• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2022-2024, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 
10 #include "clk-stm32-core.h"
11 #include <common/debug.h>
12 #include <common/fdt_wrappers.h>
13 #include <drivers/clk.h>
14 #include <drivers/delay_timer.h>
15 #include <drivers/st/stm32mp_clkfunc.h>
16 #include <lib/mmio.h>
17 #include <lib/spinlock.h>
18 
19 static struct spinlock reg_lock;
20 static struct spinlock refcount_lock;
21 
22 static struct stm32_clk_priv *stm32_clock_data;
23 
24 const struct stm32_clk_ops clk_mux_ops;
25 
clk_stm32_get_priv(void)26 struct stm32_clk_priv *clk_stm32_get_priv(void)
27 {
28 	return stm32_clock_data;
29 }
30 
_clk_lock(struct spinlock * lock)31 static void _clk_lock(struct spinlock *lock)
32 {
33 	if (stm32mp_lock_available()) {
34 		/* Assume interrupts are masked */
35 		spin_lock(lock);
36 	}
37 }
38 
_clk_unlock(struct spinlock * lock)39 static void _clk_unlock(struct spinlock *lock)
40 {
41 	if (stm32mp_lock_available()) {
42 		spin_unlock(lock);
43 	}
44 }
45 
clk_stm32_rcc_regs_lock(void)46 void clk_stm32_rcc_regs_lock(void)
47 {
48 	_clk_lock(&reg_lock);
49 }
50 
clk_stm32_rcc_regs_unlock(void)51 void clk_stm32_rcc_regs_unlock(void)
52 {
53 	_clk_unlock(&reg_lock);
54 }
55 
56 #define TIMEOUT_US_1S	U(1000000)
57 #define OSCRDY_TIMEOUT	TIMEOUT_US_1S
58 
clk_oscillator_get_data(struct stm32_clk_priv * priv,int id)59 struct clk_oscillator_data *clk_oscillator_get_data(struct stm32_clk_priv *priv, int id)
60 {
61 	const struct clk_stm32 *clk = _clk_get(priv, id);
62 	struct stm32_osc_cfg *osc_cfg = clk->clock_cfg;
63 	int osc_id = osc_cfg->osc_id;
64 
65 	return &priv->osci_data[osc_id];
66 }
67 
clk_oscillator_set_bypass(struct stm32_clk_priv * priv,int id,bool digbyp,bool bypass)68 void clk_oscillator_set_bypass(struct stm32_clk_priv *priv, int id, bool digbyp, bool bypass)
69 {
70 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
71 
72 	struct stm32_clk_bypass *bypass_data = osc_data->bypass;
73 	uintptr_t address;
74 
75 	if (bypass_data == NULL) {
76 		return;
77 	}
78 
79 	address = priv->base + bypass_data->offset;
80 
81 	if (digbyp) {
82 		mmio_setbits_32(address, BIT(bypass_data->bit_digbyp));
83 	}
84 
85 	if (bypass || digbyp) {
86 		mmio_setbits_32(address, BIT(bypass_data->bit_byp));
87 	}
88 }
89 
clk_oscillator_set_css(struct stm32_clk_priv * priv,int id,bool css)90 void clk_oscillator_set_css(struct stm32_clk_priv *priv, int id, bool css)
91 {
92 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
93 
94 	struct stm32_clk_css *css_data = osc_data->css;
95 	uintptr_t address;
96 
97 	if (css_data == NULL) {
98 		return;
99 	}
100 
101 	address = priv->base + css_data->offset;
102 
103 	if (css) {
104 		mmio_setbits_32(address, BIT(css_data->bit_css));
105 	}
106 }
107 
clk_oscillator_set_drive(struct stm32_clk_priv * priv,int id,uint8_t lsedrv)108 void clk_oscillator_set_drive(struct stm32_clk_priv *priv, int id, uint8_t lsedrv)
109 {
110 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
111 
112 	struct stm32_clk_drive *drive_data = osc_data->drive;
113 	uintptr_t address;
114 	uint32_t mask;
115 	uint32_t value;
116 
117 	if (drive_data == NULL) {
118 		return;
119 	}
120 
121 	address = priv->base + drive_data->offset;
122 
123 	mask = (BIT(drive_data->drv_width) - 1U) <<  drive_data->drv_shift;
124 
125 	/*
126 	 * Warning: not recommended to switch directly from "high drive"
127 	 * to "medium low drive", and vice-versa.
