C++11 mode we check the existence of a const_iterator and that an
936 // iterator is properly implemented for the container.
937 //
938 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
939 // The reason is that C++ injects the name of a class as a member of the
940 // class itself (e.g. you can refer to class iterator as either
941 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
942 // only, for example, we would mistakenly think that a class named
943 // iterator is an STL container.
944 //
945 // Also note that the simpler approach of overloading
946 // IsContainerTest(typename C::const_iterator*) and
947 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
948 typedef int IsContainer;
949 template <class C,
950           class Iterator = decltype(::std::declval<const C&>().begin()),
951           class = decltype(::std::declval<const C&>().end()),
952           class = decltype(++::std::declval<Iterator&>()),
953           class = decltype(*::std::declval<Iterator>()),
954           class = typename C::const_iterator>
IsContainerTest(int)955 IsContainer IsContainerTest(int /* dummy */) {
956   return 0;
957 }
958 
959 typedef char IsNotContainer;
960 template <class C>
IsContainerTest(long)961 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
962 
963 // Trait to detect whether a type T is a hash table.
964 // The heuristic used is that the type contains an inner type `hasher` and does
965 // not contain an inner type `reverse_iterator`.
966 // If the container is iterable in reverse, then order might actually matter.
967 template <typename T>
968 struct IsHashTable {
969  private:
970   template <typename U>
971   static char test(typename U::hasher*, typename U::reverse_iterator*);
972   template <typename U>
973   static int test(typename U::hasher*, ...);
974   template <typename U>
975   static char test(...);
976 
977  public:
978   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
979 };
980 
981 template <typename T>
982 const bool IsHashTable<T>::value;
983 
984 template <typename C,
985           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
986 struct IsRecursiveContainerImpl;
987 
988 template <typename C>
989 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
990 
991 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
992 // obey the same inconsistencies as the IsContainerTest, namely check if
993 // something is a container is relying on only const_iterator in C++11 and
994 // is relying on both const_iterator and iterator otherwise
995 template <typename C>
996 struct IsRecursiveContainerImpl<C, true> {
997   using value_type = decltype(*std::declval<typename C::const_iterator>());
998   using type =
999       std::is_same<typename std::remove_const<
1000                        typename std::remove_reference<value_type>::type>::type,
1001                    C>;
1002 };
1003 
1004 // IsRecursiveContainer<Type> is a unary compile-time predicate that
1005 // evaluates whether C is a recursive container type. A recursive container
1006 // type is a container type whose value_type is equal to the container type
1007 // itself. An example for a recursive container type is
1008 // boost::filesystem::path, whose iterator has a value_type that is equal to
1009 // boost::filesystem::path.
1010 template <typename C>
1011 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
1012 
1013 // Utilities for native arrays.
1014 
1015 // ArrayEq() compares two k-dimensional native arrays using the
1016 // elements' operator==, where k can be any integer >= 0.  When k is
1017 // 0, ArrayEq() degenerates into comparing a single pair of values.
1018 
1019 template <typename T, typename U>
1020 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1021 
1022 // This generic version is used when k is 0.
1023 template <typename T, typename U>
1024 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
1025 
1026 // This overload is used when k >= 1.
1027 template <typename T, typename U, size_t N>
1028 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
1029   return internal::ArrayEq(lhs, N, rhs);
1030 }
1031 
1032 // This helper reduces code bloat.  If we instead put its logic inside
1033 // the previous ArrayEq() function, arrays with different sizes would
1034 // lead to different copies of the template code.
1035 template <typename T, typename U>
1036 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1037   for (size_t i = 0; i != size; i++) {
1038     if (!internal::ArrayEq(lhs[i], rhs[i]))
1039       return false;
1040   }
1041   return true;
1042 }
1043 
1044 // Finds the first element in the iterator range [begin, end) that
1045 // equals elem.  Element may be a native array type itself.
1046 template <typename Iter, typename Element>
1047 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1048   for (Iter it = begin; it != end; ++it) {
1049     if (internal::ArrayEq(*it, elem))
1050       return it;
1051   }
1052   return end;
1053 }
1054 
1055 // CopyArray() copies a k-dimensional native array using the elements'
1056 // operator=, where k can be any integer >= 0.  When k is 0,
1057 // CopyArray() degenerates into copying a single value.
