• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 //
31 // Tests for Google Test itself.  This verifies that the basic constructs of
32 // Google Test work.
33 
34 #include "gtest/gtest.h"
35 
36 // Verifies that the command line flag variables can be accessed in
37 // code once "gtest.h" has been #included.
38 // Do not move it after other gtest #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)39 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
40   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests) ||
41                testing::GTEST_FLAG(break_on_failure) ||
42                testing::GTEST_FLAG(catch_exceptions) ||
43                testing::GTEST_FLAG(color) != "unknown" ||
44                testing::GTEST_FLAG(fail_fast) ||
45                testing::GTEST_FLAG(filter) != "unknown" ||
46                testing::GTEST_FLAG(list_tests) ||
47                testing::GTEST_FLAG(output) != "unknown" ||
48                testing::GTEST_FLAG(brief) || testing::GTEST_FLAG(print_time) ||
49                testing::GTEST_FLAG(random_seed) ||
50                testing::GTEST_FLAG(repeat) > 0 ||
51                testing::GTEST_FLAG(show_internal_stack_frames) ||
52                testing::GTEST_FLAG(shuffle) ||
53                testing::GTEST_FLAG(stack_trace_depth) > 0 ||
54                testing::GTEST_FLAG(stream_result_to) != "unknown" ||
55                testing::GTEST_FLAG(throw_on_failure);
56   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
57 }
58 
59 #include <limits.h>  // For INT_MAX.
60 #include <stdlib.h>
61 #include <string.h>
62 #include <time.h>
63 
64 #include <cstdint>
65 #include <map>
66 #include <ostream>
67 #include <string>
68 #include <type_traits>
69 #include <unordered_set>
70 #include <vector>
71 
72 #include "gtest/gtest-spi.h"
73 #include "src/gtest-internal-inl.h"
74 
75 namespace testing {
76 namespace internal {
77 
78 #if GTEST_CAN_STREAM_RESULTS_
79 
80 class StreamingListenerTest : public Test {
81  public:
82   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
83    public:
84     // Sends a string to the socket.
Send(const std::string & message)85     void Send(const std::string& message) override { output_ += message; }
86 
87     std::string output_;
88   };
89 
StreamingListenerTest()90   StreamingListenerTest()
91       : fake_sock_writer_(new FakeSocketWriter),
92         streamer_(fake_sock_writer_),
93         test_info_obj_("FooTest", "Bar", nullptr, nullptr,
94                        CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {}
95 
96  protected:
output()97   std::string* output() { return &(fake_sock_writer_->output_); }
98 
99   FakeSocketWriter* const fake_sock_writer_;
100   StreamingListener streamer_;
101   UnitTest unit_test_;
102   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
103 };
104 
TEST_F(StreamingListenerTest,OnTestProgramEnd)105 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
106   *output() = "";
107   streamer_.OnTestProgramEnd(unit_test_);
108   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
109 }
110 
TEST_F(StreamingListenerTest,OnTestIterationEnd)111 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
112   *output() = "";
113   streamer_.OnTestIterationEnd(unit_test_, 42);
114   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
115 }
116 
TEST_F(StreamingListenerTest,OnTestCaseStart)117 TEST_F(StreamingListenerTest, OnTestCaseStart) {
118   *output() = "";
119   streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", nullptr, nullptr));
120   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
121 }
122 
TEST_F(StreamingListenerTest,OnTestCaseEnd)123 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
124   *output() = "";
125   streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", nullptr, nullptr));
126   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
127 }
128 
TEST_F(StreamingListenerTest,OnTestStart)129 TEST_F(StreamingListenerTest, OnTestStart) {
130   *output() = "";
131   streamer_.OnTestStart(test_info_obj_);
132   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
133 }
134 
TEST_F(StreamingListenerTest,OnTestEnd)135 TEST_F(StreamingListenerTest, OnTestEnd) {
136   *output() = "";
137   streamer_.OnTestEnd(test_info_obj_);
138   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
139 }
140 
TEST_F(StreamingListenerTest,OnTestPartResult)141 TEST_F(StreamingListenerTest, OnTestPartResult) {
142   *output() = "";
143   streamer_.OnTestPartResult(TestPartResult(
144       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
145 
146   // Meta characters in the failure message should be properly escaped.
147   EXPECT_EQ(
148       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
149       *output());
150 }
151 
152 #endif  // GTEST_CAN_STREAM_RESULTS_
153 
154 // Provides access to otherwise private parts of the TestEventListeners class
155 // that are needed to test it.
156 class TestEventListenersAccessor {
157  public:
GetRepeater(TestEventListeners * listeners)158   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
159     return listeners->repeater();
160   }
161 
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)162   static void SetDefaultResultPrinter(TestEventListeners* listeners,
163                                       TestEventListener* listener) {
164     listeners->SetDefaultResultPrinter(listener);
165   }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)166   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
167                                      TestEventListener* listener) {
168     listeners->SetDefaultXmlGenerator(listener);
169   }
170 
EventForwardingEnabled(const TestEventListeners & listeners)171   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
172     return listeners.EventForwardingEnabled();
173   }
174 
SuppressEventForwarding(TestEventListeners * listeners)175   static void SuppressEventForwarding(TestEventListeners* listeners) {
176     listeners->SuppressEventForwarding();
177   }
178 };
179 
180 class UnitTestRecordPropertyTestHelper : public Test {
181  protected:
UnitTestRecordPropertyTestHelper()182   UnitTestRecordPropertyTestHelper() {}
183 
184   // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)185   void UnitTestRecordProperty(const char* key, const std::string& value) {
186     unit_test_.RecordProperty(key, value);
187   }
188 
189   UnitTest unit_test_;
190 };
191 
192 }  // namespace internal
193 }  // namespace testing
194 
195 using testing::AssertionFailure;
196 using testing::AssertionResult;
197 using testing::AssertionSuccess;
198 using testing::DoubleLE;
199 using testing::EmptyTestEventListener;
200 using testing::Environment;
201 using testing::FloatLE;
202 using testing::GTEST_FLAG(also_run_disabled_tests);
203 using testing::GTEST_FLAG(break_on_failure);
204 using testing::GTEST_FLAG(catch_exceptions);
205 using testing::GTEST_FLAG(color);
206 using testing::GTEST_FLAG(death_test_use_fork);
207 using testing::GTEST_FLAG(fail_fast);
208 using testing::GTEST_FLAG(filter);
209 using testing::GTEST_FLAG(list_tests);
210 using testing::GTEST_FLAG(output);
211 using testing::GTEST_FLAG(brief);
212 using testing::GTEST_FLAG(print_time);
213 using testing::GTEST_FLAG(random_seed);
214 using testing::GTEST_FLAG(repeat);
215 using testing::GTEST_FLAG(show_internal_stack_frames);
216 using testing::GTEST_FLAG(shuffle);
217 using testing::GTEST_FLAG(stack_trace_depth);
218 using testing::GTEST_FLAG(stream_result_to);
219 using testing::GTEST_FLAG(throw_on_failure);
220 using testing::IsNotSubstring;
221 using testing::IsSubstring;
222 using testing::kMaxStackTraceDepth;
223 using testing::Message;
224 using testing::ScopedFakeTestPartResultReporter;
225 using testing::StaticAssertTypeEq;
226 using testing::Test;
227 using testing::TestEventListeners;
228 using testing::TestInfo;
229 using testing::TestPartResult;
230 using testing::TestPartResultArray;
231 using testing::TestProperty;
232 using testing::TestResult;
233 using testing::TestSuite;
234 using testing::TimeInMillis;
235 using testing::UnitTest;
236 using testing::internal::AlwaysFalse;
237 using testing::internal::AlwaysTrue;
238 using testing::internal::AppendUserMessage;
239 using testing::internal::ArrayAwareFind;
240 using testing::internal::ArrayEq;
241 using testing::internal::CodePointToUtf8;
242 using testing::internal::CopyArray;
243 using testing::internal::CountIf;
244 using testing::internal::EqFailure;
245 using testing::internal::FloatingPoint;
246 using testing::internal::ForEach;
247 using testing::internal::FormatEpochTimeInMillisAsIso8601;
248 using testing::internal::FormatTimeInMillisAsSeconds;
249 using testing::internal::GetCurrentOsStackTraceExceptTop;
250 using testing::internal::GetElementOr;
251 using testing::internal::GetNextRandomSeed;
252 using testing::internal::GetRandomSeedFromFlag;
253 using testing::internal::GetTestTypeId;
254 using testing::internal::GetTimeInMillis;
255 using testing::internal::GetTypeId;
256 using testing::internal::GetUnitTestImpl;
257 using testing::internal::GTestFlagSaver;
258 using testing::internal::HasDebugStringAndShortDebugString;
259 using testing::internal::Int32FromEnvOrDie;
260 using testing::internal::IsContainer;
261 using testing::internal::IsContainerTest;
262 using testing::internal::IsNotContainer;
263 using testing::internal::kMaxRandomSeed;
264 using testing::internal::kTestTypeIdInGoogleTest;
265 using testing::internal::NativeArray;
266 using testing::internal::OsStackTraceGetter;
267 using testing::internal::OsStackTraceGetterInterface;
268 using testing::internal::ParseInt32Flag;
269 using testing::internal::RelationToSourceCopy;
270 using testing::internal::RelationToSourceReference;
271 using testing::internal::ShouldRunTestOnShard;
272 using testing::internal::ShouldShard;
273 using testing::internal::ShouldUseColor;
274 using testing::internal::Shuffle;
275 using testing::internal::ShuffleRange;
276 using testing::internal::SkipPrefix;
277 using testing::internal::StreamableToString;
278 using testing::internal::String;
279 using testing::internal::TestEventListenersAccessor;
280 using testing::internal::TestResultAccessor;
281 using testing::internal::UnitTestImpl;
282 using testing::internal::WideStringToUtf8;
283 using testing::internal::edit_distance::CalculateOptimalEdits;
284 using testing::internal::edit_distance::CreateUnifiedDiff;
285 using testing::internal::edit_distance::EditType;
286 
287 #if GTEST_HAS_STREAM_REDIRECTION
288 using testing::internal::CaptureStdout;
289 using testing::internal::GetCapturedStdout;
290 #endif
291 
292 #if GTEST_IS_THREADSAFE
293 using testing::internal::ThreadWithParam;
294 #endif
295 
296 class TestingVector : public std::vector<int> {
297 };
298 
operator <<(::std::ostream & os,const TestingVector & vector)299 ::std::ostream& operator<<(::std::ostream& os,
300                            const TestingVector& vector) {
301   os << "{ ";
302   for (size_t i = 0; i < vector.size(); i++) {
303     os << vector[i] << " ";
304   }
305   os << "}";
306   return os;
307 }
308 
309 // This line tests that we can define tests in an unnamed namespace.
310 namespace {
311 
TEST(GetRandomSeedFromFlagTest,HandlesZero)312 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
313   const int seed = GetRandomSeedFromFlag(0);
314   EXPECT_LE(1, seed);
315   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
316 }
317 
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)318 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
319   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
320   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
321   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
322   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
323             GetRandomSeedFromFlag(kMaxRandomSeed));
324 }
325 
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)326 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
327   const int seed1 = GetRandomSeedFromFlag(-1);
328   EXPECT_LE(1, seed1);
329   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
330 
331   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
332   EXPECT_LE(1, seed2);
333   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
334 }
335 
TEST(GetNextRandomSeedTest,WorksForValidInput)336 TEST(GetNextRandomSeedTest, WorksForValidInput) {
337   EXPECT_EQ(2, GetNextRandomSeed(1));
338   EXPECT_EQ(3, GetNextRandomSeed(2));
339   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
340             GetNextRandomSeed(kMaxRandomSeed - 1));
341   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
342 
343   // We deliberately don't test GetNextRandomSeed() with invalid
344   // inputs, as that requires death tests, which are expensive.  This
345   // is fine as GetNextRandomSeed() is internal and has a
346   // straightforward definition.
347 }
348 
ClearCurrentTestPartResults()349 static void ClearCurrentTestPartResults() {
350   TestResultAccessor::ClearTestPartResults(
351       GetUnitTestImpl()->current_test_result());
352 }
353 
354 // Tests GetTypeId.
355 
TEST(GetTypeIdTest,ReturnsSameValueForSameType)356 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
357   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
358   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
359 }
360 
361 class SubClassOfTest : public Test {};
362 class AnotherSubClassOfTest : public Test {};
363 
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)364 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
365   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
366   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
367   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
368   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
369   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
370   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
371 }
372 
373 // Verifies that GetTestTypeId() returns the same value, no matter it
374 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)375 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
376   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
377 }
378 
379 // Tests CanonicalizeForStdLibVersioning.
380 
381 using ::testing::internal::CanonicalizeForStdLibVersioning;
382 
TEST(CanonicalizeForStdLibVersioning,LeavesUnversionedNamesUnchanged)383 TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) {
384   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind"));
385   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_"));
386   EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo"));
387   EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x"));
388   EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x"));
389   EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x"));
390 }
391 
TEST(CanonicalizeForStdLibVersioning,ElidesDoubleUnderNames)392 TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) {
393   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind"));
394   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_"));
395 
396   EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind"));
397   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_"));
398 
399   EXPECT_EQ("std::bind",
400             CanonicalizeForStdLibVersioning("std::__google::bind"));
401   EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_"));
402 }
403 
404 // Tests FormatTimeInMillisAsSeconds().
405 
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)406 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
407   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
408 }
409 
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)410 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
411   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
412   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
413   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
414   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
415   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
416 }
417 
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)418 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
419   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
420   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
421   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
422   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
423   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
424 }
425 
426 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
427 // for particular dates below was verified in Python using
428 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
429 
430 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
431 // have to set up a particular timezone to obtain predictable results.
432 class FormatEpochTimeInMillisAsIso8601Test : public Test {
433  public:
434   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
435   // 32 bits, even when 64-bit integer types are available.  We have to
436   // force the constants to have a 64-bit type here.
437   static const TimeInMillis kMillisPerSec = 1000;
438 
439  private:
SetUp()440   void SetUp() override {
441     saved_tz_ = nullptr;
442 
443     GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv, strdup: deprecated */)
444     if (getenv("TZ"))
445       saved_tz_ = strdup(getenv("TZ"));
446     GTEST_DISABLE_MSC_DEPRECATED_POP_()
447 
448     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
449     // cannot use the local time zone because the function's output depends
450     // on the time zone.
451     SetTimeZone("UTC+00");
452   }
453 
TearDown()454   void TearDown() override {
455     SetTimeZone(saved_tz_);
456     free(const_cast<char*>(saved_tz_));
457     saved_tz_ = nullptr;
458   }
459 
SetTimeZone(const char * time_zone)460   static void SetTimeZone(const char* time_zone) {
461     // tzset() distinguishes between the TZ variable being present and empty
462     // and not being present, so we have to consider the case of time_zone
463     // being NULL.
464 #if _MSC_VER || GTEST_OS_WINDOWS_MINGW
465     // ...Unless it's MSVC, whose standard library's _putenv doesn't
466     // distinguish between an empty and a missing variable.
467     const std::string env_var =
468         std::string("TZ=") + (time_zone ? time_zone : "");
469     _putenv(env_var.c_str());
470     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
471     tzset();
472     GTEST_DISABLE_MSC_WARNINGS_POP_()
473 #else
474     if (time_zone) {
475       setenv(("TZ"), time_zone, 1);
476     } else {
477       unsetenv("TZ");
478     }
479     tzset();
480 #endif
481   }
482 
483   const char* saved_tz_;
484 };
485 
486 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
487 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)488 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
489   EXPECT_EQ("2011-10-31T18:52:42.000",
490             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
491 }
492 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,IncludesMillisecondsAfterDot)493 TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) {
494   EXPECT_EQ(
495       "2011-10-31T18:52:42.234",
496       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
497 }
498 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)499 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
500   EXPECT_EQ("2011-09-03T05:07:02.000",
501             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
502 }
503 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)504 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
505   EXPECT_EQ("2011-09-28T17:08:22.000",
506             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
507 }
508 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)509 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
510   EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0));
511 }
512 
513 # ifdef __BORLANDC__
514 // Silences warnings: "Condition is always true", "Unreachable code"
515 #  pragma option push -w-ccc -w-rch
516 # endif
517 
518 // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal
519 // when the RHS is a pointer type.
TEST(NullLiteralTest,LHSAllowsNullLiterals)520 TEST(NullLiteralTest, LHSAllowsNullLiterals) {
521   EXPECT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
522   ASSERT_EQ(0, static_cast<void*>(nullptr));     // NOLINT
523   EXPECT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
524   ASSERT_EQ(NULL, static_cast<void*>(nullptr));  // NOLINT
525   EXPECT_EQ(nullptr, static_cast<void*>(nullptr));
526   ASSERT_EQ(nullptr, static_cast<void*>(nullptr));
527 
528   const int* const p = nullptr;
529   EXPECT_EQ(0, p);     // NOLINT
530   ASSERT_EQ(0, p);     // NOLINT
531   EXPECT_EQ(NULL, p);  // NOLINT
532   ASSERT_EQ(NULL, p);  // NOLINT
533   EXPECT_EQ(nullptr, p);
534   ASSERT_EQ(nullptr, p);
535 }
536 
537 struct ConvertToAll {
538   template <typename T>
operator T__anona388e2a90111::ConvertToAll539   operator T() const {  // NOLINT
540     return T();
541   }
542 };
543 
544 struct ConvertToPointer {
545   template <class T>
operator T*__anona388e2a90111::ConvertToPointer546   operator T*() const {  // NOLINT
547     return nullptr;
548   }
549 };
550 
551 struct ConvertToAllButNoPointers {
552   template <typename T,
553             typename std::enable_if<!std::is_pointer<T>::value, int>::type = 0>
operator T__anona388e2a90111::ConvertToAllButNoPointers554   operator T() const {  // NOLINT
555     return T();
556   }
557 };
558 
559 struct MyType {};
operator ==(MyType const &,MyType const &)560 inline bool operator==(MyType const&, MyType const&) { return true; }
561 
TEST(NullLiteralTest,ImplicitConversion)562 TEST(NullLiteralTest, ImplicitConversion) {
563   EXPECT_EQ(ConvertToPointer{}, static_cast<void*>(nullptr));
564 #if !defined(__GNUC__) || defined(__clang__)
565   // Disabled due to GCC bug gcc.gnu.org/PR89580
566   EXPECT_EQ(ConvertToAll{}, static_cast<void*>(nullptr));
567 #endif
568   EXPECT_EQ(ConvertToAll{}, MyType{});
569   EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{});
570 }
571 
572 #ifdef __clang__
573 #pragma clang diagnostic push
574 #if __has_warning("-Wzero-as-null-pointer-constant")
575 #pragma clang diagnostic error "-Wzero-as-null-pointer-constant"
576 #endif
577 #endif
578 
TEST(NullLiteralTest,NoConversionNoWarning)579 TEST(NullLiteralTest, NoConversionNoWarning) {
580   // Test that gtests detection and handling of null pointer constants
581   // doesn't trigger a warning when '0' isn't actually used as null.
582   EXPECT_EQ(0, 0);
583   ASSERT_EQ(0, 0);
584 }
585 
586 #ifdef __clang__
587 #pragma clang diagnostic pop
588 #endif
589 
590 # ifdef __BORLANDC__
591 // Restores warnings after previous "#pragma option push" suppressed them.
592 #  pragma option pop
593 # endif
594 
595 //
596 // Tests CodePointToUtf8().
597 
598 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)599 TEST(CodePointToUtf8Test, CanEncodeNul) {
600   EXPECT_EQ("", CodePointToUtf8(L'\0'));
601 }
602 
603 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)604 TEST(CodePointToUtf8Test, CanEncodeAscii) {
605   EXPECT_EQ("a", CodePointToUtf8(L'a'));
606   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
607   EXPECT_EQ("&", CodePointToUtf8(L'&'));
608   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
609 }
610 
611 // Tests that Unicode code-points that have 8 to 11 bits are encoded
612 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)613 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
614   // 000 1101 0011 => 110-00011 10-010011
615   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
616 
617   // 101 0111 0110 => 110-10101 10-110110
618   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
619   // in wide strings and wide chars. In order to accommodate them, we have to
620   // introduce such character constants as integers.
621   EXPECT_EQ("\xD5\xB6",
622             CodePointToUtf8(static_cast<wchar_t>(0x576)));
623 }
624 
625 // Tests that Unicode code-points that have 12 to 16 bits are encoded
626 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)627 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
628   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
629   EXPECT_EQ("\xE0\xA3\x93",
630             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
631 
632   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
633   EXPECT_EQ("\xEC\x9D\x8D",
634             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
635 }
636 
637 #if !GTEST_WIDE_STRING_USES_UTF16_
638 // Tests in this group require a wchar_t to hold > 16 bits, and thus
639 // are skipped on Windows, and Cygwin, where a wchar_t is
640 // 16-bit wide. This code may not compile on those systems.
641 
642 // Tests that Unicode code-points that have 17 to 21 bits are encoded
643 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)644 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
645   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
646   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
647 
648   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
649   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
650 
651   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
652   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
653 }
654 
655 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)656 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
657   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
658 }
659 
660 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
661 
662 // Tests WideStringToUtf8().
663 
664 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)665 TEST(WideStringToUtf8Test, CanEncodeNul) {
666   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
667   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
668 }
669 
670 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)671 TEST(WideStringToUtf8Test, CanEncodeAscii) {
672   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
673   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
674   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
675   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
676 }
677 
678 // Tests that Unicode code-points that have 8 to 11 bits are encoded
679 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)680 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
681   // 000 1101 0011 => 110-00011 10-010011
682   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
683   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
684 
685   // 101 0111 0110 => 110-10101 10-110110
686   const wchar_t s[] = { 0x576, '\0' };
687   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
688   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
689 }
690 
691 // Tests that Unicode code-points that have 12 to 16 bits are encoded
692 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)693 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
694   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
695   const wchar_t s1[] = { 0x8D3, '\0' };
696   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
697   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
698 
699   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
700   const wchar_t s2[] = { 0xC74D, '\0' };
701   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
702   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
703 }
704 
705 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)706 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
707   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
708 }
709 
710 // Tests that the conversion stops when the function reaches the limit
711 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)712 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
713   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
714 }
715 
716 #if !GTEST_WIDE_STRING_USES_UTF16_
717 // Tests that Unicode code-points that have 17 to 21 bits are encoded
718 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
719 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)720 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
721   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
722   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
723   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
724 
725   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
726   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
727   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
728 }
729 
730 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)731 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
732   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
733                WideStringToUtf8(L"\xABCDFF", -1).c_str());
734 }
735 #else  // !GTEST_WIDE_STRING_USES_UTF16_
736 // Tests that surrogate pairs are encoded correctly on the systems using
737 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)738 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
739   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
740   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
741 }
742 
743 // Tests that encoding an invalid UTF-16 surrogate pair
744 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)745 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
746   // Leading surrogate is at the end of the string.
747   const wchar_t s1[] = { 0xD800, '\0' };
748   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
749   // Leading surrogate is not followed by the trailing surrogate.
750   const wchar_t s2[] = { 0xD800, 'M', '\0' };
751   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
752   // Trailing surrogate appearas without a leading surrogate.
753   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
754   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
755 }
756 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
757 
758 // Tests that codepoint concatenation works correctly.
759 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)760 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
761   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
762   EXPECT_STREQ(
763       "\xF4\x88\x98\xB4"
764           "\xEC\x9D\x8D"
765           "\n"
766           "\xD5\xB6"
767           "\xE0\xA3\x93"
768           "\xF4\x88\x98\xB4",
769       WideStringToUtf8(s, -1).c_str());
770 }
771 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)772 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
773   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
774   EXPECT_STREQ(
775       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
776       WideStringToUtf8(s, -1).c_str());
777 }
778 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
779 
780 // Tests the Random class.
781 
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)782 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
783   testing::internal::Random random(42);
784   EXPECT_DEATH_IF_SUPPORTED(
785       random.Generate(0),
786       "Cannot generate a number in the range \\[0, 0\\)");
787   EXPECT_DEATH_IF_SUPPORTED(
788       random.Generate(testing::internal::Random::kMaxRange + 1),
789       "Generation of a number in \\[0, 2147483649\\) was requested, "
790       "but this can only generate numbers in \\[0, 2147483648\\)");
791 }
792 
TEST(RandomTest,GeneratesNumbersWithinRange)793 TEST(RandomTest, GeneratesNumbersWithinRange) {
794   constexpr uint32_t kRange = 10000;
795   testing::internal::Random random(12345);
796   for (int i = 0; i < 10; i++) {
797     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
798   }
799 
800   testing::internal::Random random2(testing::internal::Random::kMaxRange);
801   for (int i = 0; i < 10; i++) {
802     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
803   }
804 }
805 
TEST(RandomTest,RepeatsWhenReseeded)806 TEST(RandomTest, RepeatsWhenReseeded) {
807   constexpr int kSeed = 123;
808   constexpr int kArraySize = 10;
809   constexpr uint32_t kRange = 10000;
810   uint32_t values[kArraySize];
811 
812   testing::internal::Random random(kSeed);
813   for (int i = 0; i < kArraySize; i++) {
814     values[i] = random.Generate(kRange);
815   }
816 
817   random.Reseed(kSeed);
818   for (int i = 0; i < kArraySize; i++) {
819     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
820   }
821 }
822 
823 // Tests STL container utilities.
824 
825 // Tests CountIf().
826 
IsPositive(int n)827 static bool IsPositive(int n) { return n > 0; }
828 
TEST(ContainerUtilityTest,CountIf)829 TEST(ContainerUtilityTest, CountIf) {
830   std::vector<int> v;
831   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
832 
833   v.push_back(-1);
834   v.push_back(0);
835   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
836 
837   v.push_back(2);
838   v.push_back(-10);
839   v.push_back(10);
840   EXPECT_EQ(2, CountIf(v, IsPositive));
841 }
842 
843 // Tests ForEach().
844 
845 static int g_sum = 0;
Accumulate(int n)846 static void Accumulate(int n) { g_sum += n; }
847 
TEST(ContainerUtilityTest,ForEach)848 TEST(ContainerUtilityTest, ForEach) {
849   std::vector<int> v;
850   g_sum = 0;
851   ForEach(v, Accumulate);
852   EXPECT_EQ(0, g_sum);  // Works for an empty container;
853 
854   g_sum = 0;
855   v.push_back(1);
856   ForEach(v, Accumulate);
857   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
858 
859   g_sum = 0;
860   v.push_back(20);
861   v.push_back(300);
862   ForEach(v, Accumulate);
863   EXPECT_EQ(321, g_sum);
864 }
865 
866 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)867 TEST(ContainerUtilityTest, GetElementOr) {
868   std::vector<char> a;
869   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
870 
871   a.push_back('a');
872   a.push_back('b');
873   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
874   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
875   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
876   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
877 }
878 
TEST(ContainerUtilityDeathTest,ShuffleRange)879 TEST(ContainerUtilityDeathTest, ShuffleRange) {
880   std::vector<int> a;
881   a.push_back(0);
882   a.push_back(1);
883   a.push_back(2);
884   testing::internal::Random random(1);
885 
886   EXPECT_DEATH_IF_SUPPORTED(
887       ShuffleRange(&random, -1, 1, &a),
888       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
889   EXPECT_DEATH_IF_SUPPORTED(
890       ShuffleRange(&random, 4, 4, &a),
891       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
892   EXPECT_DEATH_IF_SUPPORTED(
893       ShuffleRange(&random, 3, 2, &a),
894       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
895   EXPECT_DEATH_IF_SUPPORTED(
896       ShuffleRange(&random, 3, 4, &a),
897       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
898 }
899 
900 class VectorShuffleTest : public Test {
901  protected:
902   static const size_t kVectorSize = 20;
903 
VectorShuffleTest()904   VectorShuffleTest() : random_(1) {
905     for (int i = 0; i < static_cast<int>(kVectorSize); i++) {
906       vector_.push_back(i);
907     }
908   }
909 
VectorIsCorrupt(const TestingVector & vector)910   static bool VectorIsCorrupt(const TestingVector& vector) {
911     if (kVectorSize != vector.size()) {
912       return true;
913     }
914 
915     bool found_in_vector[kVectorSize] = { false };
916     for (size_t i = 0; i < vector.size(); i++) {
917       const int e = vector[i];
918       if (e < 0 || e >= static_cast<int>(kVectorSize) || found_in_vector[e]) {
919         return true;
920       }
921       found_in_vector[e] = true;
922     }
923 
924     // Vector size is correct, elements' range is correct, no
925     // duplicate elements.  Therefore no corruption has occurred.
926     return false;
927   }
928 
VectorIsNotCorrupt(const TestingVector & vector)929   static bool VectorIsNotCorrupt(const TestingVector& vector) {
930     return !VectorIsCorrupt(vector);
931   }
932 
RangeIsShuffled(const TestingVector & vector,int begin,int end)933   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
934     for (int i = begin; i < end; i++) {
935       if (i != vector[static_cast<size_t>(i)]) {
936         return true;
937       }
938     }
939     return false;
940   }
941 
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)942   static bool RangeIsUnshuffled(
943       const TestingVector& vector, int begin, int end) {
944     return !RangeIsShuffled(vector, begin, end);
945   }
946 
VectorIsShuffled(const TestingVector & vector)947   static bool VectorIsShuffled(const TestingVector& vector) {
948     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
949   }
950 
VectorIsUnshuffled(const TestingVector & vector)951   static bool VectorIsUnshuffled(const TestingVector& vector) {
952     return !VectorIsShuffled(vector);
953   }
954 
955   testing::internal::Random random_;
956   TestingVector vector_;
957 };  // class VectorShuffleTest
958 
959 const size_t VectorShuffleTest::kVectorSize;
960 
TEST_F(VectorShuffleTest,HandlesEmptyRange)961 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
962   // Tests an empty range at the beginning...
963   ShuffleRange(&random_, 0, 0, &vector_);
964   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
965   ASSERT_PRED1(VectorIsUnshuffled, vector_);
966 
967   // ...in the middle...
968   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
969   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
970   ASSERT_PRED1(VectorIsUnshuffled, vector_);
971 
972   // ...at the end...
973   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
974   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
975   ASSERT_PRED1(VectorIsUnshuffled, vector_);
976 
977   // ...and past the end.
978   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
979   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
980   ASSERT_PRED1(VectorIsUnshuffled, vector_);
981 }
982 
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)983 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
984   // Tests a size one range at the beginning...
985   ShuffleRange(&random_, 0, 1, &vector_);
986   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
987   ASSERT_PRED1(VectorIsUnshuffled, vector_);
988 
989   // ...in the middle...
990   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
991   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
992   ASSERT_PRED1(VectorIsUnshuffled, vector_);
993 
994   // ...and at the end.
995   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
996   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
997   ASSERT_PRED1(VectorIsUnshuffled, vector_);
998 }
999 
1000 // Because we use our own random number generator and a fixed seed,
1001 // we can guarantee that the following "random" tests will succeed.