128 	 */
129 	value = (mmio_read_32(address) & mask) >> drive_data->drv_shift;
130 
131 	while (value != lsedrv) {
132 		if (value > lsedrv) {
133 			value--;
134 		} else {
135 			value++;
136 		}
137 
138 		mmio_clrsetbits_32(address, mask, value << drive_data->drv_shift);
139 	}
140 }
141 
clk_oscillator_wait_ready(struct stm32_clk_priv * priv,int id,bool ready_on)142 int clk_oscillator_wait_ready(struct stm32_clk_priv *priv, int id, bool ready_on)
143 {
144 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
145 
146 	return _clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, ready_on);
147 }
148 
clk_oscillator_wait_ready_on(struct stm32_clk_priv * priv,int id)149 int clk_oscillator_wait_ready_on(struct stm32_clk_priv *priv, int id)
150 {
151 	return clk_oscillator_wait_ready(priv, id, true);
152 }
153 
clk_oscillator_wait_ready_off(struct stm32_clk_priv * priv,int id)154 int clk_oscillator_wait_ready_off(struct stm32_clk_priv *priv, int id)
155 {
156 	return clk_oscillator_wait_ready(priv, id, false);
157 }
158 
clk_gate_enable(struct stm32_clk_priv * priv,int id)159 static int clk_gate_enable(struct stm32_clk_priv *priv, int id)
160 {
161 	const struct clk_stm32 *clk = _clk_get(priv, id);
162 	struct clk_gate_cfg *cfg = clk->clock_cfg;
163 
164 	mmio_setbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx));
165 
166 	return 0;
167 }
168 
clk_gate_disable(struct stm32_clk_priv * priv,int id)169 static void clk_gate_disable(struct stm32_clk_priv *priv, int id)
170 {
171 	const struct clk_stm32 *clk = _clk_get(priv, id);
172 	struct clk_gate_cfg *cfg = clk->clock_cfg;
173 
174 	mmio_clrbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx));
175 }
176 
clk_gate_is_enabled(struct stm32_clk_priv * priv,int id)177 static bool clk_gate_is_enabled(struct stm32_clk_priv *priv, int id)
178 {
179 	const struct clk_stm32 *clk = _clk_get(priv, id);
180 	struct clk_gate_cfg *cfg = clk->clock_cfg;
181 
182 	return ((mmio_read_32(priv->base + cfg->offset) & BIT(cfg->bit_idx)) != 0U);
183 }
184 
185 const struct stm32_clk_ops clk_gate_ops = {
186 	.enable		= clk_gate_enable,
187 	.disable	= clk_gate_disable,
188 	.is_enabled	= clk_gate_is_enabled,
189 };
190 
_clk_stm32_gate_disable(struct stm32_clk_priv * priv,uint16_t gate_id)191 void _clk_stm32_gate_disable(struct stm32_clk_priv *priv, uint16_t gate_id)
192 {
193 	const struct gate_cfg *gate = &priv->gates[gate_id];
194 	uintptr_t addr = priv->base + gate->offset;
195 
196 	if (gate->set_clr != 0U) {
197 		mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx));
198 	} else {
199 		mmio_clrbits_32(addr, BIT(gate->bit_idx));
200 	}
201 }
202 
_clk_stm32_gate_enable(struct stm32_clk_priv * priv,uint16_t gate_id)203 int _clk_stm32_gate_enable(struct stm32_clk_priv *priv, uint16_t gate_id)
204 {
205 	const struct gate_cfg *gate = &priv->gates[gate_id];
206 	uintptr_t addr = priv->base + gate->offset;
207 
208 	if (gate->set_clr != 0U) {
209 		mmio_write_32(addr, BIT(gate->bit_idx));
210 
211 	} else {
212 		mmio_setbits_32(addr, BIT(gate->bit_idx));
213 	}
214 
215 	return 0;
216 }
217 
_clk_get(struct stm32_clk_priv * priv,int id)218 const struct clk_stm32 *_clk_get(struct stm32_clk_priv *priv, int id)
219 {
220 	if ((unsigned int)id < priv->num) {
221 		return &priv->clks[id];
222 	}
223 
224 	return NULL;
225 }
226 
_clk_get_ops(struct stm32_clk_priv * priv,int id)227 static const struct stm32_clk_ops *_clk_get_ops(struct stm32_clk_priv *priv, int id)
228 {
229 	const struct clk_stm32 *clk = _clk_get(priv, id);
230 
231 	assert(clk->ops != NO_OPS);
232 
233 	return priv->ops_array[clk->ops];
234 }
235 
236 #define clk_div_mask(_width) GENMASK(((_width) - 1U), 0U)
237 
_get_table_div(const struct clk_div_table * table,unsigned int val)238 static unsigned int _get_table_div(const struct clk_div_table *table,
239 				   unsigned int val)
240 {
241 	const struct clk_div_table *clkt;
242 
243 	for (clkt = table; clkt->div; clkt++) {
244 		if (clkt->val == val) {
245 			return clkt->div;
246 		}
247 	}
248 
249 	return 0;
250 }
251 
