1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL ES 3.0 Module
3 * -------------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Shader derivate function tests.
22 *
23 * \todo [2013-06-25 pyry] Missing features:
24 * - lines and points
25 * - projected coordinates
26 * - continous non-trivial functions (sin, exp)
27 * - non-continous functions (step)
28 *//*--------------------------------------------------------------------*/
29
30 #include "es3fShaderDerivateTests.hpp"
31 #include "gluShaderProgram.hpp"
32 #include "gluRenderContext.hpp"
33 #include "gluDrawUtil.hpp"
34 #include "gluPixelTransfer.hpp"
35 #include "gluShaderUtil.hpp"
36 #include "gluStrUtil.hpp"
37 #include "gluTextureUtil.hpp"
38 #include "gluTexture.hpp"
39 #include "tcuStringTemplate.hpp"
40 #include "tcuRenderTarget.hpp"
41 #include "tcuSurface.hpp"
42 #include "tcuTestLog.hpp"
43 #include "tcuVectorUtil.hpp"
44 #include "tcuTextureUtil.hpp"
45 #include "tcuRGBA.hpp"
46 #include "tcuFloat.hpp"
47 #include "tcuInterval.hpp"
48 #include "deRandom.hpp"
49 #include "deUniquePtr.hpp"
50 #include "deString.h"
51 #include "glwEnums.hpp"
52 #include "glwFunctions.hpp"
53 #include "glsShaderRenderCase.hpp" // gls::setupDefaultUniforms()
54
55 #include <sstream>
56
57 namespace deqp
58 {
59 namespace gles3
60 {
61 namespace Functional
62 {
63
64 using std::map;
65 using std::ostringstream;
66 using std::string;
67 using std::vector;
68 using tcu::TestLog;
69
70 enum
71 {
72 VIEWPORT_WIDTH = 167,
73 VIEWPORT_HEIGHT = 103,
74 FBO_WIDTH = 99,
75 FBO_HEIGHT = 133,
76 MAX_FAILED_MESSAGES = 10
77 };
78
79 enum DerivateFunc
80 {
81 DERIVATE_DFDX = 0,
82 DERIVATE_DFDY,
83 DERIVATE_FWIDTH,
84
85 DERIVATE_LAST
86 };
87
88 enum SurfaceType
89 {
90 SURFACETYPE_DEFAULT_FRAMEBUFFER = 0,
91 SURFACETYPE_UNORM_FBO,
92 SURFACETYPE_FLOAT_FBO, // \note Uses RGBA32UI fbo actually, since FP rendertargets are not in core spec.
93
94 SURFACETYPE_LAST
95 };
96
97 // Utilities
98
99 namespace
100 {
101
102 class AutoFbo
103 {
104 public:
AutoFbo(const glw::Functions & gl)105 AutoFbo(const glw::Functions &gl) : m_gl(gl), m_fbo(0)
106 {
107 }
108
~AutoFbo(void)109 ~AutoFbo(void)
110 {
111 if (m_fbo)
112 m_gl.deleteFramebuffers(1, &m_fbo);
113 }
114
gen(void)115 void gen(void)
116 {
117 DE_ASSERT(!m_fbo);
118 m_gl.genFramebuffers(1, &m_fbo);
119 }
120
operator *(void) const121 uint32_t operator*(void) const
122 {
123 return m_fbo;
124 }
125
126 private:
127 const glw::Functions &m_gl;
128 uint32_t m_fbo;
129 };
130
131 class AutoRbo
132 {
133 public:
AutoRbo(const glw::Functions & gl)134 AutoRbo(const glw::Functions &gl) : m_gl(gl), m_rbo(0)
135 {
136 }
137
~AutoRbo(void)138 ~AutoRbo(void)
139 {
140 if (m_rbo)
141 m_gl.deleteRenderbuffers(1, &m_rbo);
142 }
143
gen(void)144 void gen(void)
145 {
146 DE_ASSERT(!m_rbo);
147 m_gl.genRenderbuffers(1, &m_rbo);
148 }
149
operator *(void) const150 uint32_t operator*(void) const
151 {
152 return m_rbo;
153 }
154
155 private:
156 const glw::Functions &m_gl;
157 uint32_t m_rbo;
158 };
159
160 } // namespace
161
getDerivateFuncName(DerivateFunc func)162 static const char *getDerivateFuncName(DerivateFunc func)
163 {
164 switch (func)
165 {
166 case DERIVATE_DFDX:
167 return "dFdx";
168 case DERIVATE_DFDY:
169 return "dFdy";
170 case DERIVATE_FWIDTH:
171 return "fwidth";
172 default:
173 DE_ASSERT(false);
174 return nullptr;
175 }
176 }
177
getDerivateFuncCaseName(DerivateFunc func)178 static const char *getDerivateFuncCaseName(DerivateFunc func)
179 {
180 switch (func)
181 {
182 case DERIVATE_DFDX:
183 return "dfdx";
184 case DERIVATE_DFDY:
185 return "dfdy";
186 case DERIVATE_FWIDTH:
187 return "fwidth";
188 default:
189 DE_ASSERT(false);
190 return nullptr;
191 }
192 }
193
getDerivateMask(glu::DataType type)194 static inline tcu::BVec4 getDerivateMask(glu::DataType type)
195 {
196 switch (type)
197 {
198 case glu::TYPE_FLOAT:
199 return tcu::BVec4(true, false, false, false);
200 case glu::TYPE_FLOAT_VEC2:
201 return tcu::BVec4(true, true, false, false);
202 case glu::TYPE_FLOAT_VEC3:
203 return tcu::BVec4(true, true, true, false);
204 case glu::TYPE_FLOAT_VEC4:
205 return tcu::BVec4(true, true, true, true);
206 default:
207 DE_ASSERT(false);
208 return tcu::BVec4(true);
209 }
210 }
211
readDerivate(const tcu::ConstPixelBufferAccess & surface,const tcu::Vec4 & derivScale,const tcu::Vec4 & derivBias,int x,int y)212 static inline tcu::Vec4 readDerivate(const tcu::ConstPixelBufferAccess &surface, const tcu::Vec4 &derivScale,
213 const tcu::Vec4 &derivBias, int x, int y)
214 {
215 return (surface.getPixel(x, y) - derivBias) / derivScale;
216 }
217
getCompExpBits(const tcu::Vec4 & v)218 static inline tcu::UVec4 getCompExpBits(const tcu::Vec4 &v)
219 {
220 return tcu::UVec4(tcu::Float32(v[0]).exponentBits(), tcu::Float32(v[1]).exponentBits(),
221 tcu::Float32(v[2]).exponentBits(), tcu::Float32(v[3]).exponentBits());
222 }
223
computeFloatingPointError(const float value,const int numAccurateBits)224 float computeFloatingPointError(const float value, const int numAccurateBits)
225 {
226 const int numGarbageBits = 23 - numAccurateBits;
227 const uint32_t mask = (1u << numGarbageBits) - 1u;
228 const int exp = (tcu::Float32(value).exponent() < -3) ? -3 : tcu::Float32(value).exponent();
229
230 return tcu::Float32::construct(+1, exp, (1u << 23) | mask).asFloat() -
231 tcu::Float32::construct(+1, exp, 1u << 23).asFloat();
232 }
233
getNumMantissaBits(const glu::Precision precision)234 static int getNumMantissaBits(const glu::Precision precision)
235 {
236 switch (precision)
237 {
238 case glu::PRECISION_HIGHP:
239 return 23;
240 case glu::PRECISION_MEDIUMP:
241 return 10;
242 case glu::PRECISION_LOWP:
243 return 6;
244 default:
245 DE_ASSERT(false);
246 return 0;
247 }
248 }
249
getMinExponent(const glu::Precision precision)250 static int getMinExponent(const glu::Precision precision)
251 {
252 switch (precision)
253 {
254 case glu::PRECISION_HIGHP:
255 return -126;
256 case glu::PRECISION_MEDIUMP:
257 return -14;
258 case glu::PRECISION_LOWP:
259 return -8;
260 default:
261 DE_ASSERT(false);
262 return 0;
263 }
264 }
265
getSingleULPForExponent(int exp,int numMantissaBits)266 static float getSingleULPForExponent(int exp, int numMantissaBits)
267 {
268 if (numMantissaBits > 0)
269 {
270 DE_ASSERT(numMantissaBits <= 23);
271
272 const int ulpBitNdx = 23 - numMantissaBits;
273 return tcu::Float32::construct(+1, exp, (1 << 23) | (1 << ulpBitNdx)).asFloat() -
274 tcu::Float32::construct(+1, exp, (1 << 23)).asFloat();
275 }
276 else
277 {
278 DE_ASSERT(numMantissaBits == 0);
279 return tcu::Float32::construct(+1, exp, (1 << 23)).asFloat();
280 }
281 }
282
getSingleULPForValue(float value,int numMantissaBits)283 static float getSingleULPForValue(float value, int numMantissaBits)
284 {
285 const int exp = tcu::Float32(value).exponent();
286 return getSingleULPForExponent(exp, numMantissaBits);
287 }
288
convertFloatFlushToZeroRtn(float value,int minExponent,int numAccurateBits)289 static float convertFloatFlushToZeroRtn(float value, int minExponent, int numAccurateBits)
290 {
291 if (value == 0.0f)
292 {
293 return 0.0f;