1058 
1059 template <typename T, typename U>
1060 void CopyArray(const T* from, size_t size, U* to);
1061 
1062 // This generic version is used when k is 0.
1063 template <typename T, typename U>
1064 inline void CopyArray(const T& from, U* to) { *to = from; }
1065 
1066 // This overload is used when k >= 1.
1067 template <typename T, typename U, size_t N>
1068 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1069   internal::CopyArray(from, N, *to);
1070 }
1071 
1072 // This helper reduces code bloat.  If we instead put its logic inside
1073 // the previous CopyArray() function, arrays with different sizes
1074 // would lead to different copies of the template code.
1075 template <typename T, typename U>
1076 void CopyArray(const T* from, size_t size, U* to) {
1077   for (size_t i = 0; i != size; i++) {
1078     internal::CopyArray(from[i], to + i);
1079   }
1080 }
1081 
1082 // The relation between an NativeArray object (see below) and the
1083 // native array it represents.
1084 // We use 2 different structs to allow non-copyable types to be used, as long
1085 // as RelationToSourceReference() is passed.
1086 struct RelationToSourceReference {};
1087 struct RelationToSourceCopy {};
1088 
1089 // Adapts a native array to a read-only STL-style container.  Instead
1090 // of the complete STL container concept, this adaptor only implements
1091 // members useful for Google Mock's container matchers.  New members
1092 // should be added as needed.  To simplify the implementation, we only
1093 // support Element being a raw type (i.e. having no top-level const or
1094 // reference modifier).  It's the client's responsibility to satisfy
1095 // this requirement.  Element can be an array type itself (hence
1096 // multi-dimensional arrays are supported).
1097 template <typename Element>
1098 class NativeArray {
1099  public:
1100   // STL-style container typedefs.
1101   typedef Element value_type;
1102   typedef Element* iterator;
1103   typedef const Element* const_iterator;
1104 
1105   // Constructs from a native array. References the source.
1106   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1107     InitRef(array, count);
1108   }
1109 
1110   // Constructs from a native array. Copies the source.
1111   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1112     InitCopy(array, count);
1113   }
1114 
1115   // Copy constructor.
1116   NativeArray(const NativeArray& rhs) {
1117     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1118   }
1119 
1120   ~NativeArray() {
1121     if (clone_ != &NativeArray::InitRef)
1122       delete[] array_;
1123   }
1124 
1125   // STL-style container methods.
1126   size_t size() const { return size_; }
1127   const_iterator begin() const { return array_; }
1128   const_iterator end() const { return array_ + size_; }
1129   bool operator==(const NativeArray& rhs) const {
1130     return size() == rhs.size() &&
1131         ArrayEq(begin(), size(), rhs.begin());
1132   }
1133 
1134  private:
1135   static_assert(!std::is_const<Element>::value, "Type must not be const");
1136   static_assert(!std::is_reference<Element>::value,
1137                 "Type must not be a reference");
1138 
1139   // Initializes this object with a copy of the input.
1140   void InitCopy(const Element* array, size_t a_size) {
1141     Element* const copy = new Element[a_size];
1142     CopyArray(array, a_size, copy);
1143     array_ = copy;
1144     size_ = a_size;
1145     clone_ = &NativeArray::InitCopy;
1146   }
1147 
1148   // Initializes this object with a reference of the input.
1149   void InitRef(const Element* array, size_t a_size) {
1150     array_ = array;
1151     size_ = a_size;
1152     clone_ = &NativeArray::InitRef;
1153   }
1154 
1155   const Element* array_;
1156   size_t size_;
1157   void (NativeArray::*clone_)(const Element*, size_t);
1158 };
1159 
1160 // Backport of std::index_sequence.
1161 template <size_t... Is>
1162 struct IndexSequence {
1163   using type = IndexSequence;
1164 };
1165 
1166 // Double the IndexSequence, and one if plus_one is true.
1167 template <bool plus_one, typename T, size_t sizeofT>
1168 struct DoubleSequence;
1169 template <size_t... I, size_t sizeofT>
1170 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1171   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1172 };
1173 template <size_t... I, size_t sizeofT>
1174 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1175   using type = IndexSequence<I..., (sizeofT + I)...>;
1176 };
1177 
1178 // Backport of std::make_index_sequence.