_get_div(const struct clk_div_table * table,unsigned int val,unsigned long flags,uint8_t width)252 static unsigned int _get_div(const struct clk_div_table *table,
253 			     unsigned int val, unsigned long flags,
254 			     uint8_t width)
255 {
256 	if ((flags & CLK_DIVIDER_ONE_BASED) != 0UL) {
257 		return val;
258 	}
259 
260 	if ((flags & CLK_DIVIDER_POWER_OF_TWO) != 0UL) {
261 		return BIT(val);
262 	}
263 
264 	if ((flags & CLK_DIVIDER_MAX_AT_ZERO) != 0UL) {
265 		return (val != 0U) ? val : BIT(width);
266 	}
267 
268 	if (table != NULL) {
269 		return _get_table_div(table, val);
270 	}
271 
272 	return val + 1U;
273 }
274 
275 #define TIMEOUT_US_200MS	U(200000)
276 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
277 
clk_mux_set_parent(struct stm32_clk_priv * priv,uint16_t pid,uint8_t sel)278 int clk_mux_set_parent(struct stm32_clk_priv *priv, uint16_t pid, uint8_t sel)
279 {
280 	const struct parent_cfg *parents = &priv->parents[pid & MUX_PARENT_MASK];
281 	const struct mux_cfg *mux = parents->mux;
282 	uintptr_t address = priv->base + mux->offset;
283 	uint32_t mask;
284 	uint64_t timeout;
285 
286 	mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
287 
288 	mmio_clrsetbits_32(address, mask, (sel << mux->shift) & mask);
289 
290 	if (mux->bitrdy == MUX_NO_BIT_RDY) {
291 		return 0;
292 	}
293 
294 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
295 
296 	mask = BIT(mux->bitrdy);
297 
298 	while ((mmio_read_32(address) & mask) == 0U) {
299 		if (timeout_elapsed(timeout)) {
300 			return -ETIMEDOUT;
301 		}
302 	}
303 
304 	return 0;
305 }
306 
_clk_stm32_set_parent(struct stm32_clk_priv * priv,int clk,int clkp)307 int _clk_stm32_set_parent(struct stm32_clk_priv *priv, int clk, int clkp)
308 {
309 	const struct parent_cfg *parents;
310 	uint16_t pid;
311 	uint8_t sel;
312 	int old_parent;
313 
314 	pid = priv->clks[clk].parent;
315 
316 	if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) {
317 		return -EINVAL;
318 	}
319 
320 	old_parent = _clk_stm32_get_parent(priv, clk);
321 	if (old_parent < 0) {
322 		return old_parent;
323 	}
324 	if (old_parent == clkp) {
325 		return 0;
326 	}
327 
328 	parents = &priv->parents[pid & MUX_PARENT_MASK];
329 
330 	for (sel = 0; sel <  parents->num_parents; sel++) {
331 		if (parents->id_parents[sel] == (uint16_t)clkp) {
332 			bool clk_was_enabled = _clk_stm32_is_enabled(priv, clk);
333 			int err = 0;
334 
335 			/* Enable the parents (for glitch free mux) */
336 			_clk_stm32_enable(priv, clkp);
337 			_clk_stm32_enable(priv, old_parent);
338 
339 			err = clk_mux_set_parent(priv, pid, sel);
340 
341 			_clk_stm32_disable(priv, old_parent);
342 
343 			if (clk_was_enabled) {
344 				_clk_stm32_disable(priv, old_parent);
345 			} else {
346 				_clk_stm32_disable(priv, clkp);
347 			}
348 
349 			return err;
350 		}
351 	}
352 
353 	return -EINVAL;
354 }
355 
clk_mux_get_parent(struct stm32_clk_priv * priv,uint32_t mux_id)356 int clk_mux_get_parent(struct stm32_clk_priv *priv, uint32_t mux_id)
357 {
358 	const struct parent_cfg *parent;
359 	const struct mux_cfg *mux;
360 	uint32_t mask;
361 
362 	if (mux_id >= priv->nb_parents) {
363 		panic();
364 	}
365 
366 	parent = &priv->parents[mux_id];
367 	mux = parent->mux;
368 
369 	mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
370 
371 	return (mmio_read_32(priv->base + mux->offset) & mask) >> mux->shift;
372 }
373 
_clk_stm32_set_parent_by_index(struct stm32_clk_priv * priv,int clk,int sel)374 int _clk_stm32_set_parent_by_index(struct stm32_clk_priv *priv, int clk, int sel)
375 {
376 	uint16_t pid;
377 
378 	pid = priv->clks[clk].parent;
379 
380 	if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) {
381 		return -EINVAL;
382 	}
383 
384 	return clk_mux_set_parent(priv, pid, sel);
385 }
386 
_clk_stm32_get_parent(struct stm32_clk_priv * priv,int clk_id)387 int _clk_stm32_get_parent(struct stm32_clk_priv *priv, int clk_id)
388 {
389 	const struct stm32_clk_ops *ops = _clk_get_ops(priv, clk_id);
390 	const struct parent_cfg *parent;
391 	uint16_t mux_id;
392 	int sel;
393 
394 	mux_id = priv->clks[clk_id].parent;
395 	if (mux_id == CLK_IS_ROOT) {