294 }
295 else
296 {
297 const tcu::Float32 inputFloat = tcu::Float32(value);
298 const int numTruncatedBits = 23 - numAccurateBits;
299 const uint32_t truncMask = (1u << numTruncatedBits) - 1u;
300
301 if (value > 0.0f)
302 {
303 if (value > 0.0f && tcu::Float32(value).exponent() < minExponent)
304 {
305 // flush to zero if possible
306 return 0.0f;
307 }
308 else
309 {
310 // just mask away non-representable bits
311 return tcu::Float32::construct(+1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat();
312 }
313 }
314 else
315 {
316 if (inputFloat.mantissa() & truncMask)
317 {
318 // decrement one ulp if truncated bits are non-zero (i.e. if value is not representable)
319 return tcu::Float32::construct(-1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask)
320 .asFloat() -
321 getSingleULPForExponent(inputFloat.exponent(), numAccurateBits);
322 }
323 else
324 {
325 // value is representable, no need to do anything
326 return value;
327 }
328 }
329 }
330 }
331
convertFloatFlushToZeroRtp(float value,int minExponent,int numAccurateBits)332 static float convertFloatFlushToZeroRtp(float value, int minExponent, int numAccurateBits)
333 {
334 return -convertFloatFlushToZeroRtn(-value, minExponent, numAccurateBits);
335 }
336
addErrorUlp(float value,float numUlps,int numMantissaBits)337 static float addErrorUlp(float value, float numUlps, int numMantissaBits)
338 {
339 return value + numUlps * getSingleULPForValue(value, numMantissaBits);
340 }
341
342 enum
343 {
344 INTERPOLATION_LOST_BITS = 3, // number mantissa of bits allowed to be lost in varying interpolation
345 };
346
getInterpolationLostBitsWarning(const glu::Precision precision)347 static int getInterpolationLostBitsWarning(const glu::Precision precision)
348 {
349 // number mantissa of bits allowed to be lost in varying interpolation
350 switch (precision)
351 {
352 case glu::PRECISION_HIGHP:
353 return 9;
354 case glu::PRECISION_MEDIUMP:
355 return 3;
356 case glu::PRECISION_LOWP:
357 return 3;
358 default:
359 DE_ASSERT(false);
360 return 0;
361 }
362 }
363
getDerivateThreshold(const glu::Precision precision,const tcu::Vec4 & valueMin,const tcu::Vec4 & valueMax,const tcu::Vec4 & expectedDerivate)364 static inline tcu::Vec4 getDerivateThreshold(const glu::Precision precision, const tcu::Vec4 &valueMin,
365 const tcu::Vec4 &valueMax, const tcu::Vec4 &expectedDerivate)
366 {
367 const int baseBits = getNumMantissaBits(precision);
368 const tcu::UVec4 derivExp = getCompExpBits(expectedDerivate);
369 const tcu::UVec4 maxValueExp = max(getCompExpBits(valueMin), getCompExpBits(valueMax));
370 const tcu::UVec4 numBitsLost = maxValueExp - min(maxValueExp, derivExp);
371 const tcu::IVec4 numAccurateBits =
372 max(baseBits - numBitsLost.asInt() - (int)INTERPOLATION_LOST_BITS, tcu::IVec4(0));
373
374 return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]),
375 computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]),
376 computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]),
377 computeFloatingPointError(expectedDerivate[3], numAccurateBits[3]));
378 }
379
getDerivateThresholdWarning(const glu::Precision precision,const tcu::Vec4 & valueMin,const tcu::Vec4 & valueMax,const tcu::Vec4 & expectedDerivate)380 static inline tcu::Vec4 getDerivateThresholdWarning(const glu::Precision precision, const tcu::Vec4 &valueMin,
381 const tcu::Vec4 &valueMax, const tcu::Vec4 &expectedDerivate)
382 {
383 const int baseBits = getNumMantissaBits(precision);
384 const tcu::UVec4 derivExp = getCompExpBits(expectedDerivate);
385 const tcu::UVec4 maxValueExp = max(getCompExpBits(valueMin), getCompExpBits(valueMax));
386 const tcu::UVec4 numBitsLost = maxValueExp - min(maxValueExp, derivExp);
387 const tcu::IVec4 numAccurateBits =
388 max(baseBits - numBitsLost.asInt() - getInterpolationLostBitsWarning(precision), tcu::IVec4(0));
389
390 return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]),
391 computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]),
392 computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]),
393 computeFloatingPointError(expectedDerivate[3], numAccurateBits[3]));
394 }
395
396 namespace
397 {
398
399 struct LogVecComps
400 {
401 const tcu::Vec4 &v;
402 int numComps;
403
LogVecCompsdeqp::gles3::Functional::__anond77ee7f70411::LogVecComps404 LogVecComps(const tcu::Vec4 &v_, int numComps_) : v(v_), numComps(numComps_)
405 {
406 }
407 };
408
operator <<(std::ostream & str,const LogVecComps & v)409 std::ostream &operator<<(std::ostream &str, const LogVecComps &v)
410 {
411 DE_ASSERT(de::inRange(v.numComps, 1, 4));
412 if (v.numComps == 1)
413 return str << v.v[0];
414 else if (v.numComps == 2)
415 return str << v.v.toWidth<2>();
416 else if (v.numComps == 3)
417 return str << v.v.toWidth<3>();
418 else
419 return str << v.v;
420 }
421
422 } // namespace
423
424 enum VerificationLogging
425 {
426 LOG_ALL = 0,
427 LOG_NOTHING
428 };
429
verifyConstantDerivate(tcu::TestLog & log,const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask,glu::DataType dataType,const tcu::Vec4 & reference,const tcu::Vec4 & threshold,const tcu::Vec4 & scale,const tcu::Vec4 & bias,VerificationLogging logPolicy=LOG_ALL)430 static qpTestResult verifyConstantDerivate(tcu::TestLog &log, const tcu::ConstPixelBufferAccess &result,
431 const tcu::PixelBufferAccess &errorMask, glu::DataType dataType,
432 const tcu::Vec4 &reference, const tcu::Vec4 &threshold,
433 const tcu::Vec4 &scale, const tcu::Vec4 &bias,
434 VerificationLogging logPolicy = LOG_ALL)
435 {
436 const int numComps = glu::getDataTypeFloatScalars(dataType);
437 const tcu::BVec4 mask = tcu::logicalNot(getDerivateMask(dataType));
438 int numFailedPixels = 0;
439
440 if (logPolicy == LOG_ALL)
441 log << TestLog::Message << "Expecting " << LogVecComps(reference, numComps) << " with threshold "
442 << LogVecComps(threshold, numComps) << TestLog::EndMessage;
443
444 for (int y = 0; y < result.getHeight(); y++)
445 {
446 for (int x = 0; x < result.getWidth(); x++)
447 {
448 const tcu::Vec4 resDerivate = readDerivate(result, scale, bias, x, y);
449 const bool isOk =
450 tcu::allEqual(tcu::logicalOr(tcu::lessThanEqual(tcu::abs(reference - resDerivate), threshold), mask),
451 tcu::BVec4(true));
452
453 if (!isOk)
454 {
455 if (numFailedPixels < MAX_FAILED_MESSAGES && logPolicy == LOG_ALL)
456 log << TestLog::Message << "FAIL: got " << LogVecComps(resDerivate, numComps)
457 << ", diff = " << LogVecComps(tcu::abs(reference - resDerivate), numComps) << ", at x = " << x
458 << ", y = " << y << TestLog::EndMessage;
459 numFailedPixels += 1;
460 errorMask.setPixel(tcu::RGBA::red().toVec(), x, y);
461 }
462 }
463 }
464
465 if (numFailedPixels >= MAX_FAILED_MESSAGES && logPolicy == LOG_ALL)
466 log << TestLog::Message << "..." << TestLog::EndMessage;
467
468 if (numFailedPixels > 0 && logPolicy == LOG_ALL)
469 log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage;
470
471 return (numFailedPixels == 0) ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL;
472 }
473
474 struct Linear2DFunctionEvaluator
475 {
476 tcu::Matrix<float, 4, 3> matrix;
477
478 // .-----.