1179 // It uses O(ln(N)) instantiation depth.
1180 template <size_t N>
1181 struct MakeIndexSequenceImpl
1182     : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1183                      N / 2>::type {};
1184 
1185 template <>
1186 struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1187 
1188 template <size_t N>
1189 using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1190 
1191 template <typename... T>
1192 using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1193 
1194 template <size_t>
1195 struct Ignore {
1196   Ignore(...);  // NOLINT
1197 };
1198 
1199 template <typename>
1200 struct ElemFromListImpl;
1201 template <size_t... I>
1202 struct ElemFromListImpl<IndexSequence<I...>> {
1203   // We make Ignore a template to solve a problem with MSVC.
1204   // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1205   // MSVC doesn't understand how to deal with that pack expansion.
1206   // Use `0 * I` to have a single instantiation of Ignore.
1207   template <typename R>
1208   static R Apply(Ignore<0 * I>..., R (*)(), ...);
1209 };
1210 
1211 template <size_t N, typename... T>
1212 struct ElemFromList {
1213   using type =
1214       decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1215           static_cast<T (*)()>(nullptr)...));
1216 };
1217 
1218 struct FlatTupleConstructTag {};
1219 
1220 template <typename... T>
1221 class FlatTuple;
1222 
1223 template <typename Derived, size_t I>
1224 struct FlatTupleElemBase;
1225 
1226 template <typename... T, size_t I>
1227 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1228   using value_type = typename ElemFromList<I, T...>::type;
1229   FlatTupleElemBase() = default;
1230   template <typename Arg>
1231   explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1232       : value(std::forward<Arg>(t)) {}
1233   value_type value;
1234 };
1235 
1236 template <typename Derived, typename Idx>
1237 struct FlatTupleBase;
1238 
1239 template <size_t... Idx, typename... T>
1240 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1241     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1242   using Indices = IndexSequence<Idx...>;
1243   FlatTupleBase() = default;
1244   template <typename... Args>
1245   explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1246       : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1247                                                 std::forward<Args>(args))... {}
1248 
1249   template <size_t I>
1250   const typename ElemFromList<I, T...>::type& Get() const {
1251     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1252   }
1253 
1254   template <size_t I>
1255   typename ElemFromList<I, T...>::type& Get() {
1256     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1257   }
1258 
1259   template <typename F>
1260   auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1261     return std::forward<F>(f)(Get<Idx>()...);
1262   }
1263 
1264   template <typename F>
1265   auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1266     return std::forward<F>(f)(Get<Idx>()...);
1267   }
1268 };
1269 
1270 // Analog to std::tuple but with different tradeoffs.
1271 // This class minimizes the template instantiation depth, thus allowing more
1272 // elements than std::tuple would. std::tuple has been seen to require an
1273 // instantiation depth of more than 10x the number of elements in some
1274 // implementations.
1275 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1276 // regardless of T...
1277 // MakeIndexSequence, on the other hand, it is recursive but with an
1278 // instantiation depth of O(ln(N)).
1279 template <typename... T>
1280 class FlatTuple
1281     : private FlatTupleBase<FlatTuple<T...>,
1282                             typename MakeIndexSequence<sizeof...(T)>::type> {
1283   using Indices = typename FlatTupleBase<
1284       FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1285 
1286  public:
1287   FlatTuple() = default;
1288   template <typename... Args>
1289   explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1290       : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1291 
1292   using FlatTuple::FlatTupleBase::Apply;
1293   using FlatTuple::FlatTupleBase::Get;
1294 };
1295 
1296 // Utility functions to be called with static_assert to induce deprecation
1297 // warnings.