396 		return CLK_IS_ROOT;
397 	}
398 
399 	if (mux_id < MUX_MAX_PARENTS) {
400 		return mux_id & MUX_PARENT_MASK;
401 	}
402 
403 	mux_id &= MUX_PARENT_MASK;
404 	parent = &priv->parents[mux_id];
405 
406 	if (ops->get_parent != NULL) {
407 		sel = ops->get_parent(priv, clk_id);
408 	} else {
409 		sel = clk_mux_get_parent(priv, mux_id);
410 	}
411 
412 	if ((sel >= 0) && (sel < parent->num_parents)) {
413 		return parent->id_parents[sel];
414 	}
415 
416 	return -EINVAL;
417 }
418 
_clk_stm32_get_parent_index(struct stm32_clk_priv * priv,int clk_id)419 int _clk_stm32_get_parent_index(struct stm32_clk_priv *priv, int clk_id)
420 {
421 	uint16_t mux_id;
422 
423 	mux_id = priv->clks[clk_id].parent;
424 	if (mux_id == CLK_IS_ROOT) {
425 		return CLK_IS_ROOT;
426 	}
427 
428 	if (mux_id < MUX_MAX_PARENTS) {
429 		return mux_id & MUX_PARENT_MASK;
430 	}
431 
432 	mux_id &= MUX_PARENT_MASK;
433 
434 	return clk_mux_get_parent(priv, mux_id);
435 }
436 
_clk_stm32_get_parent_by_index(struct stm32_clk_priv * priv,int clk_id,int idx)437 int _clk_stm32_get_parent_by_index(struct stm32_clk_priv *priv, int clk_id, int idx)
438 {
439 	const struct parent_cfg *parent;
440 	uint16_t mux_id;
441 
442 	mux_id = priv->clks[clk_id].parent;
443 	if (mux_id == CLK_IS_ROOT) {
444 		return CLK_IS_ROOT;
445 	}
446 
447 	if (mux_id < MUX_MAX_PARENTS) {
448 		return mux_id & MUX_PARENT_MASK;
449 	}
450 
451 	mux_id &= MUX_PARENT_MASK;
452 	parent = &priv->parents[mux_id];
453 
454 	if (idx < parent->num_parents) {
455 		return parent->id_parents[idx];
456 	}
457 
458 	return -EINVAL;
459 }
460 
clk_get_index(struct stm32_clk_priv * priv,unsigned long binding_id)461 int clk_get_index(struct stm32_clk_priv *priv, unsigned long binding_id)
462 {
463 	unsigned int i;
464 
465 	for (i = 0U; i < priv->num; i++) {
466 		if (binding_id == priv->clks[i].binding) {
467 			return (int)i;
468 		}
469 	}
470 
471 	return -EINVAL;
472 }
473 
_clk_stm32_get_rate(struct stm32_clk_priv * priv,int id)474 unsigned long _clk_stm32_get_rate(struct stm32_clk_priv *priv, int id)
475 {
476 	const struct stm32_clk_ops *ops = _clk_get_ops(priv, id);
477 	int parent;
478 
479 	if ((unsigned int)id >= priv->num) {
480 		return 0UL;
481 	}
482 
483 	parent = _clk_stm32_get_parent(priv, id);
484 	if (parent < 0) {
485 		return 0UL;
486 	}
487 
488 	if (ops->recalc_rate != NULL) {
489 		unsigned long prate = 0UL;
490 
491 		if (parent != CLK_IS_ROOT) {
492 			prate = _clk_stm32_get_rate(priv, parent);
493 		}
494 
495 		return ops->recalc_rate(priv, id, prate);
496 	}
497 
498 	if (parent == CLK_IS_ROOT) {
499 		panic();
500 	}
501 
502 	return _clk_stm32_get_rate(priv, parent);
503 }
504 
_clk_stm32_get_parent_rate(struct stm32_clk_priv * priv,int id)505 unsigned long _clk_stm32_get_parent_rate(struct stm32_clk_priv *priv, int id)
506 {
507 	int parent_id = _clk_stm32_get_parent(priv, id);
508 
509 	if (parent_id < 0) {
510 		return 0UL;
511 	}
512 
513 	return _clk_stm32_get_rate(priv, parent_id);
514 }
515 
_stm32_clk_get_flags(struct stm32_clk_priv * priv,int id)516 static uint8_t _stm32_clk_get_flags(struct stm32_clk_priv *priv, int id)
517 {
518 	return priv->clks[id].flags;
519 }
520 
_stm32_clk_is_flags(struct stm32_clk_priv * priv,int id,uint8_t flag)521 bool _stm32_clk_is_flags(struct stm32_clk_priv *priv, int id, uint8_t flag)
522 {
523 	if ((_stm32_clk_get_flags(priv, id) & flag) != 0U) {
524 		return true;
525 	}
526 
527 	return false;
528 }
529 
clk_stm32_enable_call_ops(struct stm32_clk_priv * priv,uint16_t id)530 int clk_stm32_enable_call_ops(struct stm32_clk_priv *priv, uint16_t id)
531 {
532 	const struct stm32_clk_ops *ops = _clk_get_ops(priv, id);
533 
534 	if (ops->enable != NULL) {
535 		ops->enable(priv, id);
536 	}
537 
538 	return 0;
539 }
540 
_clk_stm32_enable_core(struct stm32_clk_priv * priv,int id)541 static int _clk_stm32_enable_core(struct stm32_clk_priv *priv, int id)
542 {
543 	int parent;
544 	int ret = 0;
545 
546 	if (priv->gate_refcounts[id] == 0U) {
547 		parent = _clk_stm32_get_parent(priv, id);
548 		if (parent < 0) {
549 			return parent;
550 		}