479 // | s_x |
480 // M x | s_y |
481 // | 1.0 |
482 // '-----'
483 tcu::Vec4 evaluateAt(float screenX, float screenY) const;
484 };
485
evaluateAt(float screenX,float screenY) const486 tcu::Vec4 Linear2DFunctionEvaluator::evaluateAt(float screenX, float screenY) const
487 {
488 const tcu::Vec3 position(screenX, screenY, 1.0f);
489 return matrix * position;
490 }
491
reverifyConstantDerivateWithFlushRelaxations(tcu::TestLog & log,const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask,glu::DataType dataType,glu::Precision precision,const tcu::Vec4 & derivScale,const tcu::Vec4 & derivBias,const tcu::Vec4 & surfaceThreshold,DerivateFunc derivateFunc,const Linear2DFunctionEvaluator & function)492 static qpTestResult reverifyConstantDerivateWithFlushRelaxations(
493 tcu::TestLog &log, const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask,
494 glu::DataType dataType, glu::Precision precision, const tcu::Vec4 &derivScale, const tcu::Vec4 &derivBias,
495 const tcu::Vec4 &surfaceThreshold, DerivateFunc derivateFunc, const Linear2DFunctionEvaluator &function)
496 {
497 DE_ASSERT(result.getWidth() == errorMask.getWidth());
498 DE_ASSERT(result.getHeight() == errorMask.getHeight());
499 DE_ASSERT(derivateFunc == DERIVATE_DFDX || derivateFunc == DERIVATE_DFDY);
500
501 const tcu::IVec4 red(255, 0, 0, 255);
502 const tcu::IVec4 green(0, 255, 0, 255);
503 const float divisionErrorUlps = 2.5f;
504
505 const int numComponents = glu::getDataTypeFloatScalars(dataType);
506 const int numBits = getNumMantissaBits(precision);
507 const int minExponent = getMinExponent(precision);
508
509 const int numVaryingSampleBits = numBits - INTERPOLATION_LOST_BITS;
510 int numFailedPixels = 0;
511
512 tcu::clear(errorMask, green);
513
514 // search for failed pixels
515 for (int y = 0; y < result.getHeight(); ++y)
516 for (int x = 0; x < result.getWidth(); ++x)
517 {
518 // flushToZero?(f2z?(functionValueCurrent) - f2z?(functionValueBefore))
519 // flushToZero? ( ------------------------------------------------------------------------ +- 2.5 ULP )
520 // dx
521
522 const tcu::Vec4 resultDerivative = readDerivate(result, derivScale, derivBias, x, y);
523
524 // sample at the front of the back pixel and the back of the front pixel to cover the whole area of
525 // legal sample positions. In general case this is NOT OK, but we know that the target function is
526 // (mostly*) linear which allows us to take the sample points at arbitrary points. This gets us the
527 // maximum difference possible in exponents which are used in error bound calculations.
528 // * non-linearity may happen around zero or with very high function values due to subnorms not
529 // behaving well.
530 const tcu::Vec4 functionValueForward = (derivateFunc == DERIVATE_DFDX) ?
531 (function.evaluateAt((float)x + 2.0f, (float)y + 0.5f)) :
532 (function.evaluateAt((float)x + 0.5f, (float)y + 2.0f));
533 const tcu::Vec4 functionValueBackward = (derivateFunc == DERIVATE_DFDX) ?
534 (function.evaluateAt((float)x - 1.0f, (float)y + 0.5f)) :
535 (function.evaluateAt((float)x + 0.5f, (float)y - 1.0f));
536
537 bool anyComponentFailed = false;
538
539 // check components separately
540 for (int c = 0; c < numComponents; ++c)
541 {
542 // Simulate interpolation. Add allowed interpolation error and round to target precision. Allow one half ULP (i.e. correct rounding)
543 const tcu::Interval forwardComponent(
544 convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueForward[c], -0.5f, numVaryingSampleBits),
545 minExponent, numBits),
546 convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueForward[c], +0.5f, numVaryingSampleBits),
547 minExponent, numBits));
548 const tcu::Interval backwardComponent(
549 convertFloatFlushToZeroRtn(
550 addErrorUlp((float)functionValueBackward[c], -0.5f, numVaryingSampleBits), minExponent,
551 numBits),
552 convertFloatFlushToZeroRtp(
553 addErrorUlp((float)functionValueBackward[c], +0.5f, numVaryingSampleBits), minExponent,
554 numBits));
555 const int maxValueExp = de::max(de::max(tcu::Float32(forwardComponent.lo()).exponent(),
556 tcu::Float32(forwardComponent.hi()).exponent()),
557 de::max(tcu::Float32(backwardComponent.lo()).exponent(),
558 tcu::Float32(backwardComponent.hi()).exponent()));
559
560 // subtraction in numerator will likely cause a cancellation of the most
561 // significant bits. Apply error bounds.
562
563 const tcu::Interval numerator(forwardComponent - backwardComponent);
564 const int numeratorLoExp = tcu::Float32(numerator.lo()).exponent();
565 const int numeratorHiExp = tcu::Float32(numerator.hi()).exponent();
566 const int numeratorLoBitsLost = de::max(
567 0,
568 maxValueExp -
569 numeratorLoExp); //!< must clamp to zero since if forward and backward components have different
570 const int numeratorHiBitsLost = de::max(
571 0, maxValueExp - numeratorHiExp); //!< sign, numerator might have larger exponent than its operands.
572 const int numeratorLoBits = de::max(0, numBits - numeratorLoBitsLost);
573 const int numeratorHiBits = de::max(0, numBits - numeratorHiBitsLost);
574
575 const tcu::Interval numeratorRange(
576 convertFloatFlushToZeroRtn((float)numerator.lo(), minExponent, numeratorLoBits),
577 convertFloatFlushToZeroRtp((float)numerator.hi(), minExponent, numeratorHiBits));
578
579 const tcu::Interval divisionRange =
580 numeratorRange /
581 3.0f; // legal sample area is anywhere within this and neighboring pixels (i.e. size = 3)
582 const tcu::Interval divisionResultRange(
583 convertFloatFlushToZeroRtn(addErrorUlp((float)divisionRange.lo(), -divisionErrorUlps, numBits),
584 minExponent, numBits),
585 convertFloatFlushToZeroRtp(addErrorUlp((float)divisionRange.hi(), +divisionErrorUlps, numBits),
586 minExponent, numBits));
587 const tcu::Interval finalResultRange(divisionResultRange.lo() - surfaceThreshold[c],
588 divisionResultRange.hi() + surfaceThreshold[c]);
589
590 if (resultDerivative[c] >= finalResultRange.lo() && resultDerivative[c] <= finalResultRange.hi())
591 {
592 // value ok
593 }
594 else
595 {
596 if (numFailedPixels < MAX_FAILED_MESSAGES)
597 log << tcu::TestLog::Message << "Error in pixel at " << x << ", " << y << " with component "
598 << c << " (channel " << ("rgba"[c]) << ")\n"
599 << "\tGot pixel value " << result.getPixelInt(x, y) << "\n"
600 << "\t\tdFd" << ((derivateFunc == DERIVATE_DFDX) ? ('x') : ('y'))
601 << " ~= " << resultDerivative[c] << "\n"
602 << "\t\tdifference to a valid range: "
603 << ((resultDerivative[c] < finalResultRange.lo()) ? ("-") : ("+"))
604 << ((resultDerivative[c] < finalResultRange.lo()) ?