1002 
TEST_F(VectorShuffleTest,ShufflesEntireVector)1003 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
1004   Shuffle(&random_, &vector_);
1005   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1006   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
1007 
1008   // Tests the first and last elements in particular to ensure that
1009   // there are no off-by-one problems in our shuffle algorithm.
1010   EXPECT_NE(0, vector_[0]);
1011   EXPECT_NE(static_cast<int>(kVectorSize - 1), vector_[kVectorSize - 1]);
1012 }
1013 
TEST_F(VectorShuffleTest,ShufflesStartOfVector)1014 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
1015   const int kRangeSize = kVectorSize/2;
1016 
1017   ShuffleRange(&random_, 0, kRangeSize, &vector_);
1018 
1019   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1020   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
1021   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize,
1022                static_cast<int>(kVectorSize));
1023 }
1024 
TEST_F(VectorShuffleTest,ShufflesEndOfVector)1025 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
1026   const int kRangeSize = kVectorSize / 2;
1027   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
1028 
1029   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1030   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1031   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize,
1032                static_cast<int>(kVectorSize));
1033 }
1034 
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)1035 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
1036   const int kRangeSize = static_cast<int>(kVectorSize) / 3;
1037   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
1038 
1039   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1040   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
1041   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
1042   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize,
1043                static_cast<int>(kVectorSize));
1044 }
1045 
TEST_F(VectorShuffleTest,ShufflesRepeatably)1046 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
1047   TestingVector vector2;
1048   for (size_t i = 0; i < kVectorSize; i++) {
1049     vector2.push_back(static_cast<int>(i));
1050   }
1051 
1052   random_.Reseed(1234);
1053   Shuffle(&random_, &vector_);
1054   random_.Reseed(1234);
1055   Shuffle(&random_, &vector2);
1056 
1057   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1058   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1059 
1060   for (size_t i = 0; i < kVectorSize; i++) {
1061     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1062   }
1063 }
1064 
1065 // Tests the size of the AssertHelper class.
1066 
TEST(AssertHelperTest,AssertHelperIsSmall)1067 TEST(AssertHelperTest, AssertHelperIsSmall) {
1068   // To avoid breaking clients that use lots of assertions in one
1069   // function, we cannot grow the size of AssertHelper.
1070   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1071 }
1072 
1073 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1074 TEST(StringTest, EndsWithCaseInsensitive) {
1075   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1076   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1077   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1078   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1079 
1080   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1081   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1082   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1083 }
1084 
1085 // C++Builder's preprocessor is buggy; it fails to expand macros that
1086 // appear in macro parameters after wide char literals.  Provide an alias
1087 // for NULL as a workaround.
1088 static const wchar_t* const kNull = nullptr;
1089 
1090 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1091 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1092   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr));
1093   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1094   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1095   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1096   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1097   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1098   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1099   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1100 }
1101 
1102 #if GTEST_OS_WINDOWS
1103 
1104 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1105 TEST(StringTest, ShowWideCString) {
1106   EXPECT_STREQ("(null)",
1107                String::ShowWideCString(NULL).c_str());
1108   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1109   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1110 }
1111 
1112 # if GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1113 TEST(StringTest, AnsiAndUtf16Null) {
1114   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1115   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1116 }
1117 
TEST(StringTest,AnsiAndUtf16ConvertBasic)1118 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1119   const char* ansi = String::Utf16ToAnsi(L"str");
1120   EXPECT_STREQ("str", ansi);
1121   delete [] ansi;
1122   const WCHAR* utf16 = String::AnsiToUtf16("str");
1123   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1124   delete [] utf16;
1125 }
1126 
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1127 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1128   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1129   EXPECT_STREQ(".:\\ \"*?", ansi);
1130   delete [] ansi;
1131   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1132   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1133   delete [] utf16;
1134 }
1135 # endif  // GTEST_OS_WINDOWS_MOBILE
1136 
1137 #endif  // GTEST_OS_WINDOWS
1138 
1139 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1140 TEST(TestPropertyTest, StringValue) {
1141   TestProperty property("key", "1");
1142   EXPECT_STREQ("key", property.key());
1143   EXPECT_STREQ("1", property.value());
1144 }
1145 
1146 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1147 TEST(TestPropertyTest, ReplaceStringValue) {
1148   TestProperty property("key", "1");
1149   EXPECT_STREQ("1", property.value());
1150   property.SetValue("2");
1151   EXPECT_STREQ("2", property.value());
1152 }
1153 
1154 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1155 // functions (i.e. their definitions cannot be inlined at the call
1156 // sites), or C++Builder won't compile the code.
AddFatalFailure()1157 static void AddFatalFailure() {
1158   FAIL() << "Expected fatal failure.";
1159 }
1160 
AddNonfatalFailure()1161 static void AddNonfatalFailure() {
1162   ADD_FAILURE() << "Expected non-fatal failure.";
1163 }
1164 
1165 class ScopedFakeTestPartResultReporterTest : public Test {
1166  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1167   enum FailureMode {
1168     FATAL_FAILURE,
1169     NONFATAL_FAILURE
1170   };
AddFailure(FailureMode failure)1171   static void AddFailure(FailureMode failure) {
1172     if (failure == FATAL_FAILURE) {
1173       AddFatalFailure();
1174     } else {
1175       AddNonfatalFailure();
1176     }
1177   }
1178 };
1179 
1180 // Tests that ScopedFakeTestPartResultReporter intercepts test
1181 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1182 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1183   TestPartResultArray results;
1184   {
1185     ScopedFakeTestPartResultReporter reporter(
1186         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1187         &results);
1188     AddFailure(NONFATAL_FAILURE);
1189     AddFailure(FATAL_FAILURE);
1190   }
1191 
1192   EXPECT_EQ(2, results.size());
1193   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1194   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1195 }
1196 
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1197 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1198   TestPartResultArray results;
1199   {
1200     // Tests, that the deprecated constructor still works.
1201     ScopedFakeTestPartResultReporter reporter(&results);
1202     AddFailure(NONFATAL_FAILURE);
1203   }
1204   EXPECT_EQ(1, results.size());
1205 }
1206 
1207 #if GTEST_IS_THREADSAFE
1208 
1209 class ScopedFakeTestPartResultReporterWithThreadsTest
1210   : public ScopedFakeTestPartResultReporterTest {
1211  protected:
AddFailureInOtherThread(FailureMode failure)1212   static void AddFailureInOtherThread(FailureMode failure) {
1213     ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr);
1214     thread.Join();
1215   }
1216 };
1217 
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1218 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1219        InterceptsTestFailuresInAllThreads) {
1220   TestPartResultArray results;
1221   {
1222     ScopedFakeTestPartResultReporter reporter(
1223         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1224     AddFailure(NONFATAL_FAILURE);
1225     AddFailure(FATAL_FAILURE);
1226     AddFailureInOtherThread(NONFATAL_FAILURE);
1227     AddFailureInOtherThread(FATAL_FAILURE);
1228   }
1229 
1230   EXPECT_EQ(4, results.size());
1231   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1232   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1233   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1234   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1235 }
1236 
1237 #endif  // GTEST_IS_THREADSAFE
1238 
1239 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1240 // work even if the failure is generated in a called function rather than
1241 // the current context.
1242 
1243 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1244 
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1245 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1246   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1247 }
1248 
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1249 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1250   EXPECT_FATAL_FAILURE(AddFatalFailure(),
1251                        ::std::string("Expected fatal failure."));
1252 }
1253 
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1254 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1255   // We have another test below to verify that the macro catches fatal
1256   // failures generated on another thread.
1257   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1258                                       "Expected fatal failure.");
1259 }
1260 
1261 #ifdef __BORLANDC__
1262 // Silences warnings: "Condition is always true"
1263 # pragma option push -w-ccc
1264 #endif
1265 
1266 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1267 // function even when the statement in it contains ASSERT_*.
1268 
NonVoidFunction()1269 int NonVoidFunction() {
1270   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1271   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1272   return 0;
1273 }
1274 
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1275 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1276   NonVoidFunction();
1277 }
1278 
1279 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1280 // current function even though 'statement' generates a fatal failure.
1281 
DoesNotAbortHelper(bool * aborted)1282 void DoesNotAbortHelper(bool* aborted) {
1283   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1284   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1285 
1286   *aborted = false;
1287 }
1288 
1289 #ifdef __BORLANDC__
1290 // Restores warnings after previous "#pragma option push" suppressed them.
1291 # pragma option pop
1292 #endif
1293 
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1294 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1295   bool aborted = true;
1296   DoesNotAbortHelper(&aborted);
1297   EXPECT_FALSE(aborted);
1298 }
1299 
1300 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1301 // statement that contains a macro which expands to code containing an
1302 // unprotected comma.
1303 
1304 static int global_var = 0;
1305 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1306 
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1307 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1308 #ifndef __BORLANDC__
1309   // ICE's in C++Builder.
1310   EXPECT_FATAL_FAILURE({
1311     GTEST_USE_UNPROTECTED_COMMA_;
1312     AddFatalFailure();
1313   }, "");
1314 #endif
1315 
1316   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1317     GTEST_USE_UNPROTECTED_COMMA_;
1318     AddFatalFailure();
1319   }, "");
1320 }
1321 
1322 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1323 
1324 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1325 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1326 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1327   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1328                           "Expected non-fatal failure.");
1329 }
1330 
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1331 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1332   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1333                           ::std::string("Expected non-fatal failure."));
1334 }
1335 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1336 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1337   // We have another test below to verify that the macro catches
1338   // non-fatal failures generated on another thread.
1339   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1340                                          "Expected non-fatal failure.");
1341 }
1342 
1343 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1344 // statement that contains a macro which expands to code containing an
1345 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1346 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1347   EXPECT_NONFATAL_FAILURE({
1348     GTEST_USE_UNPROTECTED_COMMA_;
1349     AddNonfatalFailure();
1350   }, "");
1351 
1352   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1353     GTEST_USE_UNPROTECTED_COMMA_;
1354     AddNonfatalFailure();
1355   }, "");
1356 }
1357 
1358 #if GTEST_IS_THREADSAFE
1359 
1360 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1361     ExpectFailureWithThreadsTest;
1362 
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1363 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1364   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1365                                       "Expected fatal failure.");
1366 }
1367 
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1368 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1369   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1370       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1371 }
1372 
1373 #endif  // GTEST_IS_THREADSAFE
1374 
1375 // Tests the TestProperty class.
1376 
TEST(TestPropertyTest,ConstructorWorks)1377 TEST(TestPropertyTest, ConstructorWorks) {
1378   const TestProperty property("key", "value");
1379   EXPECT_STREQ("key", property.key());
1380   EXPECT_STREQ("value", property.value());
1381 }
1382 
TEST(TestPropertyTest,SetValue)1383 TEST(TestPropertyTest, SetValue) {
1384   TestProperty property("key", "value_1");
1385   EXPECT_STREQ("key", property.key());
1386   property.SetValue("value_2");
1387   EXPECT_STREQ("key", property.key());
1388   EXPECT_STREQ("value_2", property.value());
1389 }
1390 
1391 // Tests the TestResult class
1392 
1393 // The test fixture for testing TestResult.
1394 class TestResultTest : public Test {
1395  protected:
1396   typedef std::vector<TestPartResult> TPRVector;
1397 
1398   // We make use of 2 TestPartResult objects,
1399   TestPartResult * pr1, * pr2;
1400 
1401   // ... and 3 TestResult objects.
1402   TestResult * r0, * r1, * r2;
1403 
SetUp()1404   void SetUp() override {
1405     // pr1 is for success.
1406     pr1 = new TestPartResult(TestPartResult::kSuccess,
1407                              "foo/bar.cc",
1408                              10,
1409                              "Success!");
1410 
1411     // pr2 is for fatal failure.
1412     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1413                              "foo/bar.cc",
1414                              -1,  // This line number means "unknown"
1415                              "Failure!");
1416 
1417     // Creates the TestResult objects.
1418     r0 = new TestResult();
1419     r1 = new TestResult();
1420     r2 = new TestResult();
1421 
1422     // In order to test TestResult, we need to modify its internal
1423     // state, in particular the TestPartResult vector it holds.
1424     // test_part_results() returns a const reference to this vector.
1425     // We cast it to a non-const object s.t. it can be modified
1426     TPRVector* results1 = const_cast<TPRVector*>(
1427         &TestResultAccessor::test_part_results(*r1));
1428     TPRVector* results2 = const_cast<TPRVector*>(
1429         &TestResultAccessor::test_part_results(*r2));
1430 
1431     // r0 is an empty TestResult.
1432 
1433     // r1 contains a single SUCCESS TestPartResult.
1434     results1->push_back(*pr1);
1435 
1436     // r2 contains a SUCCESS, and a FAILURE.
1437     results2->push_back(*pr1);
1438     results2->push_back(*pr2);
1439   }
1440 
TearDown()1441   void TearDown() override {
1442     delete pr1;
1443     delete pr2;
1444 
1445     delete r0;
1446     delete r1;
1447     delete r2;
1448   }
1449 
1450   // Helper that compares two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1451   static void CompareTestPartResult(const TestPartResult& expected,
1452                                     const TestPartResult& actual) {
1453     EXPECT_EQ(expected.type(), actual.type());
1454     EXPECT_STREQ(expected.file_name(), actual.file_name());
1455     EXPECT_EQ(expected.line_number(), actual.line_number());
1456     EXPECT_STREQ(expected.summary(), actual.summary());
1457     EXPECT_STREQ(expected.message(), actual.message());
1458     EXPECT_EQ(expected.passed(), actual.passed());
1459     EXPECT_EQ(expected.failed(), actual.failed());
1460     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1461     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1462   }
1463 };
1464 
1465 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1466 TEST_F(TestResultTest, total_part_count) {
1467   ASSERT_EQ(0, r0->total_part_count());
1468   ASSERT_EQ(1, r1->total_part_count());
1469   ASSERT_EQ(2, r2->total_part_count());
1470 }
1471 
1472 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1473 TEST_F(TestResultTest, Passed) {
1474   ASSERT_TRUE(r0->Passed());
1475   ASSERT_TRUE(r1->Passed());
1476   ASSERT_FALSE(r2->Passed());
1477 }
1478 
1479 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1480 TEST_F(TestResultTest, Failed) {
1481   ASSERT_FALSE(r0->Failed());
1482   ASSERT_FALSE(r1->Failed());
1483   ASSERT_TRUE(r2->Failed());
1484 }
1485 
1486 // Tests TestResult::GetTestPartResult().
1487 
1488 typedef TestResultTest TestResultDeathTest;
1489 
TEST_F(TestResultDeathTest,GetTestPartResult)1490 TEST_F(TestResultDeathTest, GetTestPartResult) {
1491   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1492   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1493   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1494   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1495 }
1496 
1497 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1498 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1499   TestResult test_result;
1500   ASSERT_EQ(0, test_result.test_property_count());
1501 }
1502 
1503 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1504 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1505   TestResult test_result;
1506   TestProperty property("key_1", "1");
1507   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1508   ASSERT_EQ(1, test_result.test_property_count());
1509   const TestProperty& actual_property = test_result.GetTestProperty(0);
1510   EXPECT_STREQ("key_1", actual_property.key());
1511   EXPECT_STREQ("1", actual_property.value());
1512 }
1513 
1514 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1515 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1516   TestResult test_result;
1517   TestProperty property_1("key_1", "1");
1518   TestProperty property_2("key_2", "2");
1519   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1520   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1521   ASSERT_EQ(2, test_result.test_property_count());
1522   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1523   EXPECT_STREQ("key_1", actual_property_1.key());
1524   EXPECT_STREQ("1", actual_property_1.value());
1525 
1526   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1527   EXPECT_STREQ("key_2", actual_property_2.key());
1528   EXPECT_STREQ("2", actual_property_2.value());
1529 }
1530 
1531 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1532 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1533   TestResult test_result;
1534   TestProperty property_1_1("key_1", "1");
1535   TestProperty property_2_1("key_2", "2");
1536   TestProperty property_1_2("key_1", "12");
1537   TestProperty property_2_2("key_2", "22");
1538   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1539   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1540   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1541   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1542 
1543   ASSERT_EQ(2, test_result.test_property_count());
1544   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1545   EXPECT_STREQ("key_1", actual_property_1.key());
1546   EXPECT_STREQ("12", actual_property_1.value());
1547 
1548   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1549   EXPECT_STREQ("key_2", actual_property_2.key());
1550   EXPECT_STREQ("22", actual_property_2.value());
1551 }
1552 
1553 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1554 TEST(TestResultPropertyTest, GetTestProperty) {
1555   TestResult test_result;
1556   TestProperty property_1("key_1", "1");
1557   TestProperty property_2("key_2", "2");
1558   TestProperty property_3("key_3", "3");
1559   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1560   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1561   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1562 
1563   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1564   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1565   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1566 
1567   EXPECT_STREQ("key_1", fetched_property_1.key());
1568   EXPECT_STREQ("1", fetched_property_1.value());
1569 
1570   EXPECT_STREQ("key_2", fetched_property_2.key());
1571   EXPECT_STREQ("2", fetched_property_2.value());
1572 
1573   EXPECT_STREQ("key_3", fetched_property_3.key());
1574   EXPECT_STREQ("3", fetched_property_3.value());
1575 
1576   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1577   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1578 }
1579 
1580 // Tests the Test class.
1581 //
1582 // It's difficult to test every public method of this class (we are
1583 // already stretching the limit of Google Test by using it to test itself!).
1584 // Fortunately, we don't have to do that, as we are already testing
1585 // the functionalities of the Test class extensively by using Google Test
1586 // alone.
1587 //
1588 // Therefore, this section only contains one test.
1589 
1590 // Tests that GTestFlagSaver works on Windows and Mac.
1591 
1592 class GTestFlagSaverTest : public Test {
1593  protected:
1594   // Saves the Google Test flags such that we can restore them later, and
1595   // then sets them to their default values.  This will be called
1596   // before the first test in this test case is run.
SetUpTestSuite()1597   static void SetUpTestSuite() {
1598     saver_ = new GTestFlagSaver;
1599 
1600     GTEST_FLAG(also_run_disabled_tests) = false;
1601     GTEST_FLAG(break_on_failure) = false;
1602     GTEST_FLAG(catch_exceptions) = false;
1603     GTEST_FLAG(death_test_use_fork) = false;
1604     GTEST_FLAG(color) = "auto";
1605     GTEST_FLAG(fail_fast) = false;
1606     GTEST_FLAG(filter) = "";
1607     GTEST_FLAG(list_tests) = false;
1608     GTEST_FLAG(output) = "";
1609     GTEST_FLAG(brief) = false;
1610     GTEST_FLAG(print_time) = true;
1611     GTEST_FLAG(random_seed) = 0;
1612     GTEST_FLAG(repeat) = 1;
1613     GTEST_FLAG(shuffle) = false;
1614     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1615     GTEST_FLAG(stream_result_to) = "";
1616     GTEST_FLAG(throw_on_failure) = false;
1617   }
1618 
1619   // Restores the Google Test flags that the tests have modified.  This will
1620   // be called after the last test in this test case is run.
TearDownTestSuite()1621   static void TearDownTestSuite() {
1622     delete saver_;
1623     saver_ = nullptr;
1624   }
1625 
1626   // Verifies that the Google Test flags have their default values, and then
1627   // modifies each of them.
VerifyAndModifyFlags()1628   void VerifyAndModifyFlags() {
1629     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1630     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1631     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1632     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1633     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1634     EXPECT_FALSE(GTEST_FLAG(fail_fast));
1635     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1636     EXPECT_FALSE(GTEST_FLAG(list_tests));
1637     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1638     EXPECT_FALSE(GTEST_FLAG(brief));
1639     EXPECT_TRUE(GTEST_FLAG(print_time));
1640     EXPECT_EQ(0, GTEST_FLAG(random_seed));
1641     EXPECT_EQ(1, GTEST_FLAG(repeat));
1642     EXPECT_FALSE(GTEST_FLAG(shuffle));
1643     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1644     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1645     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1646 
1647     GTEST_FLAG(also_run_disabled_tests) = true;
1648     GTEST_FLAG(break_on_failure) = true;
1649     GTEST_FLAG(catch_exceptions) = true;
1650     GTEST_FLAG(color) = "no";
1651     GTEST_FLAG(death_test_use_fork) = true;
1652     GTEST_FLAG(fail_fast) = true;
1653     GTEST_FLAG(filter) = "abc";
1654     GTEST_FLAG(list_tests) = true;
1655     GTEST_FLAG(output) = "xml:foo.xml";
1656     GTEST_FLAG(brief) = true;
1657     GTEST_FLAG(print_time) = false;
1658     GTEST_FLAG(random_seed) = 1;
1659     GTEST_FLAG(repeat) = 100;
1660     GTEST_FLAG(shuffle) = true;
1661     GTEST_FLAG(stack_trace_depth) = 1;
1662     GTEST_FLAG(stream_result_to) = "localhost:1234";
1663     GTEST_FLAG(throw_on_failure) = true;
1664   }
1665 
1666  private:
1667   // For saving Google Test flags during this test case.
1668   static GTestFlagSaver* saver_;
1669 };
1670 
1671 GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr;
1672 
1673 // Google Test doesn't guarantee the order of tests.  The following two
1674 // tests are designed to work regardless of their order.
1675 
1676 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1677 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1678   VerifyAndModifyFlags();
1679 }
1680 
1681 // Verifies that the Google Test flags in the body of the previous test were
1682 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1683 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1684   VerifyAndModifyFlags();
1685 }
1686 
1687 // Sets an environment variable with the given name to the given
1688 // value.  If the value argument is "", unsets the environment
1689 // variable.  The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1690 static void SetEnv(const char* name, const char* value) {
1691 #if GTEST_OS_WINDOWS_MOBILE
1692   // Environment variables are not supported on Windows CE.
1693   return;
1694 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1695   // C++Builder's putenv only stores a pointer to its parameter; we have to
1696   // ensure that the string remains valid as long as it might be needed.
1697   // We use an std::map to do so.
1698   static std::map<std::string, std::string*> added_env;
1699 
1700   // Because putenv stores a pointer to the string buffer, we can't delete the
1701   // previous string (if present) until after it's replaced.
1702   std::string *prev_env = NULL;
1703   if (added_env.find(name) != added_env.end()) {
1704     prev_env = added_env[name];
1705   }
1706   added_env[name] = new std::string(
1707       (Message() << name << "=" << value).GetString());
1708 
1709   // The standard signature of putenv accepts a 'char*' argument. Other
1710   // implementations, like C++Builder's, accept a 'const char*'.
1711   // We cast away the 'const' since that would work for both variants.
1712   putenv(const_cast<char*>(added_env[name]->c_str()));
1713   delete prev_env;
1714 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1715   _putenv((Message() << name << "=" << value).GetString().c_str());
1716 #else
1717   if (*value == '\0') {
1718     unsetenv(name);
1719   } else {
1720     setenv(name, value, 1);
1721   }
1722 #endif  // GTEST_OS_WINDOWS_MOBILE
1723 }
1724 
1725 #if !GTEST_OS_WINDOWS_MOBILE
1726 // Environment variables are not supported on Windows CE.
1727 
1728 using testing::internal::Int32FromGTestEnv;
1729 
1730 // Tests Int32FromGTestEnv().
1731 
1732 // Tests that Int32FromGTestEnv() returns the default value when the
1733 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1734 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1735   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1736   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1737 }
1738 
1739 # if !defined(GTEST_GET_INT32_FROM_ENV_)
1740 
1741 // Tests that Int32FromGTestEnv() returns the default value when the
1742 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1743 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1744   printf("(expecting 2 warnings)\n");
1745 
1746   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1747   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1748 
1749   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1750   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1751 }
1752 
1753 // Tests that Int32FromGTestEnv() returns the default value when the
1754 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1755 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1756   printf("(expecting 2 warnings)\n");
1757 
1758   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1759   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1760 
1761   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1762   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1763 }
1764 
1765 # endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
1766 
1767 // Tests that Int32FromGTestEnv() parses and returns the value of the
1768 // environment variable when it represents a valid decimal integer in
1769 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1770 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1771   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1772   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1773 
1774   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1775   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1776 }
1777 #endif  // !GTEST_OS_WINDOWS_MOBILE
1778 
1779 // Tests ParseInt32Flag().
1780 
1781 // Tests that ParseInt32Flag() returns false and doesn't change the
1782 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1783 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1784   int32_t value = 123;
1785   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1786   EXPECT_EQ(123, value);
1787 
1788   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1789   EXPECT_EQ(123, value);
1790 }
1791 
1792 // Tests that ParseInt32Flag() returns false and doesn't change the
1793 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1794 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1795   printf("(expecting 2 warnings)\n");
1796 
1797   int32_t value = 123;
1798   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1799   EXPECT_EQ(123, value);
1800 
1801   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1802   EXPECT_EQ(123, value);
1803 }
1804 
1805 // Tests that ParseInt32Flag() returns false and doesn't change the
1806 // output value when the flag does not represent a valid decimal
1807 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1808 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1809   printf("(expecting 2 warnings)\n");
1810 
1811   int32_t value = 123;
1812   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1813   EXPECT_EQ(123, value);
1814 
1815   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1816   EXPECT_EQ(123, value);
1817 }
1818 
1819 // Tests that ParseInt32Flag() parses the value of the flag and
1820 // returns true when the flag represents a valid decimal integer in
1821 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1822 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1823   int32_t value = 123;
1824   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1825   EXPECT_EQ(456, value);
1826 
1827   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
1828                              "abc", &value));
1829   EXPECT_EQ(-789, value);
1830 }
1831 
1832 // Tests that Int32FromEnvOrDie() parses the value of the var or
1833 // returns the correct default.
1834 // Environment variables are not supported on Windows CE.
1835 #if !GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1836 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1837   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1838   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1839   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1840   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1841   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1842 }
1843 #endif  // !GTEST_OS_WINDOWS_MOBILE
1844 
1845 // Tests that Int32FromEnvOrDie() aborts with an error message
1846 // if the variable is not an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1847 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1848   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1849   EXPECT_DEATH_IF_SUPPORTED(
1850       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1851       ".*");
1852 }
1853 
1854 // Tests that Int32FromEnvOrDie() aborts with an error message
1855 // if the variable cannot be represented by an int32_t.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1856 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1857   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1858   EXPECT_DEATH_IF_SUPPORTED(
1859       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1860       ".*");
1861 }
1862 
1863 // Tests that ShouldRunTestOnShard() selects all tests
1864 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1865 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1866   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1867   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1868   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1869   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1870   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1871 }
1872 
1873 class ShouldShardTest : public testing::Test {
1874  protected:
SetUp()1875   void SetUp() override {
1876     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1877     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1878   }
1879 
TearDown()1880   void TearDown() override {
1881     SetEnv(index_var_, "");
1882     SetEnv(total_var_, "");
1883   }
1884 
1885   const char* index_var_;
1886   const char* total_var_;
1887 };
1888 
1889 // Tests that sharding is disabled if neither of the environment variables
1890 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1891 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1892   SetEnv(index_var_, "");
1893   SetEnv(total_var_, "");
1894 
1895   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1896   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1897 }
1898 
1899 // Tests that sharding is not enabled if total_shards  == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1900 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1901   SetEnv(index_var_, "0");
1902   SetEnv(total_var_, "1");
1903   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1904   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1905 }
1906 
1907 // Tests that sharding is enabled if total_shards > 1 and
1908 // we are not in a death test subprocess.
1909 // Environment variables are not supported on Windows CE.
1910 #if !GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1911 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1912   SetEnv(index_var_, "4");
1913   SetEnv(total_var_, "22");
1914   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1915   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1916 
1917   SetEnv(index_var_, "8");
1918   SetEnv(total_var_, "9");
1919   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1920   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1921 
1922   SetEnv(index_var_, "0");
1923   SetEnv(total_var_, "9");
1924   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1925   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1926 }
1927 #endif  // !GTEST_OS_WINDOWS_MOBILE
1928 
1929 // Tests that we exit in error if the sharding values are not valid.
1930 
1931 typedef ShouldShardTest ShouldShardDeathTest;
1932 
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1933 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1934   SetEnv(index_var_, "4");
1935   SetEnv(total_var_, "4");
1936   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1937 
1938   SetEnv(index_var_, "4");
1939   SetEnv(total_var_, "-2");
1940   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1941 
1942   SetEnv(index_var_, "5");
1943   SetEnv(total_var_, "");
1944   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1945 
1946   SetEnv(index_var_, "");
1947   SetEnv(total_var_, "5");
1948   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1949 }
1950 
1951 // Tests that ShouldRunTestOnShard is a partition when 5
1952 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1953 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1954   // Choose an arbitrary number of tests and shards.
1955   const int num_tests = 17;
1956   const int num_shards = 5;
1957 
1958   // Check partitioning: each test should be on exactly 1 shard.
1959   for (int test_id = 0; test_id < num_tests; test_id++) {
1960     int prev_selected_shard_index = -1;
1961     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1962       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1963         if (prev_selected_shard_index < 0) {
1964           prev_selected_shard_index = shard_index;
1965         } else {
1966           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1967             << shard_index << " are both selected to run test " << test_id;
1968         }
1969       }
1970     }
1971   }
1972 
1973   // Check balance: This is not required by the sharding protocol, but is a
1974   // desirable property for performance.
1975   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1976     int num_tests_on_shard = 0;
1977     for (int test_id = 0; test_id < num_tests; test_id++) {
1978       num_tests_on_shard +=
1979         ShouldRunTestOnShard(num_shards, shard_index, test_id);
1980     }
1981     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1982   }
1983 }
1984 
1985 // For the same reason we are not explicitly testing everything in the
1986 // Test class, there are no separate tests for the following classes
1987 // (except for some trivial cases):
1988 //
1989 //   TestSuite, UnitTest, UnitTestResultPrinter.
1990 //
1991 // Similarly, there are no separate tests for the following macros:
1992 //
1993 //   TEST, TEST_F, RUN_ALL_TESTS
1994 
TEST(UnitTestTest,CanGetOriginalWorkingDir)1995 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1996   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr);
1997   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1998 }
1999 
TEST(UnitTestTest,ReturnsPlausibleTimestamp)2000 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
2001   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
2002   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
2003 }
2004 
2005 // When a property using a reserved key is supplied to this function, it
2006 // tests that a non-fatal failure is added, a fatal failure is not added,
2007 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)2008 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2009     const TestResult& test_result, const char* key) {
2010   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
2011   ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
2012                                                   << "' recorded unexpectedly.";
2013 }
2014 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)2015 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2016     const char* key) {
2017   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
2018   ASSERT_TRUE(test_info != nullptr);
2019   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
2020                                                         key);
2021 }
2022 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(const char * key)2023 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2024     const char* key) {
2025   const testing::TestSuite* test_suite =
2026       UnitTest::GetInstance()->current_test_suite();
2027   ASSERT_TRUE(test_suite != nullptr);
2028   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2029       test_suite->ad_hoc_test_result(), key);
2030 }
2031 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(const char * key)2032 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2033     const char* key) {
2034   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
2035       UnitTest::GetInstance()->ad_hoc_test_result(), key);
2036 }
2037 
2038 // Tests that property recording functions in UnitTest outside of tests
2039 // functions correcly.  Creating a separate instance of UnitTest ensures it
2040 // is in a state similar to the UnitTest's singleton's between tests.