551 		if (parent != CLK_IS_ROOT) {
552 			ret = _clk_stm32_enable_core(priv, parent);
553 			if (ret != 0) {
554 				return ret;
555 			}
556 		}
557 		clk_stm32_enable_call_ops(priv, id);
558 	}
559 
560 	priv->gate_refcounts[id]++;
561 
562 	if (priv->gate_refcounts[id] == UINT8_MAX) {
563 		ERROR("%s: %d max enable count !", __func__, id);
564 		panic();
565 	}
566 
567 	return 0;
568 }
569 
_clk_stm32_enable(struct stm32_clk_priv * priv,int id)570 int _clk_stm32_enable(struct stm32_clk_priv *priv, int id)
571 {
572 	int ret;
573 
574 	_clk_lock(&refcount_lock);
575 	ret = _clk_stm32_enable_core(priv, id);
576 	_clk_unlock(&refcount_lock);
577 
578 	return ret;
579 }
580 
clk_stm32_disable_call_ops(struct stm32_clk_priv * priv,uint16_t id)581 void clk_stm32_disable_call_ops(struct stm32_clk_priv *priv, uint16_t id)
582 {
583 	const struct stm32_clk_ops *ops = _clk_get_ops(priv, id);
584 
585 	if (ops->disable != NULL) {
586 		ops->disable(priv, id);
587 	}
588 }
589 
_clk_stm32_disable_core(struct stm32_clk_priv * priv,int id)590 static void _clk_stm32_disable_core(struct stm32_clk_priv *priv, int id)
591 {
592 	int parent;
593 
594 	if ((priv->gate_refcounts[id] == 1U) && _stm32_clk_is_flags(priv, id, CLK_IS_CRITICAL)) {
595 		return;
596 	}
597 
598 	if (priv->gate_refcounts[id] == 0U) {
599 		/* case of clock ignore unused */
600 		if (_clk_stm32_is_enabled(priv, id)) {
601 			clk_stm32_disable_call_ops(priv, id);
602 			return;
603 		}
604 		VERBOSE("%s: %d already disabled !\n\n", __func__, id);
605 		return;
606 	}
607 
608 	if (--priv->gate_refcounts[id] > 0U) {
609 		return;
610 	}
611 
612 	clk_stm32_disable_call_ops(priv, id);
613 
614 	parent = _clk_stm32_get_parent(priv, id);
615 	if ((parent >= 0) && (parent != CLK_IS_ROOT)) {
616 		_clk_stm32_disable_core(priv, parent);
617 	}
618 }
619 
_clk_stm32_disable(struct stm32_clk_priv * priv,int id)620 void _clk_stm32_disable(struct stm32_clk_priv *priv, int id)
621 {
622 	_clk_lock(&refcount_lock);
623 
624 	_clk_stm32_disable_core(priv, id);
625 
626 	_clk_unlock(&refcount_lock);
627 }
628 
_clk_stm32_is_enabled(struct stm32_clk_priv * priv,int id)629 bool _clk_stm32_is_enabled(struct stm32_clk_priv *priv, int id)
630 {
631 	const struct stm32_clk_ops *ops = _clk_get_ops(priv, id);
632 
633 	if (ops->is_enabled != NULL) {
634 		return ops->is_enabled(priv, id);
635 	}
636 
637 	return priv->gate_refcounts[id];
638 }
639 
clk_stm32_enable(unsigned long binding_id)640 static int clk_stm32_enable(unsigned long binding_id)
641 {
642 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
643 	int id;
644 
645 	id = clk_get_index(priv, binding_id);
646 	if (id == -EINVAL) {
647 		return id;
648 	}
649 
650 	return _clk_stm32_enable(priv, id);
651 }
652 
clk_stm32_disable(unsigned long binding_id)653 static void clk_stm32_disable(unsigned long binding_id)
654 {
655 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
656 	int id;
657 
658 	id = clk_get_index(priv, binding_id);
659 	if (id != -EINVAL) {
660 		_clk_stm32_disable(priv, id);
661 	}
662 }
663 
clk_stm32_is_enabled(unsigned long binding_id)664 static bool clk_stm32_is_enabled(unsigned long binding_id)
665 {
666 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
667 	int id;
668 
669 	id = clk_get_index(priv, binding_id);
670 	if (id == -EINVAL) {
671 		return false;
672 	}
673 
674 	return _clk_stm32_is_enabled(priv, id);
675 }
676 
clk_stm32_get_rate(unsigned long binding_id)677 static unsigned long clk_stm32_get_rate(unsigned long binding_id)
678 {
679 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
680 	int id;
681 
682 	id = clk_get_index(priv, binding_id);
683 	if (id == -EINVAL) {
684 		return 0UL;
685 	}
686 
687 	return _clk_stm32_get_rate(priv, id);
688 }
689 
clk_stm32_get_parent(unsigned long binding_id)690 static int clk_stm32_get_parent(unsigned long binding_id)
691 {
692 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
693 	int id;
694 
695 	id = clk_get_index(priv, binding_id);
696 	if (id == -EINVAL) {
697 		return id;
698 	}
699 
700 	return _clk_stm32_get_parent(priv, id);
701 }
702 