605 (finalResultRange.lo() - resultDerivative[c]) :
606 (resultDerivative[c] - finalResultRange.hi()))
607 << "\n"
608 << "\tDerivative value range:\n"
609 << "\t\tMin: " << finalResultRange.lo() << "\n"
610 << "\t\tMax: " << finalResultRange.hi() << "\n"
611 << tcu::TestLog::EndMessage;
612
613 ++numFailedPixels;
614 anyComponentFailed = true;
615 }
616 }
617
618 if (anyComponentFailed)
619 errorMask.setPixel(red, x, y);
620 }
621
622 if (numFailedPixels >= MAX_FAILED_MESSAGES)
623 log << TestLog::Message << "..." << TestLog::EndMessage;
624
625 if (numFailedPixels > 0)
626 log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage;
627
628 return (numFailedPixels == 0) ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL;
629 }
630
631 // TriangleDerivateCase
632
633 class TriangleDerivateCase : public TestCase
634 {
635 public:
636 TriangleDerivateCase(Context &context, const char *name, const char *description);
637 ~TriangleDerivateCase(void);
638
639 IterateResult iterate(void);
640
641 protected:
setupRenderState(uint32_t program)642 virtual void setupRenderState(uint32_t program)
643 {
644 DE_UNREF(program);
645 }
646 virtual qpTestResult verify(const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask) = 0;
647
648 tcu::IVec2 getViewportSize(void) const;
649 tcu::Vec4 getSurfaceThreshold(void) const;
650
651 glu::DataType m_dataType;
652 glu::Precision m_precision;
653
654 glu::DataType m_coordDataType;
655 glu::Precision m_coordPrecision;
656
657 std::string m_fragmentSrc;
658
659 tcu::Vec4 m_coordMin;
660 tcu::Vec4 m_coordMax;
661 tcu::Vec4 m_derivScale;
662 tcu::Vec4 m_derivBias;
663
664 SurfaceType m_surfaceType;
665 int m_numSamples;
666 uint32_t m_hint;
667
668 bool m_useAsymmetricCoords;
669 };
670
TriangleDerivateCase(Context & context,const char * name,const char * description)671 TriangleDerivateCase::TriangleDerivateCase(Context &context, const char *name, const char *description)
672 : TestCase(context, name, description)
673 , m_dataType(glu::TYPE_LAST)
674 , m_precision(glu::PRECISION_LAST)
675 , m_coordDataType(glu::TYPE_LAST)
676 , m_coordPrecision(glu::PRECISION_LAST)
677 , m_surfaceType(SURFACETYPE_DEFAULT_FRAMEBUFFER)
678 , m_numSamples(0)
679 , m_hint(GL_DONT_CARE)
680 , m_useAsymmetricCoords(false)
681 {
682 DE_ASSERT(m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER || m_numSamples == 0);
683 }
684
~TriangleDerivateCase(void)685 TriangleDerivateCase::~TriangleDerivateCase(void)
686 {
687 TriangleDerivateCase::deinit();
688 }
689
genVertexSource(glu::DataType coordType,glu::Precision precision)690 static std::string genVertexSource(glu::DataType coordType, glu::Precision precision)
691 {
692 DE_ASSERT(glu::isDataTypeFloatOrVec(coordType));
693
694 const char *vertexTmpl = "#version 300 es\n"
695 "in highp vec4 a_position;\n"
696 "in ${PRECISION} ${DATATYPE} a_coord;\n"
697 "out ${PRECISION} ${DATATYPE} v_coord;\n"
698 "void main (void)\n"
699 "{\n"
700 " gl_Position = a_position;\n"
701 " v_coord = a_coord;\n"
702 "}\n";
703
704 map<string, string> vertexParams;
705
706 vertexParams["PRECISION"] = glu::getPrecisionName(precision);
707 vertexParams["DATATYPE"] = glu::getDataTypeName(coordType);
708
709 return tcu::StringTemplate(vertexTmpl).specialize(vertexParams);
710 }
711
getViewportSize(void) const712 inline tcu::IVec2 TriangleDerivateCase::getViewportSize(void) const
713 {
714 if (m_surfaceType == SURFACETYPE_DEFAULT_FRAMEBUFFER)
715 {
716 const int width = de::min<int>(m_context.getRenderTarget().getWidth(), VIEWPORT_WIDTH);
717 const int height = de::min<int>(m_context.getRenderTarget().getHeight(), VIEWPORT_HEIGHT);
718 return tcu::IVec2(width, height);
719 }
720 else
721 return tcu::IVec2(FBO_WIDTH, FBO_HEIGHT);
722 }
723
iterate(void)724 TriangleDerivateCase::IterateResult TriangleDerivateCase::iterate(void)
725 {
726 const glw::Functions &gl = m_context.getRenderContext().getFunctions();
727 const glu::ShaderProgram program(
728 m_context.getRenderContext(),
729 glu::makeVtxFragSources(genVertexSource(m_coordDataType, m_coordPrecision), m_fragmentSrc));
730 de::Random rnd(deStringHash(getName()) ^ 0xbbc24);
731 const bool useFbo = m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER;
732 const uint32_t fboFormat = m_surfaceType == SURFACETYPE_FLOAT_FBO ? GL_RGBA32UI : GL_RGBA8;
733 const tcu::IVec2 viewportSize = getViewportSize();
734 const int viewportX = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getWidth() - viewportSize.x());
735 const int viewportY = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getHeight() - viewportSize.y());
736 AutoFbo fbo(gl);
737 AutoRbo rbo(gl);
738 tcu::TextureLevel result;
739
740 m_testCtx.getLog() << program;
741
742 if (!program.isOk())
743 TCU_FAIL("Compile failed");
744
745 if (useFbo)
746 {
747 m_testCtx.getLog() << TestLog::Message << "Rendering to FBO, format = " << glu::getTextureFormatStr(fboFormat)
748 << ", samples = " << m_numSamples << TestLog::EndMessage;
749
750 fbo.gen();
751 rbo.gen();
752
753 gl.bindRenderbuffer(GL_RENDERBUFFER, *rbo);
754 gl.renderbufferStorageMultisample(GL_RENDERBUFFER, m_numSamples, fboFormat, viewportSize.x(), viewportSize.y());
755 gl.bindFramebuffer(GL_FRAMEBUFFER, *fbo);
756 gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *rbo);
757 TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
758 }
759 else
760 {
761 const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
762
763 m_testCtx.getLog() << TestLog::Message << "Rendering to default framebuffer\n"
764 << "\tColor depth: R=" << pixelFormat.redBits << ", G=" << pixelFormat.greenBits
765 << ", B=" << pixelFormat.blueBits << ", A=" << pixelFormat.alphaBits << TestLog::EndMessage;
766 }
767
768 m_testCtx.getLog() << TestLog::Message << "in: " << m_coordMin << " -> " << m_coordMax << "\n"
769 << (m_useAsymmetricCoords ? "v_coord.x = in.x * (x+y)/2\n" : "v_coord.x = in.x * x\n")
770 << (m_useAsymmetricCoords ? "v_coord.y = in.y * (x+y)/2\n" : "v_coord.y = in.y * y\n")
771 << "v_coord.z = in.z * (x+y)/2\n"
772 << "v_coord.w = in.w * (1 - (x+y)/2)\n"
773 << TestLog::EndMessage << TestLog::Message << "u_scale: " << m_derivScale
774 << ", u_bias: " << m_derivBias << " (displayed values have scale/bias removed)"
775 << TestLog::EndMessage << TestLog::Message << "Viewport: " << viewportSize.x() << "x"
776 << viewportSize.y() << TestLog::EndMessage << TestLog::Message
777 << "GL_FRAGMENT_SHADER_DERIVATE_HINT: " << glu::getHintModeStr(m_hint) << TestLog::EndMessage;
778
779 // Draw
780 {
781 const float positions[] = {-1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f,
782 1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f};
783 float coords[] = {m_coordMin.x(),
784 m_coordMin.y(),
785 m_coordMin.z(),
786 m_coordMax.w(),
787 m_coordMin.x(),
788 m_coordMax.y(),
789 (m_coordMin.z() + m_coordMax.z()) * 0.5f,
790 (m_coordMin.w() + m_coordMax.w()) * 0.5f,
791 m_coordMax.x(),
792 m_coordMin.y(),
793 (m_coordMin.z() + m_coordMax.z()) * 0.5f,
794 (m_coordMin.w() + m_coordMax.w()) * 0.5f,
795 m_coordMax.x(),
796 m_coordMax.y(),
797 m_coordMax.z(),
798 m_coordMin.w()};
799
800 // For linear tests we want varying data x and y to vary along both axes
801 // to get nonzero x for dfdy and nonzero y for dfdx. To make the gradient
802 // the same for both triangles we set vertices 2 and 3 to middle values.
803 // This way the values go from min -> (max+min) / 2 or (max+min) / 2 -> max
804 // depending on the triangle, but the derivative is the same for both.