2041 class UnitTestRecordPropertyTest :
2042     public testing::internal::UnitTestRecordPropertyTestHelper {
2043  public:
SetUpTestSuite()2044   static void SetUpTestSuite() {
2045     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2046         "disabled");
2047     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2048         "errors");
2049     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2050         "failures");
2051     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2052         "name");
2053     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2054         "tests");
2055     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite(
2056         "time");
2057 
2058     Test::RecordProperty("test_case_key_1", "1");
2059 
2060     const testing::TestSuite* test_suite =
2061         UnitTest::GetInstance()->current_test_suite();
2062 
2063     ASSERT_TRUE(test_suite != nullptr);
2064 
2065     ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count());
2066     EXPECT_STREQ("test_case_key_1",
2067                  test_suite->ad_hoc_test_result().GetTestProperty(0).key());
2068     EXPECT_STREQ("1",
2069                  test_suite->ad_hoc_test_result().GetTestProperty(0).value());
2070   }
2071 };
2072 
2073 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)2074 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2075   UnitTestRecordProperty("key_1", "1");
2076 
2077   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2078 
2079   EXPECT_STREQ("key_1",
2080                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2081   EXPECT_STREQ("1",
2082                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2083 }
2084 
2085 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2086 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2087   UnitTestRecordProperty("key_1", "1");
2088   UnitTestRecordProperty("key_2", "2");
2089 
2090   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2091 
2092   EXPECT_STREQ("key_1",
2093                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2094   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2095 
2096   EXPECT_STREQ("key_2",
2097                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2098   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2099 }
2100 
2101 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2102 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2103   UnitTestRecordProperty("key_1", "1");
2104   UnitTestRecordProperty("key_2", "2");
2105   UnitTestRecordProperty("key_1", "12");
2106   UnitTestRecordProperty("key_2", "22");
2107 
2108   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2109 
2110   EXPECT_STREQ("key_1",
2111                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2112   EXPECT_STREQ("12",
2113                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2114 
2115   EXPECT_STREQ("key_2",
2116                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2117   EXPECT_STREQ("22",
2118                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2119 }
2120 
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestSuiteReservedKeys)2121 TEST_F(UnitTestRecordPropertyTest,
2122        AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) {
2123   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2124       "name");
2125   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2126       "value_param");
2127   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2128       "type_param");
2129   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2130       "status");
2131   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2132       "time");
2133   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2134       "classname");
2135 }
2136 
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2137 TEST_F(UnitTestRecordPropertyTest,
2138        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2139   EXPECT_NONFATAL_FAILURE(
2140       Test::RecordProperty("name", "1"),
2141       "'classname', 'name', 'status', 'time', 'type_param', 'value_param',"
2142       " 'file', and 'line' are reserved");
2143 }
2144 
2145 class UnitTestRecordPropertyTestEnvironment : public Environment {
2146  public:
TearDown()2147   void TearDown() override {
2148     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2149         "tests");
2150     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2151         "failures");
2152     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2153         "disabled");
2154     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2155         "errors");
2156     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2157         "name");
2158     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2159         "timestamp");
2160     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2161         "time");
2162     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite(
2163         "random_seed");
2164   }
2165 };
2166 
2167 // This will test property recording outside of any test or test case.
2168 static Environment* record_property_env GTEST_ATTRIBUTE_UNUSED_ =
2169     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2170 
2171 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2172 // of various arities.  They do not attempt to be exhaustive.  Rather,
2173 // view them as smoke tests that can be easily reviewed and verified.
2174 // A more complete set of tests for predicate assertions can be found
2175 // in gtest_pred_impl_unittest.cc.
2176 
2177 // First, some predicates and predicate-formatters needed by the tests.
2178 
2179 // Returns true if and only if the argument is an even number.
IsEven(int n)2180 bool IsEven(int n) {
2181   return (n % 2) == 0;
2182 }
2183 
2184 // A functor that returns true if and only if the argument is an even number.
2185 struct IsEvenFunctor {
operator ()__anona388e2a90111::IsEvenFunctor2186   bool operator()(int n) { return IsEven(n); }
2187 };
2188 
2189 // A predicate-formatter function that asserts the argument is an even
2190 // number.
AssertIsEven(const char * expr,int n)2191 AssertionResult AssertIsEven(const char* expr, int n) {
2192   if (IsEven(n)) {
2193     return AssertionSuccess();
2194   }
2195 
2196   Message msg;
2197   msg << expr << " evaluates to " << n << ", which is not even.";
2198   return AssertionFailure(msg);
2199 }
2200 
2201 // A predicate function that returns AssertionResult for use in
2202 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2203 AssertionResult ResultIsEven(int n) {
2204   if (IsEven(n))
2205     return AssertionSuccess() << n << " is even";
2206   else
2207     return AssertionFailure() << n << " is odd";
2208 }
2209 
2210 // A predicate function that returns AssertionResult but gives no
2211 // explanation why it succeeds. Needed for testing that
2212 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2213 AssertionResult ResultIsEvenNoExplanation(int n) {
2214   if (IsEven(n))
2215     return AssertionSuccess();
2216   else
2217     return AssertionFailure() << n << " is odd";
2218 }
2219 
2220 // A predicate-formatter functor that asserts the argument is an even
2221 // number.
2222 struct AssertIsEvenFunctor {
operator ()__anona388e2a90111::AssertIsEvenFunctor2223   AssertionResult operator()(const char* expr, int n) {
2224     return AssertIsEven(expr, n);
2225   }
2226 };
2227 
2228 // Returns true if and only if the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2229 bool SumIsEven2(int n1, int n2) {
2230   return IsEven(n1 + n2);
2231 }
2232 
2233 // A functor that returns true if and only if the sum of the arguments is an
2234 // even number.
2235 struct SumIsEven3Functor {
operator ()__anona388e2a90111::SumIsEven3Functor2236   bool operator()(int n1, int n2, int n3) {
2237     return IsEven(n1 + n2 + n3);
2238   }
2239 };
2240 
2241 // A predicate-formatter function that asserts the sum of the
2242 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2243 AssertionResult AssertSumIsEven4(
2244     const char* e1, const char* e2, const char* e3, const char* e4,
2245     int n1, int n2, int n3, int n4) {
2246   const int sum = n1 + n2 + n3 + n4;
2247   if (IsEven(sum)) {
2248     return AssertionSuccess();
2249   }
2250 
2251   Message msg;
2252   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2253       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2254       << ") evaluates to " << sum << ", which is not even.";
2255   return AssertionFailure(msg);
2256 }
2257 
2258 // A predicate-formatter functor that asserts the sum of the arguments
2259 // is an even number.
2260 struct AssertSumIsEven5Functor {
operator ()__anona388e2a90111::AssertSumIsEven5Functor2261   AssertionResult operator()(
2262       const char* e1, const char* e2, const char* e3, const char* e4,
2263       const char* e5, int n1, int n2, int n3, int n4, int n5) {
2264     const int sum = n1 + n2 + n3 + n4 + n5;
2265     if (IsEven(sum)) {
2266       return AssertionSuccess();
2267     }
2268 
2269     Message msg;
2270     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2271         << " ("
2272         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2273         << ") evaluates to " << sum << ", which is not even.";
2274     return AssertionFailure(msg);
2275   }
2276 };
2277 
2278 
2279 // Tests unary predicate assertions.
2280 
2281 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2282 TEST(Pred1Test, WithoutFormat) {
2283   // Success cases.
2284   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2285   ASSERT_PRED1(IsEven, 4);
2286 
2287   // Failure cases.
2288   EXPECT_NONFATAL_FAILURE({  // NOLINT
2289     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2290   }, "This failure is expected.");
2291   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2292                        "evaluates to false");
2293 }
2294 
2295 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2296 TEST(Pred1Test, WithFormat) {
2297   // Success cases.
2298   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2299   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2300     << "This failure is UNEXPECTED!";
2301 
2302   // Failure cases.
2303   const int n = 5;
2304   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2305                           "n evaluates to 5, which is not even.");
2306   EXPECT_FATAL_FAILURE({  // NOLINT
2307     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2308   }, "This failure is expected.");
2309 }
2310 
2311 // Tests that unary predicate assertions evaluates their arguments
2312 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2313 TEST(Pred1Test, SingleEvaluationOnFailure) {
2314   // A success case.
2315   static int n = 0;
2316   EXPECT_PRED1(IsEven, n++);
2317   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2318 
2319   // A failure case.
2320   EXPECT_FATAL_FAILURE({  // NOLINT
2321     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2322         << "This failure is expected.";
2323   }, "This failure is expected.");
2324   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2325 }
2326 
2327 
2328 // Tests predicate assertions whose arity is >= 2.
2329 
2330 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2331 TEST(PredTest, WithoutFormat) {
2332   // Success cases.
2333   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2334   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2335 
2336   // Failure cases.
2337   const int n1 = 1;
2338   const int n2 = 2;
2339   EXPECT_NONFATAL_FAILURE({  // NOLINT
2340     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2341   }, "This failure is expected.");
2342   EXPECT_FATAL_FAILURE({  // NOLINT
2343     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2344   }, "evaluates to false");
2345 }
2346 
2347 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2348 TEST(PredTest, WithFormat) {
2349   // Success cases.
2350   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2351     "This failure is UNEXPECTED!";
2352   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2353 
2354   // Failure cases.
2355   const int n1 = 1;
2356   const int n2 = 2;
2357   const int n3 = 4;
2358   const int n4 = 6;
2359   EXPECT_NONFATAL_FAILURE({  // NOLINT
2360     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2361   }, "evaluates to 13, which is not even.");
2362   EXPECT_FATAL_FAILURE({  // NOLINT
2363     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2364         << "This failure is expected.";
2365   }, "This failure is expected.");
2366 }
2367 
2368 // Tests that predicate assertions evaluates their arguments
2369 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2370 TEST(PredTest, SingleEvaluationOnFailure) {
2371   // A success case.
2372   int n1 = 0;
2373   int n2 = 0;
2374   EXPECT_PRED2(SumIsEven2, n1++, n2++);
2375   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2376   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2377 
2378   // Another success case.
2379   n1 = n2 = 0;
2380   int n3 = 0;
2381   int n4 = 0;
2382   int n5 = 0;
2383   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2384                       n1++, n2++, n3++, n4++, n5++)
2385                         << "This failure is UNEXPECTED!";
2386   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2387   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2388   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2389   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2390   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2391 
2392   // A failure case.
2393   n1 = n2 = n3 = 0;
2394   EXPECT_NONFATAL_FAILURE({  // NOLINT
2395     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2396         << "This failure is expected.";
2397   }, "This failure is expected.");
2398   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2399   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2400   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2401 
2402   // Another failure case.
2403   n1 = n2 = n3 = n4 = 0;
2404   EXPECT_NONFATAL_FAILURE({  // NOLINT
2405     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2406   }, "evaluates to 1, which is not even.");
2407   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2408   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2409   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2410   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2411 }
2412 
2413 // Test predicate assertions for sets
TEST(PredTest,ExpectPredEvalFailure)2414 TEST(PredTest, ExpectPredEvalFailure) {
2415   std::set<int> set_a = {2, 1, 3, 4, 5};
2416   std::set<int> set_b = {0, 4, 8};
2417   const auto compare_sets = [] (std::set<int>, std::set<int>) { return false; };
2418   EXPECT_NONFATAL_FAILURE(
2419       EXPECT_PRED2(compare_sets, set_a, set_b),
2420       "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates "
2421       "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }");
2422 }
2423 
2424 // Some helper functions for testing using overloaded/template
2425 // functions with ASSERT_PREDn and EXPECT_PREDn.
2426 
IsPositive(double x)2427 bool IsPositive(double x) {
2428   return x > 0;
2429 }
2430 
2431 template <typename T>
IsNegative(T x)2432 bool IsNegative(T x) {
2433   return x < 0;
2434 }
2435 
2436 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2437 bool GreaterThan(T1 x1, T2 x2) {
2438   return x1 > x2;
2439 }
2440 
2441 // Tests that overloaded functions can be used in *_PRED* as long as
2442 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2443 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2444   // C++Builder requires C-style casts rather than static_cast.
2445   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
2446   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2447 }
2448 
2449 // Tests that template functions can be used in *_PRED* as long as
2450 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2451 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2452   EXPECT_PRED1(IsNegative<int>, -5);
2453   // Makes sure that we can handle templates with more than one
2454   // parameter.
2455   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2456 }
2457 
2458 
2459 // Some helper functions for testing using overloaded/template
2460 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2461 
IsPositiveFormat(const char *,int n)2462 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2463   return n > 0 ? AssertionSuccess() :
2464       AssertionFailure(Message() << "Failure");
2465 }
2466 
IsPositiveFormat(const char *,double x)2467 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2468   return x > 0 ? AssertionSuccess() :
2469       AssertionFailure(Message() << "Failure");
2470 }
2471 
2472 template <typename T>
IsNegativeFormat(const char *,T x)2473 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2474   return x < 0 ? AssertionSuccess() :
2475       AssertionFailure(Message() << "Failure");
2476 }
2477 
2478 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2479 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2480                              const T1& x1, const T2& x2) {
2481   return x1 == x2 ? AssertionSuccess() :
2482       AssertionFailure(Message() << "Failure");
2483 }
2484 
2485 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2486 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2487 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2488   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2489   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2490 }
2491 
2492 // Tests that template functions can be used in *_PRED_FORMAT* without
2493 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2494 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2495   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2496   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2497 }
2498 
2499 
2500 // Tests string assertions.
2501 
2502 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2503 TEST(StringAssertionTest, ASSERT_STREQ) {
2504   const char * const p1 = "good";
2505   ASSERT_STREQ(p1, p1);
2506 
2507   // Let p2 have the same content as p1, but be at a different address.
2508   const char p2[] = "good";
2509   ASSERT_STREQ(p1, p2);
2510 
2511   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2512                        "  \"bad\"\n  \"good\"");
2513 }
2514 
2515 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2516 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2517   ASSERT_STREQ(static_cast<const char*>(nullptr), nullptr);
2518   EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null");
2519 }
2520 
2521 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2522 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2523   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null");
2524 }
2525 
2526 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2527 TEST(StringAssertionTest, ASSERT_STRNE) {
2528   ASSERT_STRNE("hi", "Hi");
2529   ASSERT_STRNE("Hi", nullptr);
2530   ASSERT_STRNE(nullptr, "Hi");
2531   ASSERT_STRNE("", nullptr);
2532   ASSERT_STRNE(nullptr, "");
2533   ASSERT_STRNE("", "Hi");
2534   ASSERT_STRNE("Hi", "");
2535   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2536                        "\"Hi\" vs \"Hi\"");
2537 }
2538 
2539 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2540 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2541   ASSERT_STRCASEEQ("hi", "Hi");
2542   ASSERT_STRCASEEQ(static_cast<const char*>(nullptr), nullptr);
2543 
2544   ASSERT_STRCASEEQ("", "");
2545   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2546                        "Ignoring case");
2547 }
2548 
2549 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2550 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2551   ASSERT_STRCASENE("hi1", "Hi2");
2552   ASSERT_STRCASENE("Hi", nullptr);
2553   ASSERT_STRCASENE(nullptr, "Hi");
2554   ASSERT_STRCASENE("", nullptr);
2555   ASSERT_STRCASENE(nullptr, "");
2556   ASSERT_STRCASENE("", "Hi");
2557   ASSERT_STRCASENE("Hi", "");
2558   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2559                        "(ignoring case)");
2560 }
2561 
2562 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2563 TEST(StringAssertionTest, STREQ_Wide) {
2564   // NULL strings.
2565   ASSERT_STREQ(static_cast<const wchar_t*>(nullptr), nullptr);
2566 
2567   // Empty strings.
2568   ASSERT_STREQ(L"", L"");
2569 
2570   // Non-null vs NULL.
2571   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null");
2572 
2573   // Equal strings.
2574   EXPECT_STREQ(L"Hi", L"Hi");
2575 
2576   // Unequal strings.
2577   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2578                           "Abc");
2579 
2580   // Strings containing wide characters.
2581   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2582                           "abc");
2583 
2584   // The streaming variation.
2585   EXPECT_NONFATAL_FAILURE({  // NOLINT
2586     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2587   }, "Expected failure");
2588 }
2589 
2590 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2591 TEST(StringAssertionTest, STRNE_Wide) {
2592   // NULL strings.
2593   EXPECT_NONFATAL_FAILURE(
2594       {  // NOLINT
2595         EXPECT_STRNE(static_cast<const wchar_t*>(nullptr), nullptr);
2596       },
2597       "");
2598 
2599   // Empty strings.
2600   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2601                           "L\"\"");
2602 
2603   // Non-null vs NULL.
2604   ASSERT_STRNE(L"non-null", nullptr);
2605 
2606   // Equal strings.
2607   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2608                           "L\"Hi\"");
2609 
2610   // Unequal strings.
2611   EXPECT_STRNE(L"abc", L"Abc");
2612 
2613   // Strings containing wide characters.
2614   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2615                           "abc");
2616 
2617   // The streaming variation.
2618   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2619 }
2620 
2621 // Tests for ::testing::IsSubstring().
2622 
2623 // Tests that IsSubstring() returns the correct result when the input
2624 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2625 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2626   EXPECT_FALSE(IsSubstring("", "", nullptr, "a"));
2627   EXPECT_FALSE(IsSubstring("", "", "b", nullptr));
2628   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2629 
2630   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(nullptr), nullptr));
2631   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2632 }
2633 
2634 // Tests that IsSubstring() returns the correct result when the input
2635 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2636 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2637   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2638   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2639   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2640 
2641   EXPECT_TRUE(
2642       IsSubstring("", "", static_cast<const wchar_t*>(nullptr), nullptr));
2643   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2644 }
2645 
2646 // Tests that IsSubstring() generates the correct message when the input
2647 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2648 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2649   EXPECT_STREQ("Value of: needle_expr\n"
2650                "  Actual: \"needle\"\n"
2651                "Expected: a substring of haystack_expr\n"
2652                "Which is: \"haystack\"",
2653                IsSubstring("needle_expr", "haystack_expr",
2654                            "needle", "haystack").failure_message());
2655 }
2656 
2657 // Tests that IsSubstring returns the correct result when the input
2658 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2659 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2660   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2661   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2662 }
2663 
2664 #if GTEST_HAS_STD_WSTRING
2665 // Tests that IsSubstring returns the correct result when the input
2666 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2667 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2668   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2669   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2670 }
2671 
2672 // Tests that IsSubstring() generates the correct message when the input
2673 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2674 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2675   EXPECT_STREQ("Value of: needle_expr\n"
2676                "  Actual: L\"needle\"\n"
2677                "Expected: a substring of haystack_expr\n"
2678                "Which is: L\"haystack\"",
2679                IsSubstring(
2680                    "needle_expr", "haystack_expr",
2681                    ::std::wstring(L"needle"), L"haystack").failure_message());
2682 }
2683 
2684 #endif  // GTEST_HAS_STD_WSTRING
2685 
2686 // Tests for ::testing::IsNotSubstring().
2687 
2688 // Tests that IsNotSubstring() returns the correct result when the input
2689 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2690 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2691   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2692   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2693 }
2694 
2695 // Tests that IsNotSubstring() returns the correct result when the input
2696 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2697 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2698   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2699   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2700 }
2701 
2702 // Tests that IsNotSubstring() generates the correct message when the input
2703 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2704 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2705   EXPECT_STREQ("Value of: needle_expr\n"
2706                "  Actual: L\"needle\"\n"
2707                "Expected: not a substring of haystack_expr\n"
2708                "Which is: L\"two needles\"",
2709                IsNotSubstring(
2710                    "needle_expr", "haystack_expr",
2711                    L"needle", L"two needles").failure_message());
2712 }
2713 
2714 // Tests that IsNotSubstring returns the correct result when the input
2715 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2716 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2717   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2718   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2719 }
2720 
2721 // Tests that IsNotSubstring() generates the correct message when the input
2722 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2723 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2724   EXPECT_STREQ("Value of: needle_expr\n"
2725                "  Actual: \"needle\"\n"
2726                "Expected: not a substring of haystack_expr\n"
2727                "Which is: \"two needles\"",
2728                IsNotSubstring(
2729                    "needle_expr", "haystack_expr",
2730                    ::std::string("needle"), "two needles").failure_message());
2731 }
2732 
2733 #if GTEST_HAS_STD_WSTRING
2734 
2735 // Tests that IsNotSubstring returns the correct result when the input
2736 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2737 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2738   EXPECT_FALSE(
2739       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2740   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2741 }
2742 
2743 #endif  // GTEST_HAS_STD_WSTRING
2744 
2745 // Tests floating-point assertions.
2746 
2747 template <typename RawType>
2748 class FloatingPointTest : public Test {
2749  protected:
2750   // Pre-calculated numbers to be used by the tests.
2751   struct TestValues {
2752     RawType close_to_positive_zero;
2753     RawType close_to_negative_zero;
2754     RawType further_from_negative_zero;
2755 
2756     RawType close_to_one;
2757     RawType further_from_one;
2758 
2759     RawType infinity;
2760     RawType close_to_infinity;
2761     RawType further_from_infinity;
2762 
2763     RawType nan1;
2764     RawType nan2;
2765   };
2766 
2767   typedef typename testing::internal::FloatingPoint<RawType> Floating;
2768   typedef typename Floating::Bits Bits;
2769 
SetUp()2770   void SetUp() override {
2771     const uint32_t max_ulps = Floating::kMaxUlps;
2772 
2773     // The bits that represent 0.0.
2774     const Bits zero_bits = Floating(0).bits();
2775 
2776     // Makes some numbers close to 0.0.
2777     values_.close_to_positive_zero = Floating::ReinterpretBits(
2778         zero_bits + max_ulps/2);
2779     values_.close_to_negative_zero = -Floating::ReinterpretBits(
2780         zero_bits + max_ulps - max_ulps/2);
2781     values_.further_from_negative_zero = -Floating::ReinterpretBits(
2782         zero_bits + max_ulps + 1 - max_ulps/2);
2783 
2784     // The bits that represent 1.0.
2785     const Bits one_bits = Floating(1).bits();
2786 
2787     // Makes some numbers close to 1.0.
2788     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2789     values_.further_from_one = Floating::ReinterpretBits(
2790         one_bits + max_ulps + 1);
2791 
2792     // +infinity.
2793     values_.infinity = Floating::Infinity();
2794 
2795     // The bits that represent +infinity.
2796     const Bits infinity_bits = Floating(values_.infinity).bits();
2797 
2798     // Makes some numbers close to infinity.
2799     values_.close_to_infinity = Floating::ReinterpretBits(
2800         infinity_bits - max_ulps);
2801     values_.further_from_infinity = Floating::ReinterpretBits(
2802         infinity_bits - max_ulps - 1);
2803 
2804     // Makes some NAN's.  Sets the most significant bit of the fraction so that
2805     // our NaN's are quiet; trying to process a signaling NaN would raise an
2806     // exception if our environment enables floating point exceptions.
2807     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2808         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2809     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2810         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2811   }
2812 
TestSize()2813   void TestSize() {
2814     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2815   }
2816 
2817   static TestValues values_;
2818 };
2819 
2820 template <typename RawType>
2821 typename FloatingPointTest<RawType>::TestValues
2822     FloatingPointTest<RawType>::values_;
2823 
2824 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2825 typedef FloatingPointTest<float> FloatTest;
2826 
2827 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2828 TEST_F(FloatTest, Size) {
2829   TestSize();
2830 }
2831 
2832 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2833 TEST_F(FloatTest, Zeros) {
2834   EXPECT_FLOAT_EQ(0.0, -0.0);
2835   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2836                           "1.0");
2837   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2838                        "1.5");
2839 }
2840 
2841 // Tests comparing numbers close to 0.
2842 //
2843 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2844 // overflow occurs when comparing numbers whose absolute value is very
2845 // small.
TEST_F(FloatTest,AlmostZeros)2846 TEST_F(FloatTest, AlmostZeros) {
2847   // In C++Builder, names within local classes (such as used by
2848   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2849   // scoping class.  Use a static local alias as a workaround.
2850   // We use the assignment syntax since some compilers, like Sun Studio,
2851   // don't allow initializing references using construction syntax
2852   // (parentheses).
2853   static const FloatTest::TestValues& v = this->values_;
2854 
2855   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2856   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2857   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2858 
2859   EXPECT_FATAL_FAILURE({  // NOLINT
2860     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2861                     v.further_from_negative_zero);
2862   }, "v.further_from_negative_zero");
2863 }
2864 
2865 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2866 TEST_F(FloatTest, SmallDiff) {
2867   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2868   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2869                           "values_.further_from_one");
2870 }
2871 
2872 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2873 TEST_F(FloatTest, LargeDiff) {
2874   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2875                           "3.0");
2876 }
2877 
2878 // Tests comparing with infinity.
2879 //
2880 // This ensures that no overflow occurs when comparing numbers whose
2881 // absolute value is very large.
TEST_F(FloatTest,Infinity)2882 TEST_F(FloatTest, Infinity) {
2883   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2884   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2885   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2886                           "-values_.infinity");
2887 
2888   // This is interesting as the representations of infinity and nan1
2889   // are only 1 DLP apart.
2890   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2891                           "values_.nan1");
2892 }
2893 
2894 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2895 TEST_F(FloatTest, NaN) {
2896   // In C++Builder, names within local classes (such as used by
2897   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2898   // scoping class.  Use a static local alias as a workaround.
2899   // We use the assignment syntax since some compilers, like Sun Studio,
2900   // don't allow initializing references using construction syntax
2901   // (parentheses).
2902   static const FloatTest::TestValues& v = this->values_;
2903 
2904   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2905                           "v.nan1");
2906   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2907                           "v.nan2");
2908   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2909                           "v.nan1");
2910 
2911   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2912                        "v.infinity");
2913 }
2914 
2915 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2916 TEST_F(FloatTest, Reflexive) {
2917   EXPECT_FLOAT_EQ(0.0, 0.0);
2918   EXPECT_FLOAT_EQ(1.0, 1.0);
2919   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2920 }
2921 
2922 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2923 TEST_F(FloatTest, Commutative) {
2924   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2925   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2926 
2927   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2928   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2929                           "1.0");
2930 }
2931 
2932 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2933 TEST_F(FloatTest, EXPECT_NEAR) {
2934   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2935   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2936   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2937                           "The difference between 1.0f and 1.5f is 0.5, "
2938                           "which exceeds 0.25f");
2939 }
2940 
2941 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2942 TEST_F(FloatTest, ASSERT_NEAR) {
2943   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2944   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2945   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f),  // NOLINT
2946                        "The difference between 1.0f and 1.5f is 0.5, "
2947                        "which exceeds 0.25f");
2948 }
2949 
2950 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2951 TEST_F(FloatTest, FloatLESucceeds) {
2952   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2953   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2954 
2955   // or when val1 is greater than, but almost equals to, val2.
2956   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2957 }
2958 
2959 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2960 TEST_F(FloatTest, FloatLEFails) {
2961   // When val1 is greater than val2 by a large margin,
2962   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2963                           "(2.0f) <= (1.0f)");
2964 
2965   // or by a small yet non-negligible margin,
2966   EXPECT_NONFATAL_FAILURE({  // NOLINT
2967     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2968   }, "(values_.further_from_one) <= (1.0f)");
2969 
2970   EXPECT_NONFATAL_FAILURE({  // NOLINT
2971     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2972   }, "(values_.nan1) <= (values_.infinity)");
2973   EXPECT_NONFATAL_FAILURE({  // NOLINT
2974     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2975   }, "(-values_.infinity) <= (values_.nan1)");
2976   EXPECT_FATAL_FAILURE({  // NOLINT
2977     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2978   }, "(values_.nan1) <= (values_.nan1)");
2979 }
2980 
2981 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2982 typedef FloatingPointTest<double> DoubleTest;
2983 
2984 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)2985 TEST_F(DoubleTest, Size) {
2986   TestSize();
2987 }
2988 
2989 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)2990 TEST_F(DoubleTest, Zeros) {
2991   EXPECT_DOUBLE_EQ(0.0, -0.0);
2992   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2993                           "1.0");
2994   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
2995                        "1.0");
2996 }
2997 
2998 // Tests comparing numbers close to 0.
2999 //
3000 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
3001 // overflow occurs when comparing numbers whose absolute value is very
3002 // small.
TEST_F(DoubleTest,AlmostZeros)3003 TEST_F(DoubleTest, AlmostZeros) {
3004   // In C++Builder, names within local classes (such as used by
3005   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
3006   // scoping class.  Use a static local alias as a workaround.
3007   // We use the assignment syntax since some compilers, like Sun Studio,
3008   // don't allow initializing references using construction syntax
3009   // (parentheses).
3010   static const DoubleTest::TestValues& v = this->values_;
3011 
3012   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
3013   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
3014   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
3015 
3016   EXPECT_FATAL_FAILURE({  // NOLINT
3017     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
3018                      v.further_from_negative_zero);
3019   }, "v.further_from_negative_zero");
3020 }
3021 
3022 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)3023 TEST_F(DoubleTest, SmallDiff) {
3024   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
3025   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
3026                           "values_.further_from_one");
3027 }
3028 
3029 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)3030 TEST_F(DoubleTest, LargeDiff) {
3031   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
3032                           "3.0");
3033 }
3034 
3035 // Tests comparing with infinity.
3036 //
3037 // This ensures that no overflow occurs when comparing numbers whose
3038 // absolute value is very large.
TEST_F(DoubleTest,Infinity)3039 TEST_F(DoubleTest, Infinity) {
3040   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
3041   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
3042   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
3043                           "-values_.infinity");
3044 
3045   // This is interesting as the representations of infinity_ and nan1_
3046   // are only 1 DLP apart.
3047   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
3048                           "values_.nan1");
3049 }
3050 
3051 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)3052 TEST_F(DoubleTest, NaN) {
3053   static const DoubleTest::TestValues& v = this->values_;
3054 
3055   // Nokia's STLport crashes if we try to output infinity or NaN.
3056   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
3057                           "v.nan1");
3058   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3059   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3060   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3061                        "v.infinity");
3062 }
3063 
3064 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3065 TEST_F(DoubleTest, Reflexive) {
3066   EXPECT_DOUBLE_EQ(0.0, 0.0);
3067   EXPECT_DOUBLE_EQ(1.0, 1.0);
3068   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3069 }
3070 
3071 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3072 TEST_F(DoubleTest, Commutative) {
3073   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3074   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3075 
3076   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3077   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3078                           "1.0");
3079 }
3080 
3081 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3082 TEST_F(DoubleTest, EXPECT_NEAR) {
3083   EXPECT_NEAR(-1.0, -1.1, 0.2);
3084   EXPECT_NEAR(2.0, 3.0, 1.0);
3085   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3086                           "The difference between 1.0 and 1.5 is 0.5, "
3087                           "which exceeds 0.25");
3088   // At this magnitude adjacent doubles are 512.0 apart, so this triggers a
3089   // slightly different failure reporting path.