1298 GTEST_INTERNAL_DEPRECATED(
1299     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1300     "INSTANTIATE_TEST_SUITE_P")
1301 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1302 
1303 GTEST_INTERNAL_DEPRECATED(
1304     "TYPED_TEST_CASE_P is deprecated, please use "
1305     "TYPED_TEST_SUITE_P")
1306 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1307 
1308 GTEST_INTERNAL_DEPRECATED(
1309     "TYPED_TEST_CASE is deprecated, please use "
1310     "TYPED_TEST_SUITE")
1311 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1312 
1313 GTEST_INTERNAL_DEPRECATED(
1314     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1315     "REGISTER_TYPED_TEST_SUITE_P")
1316 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1317 
1318 GTEST_INTERNAL_DEPRECATED(
1319     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1320     "INSTANTIATE_TYPED_TEST_SUITE_P")
1321 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1322 
1323 }  // namespace internal
1324 }  // namespace testing
1325 
1326 namespace std {
1327 // Some standard library implementations use `struct tuple_size` and some use
1328 // `class tuple_size`. Clang warns about the mismatch.
1329 // https://reviews.llvm.org/D55466
1330 #ifdef __clang__
1331 #pragma clang diagnostic push
1332 #pragma clang diagnostic ignored "-Wmismatched-tags"
1333 #endif
1334 template <typename... Ts>
1335 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1336     : std::integral_constant<size_t, sizeof...(Ts)> {};
1337 #ifdef __clang__
1338 #pragma clang diagnostic pop
1339 #endif
1340 }  // namespace std
1341 
1342 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1343   ::testing::internal::AssertHelper(result_type, file, line, message) \
1344     = ::testing::Message()
1345 
1346 #define GTEST_MESSAGE_(message, result_type) \
1347   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1348 
1349 #define GTEST_FATAL_FAILURE_(message) \
1350   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1351 
1352 #define GTEST_NONFATAL_FAILURE_(message) \
1353   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1354 
1355 #define GTEST_SUCCESS_(message) \
1356   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1357 
1358 #define GTEST_SKIP_(message) \
1359   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1360 
1361 // Suppress MSVC warning 4072 (unreachable code) for the code following
1362 // statement if it returns or throws (or doesn't return or throw in some
1363 // situations).
1364 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1365 // "else" from attaching to our "if".
1366 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1367   if (::testing::internal::AlwaysTrue()) {                        \
1368     statement;                                                    \
1369   } else                     /* NOLINT */                         \
1370     static_assert(true, "")  // User must have a semicolon after expansion.
1371 
1372 #if GTEST_HAS_EXCEPTIONS
1373 
1374 namespace testing {
1375 namespace internal {
1376 
1377 class NeverThrown {
1378  public:
1379   const char* what() const noexcept {
1380     return "this exception should never be thrown";
1381   }
1382 };
1383 
1384 }  // namespace internal
1385 }  // namespace testing
1386 
1387 #if GTEST_HAS_RTTI
1388 
1389 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1390 
1391 #else  // GTEST_HAS_RTTI
1392 
1393 #define GTEST_EXCEPTION_TYPE_(e) \
1394   std::string { "an std::exception-derived error" }
1395 
1396 #endif  // GTEST_HAS_RTTI
1397 
1398 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)   \
1399   catch (typename std::conditional<                                            \
1400          std::is_same<typename std::remove_cv<typename std::remove_reference<  \
1401                           expected_exception>::type>::type,                    \
1402                       std::exception>::value,                                  \
1403          const ::testing::internal::NeverThrown&, const std::exception&>::type \
1404              e) {                                                              \
1405     gtest_msg.value = "Expected: " #statement                                  \
1406                       " throws an exception of type " #expected_exception      \
1407                       ".\n  Actual: it throws ";                               \
1408     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                               \
1409     gtest_msg.value += " with description \"";                                 \
1410     gtest_msg.value += e.what();                                               \
1411     gtest_msg.value += "\".";                                                  \
1412     goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);                \
1413   }
1414 
1415 #else  // GTEST_HAS_EXCEPTIONS
1416 
1417 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1418 
1419 #endif  // GTEST_HAS_EXCEPTIONS
1420 
1421 #define GTEST_TEST_THROW_(statement, expected_exception, fail)              \
1422   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                             \
1423   if (::testing::internal::TrueWithString gtest_msg{}) {                    \
1424     bool gtest_caught_expected = false;                                     \
1425     try {                                                                   \
1426       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);            \
1427     } catch (expected_exception const&) {                                   \
1428       gtest_caught_expected = true;                                         \
1429     }                                                                       \
1430     GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)    \
1431     catch (...) {                                                           \
1432       gtest_msg.value = "Expected: " #statement                             \
1433                         " throws an exception of type " #expected_exception \
1434                         ".\n  Actual: it throws a different type.";         \
1435       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1436     }                                                                       \
1437     if (!gtest_caught_expected) {                                           \
1438       gtest_msg.value = "Expected: " #statement                             \
1439                         " throws an exception of type " #expected_exception \
1440                         ".\n  Actual: it throws nothing.";                  \