805 if (m_useAsymmetricCoords)
806 {
807 coords[4] = coords[8] = (m_coordMin.x() + m_coordMax.x()) * 0.5f;
808 coords[5] = coords[9] = (m_coordMin.y() + m_coordMax.y()) * 0.5f;
809 }
810
811 const glu::VertexArrayBinding vertexArrays[] = {glu::va::Float("a_position", 4, 4, 0, &positions[0]),
812 glu::va::Float("a_coord", 4, 4, 0, &coords[0])};
813 const uint16_t indices[] = {0, 2, 1, 2, 3, 1};
814
815 gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f);
816 gl.clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
817 gl.disable(GL_DITHER);
818
819 gl.useProgram(program.getProgram());
820
821 {
822 const int scaleLoc = gl.getUniformLocation(program.getProgram(), "u_scale");
823 const int biasLoc = gl.getUniformLocation(program.getProgram(), "u_bias");
824
825 switch (m_dataType)
826 {
827 case glu::TYPE_FLOAT:
828 gl.uniform1f(scaleLoc, m_derivScale.x());
829 gl.uniform1f(biasLoc, m_derivBias.x());
830 break;
831
832 case glu::TYPE_FLOAT_VEC2:
833 gl.uniform2fv(scaleLoc, 1, m_derivScale.getPtr());
834 gl.uniform2fv(biasLoc, 1, m_derivBias.getPtr());
835 break;
836
837 case glu::TYPE_FLOAT_VEC3:
838 gl.uniform3fv(scaleLoc, 1, m_derivScale.getPtr());
839 gl.uniform3fv(biasLoc, 1, m_derivBias.getPtr());
840 break;
841
842 case glu::TYPE_FLOAT_VEC4:
843 gl.uniform4fv(scaleLoc, 1, m_derivScale.getPtr());
844 gl.uniform4fv(biasLoc, 1, m_derivBias.getPtr());
845 break;
846
847 default:
848 DE_ASSERT(false);
849 }
850 }
851
852 gls::setupDefaultUniforms(m_context.getRenderContext(), program.getProgram());
853 setupRenderState(program.getProgram());
854
855 gl.hint(GL_FRAGMENT_SHADER_DERIVATIVE_HINT, m_hint);
856 GLU_EXPECT_NO_ERROR(gl.getError(), "Setup program state");
857
858 gl.viewport(viewportX, viewportY, viewportSize.x(), viewportSize.y());
859 glu::draw(m_context.getRenderContext(), program.getProgram(), DE_LENGTH_OF_ARRAY(vertexArrays),
860 &vertexArrays[0], glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
861 GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
862 }
863
864 // Read back results
865 {
866 const bool isMSAA = useFbo && m_numSamples > 0;
867 AutoFbo resFbo(gl);
868 AutoRbo resRbo(gl);
869
870 // Resolve if necessary
871 if (isMSAA)
872 {
873 resFbo.gen();
874 resRbo.gen();
875
876 gl.bindRenderbuffer(GL_RENDERBUFFER, *resRbo);
877 gl.renderbufferStorageMultisample(GL_RENDERBUFFER, 0, fboFormat, viewportSize.x(), viewportSize.y());
878 gl.bindFramebuffer(GL_DRAW_FRAMEBUFFER, *resFbo);
879 gl.framebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *resRbo);
880 TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
881
882 gl.blitFramebuffer(0, 0, viewportSize.x(), viewportSize.y(), 0, 0, viewportSize.x(), viewportSize.y(),
883 GL_COLOR_BUFFER_BIT, GL_NEAREST);
884 GLU_EXPECT_NO_ERROR(gl.getError(), "Resolve blit");
885
886 gl.bindFramebuffer(GL_READ_FRAMEBUFFER, *resFbo);
887 }
888
889 switch (m_surfaceType)
890 {
891 case SURFACETYPE_DEFAULT_FRAMEBUFFER:
892 case SURFACETYPE_UNORM_FBO:
893 result.setStorage(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
894 viewportSize.x(), viewportSize.y());
895 glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, result);
896 break;
897
898 case SURFACETYPE_FLOAT_FBO:
899 {
900 const tcu::TextureFormat dataFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT);
901 const tcu::TextureFormat transferFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32);
902
903 result.setStorage(dataFormat, viewportSize.x(), viewportSize.y());
904 glu::readPixels(m_context.getRenderContext(), viewportX, viewportY,
905 tcu::PixelBufferAccess(transferFormat, result.getWidth(), result.getHeight(),
906 result.getDepth(), result.getAccess().getDataPtr()));
907 break;
908 }
909
910 default:
911 DE_ASSERT(false);
912 }
913
914 GLU_EXPECT_NO_ERROR(gl.getError(), "Read pixels");
915 }
916
917 // Verify
918 {
919 tcu::Surface errorMask(result.getWidth(), result.getHeight());
920 tcu::clear(errorMask.getAccess(), tcu::RGBA::green().toVec());
921
922 const qpTestResult testResult = verify(result.getAccess(), errorMask.getAccess());
923 const char *failStr = "Fail";
924
925 m_testCtx.getLog() << TestLog::ImageSet("Result", "Result images")
926 << TestLog::Image("Rendered", "Rendered image", result);
927
928 if (testResult != QP_TEST_RESULT_PASS)
929 m_testCtx.getLog() << TestLog::Image("ErrorMask", "Error mask", errorMask);
930
931 m_testCtx.getLog() << TestLog::EndImageSet;
932
933 if (testResult == QP_TEST_RESULT_PASS)
934 failStr = "Pass";
935 else if (testResult == QP_TEST_RESULT_QUALITY_WARNING)
936 failStr = "QualityWarning";
937
938 m_testCtx.setTestResult(testResult, failStr);
939 }
940
941 return STOP;
942 }
943
getSurfaceThreshold(void) const944 tcu::Vec4 TriangleDerivateCase::getSurfaceThreshold(void) const
945 {
946 switch (m_surfaceType)
947 {
948 case SURFACETYPE_DEFAULT_FRAMEBUFFER:
949 {
950 const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
951 const tcu::IVec4 channelBits(pixelFormat.redBits, pixelFormat.greenBits, pixelFormat.blueBits,
952 pixelFormat.alphaBits);
953 const tcu::IVec4 intThreshold = tcu::IVec4(1) << (8 - channelBits);
954 const tcu::Vec4 normThreshold = intThreshold.asFloat() / 255.0f;
955
956 return normThreshold;
957 }
958
959 case SURFACETYPE_UNORM_FBO:
960 return tcu::IVec4(1).asFloat() / 255.0f;
961 case SURFACETYPE_FLOAT_FBO:
962 return tcu::Vec4(0.0f);
963 default:
964 DE_ASSERT(false);
965 return tcu::Vec4(0.0f);
966 }
967 }
968
969 // ConstantDerivateCase
970
971 class ConstantDerivateCase : public TriangleDerivateCase
972 {
973 public:
974 ConstantDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func,
975 glu::DataType type);
~ConstantDerivateCase(void)976 ~ConstantDerivateCase(void)
977 {
978 }
979
980 void init(void);
981
982 protected:
983 qpTestResult verify(const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask);
984
985 private:
986 DerivateFunc m_func;
987 };
988
ConstantDerivateCase(Context & context,const char * name,const char * description,DerivateFunc func,glu::DataType type)989 ConstantDerivateCase::ConstantDerivateCase(Context &context, const char *name, const char *description,
990 DerivateFunc func, glu::DataType type)
991 : TriangleDerivateCase(context, name, description)
992 , m_func(func)
993 {
994 m_dataType = type;
995 m_precision = glu::PRECISION_HIGHP;
996 m_coordDataType = m_dataType;
997 m_coordPrecision = m_precision;
998 }
999
init(void)1000 void ConstantDerivateCase::init(void)
1001 {
1002 const char *fragmentTmpl = "#version 300 es\n"
1003 "layout(location = 0) out mediump vec4 o_color;\n"
1004 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1005 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1006 "void main (void)\n"
1007 "{\n"
1008 " ${PRECISION} ${DATATYPE} res = ${FUNC}(${VALUE}) * u_scale + u_bias;\n"
1009 " o_color = ${CAST_TO_OUTPUT};\n"
1010 "}\n";
1011 map<string, string> fragmentParams;
1012 fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
1013 fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
1014 fragmentParams["FUNC"] = getDerivateFuncName(m_func);
1015 fragmentParams["VALUE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "vec4(1.0, 7.2, -1e5, 0.0)" :
1016 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec3(1e2, 8.0, 0.01)" :
1017 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec2(-0.0, 2.7)" :
1018 /* TYPE_FLOAT */ "7.7";
1019 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
1020 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
1021 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
1022 /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
1023
1024 m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams);
1025
1026 m_derivScale = tcu::Vec4(1e3f, 1e3f, 1e3f, 1e3f);
1027 m_derivBias = tcu::Vec4(0.5f, 0.5f, 0.5f, 0.5f);
1028 }
1029
verify(const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)1030 qpTestResult ConstantDerivateCase::verify(const tcu::ConstPixelBufferAccess &result,
1031 const tcu::PixelBufferAccess &errorMask)
1032 {
1033 const tcu::Vec4 reference(0.0f); // Derivate of constant argument should always be 0
1034 const tcu::Vec4 threshold = getSurfaceThreshold() / abs(m_derivScale);
1035
1036 return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold, m_derivScale,
1037 m_derivBias);
1038 }
1039
1040 // LinearDerivateCase
1041
1042 class LinearDerivateCase : public TriangleDerivateCase
1043 {
1044 public:
1045 LinearDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func,
1046 glu::DataType type, glu::Precision precision, uint32_t hint, SurfaceType surfaceType,
1047 int numSamples, const char *fragmentSrcTmpl);
~LinearDerivateCase(void)1048 ~LinearDerivateCase(void)
1049 {
1050 }
1051
1052 void init(void);
1053
1054 protected:
1055 qpTestResult verify(const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask);
1056
1057 private:
1058 DerivateFunc m_func;
1059 std::string m_fragmentTmpl;
1060 };
1061
LinearDerivateCase(Context & context,const char * name,const char * description,DerivateFunc func,glu::DataType type,glu::Precision precision,uint32_t hint,SurfaceType surfaceType,int numSamples,const char * fragmentSrcTmpl)1062 LinearDerivateCase::LinearDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func,
1063 glu::DataType type, glu::Precision precision, uint32_t hint,
1064 SurfaceType surfaceType, int numSamples, const char *fragmentSrcTmpl)
1065 : TriangleDerivateCase(context, name, description)
1066 , m_func(func)
1067 , m_fragmentTmpl(fragmentSrcTmpl)
1068 {
1069 m_dataType = type;
1070 m_precision = precision;
1071 m_coordDataType = m_dataType;
1072 m_coordPrecision = m_precision;
1073 m_hint = hint;
1074 m_surfaceType = surfaceType;
1075 m_numSamples = numSamples;
1076 m_useAsymmetricCoords = true;
1077 }
1078
init(void)1079 void LinearDerivateCase::init(void)
1080 {
1081 const tcu::IVec2 viewportSize = getViewportSize();
1082 const float w = float(viewportSize.x());
1083 const float h = float(viewportSize.y());
1084 const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO;
1085 map<string, string> fragmentParams;
1086
1087 fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4);
1088 fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision);
1089 fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
1090 fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
1091 fragmentParams["FUNC"] = getDerivateFuncName(m_func);
1092
1093 if (packToInt)
1094 {
1095 fragmentParams["CAST_TO_OUTPUT"] =
1096 m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" :
1097 m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" :
1098 m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" :
1099 /* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))";
1100 }
1101 else
1102 {
1103 fragmentParams["CAST_TO_OUTPUT"] =
1104 m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
1105 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
1106 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
1107 /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
1108 }
1109
1110 m_fragmentSrc = tcu::StringTemplate(m_fragmentTmpl.c_str()).specialize(fragmentParams);
1111
1112 switch (m_precision)
1113 {
1114 case glu::PRECISION_HIGHP:
1115 m_coordMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f);
1116 m_coordMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f);
1117 break;
1118
1119 case glu::PRECISION_MEDIUMP:
1120 m_coordMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f);
1121 m_coordMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f);
1122 break;
1123
1124 case glu::PRECISION_LOWP:
1125 m_coordMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f);
1126 m_coordMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f);
1127 break;
1128
1129 default:
1130 DE_ASSERT(false);
1131 }
1132
1133 if (m_surfaceType == SURFACETYPE_FLOAT_FBO)
1134 {
1135 // No scale or bias used for accuracy.