3090   EXPECT_NONFATAL_FAILURE(
3091       EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0),
3092       "The abs_error parameter 1.0 evaluates to 1 which is smaller than the "
3093       "minimum distance between doubles for numbers of this magnitude which is "
3094       "512");
3095 }
3096 
3097 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3098 TEST_F(DoubleTest, ASSERT_NEAR) {
3099   ASSERT_NEAR(-1.0, -1.1, 0.2);
3100   ASSERT_NEAR(2.0, 3.0, 1.0);
3101   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3102                        "The difference between 1.0 and 1.5 is 0.5, "
3103                        "which exceeds 0.25");
3104 }
3105 
3106 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3107 TEST_F(DoubleTest, DoubleLESucceeds) {
3108   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3109   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3110 
3111   // or when val1 is greater than, but almost equals to, val2.
3112   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3113 }
3114 
3115 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3116 TEST_F(DoubleTest, DoubleLEFails) {
3117   // When val1 is greater than val2 by a large margin,
3118   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3119                           "(2.0) <= (1.0)");
3120 
3121   // or by a small yet non-negligible margin,
3122   EXPECT_NONFATAL_FAILURE({  // NOLINT
3123     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3124   }, "(values_.further_from_one) <= (1.0)");
3125 
3126   EXPECT_NONFATAL_FAILURE({  // NOLINT
3127     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3128   }, "(values_.nan1) <= (values_.infinity)");
3129   EXPECT_NONFATAL_FAILURE({  // NOLINT
3130     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3131   }, " (-values_.infinity) <= (values_.nan1)");
3132   EXPECT_FATAL_FAILURE({  // NOLINT
3133     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3134   }, "(values_.nan1) <= (values_.nan1)");
3135 }
3136 
3137 
3138 // Verifies that a test or test case whose name starts with DISABLED_ is
3139 // not run.
3140 
3141 // A test whose name starts with DISABLED_.
3142 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3143 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3144   FAIL() << "Unexpected failure: Disabled test should not be run.";
3145 }
3146 
3147 // A test whose name does not start with DISABLED_.
3148 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3149 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3150   EXPECT_EQ(1, 1);
3151 }
3152 
3153 // A test case whose name starts with DISABLED_.
3154 // Should not run.
TEST(DISABLED_TestSuite,TestShouldNotRun)3155 TEST(DISABLED_TestSuite, TestShouldNotRun) {
3156   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3157 }
3158 
3159 // A test case and test whose names start with DISABLED_.
3160 // Should not run.
TEST(DISABLED_TestSuite,DISABLED_TestShouldNotRun)3161 TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) {
3162   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3163 }
3164 
3165 // Check that when all tests in a test case are disabled, SetUpTestSuite() and
3166 // TearDownTestSuite() are not called.
3167 class DisabledTestsTest : public Test {
3168  protected:
SetUpTestSuite()3169   static void SetUpTestSuite() {
3170     FAIL() << "Unexpected failure: All tests disabled in test case. "
3171               "SetUpTestSuite() should not be called.";
3172   }
3173 
TearDownTestSuite()3174   static void TearDownTestSuite() {
3175     FAIL() << "Unexpected failure: All tests disabled in test case. "
3176               "TearDownTestSuite() should not be called.";
3177   }
3178 };
3179 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3180 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3181   FAIL() << "Unexpected failure: Disabled test should not be run.";
3182 }
3183 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3184 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3185   FAIL() << "Unexpected failure: Disabled test should not be run.";
3186 }
3187 
3188 // Tests that disabled typed tests aren't run.
3189 
3190 #if GTEST_HAS_TYPED_TEST
3191 
3192 template <typename T>
3193 class TypedTest : public Test {
3194 };
3195 
3196 typedef testing::Types<int, double> NumericTypes;
3197 TYPED_TEST_SUITE(TypedTest, NumericTypes);
3198 
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3199 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3200   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3201 }
3202 
3203 template <typename T>
3204 class DISABLED_TypedTest : public Test {
3205 };
3206 
3207 TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes);
3208 
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3209 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3210   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3211 }
3212 
3213 #endif  // GTEST_HAS_TYPED_TEST
3214 
3215 // Tests that disabled type-parameterized tests aren't run.
3216 
3217 #if GTEST_HAS_TYPED_TEST_P
3218 
3219 template <typename T>
3220 class TypedTestP : public Test {
3221 };
3222 
3223 TYPED_TEST_SUITE_P(TypedTestP);
3224 
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3225 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3226   FAIL() << "Unexpected failure: "
3227          << "Disabled type-parameterized test should not run.";
3228 }
3229 
3230 REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun);
3231 
3232 INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes);
3233 
3234 template <typename T>
3235 class DISABLED_TypedTestP : public Test {
3236 };
3237 
3238 TYPED_TEST_SUITE_P(DISABLED_TypedTestP);
3239 
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3240 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3241   FAIL() << "Unexpected failure: "
3242          << "Disabled type-parameterized test should not run.";
3243 }
3244 
3245 REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun);
3246 
3247 INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes);
3248 
3249 #endif  // GTEST_HAS_TYPED_TEST_P
3250 
3251 // Tests that assertion macros evaluate their arguments exactly once.
3252 
3253 class SingleEvaluationTest : public Test {
3254  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3255   // This helper function is needed by the FailedASSERT_STREQ test
3256   // below.  It's public to work around C++Builder's bug with scoping local
3257   // classes.
CompareAndIncrementCharPtrs()3258   static void CompareAndIncrementCharPtrs() {
3259     ASSERT_STREQ(p1_++, p2_++);
3260   }
3261 
3262   // This helper function is needed by the FailedASSERT_NE test below.  It's
3263   // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3264   static void CompareAndIncrementInts() {
3265     ASSERT_NE(a_++, b_++);
3266   }
3267 
3268  protected:
SingleEvaluationTest()3269   SingleEvaluationTest() {
3270     p1_ = s1_;
3271     p2_ = s2_;
3272     a_ = 0;
3273     b_ = 0;
3274   }
3275 
3276   static const char* const s1_;
3277   static const char* const s2_;
3278   static const char* p1_;
3279   static const char* p2_;
3280 
3281   static int a_;
3282   static int b_;
3283 };
3284 
3285 const char* const SingleEvaluationTest::s1_ = "01234";
3286 const char* const SingleEvaluationTest::s2_ = "abcde";
3287 const char* SingleEvaluationTest::p1_;
3288 const char* SingleEvaluationTest::p2_;
3289 int SingleEvaluationTest::a_;
3290 int SingleEvaluationTest::b_;
3291 
3292 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3293 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3294 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3295   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3296                        "p2_++");
3297   EXPECT_EQ(s1_ + 1, p1_);
3298   EXPECT_EQ(s2_ + 1, p2_);
3299 }
3300 
3301 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3302 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3303   // successful EXPECT_STRNE
3304   EXPECT_STRNE(p1_++, p2_++);
3305   EXPECT_EQ(s1_ + 1, p1_);
3306   EXPECT_EQ(s2_ + 1, p2_);
3307 
3308   // failed EXPECT_STRCASEEQ
3309   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3310                           "Ignoring case");
3311   EXPECT_EQ(s1_ + 2, p1_);
3312   EXPECT_EQ(s2_ + 2, p2_);
3313 }
3314 
3315 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3316 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3317 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3318   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3319                        "(a_++) != (b_++)");
3320   EXPECT_EQ(1, a_);
3321   EXPECT_EQ(1, b_);
3322 }
3323 
3324 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3325 TEST_F(SingleEvaluationTest, OtherCases) {
3326   // successful EXPECT_TRUE
3327   EXPECT_TRUE(0 == a_++);  // NOLINT
3328   EXPECT_EQ(1, a_);
3329 
3330   // failed EXPECT_TRUE
3331   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3332   EXPECT_EQ(2, a_);
3333 
3334   // successful EXPECT_GT
3335   EXPECT_GT(a_++, b_++);
3336   EXPECT_EQ(3, a_);
3337   EXPECT_EQ(1, b_);
3338 
3339   // failed EXPECT_LT
3340   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3341   EXPECT_EQ(4, a_);
3342   EXPECT_EQ(2, b_);
3343 
3344   // successful ASSERT_TRUE
3345   ASSERT_TRUE(0 < a_++);  // NOLINT
3346   EXPECT_EQ(5, a_);
3347 
3348   // successful ASSERT_GT
3349   ASSERT_GT(a_++, b_++);
3350   EXPECT_EQ(6, a_);
3351   EXPECT_EQ(3, b_);
3352 }
3353 
3354 #if GTEST_HAS_EXCEPTIONS
3355 
3356 #if GTEST_HAS_RTTI
3357 
3358 #ifdef _MSC_VER
3359 #define ERROR_DESC "class std::runtime_error"
3360 #else
3361 #define ERROR_DESC "std::runtime_error"
3362 #endif
3363 
3364 #else  // GTEST_HAS_RTTI
3365 
3366 #define ERROR_DESC "an std::exception-derived error"
3367 
3368 #endif  // GTEST_HAS_RTTI
3369 
ThrowAnInteger()3370 void ThrowAnInteger() {
3371   throw 1;
3372 }
ThrowRuntimeError(const char * what)3373 void ThrowRuntimeError(const char* what) {
3374   throw std::runtime_error(what);
3375 }
3376 
3377 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3378 TEST_F(SingleEvaluationTest, ExceptionTests) {
3379   // successful EXPECT_THROW
3380   EXPECT_THROW({  // NOLINT
3381     a_++;
3382     ThrowAnInteger();
3383   }, int);
3384   EXPECT_EQ(1, a_);
3385 
3386   // failed EXPECT_THROW, throws different
3387   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3388     a_++;
3389     ThrowAnInteger();
3390   }, bool), "throws a different type");
3391   EXPECT_EQ(2, a_);
3392 
3393   // failed EXPECT_THROW, throws runtime error
3394   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3395     a_++;
3396     ThrowRuntimeError("A description");
3397   }, bool), "throws " ERROR_DESC " with description \"A description\"");
3398   EXPECT_EQ(3, a_);
3399 
3400   // failed EXPECT_THROW, throws nothing
3401   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3402   EXPECT_EQ(4, a_);
3403 
3404   // successful EXPECT_NO_THROW
3405   EXPECT_NO_THROW(a_++);
3406   EXPECT_EQ(5, a_);
3407 
3408   // failed EXPECT_NO_THROW
3409   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3410     a_++;
3411     ThrowAnInteger();
3412   }), "it throws");
3413   EXPECT_EQ(6, a_);
3414 
3415   // successful EXPECT_ANY_THROW
3416   EXPECT_ANY_THROW({  // NOLINT
3417     a_++;
3418     ThrowAnInteger();
3419   });
3420   EXPECT_EQ(7, a_);
3421 
3422   // failed EXPECT_ANY_THROW
3423   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3424   EXPECT_EQ(8, a_);
3425 }
3426 
3427 #endif  // GTEST_HAS_EXCEPTIONS
3428 
3429 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3430 class NoFatalFailureTest : public Test {
3431  protected:
Succeeds()3432   void Succeeds() {}
FailsNonFatal()3433   void FailsNonFatal() {
3434     ADD_FAILURE() << "some non-fatal failure";
3435   }
Fails()3436   void Fails() {
3437     FAIL() << "some fatal failure";
3438   }
3439 
DoAssertNoFatalFailureOnFails()3440   void DoAssertNoFatalFailureOnFails() {
3441     ASSERT_NO_FATAL_FAILURE(Fails());
3442     ADD_FAILURE() << "should not reach here.";
3443   }
3444 
DoExpectNoFatalFailureOnFails()3445   void DoExpectNoFatalFailureOnFails() {
3446     EXPECT_NO_FATAL_FAILURE(Fails());
3447     ADD_FAILURE() << "other failure";
3448   }
3449 };
3450 
TEST_F(NoFatalFailureTest,NoFailure)3451 TEST_F(NoFatalFailureTest, NoFailure) {
3452   EXPECT_NO_FATAL_FAILURE(Succeeds());
3453   ASSERT_NO_FATAL_FAILURE(Succeeds());
3454 }
3455 
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3456 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3457   EXPECT_NONFATAL_FAILURE(
3458       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3459       "some non-fatal failure");
3460   EXPECT_NONFATAL_FAILURE(
3461       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3462       "some non-fatal failure");
3463 }
3464 
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3465 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3466   TestPartResultArray gtest_failures;
3467   {
3468     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3469     DoAssertNoFatalFailureOnFails();
3470   }
3471   ASSERT_EQ(2, gtest_failures.size());
3472   EXPECT_EQ(TestPartResult::kFatalFailure,
3473             gtest_failures.GetTestPartResult(0).type());
3474   EXPECT_EQ(TestPartResult::kFatalFailure,
3475             gtest_failures.GetTestPartResult(1).type());
3476   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3477                       gtest_failures.GetTestPartResult(0).message());
3478   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3479                       gtest_failures.GetTestPartResult(1).message());
3480 }
3481 
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3482 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3483   TestPartResultArray gtest_failures;
3484   {
3485     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3486     DoExpectNoFatalFailureOnFails();
3487   }
3488   ASSERT_EQ(3, gtest_failures.size());
3489   EXPECT_EQ(TestPartResult::kFatalFailure,
3490             gtest_failures.GetTestPartResult(0).type());
3491   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3492             gtest_failures.GetTestPartResult(1).type());
3493   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3494             gtest_failures.GetTestPartResult(2).type());
3495   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3496                       gtest_failures.GetTestPartResult(0).message());
3497   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3498                       gtest_failures.GetTestPartResult(1).message());
3499   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3500                       gtest_failures.GetTestPartResult(2).message());
3501 }
3502 
TEST_F(NoFatalFailureTest,MessageIsStreamable)3503 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3504   TestPartResultArray gtest_failures;
3505   {
3506     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3507     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3508   }
3509   ASSERT_EQ(2, gtest_failures.size());
3510   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3511             gtest_failures.GetTestPartResult(0).type());
3512   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3513             gtest_failures.GetTestPartResult(1).type());
3514   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3515                       gtest_failures.GetTestPartResult(0).message());
3516   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3517                       gtest_failures.GetTestPartResult(1).message());
3518 }
3519 
3520 // Tests non-string assertions.
3521 
EditsToString(const std::vector<EditType> & edits)3522 std::string EditsToString(const std::vector<EditType>& edits) {
3523   std::string out;
3524   for (size_t i = 0; i < edits.size(); ++i) {
3525     static const char kEdits[] = " +-/";
3526     out.append(1, kEdits[edits[i]]);
3527   }
3528   return out;
3529 }
3530 
CharsToIndices(const std::string & str)3531 std::vector<size_t> CharsToIndices(const std::string& str) {
3532   std::vector<size_t> out;
3533   for (size_t i = 0; i < str.size(); ++i) {
3534     out.push_back(static_cast<size_t>(str[i]));
3535   }
3536   return out;
3537 }
3538 
CharsToLines(const std::string & str)3539 std::vector<std::string> CharsToLines(const std::string& str) {
3540   std::vector<std::string> out;
3541   for (size_t i = 0; i < str.size(); ++i) {
3542     out.push_back(str.substr(i, 1));
3543   }
3544   return out;
3545 }
3546 
TEST(EditDistance,TestSuites)3547 TEST(EditDistance, TestSuites) {
3548   struct Case {
3549     int line;
3550     const char* left;
3551     const char* right;
3552     const char* expected_edits;
3553     const char* expected_diff;
3554   };
3555   static const Case kCases[] = {
3556       // No change.
3557       {__LINE__, "A", "A", " ", ""},
3558       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
3559       // Simple adds.
3560       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3561       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3562       // Simple removes.
3563       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3564       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3565       // Simple replaces.
3566       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3567       {__LINE__, "ABCD", "abcd", "////",
3568        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3569       // Path finding.
3570       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
3571        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3572       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
3573        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3574       {__LINE__, "ABCDE", "BCDCD", "-   +/",
3575        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3576       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
3577        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3578        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3579       {}};
3580   for (const Case* c = kCases; c->left; ++c) {
3581     EXPECT_TRUE(c->expected_edits ==
3582                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3583                                                     CharsToIndices(c->right))))
3584         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3585         << EditsToString(CalculateOptimalEdits(
3586                CharsToIndices(c->left), CharsToIndices(c->right))) << ">";
3587     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3588                                                       CharsToLines(c->right)))
3589         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3590         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3591         << ">";
3592   }
3593 }
3594 
3595 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3596 TEST(AssertionTest, EqFailure) {
3597   const std::string foo_val("5"), bar_val("6");
3598   const std::string msg1(
3599       EqFailure("foo", "bar", foo_val, bar_val, false)
3600       .failure_message());
3601   EXPECT_STREQ(
3602       "Expected equality of these values:\n"
3603       "  foo\n"
3604       "    Which is: 5\n"
3605       "  bar\n"
3606       "    Which is: 6",
3607       msg1.c_str());
3608 
3609   const std::string msg2(
3610       EqFailure("foo", "6", foo_val, bar_val, false)
3611       .failure_message());
3612   EXPECT_STREQ(
3613       "Expected equality of these values:\n"
3614       "  foo\n"
3615       "    Which is: 5\n"
3616       "  6",
3617       msg2.c_str());
3618 
3619   const std::string msg3(
3620       EqFailure("5", "bar", foo_val, bar_val, false)
3621       .failure_message());
3622   EXPECT_STREQ(
3623       "Expected equality of these values:\n"
3624       "  5\n"
3625       "  bar\n"
3626       "    Which is: 6",
3627       msg3.c_str());
3628 
3629   const std::string msg4(
3630       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3631   EXPECT_STREQ(
3632       "Expected equality of these values:\n"
3633       "  5\n"
3634       "  6",
3635       msg4.c_str());
3636 
3637   const std::string msg5(
3638       EqFailure("foo", "bar",
3639                 std::string("\"x\""), std::string("\"y\""),
3640                 true).failure_message());
3641   EXPECT_STREQ(
3642       "Expected equality of these values:\n"
3643       "  foo\n"
3644       "    Which is: \"x\"\n"
3645       "  bar\n"
3646       "    Which is: \"y\"\n"
3647       "Ignoring case",
3648       msg5.c_str());
3649 }
3650 
TEST(AssertionTest,EqFailureWithDiff)3651 TEST(AssertionTest, EqFailureWithDiff) {
3652   const std::string left(
3653       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3654   const std::string right(
3655       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3656   const std::string msg1(
3657       EqFailure("left", "right", left, right, false).failure_message());
3658   EXPECT_STREQ(
3659       "Expected equality of these values:\n"
3660       "  left\n"
3661       "    Which is: "
3662       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3663       "  right\n"
3664       "    Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3665       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3666       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3667       msg1.c_str());
3668 }
3669 
3670 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3671 TEST(AssertionTest, AppendUserMessage) {
3672   const std::string foo("foo");
3673 
3674   Message msg;
3675   EXPECT_STREQ("foo",
3676                AppendUserMessage(foo, msg).c_str());
3677 
3678   msg << "bar";
3679   EXPECT_STREQ("foo\nbar",
3680                AppendUserMessage(foo, msg).c_str());
3681 }
3682 
3683 #ifdef __BORLANDC__
3684 // Silences warnings: "Condition is always true", "Unreachable code"
3685 # pragma option push -w-ccc -w-rch
3686 #endif
3687 
3688 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3689 TEST(AssertionTest, ASSERT_TRUE) {
3690   ASSERT_TRUE(2 > 1);  // NOLINT
3691   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3692                        "2 < 1");
3693 }
3694 
3695 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3696 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3697   ASSERT_TRUE(ResultIsEven(2));
3698 #ifndef __BORLANDC__
3699   // ICE's in C++Builder.
3700   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3701                        "Value of: ResultIsEven(3)\n"
3702                        "  Actual: false (3 is odd)\n"
3703                        "Expected: true");
3704 #endif
3705   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3706   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3707                        "Value of: ResultIsEvenNoExplanation(3)\n"
3708                        "  Actual: false (3 is odd)\n"
3709                        "Expected: true");
3710 }
3711 
3712 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3713 TEST(AssertionTest, ASSERT_FALSE) {
3714   ASSERT_FALSE(2 < 1);  // NOLINT
3715   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3716                        "Value of: 2 > 1\n"
3717                        "  Actual: true\n"
3718                        "Expected: false");
3719 }
3720 
3721 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3722 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3723   ASSERT_FALSE(ResultIsEven(3));
3724 #ifndef __BORLANDC__
3725   // ICE's in C++Builder.
3726   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3727                        "Value of: ResultIsEven(2)\n"
3728                        "  Actual: true (2 is even)\n"
3729                        "Expected: false");
3730 #endif
3731   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3732   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3733                        "Value of: ResultIsEvenNoExplanation(2)\n"
3734                        "  Actual: true\n"
3735                        "Expected: false");
3736 }
3737 
3738 #ifdef __BORLANDC__
3739 // Restores warnings after previous "#pragma option push" suppressed them
3740 # pragma option pop
3741 #endif
3742 
3743 // Tests using ASSERT_EQ on double values.  The purpose is to make
3744 // sure that the specialization we did for integer and anonymous enums
3745 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3746 TEST(ExpectTest, ASSERT_EQ_Double) {
3747   // A success.
3748   ASSERT_EQ(5.6, 5.6);
3749 
3750   // A failure.
3751   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3752                        "5.1");
3753 }
3754 
3755 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3756 TEST(AssertionTest, ASSERT_EQ) {
3757   ASSERT_EQ(5, 2 + 3);
3758   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3759                        "Expected equality of these values:\n"
3760                        "  5\n"
3761                        "  2*3\n"
3762                        "    Which is: 6");
3763 }
3764 
3765 // Tests ASSERT_EQ(NULL, pointer).
TEST(AssertionTest,ASSERT_EQ_NULL)3766 TEST(AssertionTest, ASSERT_EQ_NULL) {
3767   // A success.
3768   const char* p = nullptr;
3769   ASSERT_EQ(nullptr, p);
3770 
3771   // A failure.
3772   static int n = 0;
3773   EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), "  &n\n    Which is:");
3774 }
3775 
3776 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3777 // treated as a null pointer by the compiler, we need to make sure
3778 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3779 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3780 TEST(ExpectTest, ASSERT_EQ_0) {
3781   int n = 0;
3782 
3783   // A success.
3784   ASSERT_EQ(0, n);
3785 
3786   // A failure.
3787   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3788                        "  0\n  5.6");
3789 }
3790 
3791 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3792 TEST(AssertionTest, ASSERT_NE) {
3793   ASSERT_NE(6, 7);
3794   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3795                        "Expected: ('a') != ('a'), "
3796                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3797 }
3798 
3799 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3800 TEST(AssertionTest, ASSERT_LE) {
3801   ASSERT_LE(2, 3);
3802   ASSERT_LE(2, 2);
3803   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3804                        "Expected: (2) <= (0), actual: 2 vs 0");
3805 }
3806 
3807 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3808 TEST(AssertionTest, ASSERT_LT) {
3809   ASSERT_LT(2, 3);
3810   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3811                        "Expected: (2) < (2), actual: 2 vs 2");
3812 }
3813 
3814 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3815 TEST(AssertionTest, ASSERT_GE) {
3816   ASSERT_GE(2, 1);
3817   ASSERT_GE(2, 2);
3818   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3819                        "Expected: (2) >= (3), actual: 2 vs 3");
3820 }
3821 
3822 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3823 TEST(AssertionTest, ASSERT_GT) {
3824   ASSERT_GT(2, 1);
3825   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3826                        "Expected: (2) > (2), actual: 2 vs 2");
3827 }
3828 
3829 #if GTEST_HAS_EXCEPTIONS
3830 
ThrowNothing()3831 void ThrowNothing() {}
3832 
3833 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3834 TEST(AssertionTest, ASSERT_THROW) {
3835   ASSERT_THROW(ThrowAnInteger(), int);
3836 
3837 # ifndef __BORLANDC__
3838 
3839   // ICE's in C++Builder 2007 and 2009.
3840   EXPECT_FATAL_FAILURE(
3841       ASSERT_THROW(ThrowAnInteger(), bool),
3842       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3843       "  Actual: it throws a different type.");
3844   EXPECT_FATAL_FAILURE(
3845       ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error),
3846       "Expected: ThrowRuntimeError(\"A description\") "
3847       "throws an exception of type std::logic_error.\n  "
3848       "Actual: it throws " ERROR_DESC " "
3849       "with description \"A description\".");
3850 # endif
3851 
3852   EXPECT_FATAL_FAILURE(
3853       ASSERT_THROW(ThrowNothing(), bool),
3854       "Expected: ThrowNothing() throws an exception of type bool.\n"
3855       "  Actual: it throws nothing.");
3856 }
3857 
3858 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3859 TEST(AssertionTest, ASSERT_NO_THROW) {
3860   ASSERT_NO_THROW(ThrowNothing());
3861   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3862                        "Expected: ThrowAnInteger() doesn't throw an exception."
3863                        "\n  Actual: it throws.");
3864   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")),
3865                        "Expected: ThrowRuntimeError(\"A description\") "
3866                        "doesn't throw an exception.\n  "
3867                        "Actual: it throws " ERROR_DESC " "
3868                        "with description \"A description\".");
3869 }
3870 
3871 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3872 TEST(AssertionTest, ASSERT_ANY_THROW) {
3873   ASSERT_ANY_THROW(ThrowAnInteger());
3874   EXPECT_FATAL_FAILURE(
3875       ASSERT_ANY_THROW(ThrowNothing()),
3876       "Expected: ThrowNothing() throws an exception.\n"
3877       "  Actual: it doesn't.");
3878 }
3879 
3880 #endif  // GTEST_HAS_EXCEPTIONS
3881 
3882 // Makes sure we deal with the precedence of <<.  This test should
3883 // compile.
TEST(AssertionTest,AssertPrecedence)3884 TEST(AssertionTest, AssertPrecedence) {
3885   ASSERT_EQ(1 < 2, true);
3886   bool false_value = false;
3887   ASSERT_EQ(true && false_value, false);
3888 }
3889 
3890 // A subroutine used by the following test.
TestEq1(int x)3891 void TestEq1(int x) {
3892   ASSERT_EQ(1, x);
3893 }
3894 
3895 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3896 TEST(AssertionTest, NonFixtureSubroutine) {
3897   EXPECT_FATAL_FAILURE(TestEq1(2),
3898                        "  x\n    Which is: 2");
3899 }
3900 
3901 // An uncopyable class.
3902 class Uncopyable {
3903  public:
Uncopyable(int a_value)3904   explicit Uncopyable(int a_value) : value_(a_value) {}
3905 
value() const3906   int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3907   bool operator==(const Uncopyable& rhs) const {
3908     return value() == rhs.value();
3909   }
3910  private:
3911   // This constructor deliberately has no implementation, as we don't
3912   // want this class to be copyable.
3913   Uncopyable(const Uncopyable&);  // NOLINT
3914 
3915   int value_;
3916 };
3917 
operator <<(::std::ostream & os,const Uncopyable & value)3918 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3919   return os << value.value();
3920 }
3921 
3922 
IsPositiveUncopyable(const Uncopyable & x)3923 bool IsPositiveUncopyable(const Uncopyable& x) {
3924   return x.value() > 0;
3925 }
3926 
3927 // A subroutine used by the following test.
TestAssertNonPositive()3928 void TestAssertNonPositive() {
3929   Uncopyable y(-1);
3930   ASSERT_PRED1(IsPositiveUncopyable, y);
3931 }
3932 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3933 void TestAssertEqualsUncopyable() {
3934   Uncopyable x(5);
3935   Uncopyable y(-1);
3936   ASSERT_EQ(x, y);
3937 }
3938 
3939 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3940 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3941   Uncopyable x(5);
3942   ASSERT_PRED1(IsPositiveUncopyable, x);
3943   ASSERT_EQ(x, x);
3944   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3945     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3946   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3947                        "Expected equality of these values:\n"
3948                        "  x\n    Which is: 5\n  y\n    Which is: -1");
3949 }
3950 
3951 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3952 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3953   Uncopyable x(5);
3954   EXPECT_PRED1(IsPositiveUncopyable, x);
3955   Uncopyable y(-1);
3956   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3957     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3958   EXPECT_EQ(x, x);
3959   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3960                           "Expected equality of these values:\n"
3961                           "  x\n    Which is: 5\n  y\n    Which is: -1");
3962 }
3963 
3964 enum NamedEnum {
3965   kE1 = 0,
3966   kE2 = 1
3967 };
3968 
TEST(AssertionTest,NamedEnum)3969 TEST(AssertionTest, NamedEnum) {
3970   EXPECT_EQ(kE1, kE1);
3971   EXPECT_LT(kE1, kE2);
3972   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3973   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
3974 }
3975 
3976 // Sun Studio and HP aCC2reject this code.
3977 #if !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3978 
3979 // Tests using assertions with anonymous enums.
3980 enum {
3981   kCaseA = -1,
3982 
3983 # if GTEST_OS_LINUX
3984 
3985   // We want to test the case where the size of the anonymous enum is
3986   // larger than sizeof(int), to make sure our implementation of the
3987   // assertions doesn't truncate the enums.  However, MSVC
3988   // (incorrectly) doesn't allow an enum value to exceed the range of
3989   // an int, so this has to be conditionally compiled.
3990   //
3991   // On Linux, kCaseB and kCaseA have the same value when truncated to
3992   // int size.  We want to test whether this will confuse the
3993   // assertions.
3994   kCaseB = testing::internal::kMaxBiggestInt,
3995 
3996 # else
3997 
3998   kCaseB = INT_MAX,
3999 
4000 # endif  // GTEST_OS_LINUX
4001 
4002   kCaseC = 42
4003 };
4004 
TEST(AssertionTest,AnonymousEnum)4005 TEST(AssertionTest, AnonymousEnum) {
4006 # if GTEST_OS_LINUX
4007 
4008   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
4009 
4010 # endif  // GTEST_OS_LINUX
4011 
4012   EXPECT_EQ(kCaseA, kCaseA);
4013   EXPECT_NE(kCaseA, kCaseB);
4014   EXPECT_LT(kCaseA, kCaseB);
4015   EXPECT_LE(kCaseA, kCaseB);
4016   EXPECT_GT(kCaseB, kCaseA);
4017   EXPECT_GE(kCaseA, kCaseA);
4018   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
4019                           "(kCaseA) >= (kCaseB)");
4020   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
4021                           "-1 vs 42");
4022 
4023   ASSERT_EQ(kCaseA, kCaseA);
4024   ASSERT_NE(kCaseA, kCaseB);
4025   ASSERT_LT(kCaseA, kCaseB);
4026   ASSERT_LE(kCaseA, kCaseB);
4027   ASSERT_GT(kCaseB, kCaseA);
4028   ASSERT_GE(kCaseA, kCaseA);
4029 
4030 # ifndef __BORLANDC__
4031 
4032   // ICE's in C++Builder.