1441       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1442     }                                                                       \
1443   } else /*NOLINT*/                                                         \
1444     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__)                   \
1445         : fail(gtest_msg.value.c_str())
1446 
1447 #if GTEST_HAS_EXCEPTIONS
1448 
1449 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                \
1450   catch (std::exception const& e) {                               \
1451     gtest_msg.value = "it throws ";                               \
1452     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                  \
1453     gtest_msg.value += " with description \"";                    \
1454     gtest_msg.value += e.what();                                  \
1455     gtest_msg.value += "\".";                                     \
1456     goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1457   }
1458 
1459 #else  // GTEST_HAS_EXCEPTIONS
1460 
1461 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1462 
1463 #endif  // GTEST_HAS_EXCEPTIONS
1464 
1465 #define GTEST_TEST_NO_THROW_(statement, fail) \
1466   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1467   if (::testing::internal::TrueWithString gtest_msg{}) { \
1468     try { \
1469       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1470     } \
1471     GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1472     catch (...) { \
1473       gtest_msg.value = "it throws."; \
1474       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1475     } \
1476   } else \
1477     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1478       fail(("Expected: " #statement " doesn't throw an exception.\n" \
1479             "  Actual: " + gtest_msg.value).c_str())
1480 
1481 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1482   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1483   if (::testing::internal::AlwaysTrue()) { \
1484     bool gtest_caught_any = false; \
1485     try { \
1486       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1487     } \
1488     catch (...) { \
1489       gtest_caught_any = true; \
1490     } \
1491     if (!gtest_caught_any) { \
1492       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1493     } \
1494   } else \
1495     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1496       fail("Expected: " #statement " throws an exception.\n" \
1497            "  Actual: it doesn't.")
1498 
1499 
1500 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1501 // either a boolean expression or an AssertionResult. text is a textual
1502 // represenation of expression as it was passed into the EXPECT_TRUE.
1503 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1504   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1505   if (const ::testing::AssertionResult gtest_ar_ = \
1506       ::testing::AssertionResult(expression)) \
1507     ; \
1508   else \
1509     fail(::testing::internal::GetBoolAssertionFailureMessage(\
1510         gtest_ar_, text, #actual, #expected).c_str())
1511 
1512 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1513   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1514   if (::testing::internal::AlwaysTrue()) { \
1515     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1516     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1517     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1518       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1519     } \
1520   } else \
1521     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1522       fail("Expected: " #statement " doesn't generate new fatal " \
1523            "failures in the current thread.\n" \
1524            "  Actual: it does.")
1525 
1526 // Expands to the name of the class that implements the given test.
1527 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1528   test_suite_name##_##test_name##_Test
1529 
1530 // Helper macro for defining tests.
1531 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)      \
1532   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                \
1533                 "test_suite_name must not be empty");                         \
1534   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                      \
1535                 "test_name must not be empty");                               \
1536   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                    \
1537       : public parent_class {                                                 \
1538    public:                                                                    \
1539     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default;           \
1540     ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
1541     GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
1542                                                            test_name));       \
1543     GTEST_DISALLOW_MOVE_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
1544                                                            test_name));       \
1545                                                                               \
1546    private:                                                                   \
1547     void TestBody() override;                                                 \
1548     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;     \
1549   };                                                                          \
1550                                                                               \
1551   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,          \
1552                                                     test_name)::test_info_ =  \
1553       ::testing::internal::MakeAndRegisterTestInfo(                           \
1554           #test_suite_name, #test_name, nullptr, nullptr,                     \
1555           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1556           ::testing::internal::SuiteApiResolver<                              \
1557               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),         \
1558           ::testing::internal::SuiteApiResolver<                              \
1559               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),      \
1560           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(    \
1561               test_suite_name, test_name)>);                                  \
1562   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1563 
1564 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1565