1136 m_derivScale = tcu::Vec4(1.0f);
1137 m_derivBias = tcu::Vec4(0.0f);
1138 }
1139 else
1140 {
1141 // Compute scale - bias that normalizes to 0..1 range.
1142 const tcu::Vec4 dx = (m_coordMax - m_coordMin) / tcu::Vec4(w, w, w * 0.5f, -w * 0.5f);
1143 const tcu::Vec4 dy = (m_coordMax - m_coordMin) / tcu::Vec4(h, h, h * 0.5f, -h * 0.5f);
1144
1145 switch (m_func)
1146 {
1147 case DERIVATE_DFDX:
1148 m_derivScale = 0.5f / dx;
1149 break;
1150
1151 case DERIVATE_DFDY:
1152 m_derivScale = 0.5f / dy;
1153 break;
1154
1155 case DERIVATE_FWIDTH:
1156 m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy));
1157 break;
1158
1159 default:
1160 DE_ASSERT(false);
1161 }
1162
1163 m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
1164 }
1165 }
1166
verify(const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)1167 qpTestResult LinearDerivateCase::verify(const tcu::ConstPixelBufferAccess &result,
1168 const tcu::PixelBufferAccess &errorMask)
1169 {
1170 const tcu::Vec4 xScale = tcu::Vec4(0.5f, 0.5f, 0.5f, -0.5f);
1171 const tcu::Vec4 yScale = tcu::Vec4(0.5f, 0.5f, 0.5f, -0.5f);
1172
1173 const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale);
1174
1175 if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY)
1176 {
1177 const bool isX = m_func == DERIVATE_DFDX;
1178 const float div = isX ? float(result.getWidth()) : float(result.getHeight());
1179 const tcu::Vec4 scale = isX ? xScale : yScale;
1180 tcu::Vec4 reference = ((m_coordMax - m_coordMin) / div);
1181 const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_coordMin, m_coordMax, reference);
1182 const tcu::Vec4 opThresholdW = getDerivateThresholdWarning(m_precision, m_coordMin, m_coordMax, reference);
1183 const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold);
1184 const tcu::Vec4 thresholdW = max(surfaceThreshold, opThresholdW);
1185 const int numComps = glu::getDataTypeFloatScalars(m_dataType);
1186
1187 /* adjust the reference value for the correct dfdx or dfdy sample adjacency */
1188 reference = reference * scale;
1189
1190 m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n"
1191 << "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold "
1192 << LogVecComps(threshold, numComps) << tcu::TestLog::EndMessage;
1193
1194 // short circuit if result is strictly within the normal value error bounds.
1195 // This improves performance significantly.
1196 if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold,
1197 m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS)
1198 {
1199 m_testCtx.getLog() << tcu::TestLog::Message << "No incorrect derivatives found, result valid."
1200 << tcu::TestLog::EndMessage;
1201
1202 return QP_TEST_RESULT_PASS;
1203 }
1204
1205 // Check with relaxed threshold value
1206 if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, thresholdW,
1207 m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS)
1208 {
1209 m_testCtx.getLog() << tcu::TestLog::Message
1210 << "No incorrect derivatives found, result valid with quality warning."
1211 << tcu::TestLog::EndMessage;
1212
1213 return QP_TEST_RESULT_QUALITY_WARNING;
1214 }
1215
1216 // some pixels exceed error bounds calculated for normal values. Verify that these
1217 // potentially invalid pixels are in fact valid due to (for example) subnorm flushing.
1218
1219 m_testCtx.getLog() << tcu::TestLog::Message
1220 << "Initial verification failed, verifying image by calculating accurate error bounds for "
1221 "each result pixel.\n"
1222 << "\tVerifying each result derivative is within its range of legal result values."
1223 << tcu::TestLog::EndMessage;
1224
1225 {
1226 const tcu::IVec2 viewportSize = getViewportSize();
1227 const float w = float(viewportSize.x());
1228 const float h = float(viewportSize.y());
1229 const tcu::Vec4 valueRamp = (m_coordMax - m_coordMin);
1230 Linear2DFunctionEvaluator function;
1231
1232 function.matrix.setRow(0,
1233 tcu::Vec3((valueRamp.x() / w) / 2.0f, (valueRamp.x() / h) / 2.0f, m_coordMin.x()));
1234 function.matrix.setRow(1,
1235 tcu::Vec3((valueRamp.y() / w) / 2.0f, (valueRamp.y() / h) / 2.0f, m_coordMin.y()));
1236 function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_coordMin.z() + m_coordMin.z()) /
1237 2.0f);
1238 function.matrix.setRow(
1239 3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_coordMax.w() + m_coordMax.w()) / 2.0f);
1240
1241 return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), result, errorMask, m_dataType,
1242 m_precision, m_derivScale, m_derivBias,
1243 surfaceThreshold, m_func, function);
1244 }
1245 }
1246 else
1247 {
1248 DE_ASSERT(m_func == DERIVATE_FWIDTH);
1249 const float w = float(result.getWidth());
1250 const float h = float(result.getHeight());
1251
1252 const tcu::Vec4 dx = ((m_coordMax - m_coordMin) / w) * xScale;
1253 const tcu::Vec4 dy = ((m_coordMax - m_coordMin) / h) * yScale;
1254 const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy);
1255 const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_coordMin * xScale, m_coordMax * xScale, dx);
1256 const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_coordMin * yScale, m_coordMax * yScale, dy);
1257 const tcu::Vec4 dxThresholdW =
1258 getDerivateThresholdWarning(m_precision, m_coordMin * xScale, m_coordMax * xScale, dx);
1259 const tcu::Vec4 dyThresholdW =
1260 getDerivateThresholdWarning(m_precision, m_coordMin * yScale, m_coordMax * yScale, dy);
1261 const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold));
1262 const tcu::Vec4 thresholdW = max(surfaceThreshold, max(dxThresholdW, dyThresholdW));
1263 qpTestResult testResult = QP_TEST_RESULT_FAIL;
1264
1265 testResult = verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold,
1266 m_derivScale, m_derivBias);
1267
1268 // return if result is pass
1269 if (testResult == QP_TEST_RESULT_PASS)
1270 return testResult;
1271
1272 // re-check with relaxed threshold
1273 testResult = verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, thresholdW,
1274 m_derivScale, m_derivBias);
1275
1276 // if with relaxed threshold test is passing then mark the result with quality warning.
1277 if (testResult == QP_TEST_RESULT_PASS)
1278 testResult = QP_TEST_RESULT_QUALITY_WARNING;
1279
1280 return testResult;
1281 }
1282 }
1283
1284 // TextureDerivateCase
1285
1286 class TextureDerivateCase : public TriangleDerivateCase
1287 {
1288 public:
1289 TextureDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func,
1290 glu::DataType type, glu::Precision precision, uint32_t hint, SurfaceType surfaceType,
1291 int numSamples);
1292 ~TextureDerivateCase(void);
1293
1294 void init(void);
1295 void deinit(void);
1296
1297 protected:
1298 void setupRenderState(uint32_t program);
1299 qpTestResult verify(const tcu::ConstPixelBufferAccess &result, const tcu::PixelBufferAccess &errorMask);
1300
1301 private:
1302 DerivateFunc m_func;
1303
1304 tcu::Vec4 m_texValueMin;
1305 tcu::Vec4 m_texValueMax;
1306 glu::Texture2D *m_texture;
1307 };
1308
TextureDerivateCase(Context & context,const char * name,const char * description,DerivateFunc func,glu::DataType type,glu::Precision precision,uint32_t hint,SurfaceType surfaceType,int numSamples)1309 TextureDerivateCase::TextureDerivateCase(Context &context, const char *name, const char *description, DerivateFunc func,
1310 glu::DataType type, glu::Precision precision, uint32_t hint,
1311 SurfaceType surfaceType, int numSamples)
1312 : TriangleDerivateCase(context, name, description)
1313 , m_func(func)
1314 , m_texture(nullptr)
1315 {
1316 m_dataType = type;
1317 m_precision = precision;
1318 m_coordDataType = glu::TYPE_FLOAT_VEC2;
1319 m_coordPrecision = glu::PRECISION_HIGHP;
1320 m_hint = hint;
1321 m_surfaceType = surfaceType;
1322 m_numSamples = numSamples;
1323 }
1324
~TextureDerivateCase(void)1325 TextureDerivateCase::~TextureDerivateCase(void)
1326 {
1327 delete m_texture;
1328 }
1329
init(void)1330 void TextureDerivateCase::init(void)
1331 {
1332 // Generate shader
1333 {
1334 const char *fragmentTmpl = "#version 300 es\n"
1335 "in highp vec2 v_coord;\n"
1336 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1337 "uniform ${PRECISION} sampler2D u_sampler;\n"
1338 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1339 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1340 "void main (void)\n"
1341 "{\n"
1342 " ${PRECISION} vec4 tex = texture(u_sampler, v_coord);\n"
1343 " ${PRECISION} ${DATATYPE} res = ${FUNC}(tex${SWIZZLE}) * u_scale + u_bias;\n"
1344 " o_color = ${CAST_TO_OUTPUT};\n"
1345 "}\n";
1346
1347 const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO;
1348 map<string, string> fragmentParams;
1349
1350 fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4);
1351 fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision);
1352 fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
1353 fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
1354 fragmentParams["FUNC"] = getDerivateFuncName(m_func);
1355 fragmentParams["SWIZZLE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "" :
1356 m_dataType == glu::TYPE_FLOAT_VEC3 ? ".xyz" :
1357 m_dataType == glu::TYPE_FLOAT_VEC2 ? ".xy" :
1358 /* TYPE_FLOAT */ ".x";
1359
1360 if (packToInt)
1361 {
1362 fragmentParams["CAST_TO_OUTPUT"] =
1363 m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" :
1364 m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" :
1365 m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" :
1366 /* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))";
1367 }
1368 else
1369 {
1370 fragmentParams["CAST_TO_OUTPUT"] =
1371 m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
1372 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
1373 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
1374 /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
1375 }
1376
1377 m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams);
1378 }
1379
1380 // Texture size matches viewport and nearest sampling is used. Thus texture sampling
1381 // is equal to just interpolating the texture value range.