703 static const struct clk_ops stm32mp_clk_ops = {
704 	.enable		= clk_stm32_enable,
705 	.disable	= clk_stm32_disable,
706 	.is_enabled	= clk_stm32_is_enabled,
707 	.get_rate	= clk_stm32_get_rate,
708 	.get_parent	= clk_stm32_get_parent,
709 };
710 
clk_stm32_enable_critical_clocks(void)711 void clk_stm32_enable_critical_clocks(void)
712 {
713 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
714 	unsigned int i;
715 
716 	for (i = 0U; i < priv->num; i++) {
717 		if (_stm32_clk_is_flags(priv, i, CLK_IS_CRITICAL)) {
718 			_clk_stm32_enable(priv, i);
719 		}
720 	}
721 }
722 
stm32_clk_register(void)723 static void stm32_clk_register(void)
724 {
725 	clk_register(&stm32mp_clk_ops);
726 }
727 
clk_stm32_div_get_value(struct stm32_clk_priv * priv,int div_id)728 uint32_t clk_stm32_div_get_value(struct stm32_clk_priv *priv, int div_id)
729 {
730 	const struct div_cfg *divider = &priv->div[div_id];
731 	uint32_t val = 0;
732 
733 	val = mmio_read_32(priv->base + divider->offset) >> divider->shift;
734 	val &= clk_div_mask(divider->width);
735 
736 	return val;
737 }
738 
_clk_stm32_divider_recalc(struct stm32_clk_priv * priv,int div_id,unsigned long prate)739 unsigned long _clk_stm32_divider_recalc(struct stm32_clk_priv *priv,
740 					int div_id,
741 					unsigned long prate)
742 {
743 	const struct div_cfg *divider = &priv->div[div_id];
744 	uint32_t val = clk_stm32_div_get_value(priv, div_id);
745 	unsigned int div = 0U;
746 
747 	div = _get_div(divider->table, val, divider->flags, divider->width);
748 	if (div == 0U) {
749 		return prate;
750 	}
751 
752 	return div_round_up((uint64_t)prate, div);
753 }
754 
clk_stm32_divider_recalc(struct stm32_clk_priv * priv,int id,unsigned long prate)755 unsigned long clk_stm32_divider_recalc(struct stm32_clk_priv *priv, int id,
756 				       unsigned long prate)
757 {
758 	const struct clk_stm32 *clk = _clk_get(priv, id);
759 	struct clk_stm32_div_cfg *div_cfg = clk->clock_cfg;
760 
761 	return _clk_stm32_divider_recalc(priv, div_cfg->id, prate);
762 }
763 
764 const struct stm32_clk_ops clk_stm32_divider_ops = {
765 	.recalc_rate	= clk_stm32_divider_recalc,
766 };
767 
clk_stm32_set_div(struct stm32_clk_priv * priv,uint32_t div_id,uint32_t value)768 int clk_stm32_set_div(struct stm32_clk_priv *priv, uint32_t div_id, uint32_t value)
769 {
770 	const struct div_cfg *divider;
771 	uintptr_t address;
772 	uint64_t timeout;
773 	uint32_t mask;
774 
775 	if (div_id >= priv->nb_div) {
776 		panic();
777 	}
778 
779 	divider = &priv->div[div_id];
780 	address = priv->base + divider->offset;
781 
782 	mask = MASK_WIDTH_SHIFT(divider->width, divider->shift);
783 	mmio_clrsetbits_32(address, mask, (value << divider->shift) & mask);
784 
785 	if (divider->bitrdy == DIV_NO_BIT_RDY) {
786 		return 0;
787 	}
788 
789 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
790 	mask = BIT(divider->bitrdy);
791 
792 	while ((mmio_read_32(address) & mask) == 0U) {
793 		if (timeout_elapsed(timeout)) {
794 			return -ETIMEDOUT;
795 		}
796 	}
797 
798 	return 0;
799 }
800 
_clk_stm32_gate_wait_ready(struct stm32_clk_priv * priv,uint16_t gate_id,bool ready_on)801 int _clk_stm32_gate_wait_ready(struct stm32_clk_priv *priv, uint16_t gate_id,
802 			       bool ready_on)
803 {
804 	const struct gate_cfg *gate = &priv->gates[gate_id];
805 	uintptr_t address = priv->base + gate->offset;
806 	uint32_t mask_rdy = BIT(gate->bit_idx);
807 	uint64_t timeout;
808 	uint32_t mask_test;
809 
810 	if (ready_on) {
811 		mask_test = BIT(gate->bit_idx);
812 	} else {
813 		mask_test = 0U;
814 	}
815 
816 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
817 
818 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
819 		if (timeout_elapsed(timeout)) {
820 			break;
821 		}
822 	}
823 
824 	if ((mmio_read_32(address) & mask_rdy) != mask_test) {
825 		return -ETIMEDOUT;
826 	}
827 
828 	return 0;
829 }
830 
clk_stm32_gate_enable(struct stm32_clk_priv * priv,int id)831 int clk_stm32_gate_enable(struct stm32_clk_priv *priv, int id)
832 {
833 	const struct clk_stm32 *clk = _clk_get(priv, id);
834 	struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