4033   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
4034                        "  kCaseB\n    Which is: ");
4035   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
4036                        "\n    Which is: 42");
4037 # endif
4038 
4039   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
4040                        "\n    Which is: -1");
4041 }
4042 
4043 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
4044 
4045 #if GTEST_OS_WINDOWS
4046 
UnexpectedHRESULTFailure()4047 static HRESULT UnexpectedHRESULTFailure() {
4048   return E_UNEXPECTED;
4049 }
4050 
OkHRESULTSuccess()4051 static HRESULT OkHRESULTSuccess() {
4052   return S_OK;
4053 }
4054 
FalseHRESULTSuccess()4055 static HRESULT FalseHRESULTSuccess() {
4056   return S_FALSE;
4057 }
4058 
4059 // HRESULT assertion tests test both zero and non-zero
4060 // success codes as well as failure message for each.
4061 //
4062 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)4063 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
4064   EXPECT_HRESULT_SUCCEEDED(S_OK);
4065   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
4066 
4067   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4068     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4069     "  Actual: 0x8000FFFF");
4070 }
4071 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)4072 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
4073   ASSERT_HRESULT_SUCCEEDED(S_OK);
4074   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
4075 
4076   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
4077     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
4078     "  Actual: 0x8000FFFF");
4079 }
4080 
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)4081 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4082   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4083 
4084   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4085     "Expected: (OkHRESULTSuccess()) fails.\n"
4086     "  Actual: 0x0");
4087   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4088     "Expected: (FalseHRESULTSuccess()) fails.\n"
4089     "  Actual: 0x1");
4090 }
4091 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)4092 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4093   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4094 
4095 # ifndef __BORLANDC__
4096 
4097   // ICE's in C++Builder 2007 and 2009.
4098   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4099     "Expected: (OkHRESULTSuccess()) fails.\n"
4100     "  Actual: 0x0");
4101 # endif
4102 
4103   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4104     "Expected: (FalseHRESULTSuccess()) fails.\n"
4105     "  Actual: 0x1");
4106 }
4107 
4108 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)4109 TEST(HRESULTAssertionTest, Streaming) {
4110   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4111   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4112   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4113   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4114 
4115   EXPECT_NONFATAL_FAILURE(
4116       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4117       "expected failure");
4118 
4119 # ifndef __BORLANDC__
4120 
4121   // ICE's in C++Builder 2007 and 2009.
4122   EXPECT_FATAL_FAILURE(
4123       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4124       "expected failure");
4125 # endif
4126 
4127   EXPECT_NONFATAL_FAILURE(
4128       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4129       "expected failure");
4130 
4131   EXPECT_FATAL_FAILURE(
4132       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4133       "expected failure");
4134 }
4135 
4136 #endif  // GTEST_OS_WINDOWS
4137 
4138 // The following code intentionally tests a suboptimal syntax.
4139 #ifdef __GNUC__
4140 #pragma GCC diagnostic push
4141 #pragma GCC diagnostic ignored "-Wdangling-else"
4142 #pragma GCC diagnostic ignored "-Wempty-body"
4143 #pragma GCC diagnostic ignored "-Wpragmas"
4144 #endif
4145 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)4146 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4147   if (AlwaysFalse())
4148     ASSERT_TRUE(false) << "This should never be executed; "
4149                           "It's a compilation test only.";
4150 
4151   if (AlwaysTrue())
4152     EXPECT_FALSE(false);
4153   else
4154     ;  // NOLINT
4155 
4156   if (AlwaysFalse())
4157     ASSERT_LT(1, 3);
4158 
4159   if (AlwaysFalse())
4160     ;  // NOLINT
4161   else
4162     EXPECT_GT(3, 2) << "";
4163 }
4164 #ifdef __GNUC__
4165 #pragma GCC diagnostic pop
4166 #endif
4167 
4168 #if GTEST_HAS_EXCEPTIONS
4169 // Tests that the compiler will not complain about unreachable code in the
4170 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4171 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4172   int n = 0;
4173 
4174   EXPECT_THROW(throw 1, int);
4175   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4176   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4177   EXPECT_NO_THROW(n++);
4178   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4179   EXPECT_ANY_THROW(throw 1);
4180   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4181 }
4182 
TEST(ExpectThrowTest,DoesNotGenerateDuplicateCatchClauseWarning)4183 TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) {
4184   EXPECT_THROW(throw std::exception(), std::exception);
4185 }
4186 
4187 // The following code intentionally tests a suboptimal syntax.
4188 #ifdef __GNUC__
4189 #pragma GCC diagnostic push
4190 #pragma GCC diagnostic ignored "-Wdangling-else"
4191 #pragma GCC diagnostic ignored "-Wempty-body"
4192 #pragma GCC diagnostic ignored "-Wpragmas"
4193 #endif
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4194 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4195   if (AlwaysFalse())
4196     EXPECT_THROW(ThrowNothing(), bool);
4197 
4198   if (AlwaysTrue())
4199     EXPECT_THROW(ThrowAnInteger(), int);
4200   else
4201     ;  // NOLINT
4202 
4203   if (AlwaysFalse())
4204     EXPECT_NO_THROW(ThrowAnInteger());
4205 
4206   if (AlwaysTrue())
4207     EXPECT_NO_THROW(ThrowNothing());
4208   else
4209     ;  // NOLINT
4210 
4211   if (AlwaysFalse())
4212     EXPECT_ANY_THROW(ThrowNothing());
4213 
4214   if (AlwaysTrue())
4215     EXPECT_ANY_THROW(ThrowAnInteger());
4216   else
4217     ;  // NOLINT
4218 }
4219 #ifdef __GNUC__
4220 #pragma GCC diagnostic pop
4221 #endif
4222 
4223 #endif  // GTEST_HAS_EXCEPTIONS
4224 
4225 // The following code intentionally tests a suboptimal syntax.
4226 #ifdef __GNUC__
4227 #pragma GCC diagnostic push
4228 #pragma GCC diagnostic ignored "-Wdangling-else"
4229 #pragma GCC diagnostic ignored "-Wempty-body"
4230 #pragma GCC diagnostic ignored "-Wpragmas"
4231 #endif
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4232 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4233   if (AlwaysFalse())
4234     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4235                                     << "It's a compilation test only.";
4236   else
4237     ;  // NOLINT
4238 
4239   if (AlwaysFalse())
4240     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4241   else
4242     ;  // NOLINT
4243 
4244   if (AlwaysTrue())
4245     EXPECT_NO_FATAL_FAILURE(SUCCEED());
4246   else
4247     ;  // NOLINT
4248 
4249   if (AlwaysFalse())
4250     ;  // NOLINT
4251   else
4252     ASSERT_NO_FATAL_FAILURE(SUCCEED());
4253 }
4254 #ifdef __GNUC__
4255 #pragma GCC diagnostic pop
4256 #endif
4257 
4258 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4259 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4260   switch (0) {
4261     case 1:
4262       break;
4263     default:
4264       ASSERT_TRUE(true);
4265   }
4266 
4267   switch (0)
4268     case 0:
4269       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4270 
4271   // Binary assertions are implemented using a different code path
4272   // than the Boolean assertions.  Hence we test them separately.
4273   switch (0) {
4274     case 1:
4275     default:
4276       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4277   }
4278 
4279   switch (0)
4280     case 0:
4281       EXPECT_NE(1, 2);
4282 }
4283 
4284 #if GTEST_HAS_EXCEPTIONS
4285 
ThrowAString()4286 void ThrowAString() {
4287     throw "std::string";
4288 }
4289 
4290 // Test that the exception assertion macros compile and work with const
4291 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4292 TEST(AssertionSyntaxTest, WorksWithConst) {
4293     ASSERT_THROW(ThrowAString(), const char*);
4294 
4295     EXPECT_THROW(ThrowAString(), const char*);
4296 }
4297 
4298 #endif  // GTEST_HAS_EXCEPTIONS
4299 
4300 }  // namespace
4301 
4302 namespace testing {
4303 
4304 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4305 TEST(SuccessfulAssertionTest, SUCCEED) {
4306   SUCCEED();
4307   SUCCEED() << "OK";
4308   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4309 }
4310 
4311 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4312 TEST(SuccessfulAssertionTest, EXPECT) {
4313   EXPECT_TRUE(true);
4314   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4315 }
4316 
4317 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4318 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4319   EXPECT_STREQ("", "");
4320   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4321 }
4322 
4323 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4324 TEST(SuccessfulAssertionTest, ASSERT) {
4325   ASSERT_TRUE(true);
4326   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4327 }
4328 
4329 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4330 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4331   ASSERT_STREQ("", "");
4332   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4333 }
4334 
4335 }  // namespace testing
4336 
4337 namespace {
4338 
4339 // Tests the message streaming variation of assertions.
4340 
TEST(AssertionWithMessageTest,EXPECT)4341 TEST(AssertionWithMessageTest, EXPECT) {
4342   EXPECT_EQ(1, 1) << "This should succeed.";
4343   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4344                           "Expected failure #1");
4345   EXPECT_LE(1, 2) << "This should succeed.";
4346   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4347                           "Expected failure #2.");
4348   EXPECT_GE(1, 0) << "This should succeed.";
4349   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4350                           "Expected failure #3.");
4351 
4352   EXPECT_STREQ("1", "1") << "This should succeed.";
4353   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4354                           "Expected failure #4.");
4355   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4356   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4357                           "Expected failure #5.");
4358 
4359   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4360   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4361                           "Expected failure #6.");
4362   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4363 }
4364 
TEST(AssertionWithMessageTest,ASSERT)4365 TEST(AssertionWithMessageTest, ASSERT) {
4366   ASSERT_EQ(1, 1) << "This should succeed.";
4367   ASSERT_NE(1, 2) << "This should succeed.";
4368   ASSERT_LE(1, 2) << "This should succeed.";
4369   ASSERT_LT(1, 2) << "This should succeed.";
4370   ASSERT_GE(1, 0) << "This should succeed.";
4371   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4372                        "Expected failure.");
4373 }
4374 
TEST(AssertionWithMessageTest,ASSERT_STR)4375 TEST(AssertionWithMessageTest, ASSERT_STR) {
4376   ASSERT_STREQ("1", "1") << "This should succeed.";
4377   ASSERT_STRNE("1", "2") << "This should succeed.";
4378   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4379   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4380                        "Expected failure.");
4381 }
4382 
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4383 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4384   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4385   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4386   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.",  // NOLINT
4387                        "Expect failure.");
4388 }
4389 
4390 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4391 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4392   ASSERT_FALSE(false) << "This shouldn't fail.";
4393   EXPECT_FATAL_FAILURE({  // NOLINT
4394     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4395                        << " evaluates to " << true;
4396   }, "Expected failure");
4397 }
4398 
4399 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4400 TEST(AssertionWithMessageTest, FAIL) {
4401   EXPECT_FATAL_FAILURE(FAIL() << 0,
4402                        "0");
4403 }
4404 
4405 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4406 TEST(AssertionWithMessageTest, SUCCEED) {
4407   SUCCEED() << "Success == " << 1;
4408 }
4409 
4410 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4411 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4412   ASSERT_TRUE(true) << "This should succeed.";
4413   ASSERT_TRUE(true) << true;
4414   EXPECT_FATAL_FAILURE(
4415       {  // NOLINT
4416         ASSERT_TRUE(false) << static_cast<const char*>(nullptr)
4417                            << static_cast<char*>(nullptr);
4418       },
4419       "(null)(null)");
4420 }
4421 
4422 #if GTEST_OS_WINDOWS
4423 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4424 TEST(AssertionWithMessageTest, WideStringMessage) {
4425   EXPECT_NONFATAL_FAILURE({  // NOLINT
4426     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4427   }, "This failure is expected.");
4428   EXPECT_FATAL_FAILURE({  // NOLINT
4429     ASSERT_EQ(1, 2) << "This failure is "
4430                     << L"expected too.\x8120";
4431   }, "This failure is expected too.");
4432 }
4433 #endif  // GTEST_OS_WINDOWS
4434 
4435 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4436 TEST(ExpectTest, EXPECT_TRUE) {
4437   EXPECT_TRUE(true) << "Intentional success";
4438   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4439                           "Intentional failure #1.");
4440   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4441                           "Intentional failure #2.");
4442   EXPECT_TRUE(2 > 1);  // NOLINT
4443   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4444                           "Value of: 2 < 1\n"
4445                           "  Actual: false\n"
4446                           "Expected: true");
4447   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4448                           "2 > 3");
4449 }
4450 
4451 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4452 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4453   EXPECT_TRUE(ResultIsEven(2));
4454   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4455                           "Value of: ResultIsEven(3)\n"
4456                           "  Actual: false (3 is odd)\n"
4457                           "Expected: true");
4458   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4459   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4460                           "Value of: ResultIsEvenNoExplanation(3)\n"
4461                           "  Actual: false (3 is odd)\n"
4462                           "Expected: true");
4463 }
4464 
4465 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4466 TEST(ExpectTest, EXPECT_FALSE) {
4467   EXPECT_FALSE(2 < 1);  // NOLINT
4468   EXPECT_FALSE(false) << "Intentional success";
4469   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4470                           "Intentional failure #1.");
4471   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4472                           "Intentional failure #2.");
4473   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4474                           "Value of: 2 > 1\n"
4475                           "  Actual: true\n"
4476                           "Expected: false");
4477   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4478                           "2 < 3");
4479 }
4480 
4481 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4482 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4483   EXPECT_FALSE(ResultIsEven(3));
4484   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4485                           "Value of: ResultIsEven(2)\n"
4486                           "  Actual: true (2 is even)\n"
4487                           "Expected: false");
4488   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4489   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4490                           "Value of: ResultIsEvenNoExplanation(2)\n"
4491                           "  Actual: true\n"
4492                           "Expected: false");
4493 }
4494 
4495 #ifdef __BORLANDC__
4496 // Restores warnings after previous "#pragma option push" suppressed them
4497 # pragma option pop
4498 #endif
4499 
4500 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4501 TEST(ExpectTest, EXPECT_EQ) {
4502   EXPECT_EQ(5, 2 + 3);
4503   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4504                           "Expected equality of these values:\n"
4505                           "  5\n"
4506                           "  2*3\n"
4507                           "    Which is: 6");
4508   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4509                           "2 - 3");
4510 }
4511 
4512 // Tests using EXPECT_EQ on double values.  The purpose is to make
4513 // sure that the specialization we did for integer and anonymous enums
4514 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4515 TEST(ExpectTest, EXPECT_EQ_Double) {
4516   // A success.
4517   EXPECT_EQ(5.6, 5.6);
4518 
4519   // A failure.
4520   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4521                           "5.1");
4522 }
4523 
4524 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4525 TEST(ExpectTest, EXPECT_EQ_NULL) {
4526   // A success.
4527   const char* p = nullptr;
4528   EXPECT_EQ(nullptr, p);
4529 
4530   // A failure.
4531   int n = 0;
4532   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), "  &n\n    Which is:");
4533 }
4534 
4535 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4536 // treated as a null pointer by the compiler, we need to make sure
4537 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4538 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4539 TEST(ExpectTest, EXPECT_EQ_0) {
4540   int n = 0;
4541 
4542   // A success.
4543   EXPECT_EQ(0, n);
4544 
4545   // A failure.
4546   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4547                           "  0\n  5.6");
4548 }
4549 
4550 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4551 TEST(ExpectTest, EXPECT_NE) {
4552   EXPECT_NE(6, 7);
4553 
4554   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4555                           "Expected: ('a') != ('a'), "
4556                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4557   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4558                           "2");
4559   char* const p0 = nullptr;
4560   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4561                           "p0");
4562   // Only way to get the Nokia compiler to compile the cast
4563   // is to have a separate void* variable first. Putting
4564   // the two casts on the same line doesn't work, neither does
4565   // a direct C-style to char*.
4566   void* pv1 = (void*)0x1234;  // NOLINT
4567   char* const p1 = reinterpret_cast<char*>(pv1);
4568   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4569                           "p1");
4570 }
4571 
4572 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4573 TEST(ExpectTest, EXPECT_LE) {
4574   EXPECT_LE(2, 3);
4575   EXPECT_LE(2, 2);
4576   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4577                           "Expected: (2) <= (0), actual: 2 vs 0");
4578   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4579                           "(1.1) <= (0.9)");
4580 }
4581 
4582 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4583 TEST(ExpectTest, EXPECT_LT) {
4584   EXPECT_LT(2, 3);
4585   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4586                           "Expected: (2) < (2), actual: 2 vs 2");
4587   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4588                           "(2) < (1)");
4589 }
4590 
4591 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4592 TEST(ExpectTest, EXPECT_GE) {
4593   EXPECT_GE(2, 1);
4594   EXPECT_GE(2, 2);
4595   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4596                           "Expected: (2) >= (3), actual: 2 vs 3");
4597   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4598                           "(0.9) >= (1.1)");
4599 }
4600 
4601 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4602 TEST(ExpectTest, EXPECT_GT) {
4603   EXPECT_GT(2, 1);
4604   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4605                           "Expected: (2) > (2), actual: 2 vs 2");
4606   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4607                           "(2) > (3)");
4608 }
4609 
4610 #if GTEST_HAS_EXCEPTIONS
4611 
4612 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4613 TEST(ExpectTest, EXPECT_THROW) {
4614   EXPECT_THROW(ThrowAnInteger(), int);
4615   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4616                           "Expected: ThrowAnInteger() throws an exception of "
4617                           "type bool.\n  Actual: it throws a different type.");
4618   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowRuntimeError("A description"),
4619                                        std::logic_error),
4620                           "Expected: ThrowRuntimeError(\"A description\") "
4621                           "throws an exception of type std::logic_error.\n  "
4622                           "Actual: it throws " ERROR_DESC " "
4623                           "with description \"A description\".");
4624   EXPECT_NONFATAL_FAILURE(
4625       EXPECT_THROW(ThrowNothing(), bool),
4626       "Expected: ThrowNothing() throws an exception of type bool.\n"
4627       "  Actual: it throws nothing.");
4628 }
4629 
4630 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4631 TEST(ExpectTest, EXPECT_NO_THROW) {
4632   EXPECT_NO_THROW(ThrowNothing());
4633   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4634                           "Expected: ThrowAnInteger() doesn't throw an "
4635                           "exception.\n  Actual: it throws.");
4636   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")),
4637                           "Expected: ThrowRuntimeError(\"A description\") "
4638                           "doesn't throw an exception.\n  "
4639                           "Actual: it throws " ERROR_DESC " "
4640                           "with description \"A description\".");
4641 }
4642 
4643 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4644 TEST(ExpectTest, EXPECT_ANY_THROW) {
4645   EXPECT_ANY_THROW(ThrowAnInteger());
4646   EXPECT_NONFATAL_FAILURE(
4647       EXPECT_ANY_THROW(ThrowNothing()),
4648       "Expected: ThrowNothing() throws an exception.\n"
4649       "  Actual: it doesn't.");
4650 }
4651 
4652 #endif  // GTEST_HAS_EXCEPTIONS
4653 
4654 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4655 TEST(ExpectTest, ExpectPrecedence) {
4656   EXPECT_EQ(1 < 2, true);
4657   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4658                           "  true && false\n    Which is: false");
4659 }
4660 
4661 
4662 // Tests the StreamableToString() function.
4663 
4664 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4665 TEST(StreamableToStringTest, Scalar) {
4666   EXPECT_STREQ("5", StreamableToString(5).c_str());
4667 }
4668 
4669 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4670 TEST(StreamableToStringTest, Pointer) {
4671   int n = 0;
4672   int* p = &n;
4673   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4674 }
4675 
4676 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4677 TEST(StreamableToStringTest, NullPointer) {
4678   int* p = nullptr;
4679   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4680 }
4681 
4682 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4683 TEST(StreamableToStringTest, CString) {
4684   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4685 }
4686 
4687 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4688 TEST(StreamableToStringTest, NullCString) {
4689   char* p = nullptr;
4690   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4691 }
4692 
4693 // Tests using streamable values as assertion messages.
4694 
4695 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4696 TEST(StreamableTest, string) {
4697   static const std::string str(
4698       "This failure message is a std::string, and is expected.");
4699   EXPECT_FATAL_FAILURE(FAIL() << str,
4700                        str.c_str());
4701 }
4702 
4703 // Tests that we can output strings containing embedded NULs.
4704 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4705 TEST(StreamableTest, stringWithEmbeddedNUL) {
4706   static const char char_array_with_nul[] =
4707       "Here's a NUL\0 and some more string";
4708   static const std::string string_with_nul(char_array_with_nul,
4709                                            sizeof(char_array_with_nul)
4710                                            - 1);  // drops the trailing NUL
4711   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4712                        "Here's a NUL\\0 and some more string");
4713 }
4714 
4715 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4716 TEST(StreamableTest, NULChar) {
4717   EXPECT_FATAL_FAILURE({  // NOLINT
4718     FAIL() << "A NUL" << '\0' << " and some more string";
4719   }, "A NUL\\0 and some more string");
4720 }
4721 
4722 // Tests using int as an assertion message.
TEST(StreamableTest,int)4723 TEST(StreamableTest, int) {
4724   EXPECT_FATAL_FAILURE(FAIL() << 900913,
4725                        "900913");
4726 }
4727 
4728 // Tests using NULL char pointer as an assertion message.
4729 //
4730 // In MSVC, streaming a NULL char * causes access violation.  Google Test
4731 // implemented a workaround (substituting "(null)" for NULL).  This
4732 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4733 TEST(StreamableTest, NullCharPtr) {
4734   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(nullptr), "(null)");
4735 }
4736 
4737 // Tests that basic IO manipulators (endl, ends, and flush) can be
4738 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4739 TEST(StreamableTest, BasicIoManip) {
4740   EXPECT_FATAL_FAILURE({  // NOLINT
4741     FAIL() << "Line 1." << std::endl
4742            << "A NUL char " << std::ends << std::flush << " in line 2.";
4743   }, "Line 1.\nA NUL char \\0 in line 2.");
4744 }
4745 
4746 // Tests the macros that haven't been covered so far.
4747 
AddFailureHelper(bool * aborted)4748 void AddFailureHelper(bool* aborted) {
4749   *aborted = true;
4750   ADD_FAILURE() << "Intentional failure.";
4751   *aborted = false;
4752 }
4753 
4754 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4755 TEST(MacroTest, ADD_FAILURE) {
4756   bool aborted = true;
4757   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4758                           "Intentional failure.");
4759   EXPECT_FALSE(aborted);
4760 }
4761 
4762 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4763 TEST(MacroTest, ADD_FAILURE_AT) {
4764   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4765   // the failure message contains the user-streamed part.
4766   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4767 
4768   // Verifies that the user-streamed part is optional.
4769   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4770 
4771   // Unfortunately, we cannot verify that the failure message contains
4772   // the right file path and line number the same way, as
4773   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4774   // line number.  Instead, we do that in googletest-output-test_.cc.
4775 }
4776 
4777 // Tests FAIL.
TEST(MacroTest,FAIL)4778 TEST(MacroTest, FAIL) {
4779   EXPECT_FATAL_FAILURE(FAIL(),
4780                        "Failed");
4781   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4782                        "Intentional failure.");
4783 }
4784 
4785 // Tests GTEST_FAIL_AT.
TEST(MacroTest,GTEST_FAIL_AT)4786 TEST(MacroTest, GTEST_FAIL_AT) {
4787   // Verifies that GTEST_FAIL_AT does generate a fatal failure and
4788   // the failure message contains the user-streamed part.
4789   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4790 
4791   // Verifies that the user-streamed part is optional.
4792   EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed");
4793 
4794   // See the ADD_FAIL_AT test above to see how we test that the failure message
4795   // contains the right filename and line number -- the same applies here.
4796 }
4797 
4798 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4799 TEST(MacroTest, SUCCEED) {
4800   SUCCEED();
4801   SUCCEED() << "Explicit success.";
4802 }
4803 
4804 // Tests for EXPECT_EQ() and ASSERT_EQ().
4805 //
4806 // These tests fail *intentionally*, s.t. the failure messages can be
4807 // generated and tested.
4808 //
4809 // We have different tests for different argument types.
4810 
4811 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4812 TEST(EqAssertionTest, Bool) {
4813   EXPECT_EQ(true,  true);
4814   EXPECT_FATAL_FAILURE({
4815       bool false_value = false;
4816       ASSERT_EQ(false_value, true);
4817     }, "  false_value\n    Which is: false\n  true");
4818 }
4819 
4820 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4821 TEST(EqAssertionTest, Int) {
4822   ASSERT_EQ(32, 32);
4823   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4824                           "  32\n  33");
4825 }
4826 
4827 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4828 TEST(EqAssertionTest, Time_T) {
4829   EXPECT_EQ(static_cast<time_t>(0),
4830             static_cast<time_t>(0));
4831   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4832                                  static_cast<time_t>(1234)),
4833                        "1234");
4834 }
4835 
4836 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4837 TEST(EqAssertionTest, Char) {
4838   ASSERT_EQ('z', 'z');
4839   const char ch = 'b';
4840   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4841                           "  ch\n    Which is: 'b'");
4842   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4843                           "  ch\n    Which is: 'b'");
4844 }
4845 
4846 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4847 TEST(EqAssertionTest, WideChar) {
4848   EXPECT_EQ(L'b', L'b');
4849 
4850   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4851                           "Expected equality of these values:\n"
4852                           "  L'\0'\n"
4853                           "    Which is: L'\0' (0, 0x0)\n"
4854                           "  L'x'\n"
4855                           "    Which is: L'x' (120, 0x78)");
4856 
4857   static wchar_t wchar;
4858   wchar = L'b';
4859   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4860                           "wchar");
4861   wchar = 0x8119;
4862   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4863                        "  wchar\n    Which is: L'");
4864 }
4865 
4866 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4867 TEST(EqAssertionTest, StdString) {
4868   // Compares a const char* to an std::string that has identical
4869   // content.
4870   ASSERT_EQ("Test", ::std::string("Test"));
4871 
4872   // Compares two identical std::strings.
4873   static const ::std::string str1("A * in the middle");
4874   static const ::std::string str2(str1);
4875   EXPECT_EQ(str1, str2);
4876 
4877   // Compares a const char* to an std::string that has different
4878   // content
4879   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4880                           "\"test\"");
4881 
4882   // Compares an std::string to a char* that has different content.
4883   char* const p1 = const_cast<char*>("foo");
4884   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4885                           "p1");
4886 
4887   // Compares two std::strings that have different contents, one of
4888   // which having a NUL character in the middle.  This should fail.
4889   static ::std::string str3(str1);
4890   str3.at(2) = '\0';
4891   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4892                        "  str3\n    Which is: \"A \\0 in the middle\"");
4893 }
4894 
4895 #if GTEST_HAS_STD_WSTRING
4896 
4897 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4898 TEST(EqAssertionTest, StdWideString) {
4899   // Compares two identical std::wstrings.
4900   const ::std::wstring wstr1(L"A * in the middle");
4901   const ::std::wstring wstr2(wstr1);
4902   ASSERT_EQ(wstr1, wstr2);
4903 
4904   // Compares an std::wstring to a const wchar_t* that has identical
4905   // content.
4906   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4907   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4908 
4909   // Compares an std::wstring to a const wchar_t* that has different
4910   // content.
4911   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4912   EXPECT_NONFATAL_FAILURE({  // NOLINT
4913     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4914   }, "kTestX8120");
4915 
4916   // Compares two std::wstrings that have different contents, one of
4917   // which having a NUL character in the middle.
4918   ::std::wstring wstr3(wstr1);
4919   wstr3.at(2) = L'\0';
4920   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4921                           "wstr3");
4922 
4923   // Compares a wchar_t* to an std::wstring that has different
4924   // content.
4925   EXPECT_FATAL_FAILURE({  // NOLINT
4926     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4927   }, "");
4928 }
4929 
4930 #endif  // GTEST_HAS_STD_WSTRING
4931 
4932 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4933 TEST(EqAssertionTest, CharPointer) {
4934   char* const p0 = nullptr;
4935   // Only way to get the Nokia compiler to compile the cast
4936   // is to have a separate void* variable first. Putting
4937   // the two casts on the same line doesn't work, neither does
4938   // a direct C-style to char*.
4939   void* pv1 = (void*)0x1234;  // NOLINT
4940   void* pv2 = (void*)0xABC0;  // NOLINT
4941   char* const p1 = reinterpret_cast<char*>(pv1);
4942   char* const p2 = reinterpret_cast<char*>(pv2);
4943   ASSERT_EQ(p1, p1);
4944 
4945   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4946                           "  p2\n    Which is:");
4947   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4948                           "  p2\n    Which is:");
4949   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4950                                  reinterpret_cast<char*>(0xABC0)),
4951                        "ABC0");
4952 }
4953 
4954 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4955 TEST(EqAssertionTest, WideCharPointer) {
4956   wchar_t* const p0 = nullptr;
4957   // Only way to get the Nokia compiler to compile the cast
4958   // is to have a separate void* variable first. Putting
4959   // the two casts on the same line doesn't work, neither does
4960   // a direct C-style to char*.
4961   void* pv1 = (void*)0x1234;  // NOLINT
4962   void* pv2 = (void*)0xABC0;  // NOLINT
4963   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4964   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4965   EXPECT_EQ(p0, p0);
4966 
4967   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4968                           "  p2\n    Which is:");
4969   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4970                           "  p2\n    Which is:");
4971   void* pv3 = (void*)0x1234;  // NOLINT
4972   void* pv4 = (void*)0xABC0;  // NOLINT
4973   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4974   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4975   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4976                           "p4");
4977 }
4978 
4979 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4980 TEST(EqAssertionTest, OtherPointer) {
4981   ASSERT_EQ(static_cast<const int*>(nullptr), static_cast<const int*>(nullptr));
4982   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(nullptr),
4983                                  reinterpret_cast<const int*>(0x1234)),
4984                        "0x1234");
4985 }
4986 
4987 // A class that supports binary comparison operators but not streaming.
4988 class UnprintableChar {
4989  public:
UnprintableChar(char ch)4990   explicit UnprintableChar(char ch) : char_(ch) {}
4991 
operator ==(const UnprintableChar & rhs) const4992   bool operator==(const UnprintableChar& rhs) const {
4993     return char_ == rhs.char_;
4994   }
operator !=(const UnprintableChar & rhs) const4995   bool operator!=(const UnprintableChar& rhs) const {
4996     return char_ != rhs.char_;
4997   }
operator <(const UnprintableChar & rhs) const4998   bool operator<(const UnprintableChar& rhs) const {
4999     return char_ < rhs.char_;
5000   }
operator <=(const UnprintableChar & rhs) const5001   bool operator<=(const UnprintableChar& rhs) const {
5002     return char_ <= rhs.char_;
5003   }
operator >(const UnprintableChar & rhs) const5004   bool operator>(const UnprintableChar& rhs) const {
5005     return char_ > rhs.char_;
5006   }
operator >=(const UnprintableChar & rhs) const5007   bool operator>=(const UnprintableChar& rhs) const {
5008     return char_ >= rhs.char_;
5009   }
5010 
5011  private:
5012   char char_;
5013 };
5014 
5015 // Tests that ASSERT_EQ() and friends don't require the arguments to
5016 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)5017 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
5018   const UnprintableChar x('x'), y('y');
5019   ASSERT_EQ(x, x);
5020   EXPECT_NE(x, y);
5021   ASSERT_LT(x, y);
5022   EXPECT_LE(x, y);
5023   ASSERT_GT(y, x);
5024   EXPECT_GE(x, x);
5025 
5026   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
5027   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
5028   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
5029   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
5030   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
5031 
5032   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
5033   // variables, so we have to write UnprintableChar('x') instead of x.