1382
1383 // Determine value range for texture.
1384
1385 switch (m_precision)
1386 {
1387 case glu::PRECISION_HIGHP:
1388 m_texValueMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f);
1389 m_texValueMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f);
1390 break;
1391
1392 case glu::PRECISION_MEDIUMP:
1393 m_texValueMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f);
1394 m_texValueMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f);
1395 break;
1396
1397 case glu::PRECISION_LOWP:
1398 m_texValueMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f);
1399 m_texValueMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f);
1400 break;
1401
1402 default:
1403 DE_ASSERT(false);
1404 }
1405
1406 // Lowp and mediump cases use RGBA16F format, while highp uses RGBA32F.
1407 {
1408 const tcu::IVec2 viewportSize = getViewportSize();
1409 DE_ASSERT(!m_texture);
1410 m_texture = new glu::Texture2D(m_context.getRenderContext(),
1411 m_precision == glu::PRECISION_HIGHP ? GL_RGBA32F : GL_RGBA16F, viewportSize.x(),
1412 viewportSize.y());
1413 m_texture->getRefTexture().allocLevel(0);
1414 }
1415
1416 // Texture coordinates
1417 m_coordMin = tcu::Vec4(0.0f);
1418 m_coordMax = tcu::Vec4(1.0f);
1419
1420 // Fill with gradients.
1421 {
1422 const tcu::PixelBufferAccess level0 = m_texture->getRefTexture().getLevel(0);
1423 for (int y = 0; y < level0.getHeight(); y++)
1424 {
1425 for (int x = 0; x < level0.getWidth(); x++)
1426 {
1427 const float xf = (float(x) + 0.5f) / float(level0.getWidth());
1428 const float yf = (float(y) + 0.5f) / float(level0.getHeight());
1429 // Make x and y data to have dependency to both axes so that dfdx(tex).y and dfdy(tex).x are nonzero.
1430 const tcu::Vec4 s =
1431 tcu::Vec4(xf + yf / 2.0f, yf + xf / 2.0f, (xf + yf) / 2.0f, 1.0f - (xf + yf) / 2.0f);
1432
1433 level0.setPixel(m_texValueMin + (m_texValueMax - m_texValueMin) * s, x, y);
1434 }
1435 }
1436 }
1437
1438 m_texture->upload();
1439
1440 if (m_surfaceType == SURFACETYPE_FLOAT_FBO)
1441 {
1442 // No scale or bias used for accuracy.
1443 m_derivScale = tcu::Vec4(1.0f);
1444 m_derivBias = tcu::Vec4(0.0f);
1445 }
1446 else
1447 {
1448 // Compute scale - bias that normalizes to 0..1 range.
1449 const tcu::IVec2 viewportSize = getViewportSize();
1450 const float w = float(viewportSize.x());
1451 const float h = float(viewportSize.y());
1452 const tcu::Vec4 dx = (m_texValueMax - m_texValueMin) / tcu::Vec4(w, w, w * 0.5f, -w * 0.5f);
1453 const tcu::Vec4 dy = (m_texValueMax - m_texValueMin) / tcu::Vec4(h, h, h * 0.5f, -h * 0.5f);
1454
1455 switch (m_func)
1456 {
1457 case DERIVATE_DFDX:
1458 m_derivScale = 0.5f / dx;
1459 break;
1460
1461 case DERIVATE_DFDY:
1462 m_derivScale = 0.5f / dy;
1463 break;
1464
1465 case DERIVATE_FWIDTH:
1466 m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy));
1467 break;
1468
1469 default:
1470 DE_ASSERT(false);
1471 }
1472
1473 m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
1474 }
1475 }
1476
deinit(void)1477 void TextureDerivateCase::deinit(void)
1478 {
1479 delete m_texture;
1480 m_texture = nullptr;
1481 }
1482
setupRenderState(uint32_t program)1483 void TextureDerivateCase::setupRenderState(uint32_t program)
1484 {
1485 const glw::Functions &gl = m_context.getRenderContext().getFunctions();
1486 const int texUnit = 1;
1487
1488 gl.activeTexture(GL_TEXTURE0 + texUnit);
1489 gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
1490 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
1491 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
1492 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1493 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1494
1495 gl.uniform1i(gl.getUniformLocation(program, "u_sampler"), texUnit);
1496 }
1497
verify(const tcu::ConstPixelBufferAccess & result,const tcu::PixelBufferAccess & errorMask)1498 qpTestResult TextureDerivateCase::verify(const tcu::ConstPixelBufferAccess &result,
1499 const tcu::PixelBufferAccess &errorMask)
1500 {
1501 // \note Edges are ignored in comparison
1502 if (result.getWidth() < 2 || result.getHeight() < 2)
1503 throw tcu::NotSupportedError("Too small viewport");
1504
1505 tcu::ConstPixelBufferAccess compareArea =
1506 tcu::getSubregion(result, 1, 1, result.getWidth() - 2, result.getHeight() - 2);
1507 tcu::PixelBufferAccess maskArea =
1508 tcu::getSubregion(errorMask, 1, 1, errorMask.getWidth() - 2, errorMask.getHeight() - 2);
1509 const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.5f, 0.5f, -0.5f);
1510 const tcu::Vec4 yScale = tcu::Vec4(0.5f, 1.0f, 0.5f, -0.5f);
1511 const float w = float(result.getWidth());
1512 const float h = float(result.getHeight());
1513
1514 const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale);
1515
1516 if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY)
1517 {
1518 const bool isX = m_func == DERIVATE_DFDX;
1519 const float div = isX ? w : h;
1520 const tcu::Vec4 scale = isX ? xScale : yScale;
1521 tcu::Vec4 reference = ((m_texValueMax - m_texValueMin) / div);
1522 const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_texValueMin, m_texValueMax, reference);
1523 const tcu::Vec4 opThresholdW =
1524 getDerivateThresholdWarning(m_precision, m_texValueMin, m_texValueMax, reference);
1525 const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold);
1526 const tcu::Vec4 thresholdW = max(surfaceThreshold, opThresholdW);
1527 const int numComps = glu::getDataTypeFloatScalars(m_dataType);
1528
1529 /* adjust the reference value for the correct dfdx or dfdy sample adjacency */
1530 reference = reference * scale;
1531
1532 m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n"
1533 << "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold "
1534 << LogVecComps(threshold, numComps) << tcu::TestLog::EndMessage;
1535
1536 // short circuit if result is strictly within the normal value error bounds.
1537 // This improves performance significantly.
1538 if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, threshold,
1539 m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS)
1540 {
1541 m_testCtx.getLog() << tcu::TestLog::Message << "No incorrect derivatives found, result valid."
1542 << tcu::TestLog::EndMessage;
1543
1544 return QP_TEST_RESULT_PASS;
1545 }
1546
1547 m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n"
1548 << "\tValid derivative is " << LogVecComps(reference, numComps) << " with Warning threshold "
1549 << LogVecComps(thresholdW, numComps) << tcu::TestLog::EndMessage;
1550
1551 // Re-check with relaxed threshold
1552 if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, thresholdW,
1553 m_derivScale, m_derivBias, LOG_NOTHING) == QP_TEST_RESULT_PASS)
1554 {
1555 m_testCtx.getLog() << tcu::TestLog::Message
1556 << "No incorrect derivatives found, result valid with quality warning."