835 	const struct gate_cfg *gate = &priv->gates[cfg->id];
836 	uintptr_t addr = priv->base + gate->offset;
837 
838 	if (gate->set_clr != 0U) {
839 		mmio_write_32(addr, BIT(gate->bit_idx));
840 
841 	} else {
842 		mmio_setbits_32(addr, BIT(gate->bit_idx));
843 	}
844 
845 	return 0;
846 }
847 
clk_stm32_gate_disable(struct stm32_clk_priv * priv,int id)848 void clk_stm32_gate_disable(struct stm32_clk_priv *priv, int id)
849 {
850 	const struct clk_stm32 *clk = _clk_get(priv, id);
851 	struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
852 	const struct gate_cfg *gate = &priv->gates[cfg->id];
853 	uintptr_t addr = priv->base + gate->offset;
854 
855 	if (gate->set_clr != 0U) {
856 		mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx));
857 	} else {
858 		mmio_clrbits_32(addr, BIT(gate->bit_idx));
859 	}
860 }
861 
_clk_stm32_gate_is_enabled(struct stm32_clk_priv * priv,int gate_id)862 bool _clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int gate_id)
863 {
864 	const struct gate_cfg *gate;
865 	uint32_t addr;
866 
867 	gate = &priv->gates[gate_id];
868 	addr = priv->base + gate->offset;
869 
870 	return ((mmio_read_32(addr) & BIT(gate->bit_idx)) != 0U);
871 }
872 
clk_stm32_gate_is_enabled(struct stm32_clk_priv * priv,int id)873 bool clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int id)
874 {
875 	const struct clk_stm32 *clk = _clk_get(priv, id);
876 	struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
877 
878 	return _clk_stm32_gate_is_enabled(priv, cfg->id);
879 }
880 
881 const struct stm32_clk_ops clk_stm32_gate_ops = {
882 	.enable		= clk_stm32_gate_enable,
883 	.disable	= clk_stm32_gate_disable,
884 	.is_enabled	= clk_stm32_gate_is_enabled,
885 };
886 
887 const struct stm32_clk_ops clk_fixed_factor_ops = {
888 	.recalc_rate	= fixed_factor_recalc_rate,
889 };
890 
fixed_factor_recalc_rate(struct stm32_clk_priv * priv,int id,unsigned long prate)891 unsigned long fixed_factor_recalc_rate(struct stm32_clk_priv *priv,
892 				       int id, unsigned long prate)
893 {
894 	const struct clk_stm32 *clk = _clk_get(priv, id);
895 	const struct fixed_factor_cfg *cfg = clk->clock_cfg;
896 	unsigned long long rate;
897 
898 	rate = (unsigned long long)prate * cfg->mult;
899 
900 	if (cfg->div == 0U) {
901 		ERROR("division by zero\n");
902 		panic();
903 	}
904 
905 	return (unsigned long)(rate / cfg->div);
906 };
907 
908 #define APB_DIV_MASK	GENMASK(2, 0)
909 #define TIM_PRE_MASK	BIT(0)
910 
timer_recalc_rate(struct stm32_clk_priv * priv,int id,unsigned long prate)911 static unsigned long timer_recalc_rate(struct stm32_clk_priv *priv,
912 				       int id, unsigned long prate)
913 {
914 	const struct clk_stm32 *clk = _clk_get(priv, id);
915 	const struct clk_timer_cfg *cfg = clk->clock_cfg;
916 	uint32_t prescaler, timpre;
917 	uintptr_t rcc_base = priv->base;
918 
919 	prescaler = mmio_read_32(rcc_base + cfg->apbdiv) &
920 		APB_DIV_MASK;
921 
922 	timpre = mmio_read_32(rcc_base + cfg->timpre) &
923 		TIM_PRE_MASK;
924 
925 	if (prescaler == 0U) {
926 		return prate;
927 	}
928 
929 	return prate * (timpre + 1U) * 2U;
930 };
931 
932 const struct stm32_clk_ops clk_timer_ops = {
933 	.recalc_rate	= timer_recalc_rate,
934 };
935 
clk_fixed_rate_recalc(struct stm32_clk_priv * priv,int id,unsigned long prate)936 static unsigned long clk_fixed_rate_recalc(struct stm32_clk_priv *priv, int id,
937 					   unsigned long prate)
938 {
939 	const struct clk_stm32 *clk = _clk_get(priv, id);
940 	struct clk_stm32_fixed_rate_cfg *cfg = clk->clock_cfg;
941 
942 	return cfg->rate;
943 }
944 
945 const struct stm32_clk_ops clk_stm32_fixed_rate_ops = {
946 	.recalc_rate	= clk_fixed_rate_recalc,
947 };
948 
clk_stm32_osc_recalc_rate(struct stm32_clk_priv * priv,int id,unsigned long prate)949 static unsigned long clk_stm32_osc_recalc_rate(struct stm32_clk_priv *priv,
950 					       int id, unsigned long prate)
951 {
952 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
953 
954 	return osc_data->frequency;
955 };
956 
clk_stm32_osc_gate_is_enabled(struct stm32_clk_priv * priv,int id)957 bool clk_stm32_osc_gate_is_enabled(struct stm32_clk_priv *priv, int id)