5034 #ifndef __BORLANDC__
5035   // ICE's in C++Builder.
5036   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
5037                        "1-byte object <78>");
5038   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5039                        "1-byte object <78>");
5040 #endif
5041   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
5042                        "1-byte object <79>");
5043   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5044                        "1-byte object <78>");
5045   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
5046                        "1-byte object <79>");
5047 }
5048 
5049 // Tests the FRIEND_TEST macro.
5050 
5051 // This class has a private member we want to test.  We will test it
5052 // both in a TEST and in a TEST_F.
5053 class Foo {
5054  public:
Foo()5055   Foo() {}
5056 
5057  private:
Bar() const5058   int Bar() const { return 1; }
5059 
5060   // Declares the friend tests that can access the private member
5061   // Bar().
5062   FRIEND_TEST(FRIEND_TEST_Test, TEST);
5063   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
5064 };
5065 
5066 // Tests that the FRIEND_TEST declaration allows a TEST to access a
5067 // class's private members.  This should compile.
TEST(FRIEND_TEST_Test,TEST)5068 TEST(FRIEND_TEST_Test, TEST) {
5069   ASSERT_EQ(1, Foo().Bar());
5070 }
5071 
5072 // The fixture needed to test using FRIEND_TEST with TEST_F.
5073 class FRIEND_TEST_Test2 : public Test {
5074  protected:
5075   Foo foo;
5076 };
5077 
5078 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
5079 // class's private members.  This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)5080 TEST_F(FRIEND_TEST_Test2, TEST_F) {
5081   ASSERT_EQ(1, foo.Bar());
5082 }
5083 
5084 // Tests the life cycle of Test objects.
5085 
5086 // The test fixture for testing the life cycle of Test objects.
5087 //
5088 // This class counts the number of live test objects that uses this
5089 // fixture.
5090 class TestLifeCycleTest : public Test {
5091  protected:
5092   // Constructor.  Increments the number of test objects that uses
5093   // this fixture.
TestLifeCycleTest()5094   TestLifeCycleTest() { count_++; }
5095 
5096   // Destructor.  Decrements the number of test objects that uses this
5097   // fixture.
~TestLifeCycleTest()5098   ~TestLifeCycleTest() override { count_--; }
5099 
5100   // Returns the number of live test objects that uses this fixture.
count() const5101   int count() const { return count_; }
5102 
5103  private:
5104   static int count_;
5105 };
5106 
5107 int TestLifeCycleTest::count_ = 0;
5108 
5109 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)5110 TEST_F(TestLifeCycleTest, Test1) {
5111   // There should be only one test object in this test case that's
5112   // currently alive.
5113   ASSERT_EQ(1, count());
5114 }
5115 
5116 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)5117 TEST_F(TestLifeCycleTest, Test2) {
5118   // After Test1 is done and Test2 is started, there should still be
5119   // only one live test object, as the object for Test1 should've been
5120   // deleted.
5121   ASSERT_EQ(1, count());
5122 }
5123 
5124 }  // namespace
5125 
5126 // Tests that the copy constructor works when it is NOT optimized away by
5127 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)5128 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5129   // Checks that the copy constructor doesn't try to dereference NULL pointers
5130   // in the source object.
5131   AssertionResult r1 = AssertionSuccess();
5132   AssertionResult r2 = r1;
5133   // The following line is added to prevent the compiler from optimizing
5134   // away the constructor call.
5135   r1 << "abc";
5136 
5137   AssertionResult r3 = r1;
5138   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5139   EXPECT_STREQ("abc", r1.message());
5140 }
5141 
5142 // Tests that AssertionSuccess and AssertionFailure construct
5143 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)5144 TEST(AssertionResultTest, ConstructionWorks) {
5145   AssertionResult r1 = AssertionSuccess();
5146   EXPECT_TRUE(r1);
5147   EXPECT_STREQ("", r1.message());
5148 
5149   AssertionResult r2 = AssertionSuccess() << "abc";
5150   EXPECT_TRUE(r2);
5151   EXPECT_STREQ("abc", r2.message());
5152 
5153   AssertionResult r3 = AssertionFailure();
5154   EXPECT_FALSE(r3);
5155   EXPECT_STREQ("", r3.message());
5156 
5157   AssertionResult r4 = AssertionFailure() << "def";
5158   EXPECT_FALSE(r4);
5159   EXPECT_STREQ("def", r4.message());
5160 
5161   AssertionResult r5 = AssertionFailure(Message() << "ghi");
5162   EXPECT_FALSE(r5);
5163   EXPECT_STREQ("ghi", r5.message());
5164 }
5165 
5166 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5167 TEST(AssertionResultTest, NegationWorks) {
5168   AssertionResult r1 = AssertionSuccess() << "abc";
5169   EXPECT_FALSE(!r1);
5170   EXPECT_STREQ("abc", (!r1).message());
5171 
5172   AssertionResult r2 = AssertionFailure() << "def";
5173   EXPECT_TRUE(!r2);
5174   EXPECT_STREQ("def", (!r2).message());
5175 }
5176 
TEST(AssertionResultTest,StreamingWorks)5177 TEST(AssertionResultTest, StreamingWorks) {
5178   AssertionResult r = AssertionSuccess();
5179   r << "abc" << 'd' << 0 << true;
5180   EXPECT_STREQ("abcd0true", r.message());
5181 }
5182 
TEST(AssertionResultTest,CanStreamOstreamManipulators)5183 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5184   AssertionResult r = AssertionSuccess();
5185   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5186   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5187 }
5188 
5189 // The next test uses explicit conversion operators
5190 
TEST(AssertionResultTest,ConstructibleFromContextuallyConvertibleToBool)5191 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5192   struct ExplicitlyConvertibleToBool {
5193     explicit operator bool() const { return value; }
5194     bool value;
5195   };
5196   ExplicitlyConvertibleToBool v1 = {false};
5197   ExplicitlyConvertibleToBool v2 = {true};
5198   EXPECT_FALSE(v1);
5199   EXPECT_TRUE(v2);
5200 }
5201 
5202 struct ConvertibleToAssertionResult {
operator AssertionResultConvertibleToAssertionResult5203   operator AssertionResult() const { return AssertionResult(true); }
5204 };
5205 
TEST(AssertionResultTest,ConstructibleFromImplicitlyConvertible)5206 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5207   ConvertibleToAssertionResult obj;
5208   EXPECT_TRUE(obj);
5209 }
5210 
5211 // Tests streaming a user type whose definition and operator << are
5212 // both in the global namespace.
5213 class Base {
5214  public:
Base(int an_x)5215   explicit Base(int an_x) : x_(an_x) {}
x() const5216   int x() const { return x_; }
5217  private:
5218   int x_;
5219 };
operator <<(std::ostream & os,const Base & val)5220 std::ostream& operator<<(std::ostream& os,
5221                          const Base& val) {
5222   return os << val.x();
5223 }
operator <<(std::ostream & os,const Base * pointer)5224 std::ostream& operator<<(std::ostream& os,
5225                          const Base* pointer) {
5226   return os << "(" << pointer->x() << ")";
5227 }
5228 
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5229 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5230   Message msg;
5231   Base a(1);
5232 
5233   msg << a << &a;  // Uses ::operator<<.
5234   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5235 }
5236 
5237 // Tests streaming a user type whose definition and operator<< are
5238 // both in an unnamed namespace.
5239 namespace {
5240 class MyTypeInUnnamedNameSpace : public Base {
5241  public:
MyTypeInUnnamedNameSpace(int an_x)5242   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5243 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5244 std::ostream& operator<<(std::ostream& os,
5245                          const MyTypeInUnnamedNameSpace& val) {
5246   return os << val.x();
5247 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5248 std::ostream& operator<<(std::ostream& os,
5249                          const MyTypeInUnnamedNameSpace* pointer) {
5250   return os << "(" << pointer->x() << ")";
5251 }
5252 }  // namespace
5253 
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5254 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5255   Message msg;
5256   MyTypeInUnnamedNameSpace a(1);
5257 
5258   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5259   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5260 }
5261 
5262 // Tests streaming a user type whose definition and operator<< are
5263 // both in a user namespace.
5264 namespace namespace1 {
5265 class MyTypeInNameSpace1 : public Base {
5266  public:
MyTypeInNameSpace1(int an_x)5267   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5268 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5269 std::ostream& operator<<(std::ostream& os,
5270                          const MyTypeInNameSpace1& val) {
5271   return os << val.x();
5272 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5273 std::ostream& operator<<(std::ostream& os,
5274                          const MyTypeInNameSpace1* pointer) {
5275   return os << "(" << pointer->x() << ")";
5276 }
5277 }  // namespace namespace1
5278 
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5279 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5280   Message msg;
5281   namespace1::MyTypeInNameSpace1 a(1);
5282 
5283   msg << a << &a;  // Uses namespace1::operator<<.
5284   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5285 }
5286 
5287 // Tests streaming a user type whose definition is in a user namespace
5288 // but whose operator<< is in the global namespace.
5289 namespace namespace2 {
5290 class MyTypeInNameSpace2 : public ::Base {
5291  public:
MyTypeInNameSpace2(int an_x)5292   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5293 };
5294 }  // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5295 std::ostream& operator<<(std::ostream& os,
5296                          const namespace2::MyTypeInNameSpace2& val) {
5297   return os << val.x();
5298 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5299 std::ostream& operator<<(std::ostream& os,
5300                          const namespace2::MyTypeInNameSpace2* pointer) {
5301   return os << "(" << pointer->x() << ")";
5302 }
5303 
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5304 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5305   Message msg;
5306   namespace2::MyTypeInNameSpace2 a(1);
5307 
5308   msg << a << &a;  // Uses ::operator<<.
5309   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5310 }
5311 
5312 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5313 TEST(MessageTest, NullPointers) {
5314   Message msg;
5315   char* const p1 = nullptr;
5316   unsigned char* const p2 = nullptr;
5317   int* p3 = nullptr;
5318   double* p4 = nullptr;
5319   bool* p5 = nullptr;
5320   Message* p6 = nullptr;
5321 
5322   msg << p1 << p2 << p3 << p4 << p5 << p6;
5323   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5324                msg.GetString().c_str());
5325 }
5326 
5327 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5328 TEST(MessageTest, WideStrings) {
5329   // Streams a NULL of type const wchar_t*.
5330   const wchar_t* const_wstr = nullptr;
5331   EXPECT_STREQ("(null)",
5332                (Message() << const_wstr).GetString().c_str());
5333 
5334   // Streams a NULL of type wchar_t*.
5335   wchar_t* wstr = nullptr;
5336   EXPECT_STREQ("(null)",
5337                (Message() << wstr).GetString().c_str());
5338 
5339   // Streams a non-NULL of type const wchar_t*.
5340   const_wstr = L"abc\x8119";
5341   EXPECT_STREQ("abc\xe8\x84\x99",
5342                (Message() << const_wstr).GetString().c_str());
5343 
5344   // Streams a non-NULL of type wchar_t*.
5345   wstr = const_cast<wchar_t*>(const_wstr);
5346   EXPECT_STREQ("abc\xe8\x84\x99",
5347                (Message() << wstr).GetString().c_str());
5348 }
5349 
5350 
5351 // This line tests that we can define tests in the testing namespace.
5352 namespace testing {
5353 
5354 // Tests the TestInfo class.
5355 
5356 class TestInfoTest : public Test {
5357  protected:
GetTestInfo(const char * test_name)5358   static const TestInfo* GetTestInfo(const char* test_name) {
5359     const TestSuite* const test_suite =
5360         GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr);
5361 
5362     for (int i = 0; i < test_suite->total_test_count(); ++i) {
5363       const TestInfo* const test_info = test_suite->GetTestInfo(i);
5364       if (strcmp(test_name, test_info->name()) == 0)
5365         return test_info;
5366     }
5367     return nullptr;
5368   }
5369 
GetTestResult(const TestInfo * test_info)5370   static const TestResult* GetTestResult(
5371       const TestInfo* test_info) {
5372     return test_info->result();
5373   }
5374 };
5375 
5376 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5377 TEST_F(TestInfoTest, Names) {
5378   const TestInfo* const test_info = GetTestInfo("Names");
5379 
5380   ASSERT_STREQ("TestInfoTest", test_info->test_suite_name());
5381   ASSERT_STREQ("Names", test_info->name());
5382 }
5383 
5384 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5385 TEST_F(TestInfoTest, result) {
5386   const TestInfo* const test_info = GetTestInfo("result");
5387 
5388   // Initially, there is no TestPartResult for this test.
5389   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5390 
5391   // After the previous assertion, there is still none.
5392   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5393 }
5394 
5395 #define VERIFY_CODE_LOCATION \
5396   const int expected_line = __LINE__ - 1; \
5397   const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5398   ASSERT_TRUE(test_info); \
5399   EXPECT_STREQ(__FILE__, test_info->file()); \
5400   EXPECT_EQ(expected_line, test_info->line())
5401 
TEST(CodeLocationForTEST,Verify)5402 TEST(CodeLocationForTEST, Verify) {
5403   VERIFY_CODE_LOCATION;
5404 }
5405 
5406 class CodeLocationForTESTF : public Test {
5407 };
5408 
TEST_F(CodeLocationForTESTF,Verify)5409 TEST_F(CodeLocationForTESTF, Verify) {
5410   VERIFY_CODE_LOCATION;
5411 }
5412 
5413 class CodeLocationForTESTP : public TestWithParam<int> {
5414 };
5415 
TEST_P(CodeLocationForTESTP,Verify)5416 TEST_P(CodeLocationForTESTP, Verify) {
5417   VERIFY_CODE_LOCATION;
5418 }
5419 
5420 INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0));
5421 
5422 template <typename T>
5423 class CodeLocationForTYPEDTEST : public Test {
5424 };
5425 
5426 TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int);
5427 
TYPED_TEST(CodeLocationForTYPEDTEST,Verify)5428 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5429   VERIFY_CODE_LOCATION;
5430 }
5431 
5432 template <typename T>
5433 class CodeLocationForTYPEDTESTP : public Test {
5434 };
5435 
5436 TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP);
5437 
TYPED_TEST_P(CodeLocationForTYPEDTESTP,Verify)5438 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5439   VERIFY_CODE_LOCATION;
5440 }
5441 
5442 REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify);
5443 
5444 INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int);
5445 
5446 #undef VERIFY_CODE_LOCATION
5447 
5448 // Tests setting up and tearing down a test case.
5449 // Legacy API is deprecated but still available
5450 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5451 class SetUpTestCaseTest : public Test {
5452  protected:
5453   // This will be called once before the first test in this test case
5454   // is run.
SetUpTestCase()5455   static void SetUpTestCase() {
5456     printf("Setting up the test case . . .\n");
5457 
5458     // Initializes some shared resource.  In this simple example, we
5459     // just create a C string.  More complex stuff can be done if
5460     // desired.
5461     shared_resource_ = "123";
5462 
5463     // Increments the number of test cases that have been set up.
5464     counter_++;
5465 
5466     // SetUpTestCase() should be called only once.
5467     EXPECT_EQ(1, counter_);
5468   }
5469 
5470   // This will be called once after the last test in this test case is
5471   // run.
TearDownTestCase()5472   static void TearDownTestCase() {
5473     printf("Tearing down the test case . . .\n");
5474 
5475     // Decrements the number of test cases that have been set up.
5476     counter_--;
5477 
5478     // TearDownTestCase() should be called only once.
5479     EXPECT_EQ(0, counter_);
5480 
5481     // Cleans up the shared resource.
5482     shared_resource_ = nullptr;
5483   }
5484 
5485   // This will be called before each test in this test case.
SetUp()5486   void SetUp() override {
5487     // SetUpTestCase() should be called only once, so counter_ should
5488     // always be 1.
5489     EXPECT_EQ(1, counter_);
5490   }
5491 
5492   // Number of test cases that have been set up.
5493   static int counter_;
5494 
5495   // Some resource to be shared by all tests in this test case.
5496   static const char* shared_resource_;
5497 };
5498 
5499 int SetUpTestCaseTest::counter_ = 0;
5500 const char* SetUpTestCaseTest::shared_resource_ = nullptr;
5501 
5502 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5503 TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); }
5504 
5505 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5506 TEST_F(SetUpTestCaseTest, Test2) {
5507   EXPECT_STREQ("123", shared_resource_);
5508 }
5509 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5510 
5511 // Tests SetupTestSuite/TearDown TestSuite
5512 class SetUpTestSuiteTest : public Test {
5513  protected:
5514   // This will be called once before the first test in this test case
5515   // is run.
SetUpTestSuite()5516   static void SetUpTestSuite() {
5517     printf("Setting up the test suite . . .\n");
5518 
5519     // Initializes some shared resource.  In this simple example, we
5520     // just create a C string.  More complex stuff can be done if
5521     // desired.
5522     shared_resource_ = "123";
5523 
5524     // Increments the number of test cases that have been set up.
5525     counter_++;
5526 
5527     // SetUpTestSuite() should be called only once.
5528     EXPECT_EQ(1, counter_);
5529   }
5530 
5531   // This will be called once after the last test in this test case is
5532   // run.
TearDownTestSuite()5533   static void TearDownTestSuite() {
5534     printf("Tearing down the test suite . . .\n");
5535 
5536     // Decrements the number of test suites that have been set up.
5537     counter_--;
5538 
5539     // TearDownTestSuite() should be called only once.
5540     EXPECT_EQ(0, counter_);
5541 
5542     // Cleans up the shared resource.
5543     shared_resource_ = nullptr;
5544   }
5545 
5546   // This will be called before each test in this test case.
SetUp()5547   void SetUp() override {
5548     // SetUpTestSuite() should be called only once, so counter_ should
5549     // always be 1.
5550     EXPECT_EQ(1, counter_);
5551   }
5552 
5553   // Number of test suites that have been set up.
5554   static int counter_;
5555 
5556   // Some resource to be shared by all tests in this test case.
5557   static const char* shared_resource_;
5558 };
5559 
5560 int SetUpTestSuiteTest::counter_ = 0;
5561 const char* SetUpTestSuiteTest::shared_resource_ = nullptr;
5562 
5563 // A test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite1)5564 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) {
5565   EXPECT_STRNE(nullptr, shared_resource_);
5566 }
5567 
5568 // Another test that uses the shared resource.
TEST_F(SetUpTestSuiteTest,TestSetupTestSuite2)5569 TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) {
5570   EXPECT_STREQ("123", shared_resource_);
5571 }
5572 
5573 // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly.
5574 
5575 // The Flags struct stores a copy of all Google Test flags.
5576 struct Flags {
5577   // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5578   Flags()
5579       : also_run_disabled_tests(false),
5580         break_on_failure(false),
5581         catch_exceptions(false),
5582         death_test_use_fork(false),
5583         fail_fast(false),
5584         filter(""),
5585         list_tests(false),
5586         output(""),
5587         brief(false),
5588         print_time(true),
5589         random_seed(0),
5590         repeat(1),
5591         shuffle(false),
5592         stack_trace_depth(kMaxStackTraceDepth),
5593         stream_result_to(""),
5594         throw_on_failure(false) {}
5595 
5596   // Factory methods.
5597 
5598   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5599   // the given value.
AlsoRunDisabledTeststesting::Flags5600   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5601     Flags flags;
5602     flags.also_run_disabled_tests = also_run_disabled_tests;
5603     return flags;
5604   }
5605 
5606   // Creates a Flags struct where the gtest_break_on_failure flag has
5607   // the given value.
BreakOnFailuretesting::Flags5608   static Flags BreakOnFailure(bool break_on_failure) {
5609     Flags flags;
5610     flags.break_on_failure = break_on_failure;
5611     return flags;
5612   }
5613 
5614   // Creates a Flags struct where the gtest_catch_exceptions flag has
5615   // the given value.
CatchExceptionstesting::Flags5616   static Flags CatchExceptions(bool catch_exceptions) {
5617     Flags flags;
5618     flags.catch_exceptions = catch_exceptions;
5619     return flags;
5620   }
5621 
5622   // Creates a Flags struct where the gtest_death_test_use_fork flag has
5623   // the given value.
DeathTestUseForktesting::Flags5624   static Flags DeathTestUseFork(bool death_test_use_fork) {
5625     Flags flags;
5626     flags.death_test_use_fork = death_test_use_fork;
5627     return flags;
5628   }
5629 
5630   // Creates a Flags struct where the gtest_fail_fast flag has
5631   // the given value.
FailFasttesting::Flags5632   static Flags FailFast(bool fail_fast) {
5633     Flags flags;
5634     flags.fail_fast = fail_fast;
5635     return flags;
5636   }
5637 
5638   // Creates a Flags struct where the gtest_filter flag has the given
5639   // value.
Filtertesting::Flags5640   static Flags Filter(const char* filter) {
5641     Flags flags;
5642     flags.filter = filter;
5643     return flags;
5644   }
5645 
5646   // Creates a Flags struct where the gtest_list_tests flag has the
5647   // given value.
ListTeststesting::Flags5648   static Flags ListTests(bool list_tests) {
5649     Flags flags;
5650     flags.list_tests = list_tests;
5651     return flags;
5652   }
5653 
5654   // Creates a Flags struct where the gtest_output flag has the given
5655   // value.
Outputtesting::Flags5656   static Flags Output(const char* output) {
5657     Flags flags;
5658     flags.output = output;
5659     return flags;
5660   }
5661 
5662   // Creates a Flags struct where the gtest_brief flag has the given
5663   // value.
Brieftesting::Flags5664   static Flags Brief(bool brief) {
5665     Flags flags;
5666     flags.brief = brief;
5667     return flags;
5668   }
5669 
5670   // Creates a Flags struct where the gtest_print_time flag has the given
5671   // value.
PrintTimetesting::Flags5672   static Flags PrintTime(bool print_time) {
5673     Flags flags;
5674     flags.print_time = print_time;
5675     return flags;
5676   }
5677 
5678   // Creates a Flags struct where the gtest_random_seed flag has the given
5679   // value.
RandomSeedtesting::Flags5680   static Flags RandomSeed(int32_t random_seed) {
5681     Flags flags;
5682     flags.random_seed = random_seed;
5683     return flags;
5684   }
5685 
5686   // Creates a Flags struct where the gtest_repeat flag has the given
5687   // value.
Repeattesting::Flags5688   static Flags Repeat(int32_t repeat) {
5689     Flags flags;
5690     flags.repeat = repeat;
5691     return flags;
5692   }
5693 
5694   // Creates a Flags struct where the gtest_shuffle flag has the given
5695   // value.
Shuffletesting::Flags5696   static Flags Shuffle(bool shuffle) {
5697     Flags flags;
5698     flags.shuffle = shuffle;
5699     return flags;
5700   }
5701 
5702   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5703   // the given value.
StackTraceDepthtesting::Flags5704   static Flags StackTraceDepth(int32_t stack_trace_depth) {
5705     Flags flags;
5706     flags.stack_trace_depth = stack_trace_depth;
5707     return flags;
5708   }
5709 
5710   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5711   // the given value.
StreamResultTotesting::Flags5712   static Flags StreamResultTo(const char* stream_result_to) {
5713     Flags flags;
5714     flags.stream_result_to = stream_result_to;
5715     return flags;
5716   }
5717 
5718   // Creates a Flags struct where the gtest_throw_on_failure flag has
5719   // the given value.
ThrowOnFailuretesting::Flags5720   static Flags ThrowOnFailure(bool throw_on_failure) {
5721     Flags flags;
5722     flags.throw_on_failure = throw_on_failure;
5723     return flags;
5724   }
5725 
5726   // These fields store the flag values.
5727   bool also_run_disabled_tests;
5728   bool break_on_failure;
5729   bool catch_exceptions;
5730   bool death_test_use_fork;
5731   bool fail_fast;
5732   const char* filter;
5733   bool list_tests;
5734   const char* output;
5735   bool brief;
5736   bool print_time;
5737   int32_t random_seed;
5738   int32_t repeat;
5739   bool shuffle;
5740   int32_t stack_trace_depth;
5741   const char* stream_result_to;
5742   bool throw_on_failure;
5743 };
5744 
5745 // Fixture for testing ParseGoogleTestFlagsOnly().
5746 class ParseFlagsTest : public Test {
5747  protected:
5748   // Clears the flags before each test.
SetUp()5749   void SetUp() override {
5750     GTEST_FLAG(also_run_disabled_tests) = false;
5751     GTEST_FLAG(break_on_failure) = false;
5752     GTEST_FLAG(catch_exceptions) = false;
5753     GTEST_FLAG(death_test_use_fork) = false;
5754     GTEST_FLAG(fail_fast) = false;
5755     GTEST_FLAG(filter) = "";
5756     GTEST_FLAG(list_tests) = false;
5757     GTEST_FLAG(output) = "";
5758     GTEST_FLAG(brief) = false;
5759     GTEST_FLAG(print_time) = true;
5760     GTEST_FLAG(random_seed) = 0;
5761     GTEST_FLAG(repeat) = 1;
5762     GTEST_FLAG(shuffle) = false;
5763     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5764     GTEST_FLAG(stream_result_to) = "";
5765     GTEST_FLAG(throw_on_failure) = false;
5766   }
5767 
5768   // Asserts that two narrow or wide string arrays are equal.
5769   template <typename CharType>
AssertStringArrayEq(int size1,CharType ** array1,int size2,CharType ** array2)5770   static void AssertStringArrayEq(int size1, CharType** array1, int size2,
5771                                   CharType** array2) {
5772     ASSERT_EQ(size1, size2) << " Array sizes different.";
5773 
5774     for (int i = 0; i != size1; i++) {
5775       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5776     }
5777   }
5778 
5779   // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5780   static void CheckFlags(const Flags& expected) {
5781     EXPECT_EQ(expected.also_run_disabled_tests,
5782               GTEST_FLAG(also_run_disabled_tests));
5783     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5784     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5785     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5786     EXPECT_EQ(expected.fail_fast, GTEST_FLAG(fail_fast));
5787     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5788     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5789     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5790     EXPECT_EQ(expected.brief, GTEST_FLAG(brief));
5791     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5792     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5793     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5794     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5795     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5796     EXPECT_STREQ(expected.stream_result_to,
5797                  GTEST_FLAG(stream_result_to).c_str());
5798     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5799   }
5800 
5801   // Parses a command line (specified by argc1 and argv1), then
5802   // verifies that the flag values are expected and that the
5803   // recognized flags are removed from the command line.
5804   template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5805   static void TestParsingFlags(int argc1, const CharType** argv1,
5806                                int argc2, const CharType** argv2,
5807                                const Flags& expected, bool should_print_help) {
5808     const bool saved_help_flag = ::testing::internal::g_help_flag;
5809     ::testing::internal::g_help_flag = false;
5810 
5811 # if GTEST_HAS_STREAM_REDIRECTION
5812     CaptureStdout();
5813 # endif
5814 
5815     // Parses the command line.
5816     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5817 
5818 # if GTEST_HAS_STREAM_REDIRECTION
5819     const std::string captured_stdout = GetCapturedStdout();
5820 # endif
5821 
5822     // Verifies the flag values.
5823     CheckFlags(expected);
5824 
5825     // Verifies that the recognized flags are removed from the command
5826     // line.
5827     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5828 
5829     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5830     // help message for the flags it recognizes.
5831     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5832 
5833 # if GTEST_HAS_STREAM_REDIRECTION
5834     const char* const expected_help_fragment =
5835         "This program contains tests written using";
5836     if (should_print_help) {
5837       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5838     } else {
5839       EXPECT_PRED_FORMAT2(IsNotSubstring,
5840                           expected_help_fragment, captured_stdout);
5841     }
5842 # endif  // GTEST_HAS_STREAM_REDIRECTION
5843 
5844     ::testing::internal::g_help_flag = saved_help_flag;
5845   }
5846 
5847   // This macro wraps TestParsingFlags s.t. the user doesn't need
5848   // to specify the array sizes.
5849 
5850 # define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5851   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5852                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5853                    expected, should_print_help)
5854 };
5855 
5856 // Tests parsing an empty command line.
TEST_F(ParseFlagsTest,Empty)5857 TEST_F(ParseFlagsTest, Empty) {
5858   const char* argv[] = {nullptr};
5859 
5860   const char* argv2[] = {nullptr};
5861 
5862   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5863 }
5864 
5865 // Tests parsing a command line that has no flag.
TEST_F(ParseFlagsTest,NoFlag)5866 TEST_F(ParseFlagsTest, NoFlag) {
5867   const char* argv[] = {"foo.exe", nullptr};
5868 
5869   const char* argv2[] = {"foo.exe", nullptr};
5870 
5871   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5872 }
5873 
5874 // Tests parsing --gtest_fail_fast.
TEST_F(ParseFlagsTest,FailFast)5875 TEST_F(ParseFlagsTest, FailFast) {
5876   const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr};
5877 
5878   const char* argv2[] = {"foo.exe", nullptr};
5879 
5880   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false);
5881 }
5882 
5883 // Tests parsing a bad --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterBad)5884 TEST_F(ParseFlagsTest, FilterBad) {
5885   const char* argv[] = {"foo.exe", "--gtest_filter", nullptr};
5886 
5887   const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr};
5888 
5889   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5890 }
5891 
5892 // Tests parsing an empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterEmpty)5893 TEST_F(ParseFlagsTest, FilterEmpty) {
5894   const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr};
5895 
5896   const char* argv2[] = {"foo.exe", nullptr};
5897 
5898   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5899 }
5900 
5901 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(ParseFlagsTest,FilterNonEmpty)5902 TEST_F(ParseFlagsTest, FilterNonEmpty) {
5903   const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr};
5904 
5905   const char* argv2[] = {"foo.exe", nullptr};
5906 
5907   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5908 }
5909 
5910 // Tests parsing --gtest_break_on_failure.
TEST_F(ParseFlagsTest,BreakOnFailureWithoutValue)5911 TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) {
5912   const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr};
5913 
5914   const char* argv2[] = {"foo.exe", nullptr};
5915 
5916   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5917 }
5918 
5919 // Tests parsing --gtest_break_on_failure=0.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_0)5920 TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) {
5921   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr};
5922 
5923   const char* argv2[] = {"foo.exe", nullptr};
5924 
5925   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5926 }
5927 
5928 // Tests parsing --gtest_break_on_failure=f.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_f)5929 TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) {
5930   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr};
5931 
5932   const char* argv2[] = {"foo.exe", nullptr};
5933 
5934   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5935 }
5936 
5937 // Tests parsing --gtest_break_on_failure=F.
TEST_F(ParseFlagsTest,BreakOnFailureFalse_F)5938 TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) {
5939   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr};
5940 
5941   const char* argv2[] = {"foo.exe", nullptr};
5942 
5943   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5944 }
5945 
5946 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5947 // definition.
TEST_F(ParseFlagsTest,BreakOnFailureTrue)5948 TEST_F(ParseFlagsTest, BreakOnFailureTrue) {
5949   const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr};
5950 
5951   const char* argv2[] = {"foo.exe", nullptr};
5952 
5953   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5954 }
5955 
5956 // Tests parsing --gtest_catch_exceptions.
TEST_F(ParseFlagsTest,CatchExceptions)5957 TEST_F(ParseFlagsTest, CatchExceptions) {
5958   const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr};
5959 
5960   const char* argv2[] = {"foo.exe", nullptr};
5961 
5962   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5963 }
5964 
5965 // Tests parsing --gtest_death_test_use_fork.
TEST_F(ParseFlagsTest,DeathTestUseFork)5966 TEST_F(ParseFlagsTest, DeathTestUseFork) {
5967   const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr};
5968 
5969   const char* argv2[] = {"foo.exe", nullptr};
5970 
5971   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5972 }
5973 
5974 // Tests having the same flag twice with different values.  The
5975 // expected behavior is that the one coming last takes precedence.
TEST_F(ParseFlagsTest,DuplicatedFlags)5976 TEST_F(ParseFlagsTest, DuplicatedFlags) {
5977   const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b",
5978                         nullptr};
5979 
5980   const char* argv2[] = {"foo.exe", nullptr};
5981 
5982   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5983 }
5984 
5985 // Tests having an unrecognized flag on the command line.
TEST_F(ParseFlagsTest,UnrecognizedFlag)5986 TEST_F(ParseFlagsTest, UnrecognizedFlag) {
5987   const char* argv[] = {"foo.exe", "--gtest_break_on_failure",
5988                         "bar",  // Unrecognized by Google Test.
5989                         "--gtest_filter=b", nullptr};
5990 
5991   const char* argv2[] = {"foo.exe", "bar", nullptr};
5992 
5993   Flags flags;
5994   flags.break_on_failure = true;
5995   flags.filter = "b";
5996   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5997 }
5998 
5999 // Tests having a --gtest_list_tests flag
TEST_F(ParseFlagsTest,ListTestsFlag)6000 TEST_F(ParseFlagsTest, ListTestsFlag) {
6001   const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr};
6002 
6003   const char* argv2[] = {"foo.exe", nullptr};
6004 
6005   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
6006 }
6007 
6008 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(ParseFlagsTest,ListTestsTrue)6009 TEST_F(ParseFlagsTest, ListTestsTrue) {
6010   const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr};
6011 
6012   const char* argv2[] = {"foo.exe", nullptr};
6013 
6014   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
6015 }
6016 
6017 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(ParseFlagsTest,ListTestsFalse)6018 TEST_F(ParseFlagsTest, ListTestsFalse) {
6019   const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr};
6020 
6021   const char* argv2[] = {"foo.exe", nullptr};
6022 
6023   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
6024 }
6025 
6026 // Tests parsing --gtest_list_tests=f.
TEST_F(ParseFlagsTest,ListTestsFalse_f)6027 TEST_F(ParseFlagsTest, ListTestsFalse_f) {
6028   const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr};
6029 
6030   const char* argv2[] = {"foo.exe", nullptr};
6031 
6032   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
6033 }
6034 
6035 // Tests parsing --gtest_list_tests=F.
TEST_F(ParseFlagsTest,ListTestsFalse_F)6036 TEST_F(ParseFlagsTest, ListTestsFalse_F) {
6037   const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr};
6038 
6039   const char* argv2[] = {"foo.exe", nullptr};
6040 
6041   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
6042 }
6043 
6044 // Tests parsing --gtest_output (invalid).
TEST_F(ParseFlagsTest,OutputEmpty)6045 TEST_F(ParseFlagsTest, OutputEmpty) {
6046   const char* argv[] = {"foo.exe", "--gtest_output", nullptr};
6047 
6048   const char* argv2[] = {"foo.exe", "--gtest_output", nullptr};
6049 
6050   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6051 }
6052 
6053 // Tests parsing --gtest_output=xml
TEST_F(ParseFlagsTest,OutputXml)6054 TEST_F(ParseFlagsTest, OutputXml) {
6055   const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr};
6056 
6057   const char* argv2[] = {"foo.exe", nullptr};
6058 
6059   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
6060 }
6061 
6062 // Tests parsing --gtest_output=xml:file
TEST_F(ParseFlagsTest,OutputXmlFile)6063 TEST_F(ParseFlagsTest, OutputXmlFile) {
6064   const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr};
6065 
6066   const char* argv2[] = {"foo.exe", nullptr};
6067 
6068   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
6069 }
6070 
6071 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(ParseFlagsTest,OutputXmlDirectory)6072 TEST_F(ParseFlagsTest, OutputXmlDirectory) {
6073   const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/",
6074                         nullptr};
6075 
6076   const char* argv2[] = {"foo.exe", nullptr};
6077 
6078   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6079                             Flags::Output("xml:directory/path/"), false);
6080 }
6081 
6082 // Tests having a --gtest_brief flag
TEST_F(ParseFlagsTest,BriefFlag)6083 TEST_F(ParseFlagsTest, BriefFlag) {
6084   const char* argv[] = {"foo.exe", "--gtest_brief", nullptr};
6085 
6086   const char* argv2[] = {"foo.exe", nullptr};
6087 
6088   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
6089 }
6090 
6091 // Tests having a --gtest_brief flag with a "true" value
TEST_F(ParseFlagsTest,BriefFlagTrue)6092 TEST_F(ParseFlagsTest, BriefFlagTrue) {
6093   const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr};
6094 
6095   const char* argv2[] = {"foo.exe", nullptr};
6096 
6097   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false);
6098 }
6099 
6100 // Tests having a --gtest_brief flag with a "false" value
TEST_F(ParseFlagsTest,BriefFlagFalse)6101 TEST_F(ParseFlagsTest, BriefFlagFalse) {
6102   const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr};
6103 
6104   const char* argv2[] = {"foo.exe", nullptr};
6105 
6106   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false);
6107 }
6108 
6109 // Tests having a --gtest_print_time flag
TEST_F(ParseFlagsTest,PrintTimeFlag)6110 TEST_F(ParseFlagsTest, PrintTimeFlag) {
6111   const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr};
6112 
6113   const char* argv2[] = {"foo.exe", nullptr};
6114 
6115   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6116 }
6117 
6118 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(ParseFlagsTest,PrintTimeTrue)6119 TEST_F(ParseFlagsTest, PrintTimeTrue) {
6120   const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr};
6121 
6122   const char* argv2[] = {"foo.exe", nullptr};
6123 
6124   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6125 }
6126 
6127 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(ParseFlagsTest,PrintTimeFalse)6128 TEST_F(ParseFlagsTest, PrintTimeFalse) {
6129   const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr};
6130 
6131   const char* argv2[] = {"foo.exe", nullptr};
6132 
6133   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6134 }
6135 
6136 // Tests parsing --gtest_print_time=f.
TEST_F(ParseFlagsTest,PrintTimeFalse_f)6137 TEST_F(ParseFlagsTest, PrintTimeFalse_f) {
6138   const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr};
6139 
6140   const char* argv2[] = {"foo.exe", nullptr};
6141 
6142   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6143 }
6144 
6145 // Tests parsing --gtest_print_time=F.
TEST_F(ParseFlagsTest,PrintTimeFalse_F)6146 TEST_F(ParseFlagsTest, PrintTimeFalse_F) {
6147   const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr};
6148 
6149   const char* argv2[] = {"foo.exe", nullptr};
6150 
6151   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6152 }
6153 
6154 // Tests parsing --gtest_random_seed=number
TEST_F(ParseFlagsTest,RandomSeed)6155 TEST_F(ParseFlagsTest, RandomSeed) {
6156   const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr};
6157 
6158   const char* argv2[] = {"foo.exe", nullptr};
6159 
6160   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6161 }
6162 
6163 // Tests parsing --gtest_repeat=number
TEST_F(ParseFlagsTest,Repeat)6164 TEST_F(ParseFlagsTest, Repeat) {
6165   const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr};
6166 
6167   const char* argv2[] = {"foo.exe", nullptr};
6168 
6169   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6170 }
6171 
6172 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFlag)6173 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) {
6174   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr};
6175 
6176   const char* argv2[] = {"foo.exe", nullptr};
6177 
6178   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6179                             false);
6180 }
6181 
6182 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsTrue)6183 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) {
6184   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1",
6185                         nullptr};
6186 
6187   const char* argv2[] = {"foo.exe", nullptr};
6188 
6189   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true),
6190                             false);
6191 }
6192 
6193 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(ParseFlagsTest,AlsoRunDisabledTestsFalse)6194 TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) {
6195   const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0",
6196                         nullptr};
6197 
6198   const char* argv2[] = {"foo.exe", nullptr};
6199 
6200   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false),
6201                             false);
6202 }
6203 
6204 // Tests parsing --gtest_shuffle.
TEST_F(ParseFlagsTest,ShuffleWithoutValue)6205 TEST_F(ParseFlagsTest, ShuffleWithoutValue) {
6206   const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr};
6207 
6208   const char* argv2[] = {"foo.exe", nullptr};
6209 
6210   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6211 }
6212 
6213 // Tests parsing --gtest_shuffle=0.
TEST_F(ParseFlagsTest,ShuffleFalse_0)6214 TEST_F(ParseFlagsTest, ShuffleFalse_0) {
6215   const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr};
6216 
6217   const char* argv2[] = {"foo.exe", nullptr};
6218 
6219   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6220 }
6221 
6222 // Tests parsing a --gtest_shuffle flag that has a "true" definition.
TEST_F(ParseFlagsTest,ShuffleTrue)6223 TEST_F(ParseFlagsTest, ShuffleTrue) {
6224   const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr};
6225 
6226   const char* argv2[] = {"foo.exe", nullptr};
6227 
6228   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6229 }
6230 
6231 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(ParseFlagsTest,StackTraceDepth)6232 TEST_F(ParseFlagsTest, StackTraceDepth) {
6233   const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr};
6234 
6235   const char* argv2[] = {"foo.exe", nullptr};
6236 
6237   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6238 }
6239 
TEST_F(ParseFlagsTest,StreamResultTo)6240 TEST_F(ParseFlagsTest, StreamResultTo) {
6241   const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234",
6242                         nullptr};
6243 
6244   const char* argv2[] = {"foo.exe", nullptr};
6245 
6246   GTEST_TEST_PARSING_FLAGS_(
6247       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6248 }
6249 
6250 // Tests parsing --gtest_throw_on_failure.
TEST_F(ParseFlagsTest,ThrowOnFailureWithoutValue)6251 TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) {
6252   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr};
6253 
6254   const char* argv2[] = {"foo.exe", nullptr};
6255 
6256   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6257 }
6258 
6259 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(ParseFlagsTest,ThrowOnFailureFalse_0)6260 TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) {
6261   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr};
6262 
6263   const char* argv2[] = {"foo.exe", nullptr};
6264 
6265   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6266 }
6267 
6268 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6269 // definition.
TEST_F(ParseFlagsTest,ThrowOnFailureTrue)6270 TEST_F(ParseFlagsTest, ThrowOnFailureTrue) {
6271   const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr};
6272 
6273   const char* argv2[] = {"foo.exe", nullptr};
6274 
6275   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6276 }
6277 
6278 # if GTEST_OS_WINDOWS
6279 // Tests parsing wide strings.
TEST_F(ParseFlagsTest,WideStrings)6280 TEST_F(ParseFlagsTest, WideStrings) {
6281   const wchar_t* argv[] = {
6282     L"foo.exe",
6283     L"--gtest_filter=Foo*",
6284     L"--gtest_list_tests=1",
6285     L"--gtest_break_on_failure",
6286     L"--non_gtest_flag",
6287     NULL
6288   };
6289 
6290   const wchar_t* argv2[] = {
6291     L"foo.exe",
6292     L"--non_gtest_flag",
6293     NULL
6294   };
6295 
6296   Flags expected_flags;
6297   expected_flags.break_on_failure = true;
6298   expected_flags.filter = "Foo*";
6299   expected_flags.list_tests = true;
6300 
6301   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6302 }
6303 # endif  // GTEST_OS_WINDOWS
6304 
6305 #if GTEST_USE_OWN_FLAGFILE_FLAG_
6306 class FlagfileTest : public ParseFlagsTest {
6307  public:
SetUp()6308   void SetUp() override {
6309     ParseFlagsTest::SetUp();
6310 
6311     testdata_path_.Set(internal::FilePath(
6312         testing::TempDir() + internal::GetCurrentExecutableName().string() +
6313         "_flagfile_test"));
6314     testing::internal::posix::RmDir(testdata_path_.c_str());
6315     EXPECT_TRUE(testdata_path_.CreateFolder());
6316   }
6317 
TearDown()6318   void TearDown() override {
6319     testing::internal::posix::RmDir(testdata_path_.c_str());
6320     ParseFlagsTest::TearDown();
6321   }
6322 
CreateFlagfile(const char * contents)6323   internal::FilePath CreateFlagfile(const char* contents) {
6324     internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6325         testdata_path_, internal::FilePath("unique"), "txt"));
6326     FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6327     fprintf(f, "%s", contents);
6328     fclose(f);
6329     return file_path;
6330   }
6331 
6332  private:
6333   internal::FilePath testdata_path_;
6334 };
6335 
6336 // Tests an empty flagfile.
TEST_F(FlagfileTest,Empty)6337 TEST_F(FlagfileTest, Empty) {
6338   internal::FilePath flagfile_path(CreateFlagfile(""));
6339   std::string flagfile_flag =
6340       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6341 
6342   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6343 
6344   const char* argv2[] = {"foo.exe", nullptr};
6345 
6346   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6347 }
6348 
6349 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
TEST_F(FlagfileTest,FilterNonEmpty)6350 TEST_F(FlagfileTest, FilterNonEmpty) {
6351   internal::FilePath flagfile_path(CreateFlagfile(
6352       "--"  GTEST_FLAG_PREFIX_  "filter=abc"));
6353   std::string flagfile_flag =
6354       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6355 
6356   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6357 
6358   const char* argv2[] = {"foo.exe", nullptr};
6359 
6360   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6361 }
6362 
6363 // Tests passing several flags via --gtest_flagfile.
TEST_F(FlagfileTest,SeveralFlags)6364 TEST_F(FlagfileTest, SeveralFlags) {
6365   internal::FilePath flagfile_path(CreateFlagfile(
6366       "--"  GTEST_FLAG_PREFIX_  "filter=abc\n"
6367       "--"  GTEST_FLAG_PREFIX_  "break_on_failure\n"
6368       "--"  GTEST_FLAG_PREFIX_  "list_tests"));
6369   std::string flagfile_flag =
6370       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6371 
6372   const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr};
6373 
6374   const char* argv2[] = {"foo.exe", nullptr};
6375 
6376   Flags expected_flags;
6377   expected_flags.break_on_failure = true;
6378   expected_flags.filter = "abc";
6379   expected_flags.list_tests = true;
6380 
6381   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6382 }
6383 #endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
6384 
6385 // Tests current_test_info() in UnitTest.
6386 class CurrentTestInfoTest : public Test {
6387  protected:
6388   // Tests that current_test_info() returns NULL before the first test in
6389   // the test case is run.
SetUpTestSuite()6390   static void SetUpTestSuite() {
6391     // There should be no tests running at this point.
6392     const TestInfo* test_info =
6393       UnitTest::GetInstance()->current_test_info();
6394     EXPECT_TRUE(test_info == nullptr)
6395         << "There should be no tests running at this point.";
6396   }
6397 
6398   // Tests that current_test_info() returns NULL after the last test in
6399   // the test case has run.
TearDownTestSuite()6400   static void TearDownTestSuite() {
6401     const TestInfo* test_info =
6402       UnitTest::GetInstance()->current_test_info();
6403     EXPECT_TRUE(test_info == nullptr)
6404         << "There should be no tests running at this point.";
6405   }
6406 };
6407 
6408 // Tests that current_test_info() returns TestInfo for currently running
6409 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestSuite)6410 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) {
6411   const TestInfo* test_info =
6412     UnitTest::GetInstance()->current_test_info();
6413   ASSERT_TRUE(nullptr != test_info)
6414       << "There is a test running so we should have a valid TestInfo.";
6415   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6416       << "Expected the name of the currently running test suite.";
6417   EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name())
6418       << "Expected the name of the currently running test.";
6419 }
6420 
6421 // Tests that current_test_info() returns TestInfo for currently running
6422 // test by checking the expected test name against the actual one.  We
6423 // use this test to see that the TestInfo object actually changed from
6424 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestSuite)6425 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) {
6426   const TestInfo* test_info =
6427     UnitTest::GetInstance()->current_test_info();
6428   ASSERT_TRUE(nullptr != test_info)
6429       << "There is a test running so we should have a valid TestInfo.";
6430   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name())
6431       << "Expected the name of the currently running test suite.";
6432   EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name())
6433       << "Expected the name of the currently running test.";
6434 }
6435 
6436 }  // namespace testing
6437 
6438 
6439 // These two lines test that we can define tests in a namespace that
6440 // has the name "testing" and is nested in another namespace.
6441 namespace my_namespace {
6442 namespace testing {
6443 
6444 // Makes sure that TEST knows to use ::testing::Test instead of
6445 // ::my_namespace::testing::Test.
6446 class Test {};
6447 
6448 // Makes sure that an assertion knows to use ::testing::Message instead of
6449 // ::my_namespace::testing::Message.
6450 class Message {};
6451 
6452 // Makes sure that an assertion knows to use
6453 // ::testing::AssertionResult instead of
6454 // ::my_namespace::testing::AssertionResult.
6455 class AssertionResult {};
6456 
6457 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6458 TEST(NestedTestingNamespaceTest, Success) {
6459   EXPECT_EQ(1, 1) << "This shouldn't fail.";
6460 }
6461 
6462 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6463 TEST(NestedTestingNamespaceTest, Failure) {
6464   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6465                        "This failure is expected.");
6466 }
6467 
6468 }  // namespace testing
6469 }  // namespace my_namespace
6470 
6471 // Tests that one can call superclass SetUp and TearDown methods--
6472 // that is, that they are not private.
6473 // No tests are based on this fixture; the test "passes" if it compiles
6474 // successfully.
6475 class ProtectedFixtureMethodsTest : public Test {
6476  protected:
SetUp()6477   void SetUp() override { Test::SetUp(); }
TearDown()6478   void TearDown() override { Test::TearDown(); }
6479 };
6480 
6481 // StreamingAssertionsTest tests the streaming versions of a representative
6482 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6483 TEST(StreamingAssertionsTest, Unconditional) {
6484   SUCCEED() << "expected success";
6485   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6486                           "expected failure");
6487   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6488                        "expected failure");
6489 }
6490 
6491 #ifdef __BORLANDC__
6492 // Silences warnings: "Condition is always true", "Unreachable code"
6493 # pragma option push -w-ccc -w-rch
6494 #endif
6495 
TEST(StreamingAssertionsTest,Truth)6496 TEST(StreamingAssertionsTest, Truth) {
6497   EXPECT_TRUE(true) << "unexpected failure";
6498   ASSERT_TRUE(true) << "unexpected failure";
6499   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6500                           "expected failure");
6501   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6502                        "expected failure");
6503 }
6504 
TEST(StreamingAssertionsTest,Truth2)6505 TEST(StreamingAssertionsTest, Truth2) {
6506   EXPECT_FALSE(false) << "unexpected failure";
6507   ASSERT_FALSE(false) << "unexpected failure";
6508   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6509                           "expected failure");
6510   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6511                        "expected failure");
6512 }
6513 
6514 #ifdef __BORLANDC__
6515 // Restores warnings after previous "#pragma option push" suppressed them
6516 # pragma option pop
6517 #endif
6518 
TEST(StreamingAssertionsTest,IntegerEquals)6519 TEST(StreamingAssertionsTest, IntegerEquals) {
6520   EXPECT_EQ(1, 1) << "unexpected failure";
6521   ASSERT_EQ(1, 1) << "unexpected failure";
6522   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6523                           "expected failure");
6524   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6525                        "expected failure");
6526 }
6527 
TEST(StreamingAssertionsTest,IntegerLessThan)6528 TEST(StreamingAssertionsTest, IntegerLessThan) {
6529   EXPECT_LT(1, 2) << "unexpected failure";
6530   ASSERT_LT(1, 2) << "unexpected failure";
6531   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6532                           "expected failure");
6533   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6534                        "expected failure");
6535 }
6536 
TEST(StreamingAssertionsTest,StringsEqual)6537 TEST(StreamingAssertionsTest, StringsEqual) {
6538   EXPECT_STREQ("foo", "foo") << "unexpected failure";
6539   ASSERT_STREQ("foo", "foo") << "unexpected failure";
6540   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6541                           "expected failure");
6542   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6543                        "expected failure");
6544 }
6545 
TEST(StreamingAssertionsTest,StringsNotEqual)6546 TEST(StreamingAssertionsTest, StringsNotEqual) {
6547   EXPECT_STRNE("foo", "bar") << "unexpected failure";
6548   ASSERT_STRNE("foo", "bar") << "unexpected failure";
6549   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6550                           "expected failure");
6551   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6552                        "expected failure");
6553 }
6554 
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6555 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6556   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6557   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6558   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6559                           "expected failure");
6560   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6561                        "expected failure");
6562 }
6563 
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6564 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6565   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6566   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6567   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6568                           "expected failure");
6569   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6570                        "expected failure");
6571 }
6572 
TEST(StreamingAssertionsTest,FloatingPointEquals)6573 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6574   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6575   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6576   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6577                           "expected failure");
6578   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6579                        "expected failure");
6580 }
6581 
6582 #if GTEST_HAS_EXCEPTIONS
6583 
TEST(StreamingAssertionsTest,Throw)6584 TEST(StreamingAssertionsTest, Throw) {
6585   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6586   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6587   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6588                           "expected failure", "expected failure");
6589   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6590                        "expected failure", "expected failure");
6591 }
6592 
TEST(StreamingAssertionsTest,NoThrow)6593 TEST(StreamingAssertionsTest, NoThrow) {
6594   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6595   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6596   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6597                           "expected failure", "expected failure");
6598   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6599                        "expected failure", "expected failure");
6600 }
6601 
TEST(StreamingAssertionsTest,AnyThrow)6602 TEST(StreamingAssertionsTest, AnyThrow) {
6603   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6604   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6605   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6606                           "expected failure", "expected failure");
6607   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6608                        "expected failure", "expected failure");
6609 }
6610 
6611 #endif  // GTEST_HAS_EXCEPTIONS
6612 
6613 // Tests that Google Test correctly decides whether to use colors in the output.
6614 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6615 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6616   GTEST_FLAG(color) = "yes";
6617 
6618   SetEnv("TERM", "xterm");  // TERM supports colors.
6619   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6620   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6621 
6622   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6623   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6624   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6625 }
6626 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6627 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6628   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6629 
6630   GTEST_FLAG(color) = "True";
6631   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6632 
6633   GTEST_FLAG(color) = "t";
6634   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6635 
6636   GTEST_FLAG(color) = "1";
6637   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6638 }
6639 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6640 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6641   GTEST_FLAG(color) = "no";
6642 
6643   SetEnv("TERM", "xterm");  // TERM supports colors.
6644   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6645   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6646 
6647   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6648   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6649   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6650 }
6651 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6652 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6653   SetEnv("TERM", "xterm");  // TERM supports colors.
6654 
6655   GTEST_FLAG(color) = "F";
6656   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6657 
6658   GTEST_FLAG(color) = "0";
6659   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6660 
6661   GTEST_FLAG(color) = "unknown";
6662   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6663 }
6664 
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6665 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6666   GTEST_FLAG(color) = "auto";
6667 
6668   SetEnv("TERM", "xterm");  // TERM supports colors.
6669   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6670   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6671 }
6672 
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6673 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6674   GTEST_FLAG(color) = "auto";
6675 
6676 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW
6677   // On Windows, we ignore the TERM variable as it's usually not set.
6678 
6679   SetEnv("TERM", "dumb");
6680   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6681 
6682   SetEnv("TERM", "");
6683   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6684 
6685   SetEnv("TERM", "xterm");
6686   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6687 #else
6688   // On non-Windows platforms, we rely on TERM to determine if the
6689   // terminal supports colors.
6690 
6691   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6692   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6693 
6694   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
6695   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6696 
6697   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
6698   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6699 
6700   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
6701   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6702 
6703   SetEnv("TERM", "xterm");  // TERM supports colors.
6704   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6705 
6706   SetEnv("TERM", "xterm-color");  // TERM supports colors.
6707   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6708 
6709   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
6710   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6711 
6712   SetEnv("TERM", "screen");  // TERM supports colors.
6713   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6714 
6715   SetEnv("TERM", "screen-256color");  // TERM supports colors.
6716   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6717 
6718   SetEnv("TERM", "tmux");  // TERM supports colors.
6719   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6720 
6721   SetEnv("TERM", "tmux-256color");  // TERM supports colors.
6722   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6723 
6724   SetEnv("TERM", "rxvt-unicode");  // TERM supports colors.
6725   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6726 
6727   SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
6728   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6729 
6730   SetEnv("TERM", "linux");  // TERM supports colors.
6731   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6732 
6733   SetEnv("TERM", "cygwin");  // TERM supports colors.
6734   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6735 #endif  // GTEST_OS_WINDOWS
6736 }
6737 
6738 // Verifies that StaticAssertTypeEq works in a namespace scope.
6739 
6740 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6741 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6742     StaticAssertTypeEq<const int, const int>();
6743 
6744 // Verifies that StaticAssertTypeEq works in a class.
6745 
6746 template <typename T>
6747 class StaticAssertTypeEqTestHelper {
6748  public:
StaticAssertTypeEqTestHelper()6749   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6750 };
6751 
TEST(StaticAssertTypeEqTest,WorksInClass)6752 TEST(StaticAssertTypeEqTest, WorksInClass) {
6753   StaticAssertTypeEqTestHelper<bool>();
6754 }
6755 
6756 // Verifies that StaticAssertTypeEq works inside a function.
6757 
6758 typedef int IntAlias;
6759 
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6760 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6761   StaticAssertTypeEq<int, IntAlias>();
6762   StaticAssertTypeEq<int*, IntAlias*>();
6763 }
6764 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6765 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6766   EXPECT_FALSE(HasNonfatalFailure());
6767 }
6768 
FailFatally()6769 static void FailFatally() { FAIL(); }
6770 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6771 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6772   FailFatally();
6773   const bool has_nonfatal_failure = HasNonfatalFailure();
6774   ClearCurrentTestPartResults();
6775   EXPECT_FALSE(has_nonfatal_failure);
6776 }
6777 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6778 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6779   ADD_FAILURE();
6780   const bool has_nonfatal_failure = HasNonfatalFailure();
6781   ClearCurrentTestPartResults();
6782   EXPECT_TRUE(has_nonfatal_failure);
6783 }
6784 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6785 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6786   FailFatally();
6787   ADD_FAILURE();
6788   const bool has_nonfatal_failure = HasNonfatalFailure();
6789   ClearCurrentTestPartResults();
6790   EXPECT_TRUE(has_nonfatal_failure);
6791 }
6792 
6793 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6794 static bool HasNonfatalFailureHelper() {
6795   return testing::Test::HasNonfatalFailure();
6796 }
6797 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6798 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6799   EXPECT_FALSE(HasNonfatalFailureHelper());
6800 }
6801 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6802 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6803   ADD_FAILURE();
6804   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6805   ClearCurrentTestPartResults();
6806   EXPECT_TRUE(has_nonfatal_failure);
6807 }
6808 
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6809 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6810   EXPECT_FALSE(HasFailure());
6811 }
6812 
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6813 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6814   FailFatally();
6815   const bool has_failure = HasFailure();
6816   ClearCurrentTestPartResults();
6817   EXPECT_TRUE(has_failure);
6818 }
6819 
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6820 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6821   ADD_FAILURE();
6822   const bool has_failure = HasFailure();
6823   ClearCurrentTestPartResults();
6824   EXPECT_TRUE(has_failure);
6825 }
6826 
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6827 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6828   FailFatally();
6829   ADD_FAILURE();
6830   const bool has_failure = HasFailure();
6831   ClearCurrentTestPartResults();
6832   EXPECT_TRUE(has_failure);
6833 }
6834 
6835 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6836 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6837 
TEST(HasFailureTest,WorksOutsideOfTestBody)6838 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6839   EXPECT_FALSE(HasFailureHelper());
6840 }
6841 
TEST(HasFailureTest,WorksOutsideOfTestBody2)6842 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6843   ADD_FAILURE();
6844   const bool has_failure = HasFailureHelper();
6845   ClearCurrentTestPartResults();
6846   EXPECT_TRUE(has_failure);
6847 }
6848 
6849 class TestListener : public EmptyTestEventListener {
6850  public:
TestListener()6851   TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {}
TestListener(int * on_start_counter,bool * is_destroyed)6852   TestListener(int* on_start_counter, bool* is_destroyed)
6853       : on_start_counter_(on_start_counter),
6854         is_destroyed_(is_destroyed) {}
6855 
~TestListener()6856   ~TestListener() override {
6857     if (is_destroyed_)
6858       *is_destroyed_ = true;
6859   }
6860 
6861  protected:
OnTestProgramStart(const UnitTest &)6862   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6863     if (on_start_counter_ != nullptr) (*on_start_counter_)++;
6864   }
6865 
6866  private:
6867   int* on_start_counter_;
6868   bool* is_destroyed_;
6869 };
6870 
6871 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6872 TEST(TestEventListenersTest, ConstructionWorks) {
6873   TestEventListeners listeners;
6874 
6875   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr);
6876   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
6877   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
6878 }
6879 
6880 // Tests that the TestEventListeners destructor deletes all the listeners it
6881 // owns.
TEST(TestEventListenersTest,DestructionWorks)6882 TEST(TestEventListenersTest, DestructionWorks) {
6883   bool default_result_printer_is_destroyed = false;
6884   bool default_xml_printer_is_destroyed = false;
6885   bool extra_listener_is_destroyed = false;
6886   TestListener* default_result_printer =
6887       new TestListener(nullptr, &default_result_printer_is_destroyed);
6888   TestListener* default_xml_printer =
6889       new TestListener(nullptr, &default_xml_printer_is_destroyed);
6890   TestListener* extra_listener =
6891       new TestListener(nullptr, &extra_listener_is_destroyed);
6892 
6893   {
6894     TestEventListeners listeners;
6895     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6896                                                         default_result_printer);
6897     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6898                                                        default_xml_printer);
6899     listeners.Append(extra_listener);
6900   }
6901   EXPECT_TRUE(default_result_printer_is_destroyed);
6902   EXPECT_TRUE(default_xml_printer_is_destroyed);
6903   EXPECT_TRUE(extra_listener_is_destroyed);
6904 }
6905 
6906 // Tests that a listener Append'ed to a TestEventListeners list starts
6907 // receiving events.
TEST(TestEventListenersTest,Append)6908 TEST(TestEventListenersTest, Append) {
6909   int on_start_counter = 0;
6910   bool is_destroyed = false;
6911   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6912   {
6913     TestEventListeners listeners;
6914     listeners.Append(listener);
6915     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6916         *UnitTest::GetInstance());
6917     EXPECT_EQ(1, on_start_counter);
6918   }
6919   EXPECT_TRUE(is_destroyed);
6920 }
6921 
6922 // Tests that listeners receive events in the order they were appended to
6923 // the list, except for *End requests, which must be received in the reverse
6924 // order.