958 {
959 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
960 
961 	return _clk_stm32_gate_is_enabled(priv, osc_data->gate_id);
962 
963 }
964 
clk_stm32_osc_gate_enable(struct stm32_clk_priv * priv,int id)965 int clk_stm32_osc_gate_enable(struct stm32_clk_priv *priv, int id)
966 {
967 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
968 
969 	if (osc_data->frequency == 0UL) {
970 		return 0;
971 	}
972 
973 	_clk_stm32_gate_enable(priv, osc_data->gate_id);
974 
975 	if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, true) != 0U) {
976 		ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__);
977 		panic();
978 	}
979 
980 	return 0;
981 }
982 
clk_stm32_osc_gate_disable(struct stm32_clk_priv * priv,int id)983 void clk_stm32_osc_gate_disable(struct stm32_clk_priv *priv, int id)
984 {
985 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
986 
987 	if (osc_data->frequency == 0UL) {
988 		return;
989 	}
990 
991 	_clk_stm32_gate_disable(priv, osc_data->gate_id);
992 
993 	if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, false) != 0U) {
994 		ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__);
995 		panic();
996 	}
997 }
998 
clk_stm32_get_dt_oscillator_frequency(const char * name)999 static unsigned long clk_stm32_get_dt_oscillator_frequency(const char *name)
1000 {
1001 	void *fdt = NULL;
1002 	int node = 0;
1003 	int subnode = 0;
1004 
1005 	if (fdt_get_address(&fdt) == 0) {
1006 		panic();
1007 	}
1008 
1009 	node = fdt_path_offset(fdt, "/clocks");
1010 	if (node < 0) {
1011 		return 0UL;
1012 	}
1013 
1014 	fdt_for_each_subnode(subnode, fdt, node) {
1015 		const char *cchar = NULL;
1016 		const fdt32_t *cuint = NULL;
1017 		int ret = 0;
1018 
1019 		cchar = fdt_get_name(fdt, subnode, &ret);
1020 		if (cchar == NULL) {
1021 			continue;
1022 		}
1023 
1024 		if (strncmp(cchar, name, (size_t)ret) ||
1025 		    fdt_get_status(subnode) == DT_DISABLED) {
1026 			continue;
1027 		}
1028 
1029 		cuint = fdt_getprop(fdt, subnode, "clock-frequency", &ret);
1030 		if (cuint == NULL) {
1031 			return 0UL;
1032 		}
1033 
1034 		return fdt32_to_cpu(*cuint);
1035 	}
1036 
1037 	return 0UL;
1038 }
1039 
clk_stm32_osc_init(struct stm32_clk_priv * priv,int id)1040 void clk_stm32_osc_init(struct stm32_clk_priv *priv, int id)
1041 {
1042 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
1043 	const char *name = osc_data->name;
1044 
1045 	osc_data->frequency = clk_stm32_get_dt_oscillator_frequency(name);
1046 }
1047 
1048 const struct stm32_clk_ops clk_stm32_osc_ops = {
1049 	.recalc_rate	= clk_stm32_osc_recalc_rate,
1050 	.is_enabled	= clk_stm32_osc_gate_is_enabled,
1051 	.enable		= clk_stm32_osc_gate_enable,
1052 	.disable	= clk_stm32_osc_gate_disable,
1053 	.init		= clk_stm32_osc_init,
1054 };
1055 
1056 const struct stm32_clk_ops clk_stm32_osc_nogate_ops = {
1057 	.recalc_rate	= clk_stm32_osc_recalc_rate,
1058 	.init		= clk_stm32_osc_init,
1059 };
1060 
stm32_clk_parse_fdt_by_name(void * fdt,int node,const char * name,uint32_t * tab,uint32_t * nb)1061 int stm32_clk_parse_fdt_by_name(void *fdt, int node, const char *name, uint32_t *tab, uint32_t *nb)
1062 {
1063 	const fdt32_t *cell;
1064 	int len = 0;
1065 	uint32_t i;
1066 
1067 	cell = fdt_getprop(fdt, node, name, &len);
1068 	if (cell == NULL) {
1069 		*nb = 0U;
1070 		return 0;
1071 	}
1072 
1073 	for (i = 0; i < ((uint32_t)len / sizeof(uint32_t)); i++) {
1074 		uint32_t val = fdt32_to_cpu(cell[i]);
1075 
1076 		tab[i] = val;
1077 	}
1078 
1079 	*nb = (uint32_t)len / sizeof(uint32_t);
1080 
1081 	return 0;
1082 }
1083 
clk_stm32_init(struct stm32_clk_priv * priv,uintptr_t base)1084 int clk_stm32_init(struct stm32_clk_priv *priv, uintptr_t base)
1085 {
1086 	unsigned int i;
1087 
1088 	stm32_clock_data = priv;
1089 
1090 	priv->base = base;
1091 
1092 	for (i = 0U; i < priv->num; i++) {
1093 		const struct stm32_clk_ops *ops = _clk_get_ops(priv, i);
1094 
1095 		if (ops->init != NULL) {
1096 			ops->init(priv, i);
1097 		}
1098 	}
1099 
1100 	stm32_clk_register();
1101 
1102 	return 0;
1103 }
1104