6925 class SequenceTestingListener : public EmptyTestEventListener {
6926  public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)6927   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6928       : vector_(vector), id_(id) {}
6929 
6930  protected:
OnTestProgramStart(const UnitTest &)6931   void OnTestProgramStart(const UnitTest& /*unit_test*/) override {
6932     vector_->push_back(GetEventDescription("OnTestProgramStart"));
6933   }
6934 
OnTestProgramEnd(const UnitTest &)6935   void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {
6936     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6937   }
6938 
OnTestIterationStart(const UnitTest &,int)6939   void OnTestIterationStart(const UnitTest& /*unit_test*/,
6940                             int /*iteration*/) override {
6941     vector_->push_back(GetEventDescription("OnTestIterationStart"));
6942   }
6943 
OnTestIterationEnd(const UnitTest &,int)6944   void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6945                           int /*iteration*/) override {
6946     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6947   }
6948 
6949  private:
GetEventDescription(const char * method)6950   std::string GetEventDescription(const char* method) {
6951     Message message;
6952     message << id_ << "." << method;
6953     return message.GetString();
6954   }
6955 
6956   std::vector<std::string>* vector_;
6957   const char* const id_;
6958 
6959   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
6960 };
6961 
TEST(EventListenerTest,AppendKeepsOrder)6962 TEST(EventListenerTest, AppendKeepsOrder) {
6963   std::vector<std::string> vec;
6964   TestEventListeners listeners;
6965   listeners.Append(new SequenceTestingListener(&vec, "1st"));
6966   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6967   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6968 
6969   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6970       *UnitTest::GetInstance());
6971   ASSERT_EQ(3U, vec.size());
6972   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6973   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6974   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6975 
6976   vec.clear();
6977   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
6978       *UnitTest::GetInstance());
6979   ASSERT_EQ(3U, vec.size());
6980   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6981   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6982   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6983 
6984   vec.clear();
6985   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
6986       *UnitTest::GetInstance(), 0);
6987   ASSERT_EQ(3U, vec.size());
6988   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6989   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6990   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6991 
6992   vec.clear();
6993   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
6994       *UnitTest::GetInstance(), 0);
6995   ASSERT_EQ(3U, vec.size());
6996   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6997   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6998   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6999 }
7000 
7001 // Tests that a listener removed from a TestEventListeners list stops receiving
7002 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)7003 TEST(TestEventListenersTest, Release) {
7004   int on_start_counter = 0;
7005   bool is_destroyed = false;
7006   // Although Append passes the ownership of this object to the list,
7007   // the following calls release it, and we need to delete it before the
7008   // test ends.
7009   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7010   {
7011     TestEventListeners listeners;
7012     listeners.Append(listener);
7013     EXPECT_EQ(listener, listeners.Release(listener));
7014     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7015         *UnitTest::GetInstance());
7016     EXPECT_TRUE(listeners.Release(listener) == nullptr);
7017   }
7018   EXPECT_EQ(0, on_start_counter);
7019   EXPECT_FALSE(is_destroyed);
7020   delete listener;
7021 }
7022 
7023 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)7024 TEST(EventListenerTest, SuppressEventForwarding) {
7025   int on_start_counter = 0;
7026   TestListener* listener = new TestListener(&on_start_counter, nullptr);
7027 
7028   TestEventListeners listeners;
7029   listeners.Append(listener);
7030   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7031   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
7032   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7033   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7034       *UnitTest::GetInstance());
7035   EXPECT_EQ(0, on_start_counter);
7036 }
7037 
7038 // Tests that events generated by Google Test are not forwarded in
7039 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprecesses)7040 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
7041   EXPECT_DEATH_IF_SUPPORTED({
7042       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7043           *GetUnitTestImpl()->listeners())) << "expected failure";},
7044       "expected failure");
7045 }
7046 
7047 // Tests that a listener installed via SetDefaultResultPrinter() starts
7048 // receiving events and is returned via default_result_printer() and that
7049 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)7050 TEST(EventListenerTest, default_result_printer) {
7051   int on_start_counter = 0;
7052   bool is_destroyed = false;
7053   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7054 
7055   TestEventListeners listeners;
7056   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7057 
7058   EXPECT_EQ(listener, listeners.default_result_printer());
7059 
7060   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7061       *UnitTest::GetInstance());
7062 
7063   EXPECT_EQ(1, on_start_counter);
7064 
7065   // Replacing default_result_printer with something else should remove it
7066   // from the list and destroy it.
7067   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr);
7068 
7069   EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7070   EXPECT_TRUE(is_destroyed);
7071 
7072   // After broadcasting an event the counter is still the same, indicating
7073   // the listener is not in the list anymore.
7074   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7075       *UnitTest::GetInstance());
7076   EXPECT_EQ(1, on_start_counter);
7077 }
7078 
7079 // Tests that the default_result_printer listener stops receiving events
7080 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)7081 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7082   int on_start_counter = 0;
7083   bool is_destroyed = false;
7084   // Although Append passes the ownership of this object to the list,
7085   // the following calls release it, and we need to delete it before the
7086   // test ends.
7087   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7088   {
7089     TestEventListeners listeners;
7090     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7091 
7092     EXPECT_EQ(listener, listeners.Release(listener));
7093     EXPECT_TRUE(listeners.default_result_printer() == nullptr);
7094     EXPECT_FALSE(is_destroyed);
7095 
7096     // Broadcasting events now should not affect default_result_printer.
7097     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7098         *UnitTest::GetInstance());
7099     EXPECT_EQ(0, on_start_counter);
7100   }
7101   // Destroying the list should not affect the listener now, too.
7102   EXPECT_FALSE(is_destroyed);
7103   delete listener;
7104 }
7105 
7106 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7107 // receiving events and is returned via default_xml_generator() and that
7108 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)7109 TEST(EventListenerTest, default_xml_generator) {
7110   int on_start_counter = 0;
7111   bool is_destroyed = false;
7112   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7113 
7114   TestEventListeners listeners;
7115   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7116 
7117   EXPECT_EQ(listener, listeners.default_xml_generator());
7118 
7119   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7120       *UnitTest::GetInstance());
7121 
7122   EXPECT_EQ(1, on_start_counter);
7123 
7124   // Replacing default_xml_generator with something else should remove it
7125   // from the list and destroy it.
7126   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr);
7127 
7128   EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7129   EXPECT_TRUE(is_destroyed);
7130 
7131   // After broadcasting an event the counter is still the same, indicating
7132   // the listener is not in the list anymore.
7133   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7134       *UnitTest::GetInstance());
7135   EXPECT_EQ(1, on_start_counter);
7136 }
7137 
7138 // Tests that the default_xml_generator listener stops receiving events
7139 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)7140 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7141   int on_start_counter = 0;
7142   bool is_destroyed = false;
7143   // Although Append passes the ownership of this object to the list,
7144   // the following calls release it, and we need to delete it before the
7145   // test ends.
7146   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7147   {
7148     TestEventListeners listeners;
7149     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7150 
7151     EXPECT_EQ(listener, listeners.Release(listener));
7152     EXPECT_TRUE(listeners.default_xml_generator() == nullptr);
7153     EXPECT_FALSE(is_destroyed);
7154 
7155     // Broadcasting events now should not affect default_xml_generator.
7156     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7157         *UnitTest::GetInstance());
7158     EXPECT_EQ(0, on_start_counter);
7159   }
7160   // Destroying the list should not affect the listener now, too.
7161   EXPECT_FALSE(is_destroyed);
7162   delete listener;
7163 }
7164 
7165 // Sanity tests to ensure that the alternative, verbose spellings of
7166 // some of the macros work.  We don't test them thoroughly as that
7167 // would be quite involved.  Since their implementations are
7168 // straightforward, and they are rarely used, we'll just rely on the
7169 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7170 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7171   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7172 
7173   // GTEST_FAIL is the same as FAIL.
7174   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7175                        "An expected failure");
7176 
7177   // GTEST_ASSERT_XY is the same as ASSERT_XY.
7178 
7179   GTEST_ASSERT_EQ(0, 0);
7180   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7181                        "An expected failure");
7182   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7183                        "An expected failure");
7184 
7185   GTEST_ASSERT_NE(0, 1);
7186   GTEST_ASSERT_NE(1, 0);
7187   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7188                        "An expected failure");
7189 
7190   GTEST_ASSERT_LE(0, 0);
7191   GTEST_ASSERT_LE(0, 1);
7192   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7193                        "An expected failure");
7194 
7195   GTEST_ASSERT_LT(0, 1);
7196   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7197                        "An expected failure");
7198   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7199                        "An expected failure");
7200 
7201   GTEST_ASSERT_GE(0, 0);
7202   GTEST_ASSERT_GE(1, 0);
7203   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7204                        "An expected failure");
7205 
7206   GTEST_ASSERT_GT(1, 0);
7207   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7208                        "An expected failure");
7209   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7210                        "An expected failure");
7211 }
7212 
7213 // Tests for internal utilities necessary for implementation of the universal
7214 // printing.
7215 
7216 class ConversionHelperBase {};
7217 class ConversionHelperDerived : public ConversionHelperBase {};
7218 
7219 struct HasDebugStringMethods {
DebugStringHasDebugStringMethods7220   std::string DebugString() const { return ""; }
ShortDebugStringHasDebugStringMethods7221   std::string ShortDebugString() const { return ""; }
7222 };
7223 
7224 struct InheritsDebugStringMethods : public HasDebugStringMethods {};
7225 
7226 struct WrongTypeDebugStringMethod {
DebugStringWrongTypeDebugStringMethod7227   std::string DebugString() const { return ""; }
ShortDebugStringWrongTypeDebugStringMethod7228   int ShortDebugString() const { return 1; }
7229 };
7230 
7231 struct NotConstDebugStringMethod {
DebugStringNotConstDebugStringMethod7232   std::string DebugString() { return ""; }
ShortDebugStringNotConstDebugStringMethod7233   std::string ShortDebugString() const { return ""; }
7234 };
7235 
7236 struct MissingDebugStringMethod {
DebugStringMissingDebugStringMethod7237   std::string DebugString() { return ""; }
7238 };
7239 
7240 struct IncompleteType;
7241 
7242 // Tests that HasDebugStringAndShortDebugString<T>::value is a compile-time
7243 // constant.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsCompileTimeConstant)7244 TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) {
7245   GTEST_COMPILE_ASSERT_(
7246       HasDebugStringAndShortDebugString<HasDebugStringMethods>::value,
7247       const_true);
7248   GTEST_COMPILE_ASSERT_(
7249       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value,
7250       const_true);
7251   GTEST_COMPILE_ASSERT_(HasDebugStringAndShortDebugString<
7252                             const InheritsDebugStringMethods>::value,
7253                         const_true);
7254   GTEST_COMPILE_ASSERT_(
7255       !HasDebugStringAndShortDebugString<WrongTypeDebugStringMethod>::value,
7256       const_false);
7257   GTEST_COMPILE_ASSERT_(
7258       !HasDebugStringAndShortDebugString<NotConstDebugStringMethod>::value,
7259       const_false);
7260   GTEST_COMPILE_ASSERT_(
7261       !HasDebugStringAndShortDebugString<MissingDebugStringMethod>::value,
7262       const_false);
7263   GTEST_COMPILE_ASSERT_(
7264       !HasDebugStringAndShortDebugString<IncompleteType>::value, const_false);
7265   GTEST_COMPILE_ASSERT_(!HasDebugStringAndShortDebugString<int>::value,
7266                         const_false);
7267 }
7268 
7269 // Tests that HasDebugStringAndShortDebugString<T>::value is true when T has
7270 // needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsTrueWhenTypeHasDebugStringAndShortDebugString)7271 TEST(HasDebugStringAndShortDebugStringTest,
7272      ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) {
7273   EXPECT_TRUE(
7274       HasDebugStringAndShortDebugString<InheritsDebugStringMethods>::value);
7275 }
7276 
7277 // Tests that HasDebugStringAndShortDebugString<T>::value is false when T
7278 // doesn't have needed methods.
TEST(HasDebugStringAndShortDebugStringTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7279 TEST(HasDebugStringAndShortDebugStringTest,
7280      ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7281   EXPECT_FALSE(HasDebugStringAndShortDebugString<int>::value);
7282   EXPECT_FALSE(
7283       HasDebugStringAndShortDebugString<const ConversionHelperBase>::value);
7284 }
7285 
7286 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7287 
7288 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7289 void TestGTestRemoveReferenceAndConst() {
7290   static_assert(std::is_same<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>::value,
7291                 "GTEST_REMOVE_REFERENCE_AND_CONST_ failed.");
7292 }
7293 
TEST(RemoveReferenceToConstTest,Works)7294 TEST(RemoveReferenceToConstTest, Works) {
7295   TestGTestRemoveReferenceAndConst<int, int>();
7296   TestGTestRemoveReferenceAndConst<double, double&>();
7297   TestGTestRemoveReferenceAndConst<char, const char>();
7298   TestGTestRemoveReferenceAndConst<char, const char&>();
7299   TestGTestRemoveReferenceAndConst<const char*, const char*>();
7300 }
7301 
7302 // Tests GTEST_REFERENCE_TO_CONST_.
7303 
7304 template <typename T1, typename T2>
TestGTestReferenceToConst()7305 void TestGTestReferenceToConst() {
7306   static_assert(std::is_same<T1, GTEST_REFERENCE_TO_CONST_(T2)>::value,
7307                 "GTEST_REFERENCE_TO_CONST_ failed.");
7308 }
7309 
TEST(GTestReferenceToConstTest,Works)7310 TEST(GTestReferenceToConstTest, Works) {
7311   TestGTestReferenceToConst<const char&, char>();
7312   TestGTestReferenceToConst<const int&, const int>();
7313   TestGTestReferenceToConst<const double&, double>();
7314   TestGTestReferenceToConst<const std::string&, const std::string&>();
7315 }
7316 
7317 
7318 // Tests IsContainerTest.
7319 
7320 class NonContainer {};
7321 
TEST(IsContainerTestTest,WorksForNonContainer)7322 TEST(IsContainerTestTest, WorksForNonContainer) {
7323   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7324   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7325   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7326 }
7327 
TEST(IsContainerTestTest,WorksForContainer)7328 TEST(IsContainerTestTest, WorksForContainer) {
7329   EXPECT_EQ(sizeof(IsContainer),
7330             sizeof(IsContainerTest<std::vector<bool> >(0)));
7331   EXPECT_EQ(sizeof(IsContainer),
7332             sizeof(IsContainerTest<std::map<int, double> >(0)));
7333 }
7334 
7335 struct ConstOnlyContainerWithPointerIterator {
7336   using const_iterator = int*;
7337   const_iterator begin() const;
7338   const_iterator end() const;
7339 };
7340 
7341 struct ConstOnlyContainerWithClassIterator {
7342   struct const_iterator {
7343     const int& operator*() const;
7344     const_iterator& operator++(/* pre-increment */);
7345   };
7346   const_iterator begin() const;
7347   const_iterator end() const;
7348 };
7349 
TEST(IsContainerTestTest,ConstOnlyContainer)7350 TEST(IsContainerTestTest, ConstOnlyContainer) {
7351   EXPECT_EQ(sizeof(IsContainer),
7352             sizeof(IsContainerTest<ConstOnlyContainerWithPointerIterator>(0)));
7353   EXPECT_EQ(sizeof(IsContainer),
7354             sizeof(IsContainerTest<ConstOnlyContainerWithClassIterator>(0)));
7355 }
7356 
7357 // Tests IsHashTable.
7358 struct AHashTable {
7359   typedef void hasher;
7360 };
7361 struct NotReallyAHashTable {
7362   typedef void hasher;
7363   typedef void reverse_iterator;
7364 };
TEST(IsHashTable,Basic)7365 TEST(IsHashTable, Basic) {
7366   EXPECT_TRUE(testing::internal::IsHashTable<AHashTable>::value);
7367   EXPECT_FALSE(testing::internal::IsHashTable<NotReallyAHashTable>::value);
7368   EXPECT_FALSE(testing::internal::IsHashTable<std::vector<int>>::value);
7369   EXPECT_TRUE(testing::internal::IsHashTable<std::unordered_set<int>>::value);
7370 }
7371 
7372 // Tests ArrayEq().
7373 
TEST(ArrayEqTest,WorksForDegeneratedArrays)7374 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7375   EXPECT_TRUE(ArrayEq(5, 5L));
7376   EXPECT_FALSE(ArrayEq('a', 0));
7377 }
7378 
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7379 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7380   // Note that a and b are distinct but compatible types.
7381   const int a[] = { 0, 1 };
7382   long b[] = { 0, 1 };
7383   EXPECT_TRUE(ArrayEq(a, b));
7384   EXPECT_TRUE(ArrayEq(a, 2, b));
7385 
7386   b[0] = 2;
7387   EXPECT_FALSE(ArrayEq(a, b));
7388   EXPECT_FALSE(ArrayEq(a, 1, b));
7389 }
7390 
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7391 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7392   const char a[][3] = { "hi", "lo" };
7393   const char b[][3] = { "hi", "lo" };
7394   const char c[][3] = { "hi", "li" };
7395 
7396   EXPECT_TRUE(ArrayEq(a, b));
7397   EXPECT_TRUE(ArrayEq(a, 2, b));
7398 
7399   EXPECT_FALSE(ArrayEq(a, c));
7400   EXPECT_FALSE(ArrayEq(a, 2, c));
7401 }
7402 
7403 // Tests ArrayAwareFind().
7404 
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7405 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7406   const char a[] = "hello";
7407   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7408   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7409 }
7410 
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7411 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7412   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7413   const int b[2] = { 2, 3 };
7414   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7415 
7416   const int c[2] = { 6, 7 };
7417   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7418 }
7419 
7420 // Tests CopyArray().
7421 
TEST(CopyArrayTest,WorksForDegeneratedArrays)7422 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7423   int n = 0;
7424   CopyArray('a', &n);
7425   EXPECT_EQ('a', n);
7426 }
7427 
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7428 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7429   const char a[3] = "hi";
7430   int b[3];
7431 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7432   CopyArray(a, &b);
7433   EXPECT_TRUE(ArrayEq(a, b));
7434 #endif
7435 
7436   int c[3];
7437   CopyArray(a, 3, c);
7438   EXPECT_TRUE(ArrayEq(a, c));
7439 }
7440 
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7441 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7442   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7443   int b[2][3];
7444 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7445   CopyArray(a, &b);
7446   EXPECT_TRUE(ArrayEq(a, b));
7447 #endif
7448 
7449   int c[2][3];
7450   CopyArray(a, 2, c);
7451   EXPECT_TRUE(ArrayEq(a, c));
7452 }
7453 
7454 // Tests NativeArray.
7455 
TEST(NativeArrayTest,ConstructorFromArrayWorks)7456 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7457   const int a[3] = { 0, 1, 2 };
7458   NativeArray<int> na(a, 3, RelationToSourceReference());
7459   EXPECT_EQ(3U, na.size());
7460   EXPECT_EQ(a, na.begin());
7461 }
7462 
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7463 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7464   typedef int Array[2];
7465   Array* a = new Array[1];
7466   (*a)[0] = 0;
7467   (*a)[1] = 1;
7468   NativeArray<int> na(*a, 2, RelationToSourceCopy());
7469   EXPECT_NE(*a, na.begin());
7470   delete[] a;
7471   EXPECT_EQ(0, na.begin()[0]);
7472   EXPECT_EQ(1, na.begin()[1]);
7473 
7474   // We rely on the heap checker to verify that na deletes the copy of
7475   // array.
7476 }
7477 
TEST(NativeArrayTest,TypeMembersAreCorrect)7478 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7479   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7480   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7481 
7482   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7483   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7484 }
7485 
TEST(NativeArrayTest,MethodsWork)7486 TEST(NativeArrayTest, MethodsWork) {
7487   const int a[3] = { 0, 1, 2 };
7488   NativeArray<int> na(a, 3, RelationToSourceCopy());
7489   ASSERT_EQ(3U, na.size());
7490   EXPECT_EQ(3, na.end() - na.begin());
7491 
7492   NativeArray<int>::const_iterator it = na.begin();
7493   EXPECT_EQ(0, *it);
7494   ++it;
7495   EXPECT_EQ(1, *it);
7496   it++;
7497   EXPECT_EQ(2, *it);
7498   ++it;
7499   EXPECT_EQ(na.end(), it);
7500 
7501   EXPECT_TRUE(na == na);
7502 
7503   NativeArray<int> na2(a, 3, RelationToSourceReference());
7504   EXPECT_TRUE(na == na2);
7505 
7506   const int b1[3] = { 0, 1, 1 };
7507   const int b2[4] = { 0, 1, 2, 3 };
7508   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7509   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7510 }
7511 
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7512 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7513   const char a[2][3] = { "hi", "lo" };
7514   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7515   ASSERT_EQ(2U, na.size());
7516   EXPECT_EQ(a, na.begin());
7517 }
7518 
7519 // IndexSequence
TEST(IndexSequence,MakeIndexSequence)7520 TEST(IndexSequence, MakeIndexSequence) {
7521   using testing::internal::IndexSequence;
7522   using testing::internal::MakeIndexSequence;
7523   EXPECT_TRUE(
7524       (std::is_same<IndexSequence<>, MakeIndexSequence<0>::type>::value));
7525   EXPECT_TRUE(
7526       (std::is_same<IndexSequence<0>, MakeIndexSequence<1>::type>::value));
7527   EXPECT_TRUE(
7528       (std::is_same<IndexSequence<0, 1>, MakeIndexSequence<2>::type>::value));
7529   EXPECT_TRUE((
7530       std::is_same<IndexSequence<0, 1, 2>, MakeIndexSequence<3>::type>::value));
7531   EXPECT_TRUE(
7532       (std::is_base_of<IndexSequence<0, 1, 2>, MakeIndexSequence<3>>::value));
7533 }
7534 
7535 // ElemFromList
TEST(ElemFromList,Basic)7536 TEST(ElemFromList, Basic) {
7537   using testing::internal::ElemFromList;
7538   EXPECT_TRUE(
7539       (std::is_same<int, ElemFromList<0, int, double, char>::type>::value));
7540   EXPECT_TRUE(
7541       (std::is_same<double, ElemFromList<1, int, double, char>::type>::value));
7542   EXPECT_TRUE(
7543       (std::is_same<char, ElemFromList<2, int, double, char>::type>::value));
7544   EXPECT_TRUE((
7545       std::is_same<char, ElemFromList<7, int, int, int, int, int, int, int,
7546                                       char, int, int, int, int>::type>::value));
7547 }
7548 
7549 // FlatTuple
TEST(FlatTuple,Basic)7550 TEST(FlatTuple, Basic) {
7551   using testing::internal::FlatTuple;
7552 
7553   FlatTuple<int, double, const char*> tuple = {};
7554   EXPECT_EQ(0, tuple.Get<0>());
7555   EXPECT_EQ(0.0, tuple.Get<1>());
7556   EXPECT_EQ(nullptr, tuple.Get<2>());
7557 
7558   tuple = FlatTuple<int, double, const char*>(
7559       testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo");
7560   EXPECT_EQ(7, tuple.Get<0>());
7561   EXPECT_EQ(3.2, tuple.Get<1>());
7562   EXPECT_EQ(std::string("Foo"), tuple.Get<2>());
7563 
7564   tuple.Get<1>() = 5.1;
7565   EXPECT_EQ(5.1, tuple.Get<1>());
7566 }
7567 
7568 namespace {
AddIntToString(int i,const std::string & s)7569 std::string AddIntToString(int i, const std::string& s) {
7570   return s + std::to_string(i);
7571 }
7572 }  // namespace
7573 
TEST(FlatTuple,Apply)7574 TEST(FlatTuple, Apply) {
7575   using testing::internal::FlatTuple;
7576 
7577   FlatTuple<int, std::string> tuple{testing::internal::FlatTupleConstructTag{},
7578                                     5, "Hello"};
7579 
7580   // Lambda.
7581   EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool {
7582     return i == static_cast<int>(s.size());
7583   }));
7584 
7585   // Function.
7586   EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5");
7587 
7588   // Mutating operations.
7589   tuple.Apply([](int& i, std::string& s) {
7590     ++i;
7591     s += s;
7592   });
7593   EXPECT_EQ(tuple.Get<0>(), 6);
7594   EXPECT_EQ(tuple.Get<1>(), "HelloHello");
7595 }
7596 
7597 struct ConstructionCounting {
ConstructionCountingConstructionCounting7598   ConstructionCounting() { ++default_ctor_calls; }
~ConstructionCountingConstructionCounting7599   ~ConstructionCounting() { ++dtor_calls; }
ConstructionCountingConstructionCounting7600   ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; }
ConstructionCountingConstructionCounting7601   ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; }
operator =ConstructionCounting7602   ConstructionCounting& operator=(const ConstructionCounting&) {
7603     ++copy_assignment_calls;
7604     return *this;
7605   }
operator =ConstructionCounting7606   ConstructionCounting& operator=(ConstructionCounting&&) noexcept {
7607     ++move_assignment_calls;
7608     return *this;
7609   }
7610 
ResetConstructionCounting7611   static void Reset() {
7612     default_ctor_calls = 0;
7613     dtor_calls = 0;
7614     copy_ctor_calls = 0;
7615     move_ctor_calls = 0;
7616     copy_assignment_calls = 0;
7617     move_assignment_calls = 0;
7618   }
7619 
7620   static int default_ctor_calls;
7621   static int dtor_calls;
7622   static int copy_ctor_calls;
7623   static int move_ctor_calls;
7624   static int copy_assignment_calls;
7625   static int move_assignment_calls;
7626 };
7627 
7628 int ConstructionCounting::default_ctor_calls = 0;
7629 int ConstructionCounting::dtor_calls = 0;
7630 int ConstructionCounting::copy_ctor_calls = 0;
7631 int ConstructionCounting::move_ctor_calls = 0;
7632 int ConstructionCounting::copy_assignment_calls = 0;
7633 int ConstructionCounting::move_assignment_calls = 0;
7634 
TEST(FlatTuple,ConstructorCalls)7635 TEST(FlatTuple, ConstructorCalls) {
7636   using testing::internal::FlatTuple;
7637 
7638   // Default construction.
7639   ConstructionCounting::Reset();
7640   { FlatTuple<ConstructionCounting> tuple; }
7641   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7642   EXPECT_EQ(ConstructionCounting::dtor_calls, 1);
7643   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7644   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7645   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7646   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7647 
7648   // Copy construction.
7649   ConstructionCounting::Reset();
7650   {
7651     ConstructionCounting elem;
7652     FlatTuple<ConstructionCounting> tuple{
7653         testing::internal::FlatTupleConstructTag{}, elem};
7654   }
7655   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7656   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7657   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1);
7658   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7659   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7660   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7661 
7662   // Move construction.
7663   ConstructionCounting::Reset();
7664   {
7665     FlatTuple<ConstructionCounting> tuple{
7666         testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}};
7667   }
7668   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1);
7669   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7670   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7671   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1);
7672   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7673   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7674 
7675   // Copy assignment.
7676   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7677   // elements
7678   ConstructionCounting::Reset();
7679   {
7680     FlatTuple<ConstructionCounting> tuple;
7681     ConstructionCounting elem;
7682     tuple.Get<0>() = elem;
7683   }
7684   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7685   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7686   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7687   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7688   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1);
7689   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0);
7690 
7691   // Move assignment.
7692   // TODO(ofats): it should be testing assignment operator of FlatTuple, not its
7693   // elements
7694   ConstructionCounting::Reset();
7695   {
7696     FlatTuple<ConstructionCounting> tuple;
7697     tuple.Get<0>() = ConstructionCounting{};
7698   }
7699   EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2);
7700   EXPECT_EQ(ConstructionCounting::dtor_calls, 2);
7701   EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0);
7702   EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0);
7703   EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0);
7704   EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1);
7705 
7706   ConstructionCounting::Reset();
7707 }
7708 
TEST(FlatTuple,ManyTypes)7709 TEST(FlatTuple, ManyTypes) {
7710   using testing::internal::FlatTuple;
7711 
7712   // Instantiate FlatTuple with 257 ints.
7713   // Tests show that we can do it with thousands of elements, but very long
7714   // compile times makes it unusuitable for this test.
7715 #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int,
7716 #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8
7717 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16
7718 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32
7719 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64
7720 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128
7721 
7722   // Let's make sure that we can have a very long list of types without blowing
7723   // up the template instantiation depth.
7724   FlatTuple<GTEST_FLAT_TUPLE_INT256 int> tuple;
7725 
7726   tuple.Get<0>() = 7;
7727   tuple.Get<99>() = 17;
7728   tuple.Get<256>() = 1000;
7729   EXPECT_EQ(7, tuple.Get<0>());
7730   EXPECT_EQ(17, tuple.Get<99>());
7731   EXPECT_EQ(1000, tuple.Get<256>());
7732 }
7733 
7734 // Tests SkipPrefix().
7735 
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7736 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7737   const char* const str = "hello";
7738 
7739   const char* p = str;
7740   EXPECT_TRUE(SkipPrefix("", &p));
7741   EXPECT_EQ(str, p);
7742 
7743   p = str;
7744   EXPECT_TRUE(SkipPrefix("hell", &p));
7745   EXPECT_EQ(str + 4, p);
7746 }
7747 
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7748 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7749   const char* const str = "world";
7750 
7751   const char* p = str;
7752   EXPECT_FALSE(SkipPrefix("W", &p));
7753   EXPECT_EQ(str, p);
7754 
7755   p = str;
7756   EXPECT_FALSE(SkipPrefix("world!", &p));
7757   EXPECT_EQ(str, p);
7758 }
7759 
7760 // Tests ad_hoc_test_result().
TEST(AdHocTestResultTest,AdHocTestResultForUnitTestDoesNotShowFailure)7761 TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) {
7762   const testing::TestResult& test_result =
7763       testing::UnitTest::GetInstance()->ad_hoc_test_result();
7764   EXPECT_FALSE(test_result.Failed());
7765 }
7766 
7767 class DynamicUnitTestFixture : public testing::Test {};
7768 
7769 class DynamicTest : public DynamicUnitTestFixture {
TestBody()7770   void TestBody() override { EXPECT_TRUE(true); }
7771 };
7772 
7773 auto* dynamic_test = testing::RegisterTest(
7774     "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__,
__anona388e2a90902() 7775     __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; });
7776 
TEST(RegisterTest,WasRegistered)7777 TEST(RegisterTest, WasRegistered) {
7778   auto* unittest = testing::UnitTest::GetInstance();
7779   for (int i = 0; i < unittest->total_test_suite_count(); ++i) {
7780     auto* tests = unittest->GetTestSuite(i);
7781     if (tests->name() != std::string("DynamicUnitTestFixture")) continue;
7782     for (int j = 0; j < tests->total_test_count(); ++j) {
7783       if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue;
7784       // Found it.
7785       EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE");
7786       EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE");
7787       return;
7788     }
7789   }
7790 
7791   FAIL() << "Didn't find the test!";
7792 }
7793