1557 << tcu::TestLog::EndMessage;
1558
1559 return QP_TEST_RESULT_QUALITY_WARNING;
1560 }
1561
1562 // some pixels exceed error bounds calculated for normal values. Verify that these
1563 // potentially invalid pixels are in fact valid due to (for example) subnorm flushing.
1564
1565 m_testCtx.getLog() << tcu::TestLog::Message
1566 << "Initial verification failed, verifying image by calculating accurate error bounds for "
1567 "each result pixel.\n"
1568 << "\tVerifying each result derivative is within its range of legal result values."
1569 << tcu::TestLog::EndMessage;
1570
1571 {
1572 const tcu::Vec4 valueRamp = (m_texValueMax - m_texValueMin);
1573 Linear2DFunctionEvaluator function;
1574
1575 function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, (valueRamp.x() / h) / 2.0f, m_texValueMin.x()));
1576 function.matrix.setRow(1, tcu::Vec3((valueRamp.y() / w) / 2.0f, valueRamp.y() / h, m_texValueMin.y()));
1577 function.matrix.setRow(
1578 2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_texValueMin.z() + m_texValueMin.z()) / 2.0f);
1579 function.matrix.setRow(
1580 3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_texValueMax.w() + m_texValueMax.w()) / 2.0f);
1581
1582 return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), compareArea, maskArea, m_dataType,
1583 m_precision, m_derivScale, m_derivBias,
1584 surfaceThreshold, m_func, function);
1585 }
1586 }
1587 else
1588 {
1589 DE_ASSERT(m_func == DERIVATE_FWIDTH);
1590 const tcu::Vec4 dx = ((m_texValueMax - m_texValueMin) / w) * xScale;
1591 const tcu::Vec4 dy = ((m_texValueMax - m_texValueMin) / h) * yScale;
1592 const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy);
1593 const tcu::Vec4 dxThreshold =
1594 getDerivateThreshold(m_precision, m_texValueMin * xScale, m_texValueMax * xScale, dx);
1595 const tcu::Vec4 dyThreshold =
1596 getDerivateThreshold(m_precision, m_texValueMin * yScale, m_texValueMax * yScale, dy);
1597 const tcu::Vec4 dxThresholdW =
1598 getDerivateThresholdWarning(m_precision, m_texValueMin * xScale, m_texValueMax * xScale, dx);
1599 const tcu::Vec4 dyThresholdW =
1600 getDerivateThresholdWarning(m_precision, m_texValueMin * yScale, m_texValueMax * yScale, dy);
1601 const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold));
1602 const tcu::Vec4 thresholdW = max(surfaceThreshold, max(dxThresholdW, dyThresholdW));
1603 qpTestResult testResult = QP_TEST_RESULT_FAIL;
1604
1605 testResult = verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, threshold,
1606 m_derivScale, m_derivBias);
1607
1608 if (testResult == QP_TEST_RESULT_PASS)
1609 return testResult;
1610
1611 // Re-Check with relaxed threshold
1612 testResult = verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference,
1613 thresholdW, m_derivScale, m_derivBias);
1614
1615 // If test is passing with relaxed threshold then mark quality warning
1616 if (testResult == QP_TEST_RESULT_PASS)
1617 testResult = QP_TEST_RESULT_QUALITY_WARNING;
1618
1619 return testResult;
1620 }
1621 }
1622
ShaderDerivateTests(Context & context)1623 ShaderDerivateTests::ShaderDerivateTests(Context &context)
1624 : TestCaseGroup(context, "derivate", "Derivate Function Tests")
1625 {
1626 }
1627
~ShaderDerivateTests(void)1628 ShaderDerivateTests::~ShaderDerivateTests(void)
1629 {
1630 }
1631
1632 struct FunctionSpec
1633 {
1634 std::string name;
1635 DerivateFunc function;
1636 glu::DataType dataType;
1637 glu::Precision precision;
1638
FunctionSpecdeqp::gles3::Functional::FunctionSpec1639 FunctionSpec(const std::string &name_, DerivateFunc function_, glu::DataType dataType_, glu::Precision precision_)
1640 : name(name_)
1641 , function(function_)
1642 , dataType(dataType_)
1643 , precision(precision_)
1644 {
1645 }
1646 };
1647
init(void)1648 void ShaderDerivateTests::init(void)
1649 {
1650 static const struct
1651 {
1652 const char *name;
1653 const char *description;
1654 const char *source;
1655 } s_linearDerivateCases[] = {
1656 {"linear", "Basic derivate of linearly interpolated argument",
1657
1658 "#version 300 es\n"
1659 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1660 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1661 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1662 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1663 "void main (void)\n"
1664 "{\n"
1665 " ${PRECISION} ${DATATYPE} res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
1666 " o_color = ${CAST_TO_OUTPUT};\n"
1667 "}\n"},
1668 {"in_function", "Derivate of linear function argument",
1669
1670 "#version 300 es\n"
1671 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1672 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1673 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1674 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1675 "\n"
1676 "${PRECISION} ${DATATYPE} computeRes (${PRECISION} ${DATATYPE} value)\n"
1677 "{\n"
1678 " return ${FUNC}(v_coord) * u_scale + u_bias;\n"
1679 "}\n"
1680 "\n"
1681 "void main (void)\n"
1682 "{\n"
1683 " ${PRECISION} ${DATATYPE} res = computeRes(v_coord);\n"
1684 " o_color = ${CAST_TO_OUTPUT};\n"
1685 "}\n"},
1686 {"static_if", "Derivate of linearly interpolated value in static if",
1687
1688 "#version 300 es\n"
1689 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1690 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1691 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1692 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1693 "void main (void)\n"
1694 "{\n"
1695 " ${PRECISION} ${DATATYPE} res;\n"
1696 " if (false)\n"
1697 " res = ${FUNC}(-v_coord) * u_scale + u_bias;\n"
1698 " else\n"
1699 " res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
1700 " o_color = ${CAST_TO_OUTPUT};\n"
1701 "}\n"},
1702 {"static_loop", "Derivate of linearly interpolated value in static loop",
1703
1704 "#version 300 es\n"
1705 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1706 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1707 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1708 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1709 "void main (void)\n"
1710 "{\n"
1711 " ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n"
1712 " for (int i = 0; i < 2; i++)\n"
1713 " res += ${FUNC}(v_coord * float(i));\n"
1714 " res = res * u_scale + u_bias;\n"
1715 " o_color = ${CAST_TO_OUTPUT};\n"
1716 "}\n"},
1717 {"static_switch", "Derivate of linearly interpolated value in static switch",
1718
1719 "#version 300 es\n"
1720 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1721 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1722 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1723 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1724 "void main (void)\n"
1725 "{\n"
1726 " ${PRECISION} ${DATATYPE} res;\n"
1727 " switch (1)\n"
1728 " {\n"
1729 " case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n"
1730 " case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n"
1731 " }\n"
1732 " o_color = ${CAST_TO_OUTPUT};\n"
1733 "}\n"},
1734 {"uniform_if", "Derivate of linearly interpolated value in uniform if",
1735
1736 "#version 300 es\n"
1737 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1738 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1739 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1740 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1741 "uniform bool ub_true;\n"
1742 "void main (void)\n"
1743 "{\n"
1744 " ${PRECISION} ${DATATYPE} res;\n"
1745 " if (ub_true)"
1746 " res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
1747 " else\n"
1748 " res = ${FUNC}(-v_coord) * u_scale + u_bias;\n"
1749 " o_color = ${CAST_TO_OUTPUT};\n"
1750 "}\n"},
1751 {"uniform_loop", "Derivate of linearly interpolated value in uniform loop",
1752
1753 "#version 300 es\n"
1754 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1755 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1756 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1757 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1758 "uniform int ui_two;\n"
1759 "void main (void)\n"
1760 "{\n"
1761 " ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n"
1762 " for (int i = 0; i < ui_two; i++)\n"
1763 " res += ${FUNC}(v_coord * float(i));\n"
1764 " res = res * u_scale + u_bias;\n"
1765 " o_color = ${CAST_TO_OUTPUT};\n"
1766 "}\n"},
1767 {"uniform_switch", "Derivate of linearly interpolated value in uniform switch",
1768
1769 "#version 300 es\n"
1770 "in ${PRECISION} ${DATATYPE} v_coord;\n"
1771 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
1772 "uniform ${PRECISION} ${DATATYPE} u_scale;\n"
1773 "uniform ${PRECISION} ${DATATYPE} u_bias;\n"
1774 "uniform int ui_one;\n"
1775 "void main (void)\n"
1776 "{\n"
1777 " ${PRECISION} ${DATATYPE} res;\n"
1778 " switch (ui_one)\n"
1779 " {\n"
1780 " case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n"
1781 " case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n"
1782 " }\n"
1783 " o_color = ${CAST_TO_OUTPUT};\n"
1784 "}\n"},
1785 };
1786
1787 static const struct
1788 {
1789 const char *name;
1790 SurfaceType surfaceType;
1791 int numSamples;
1792 } s_fboConfigs[] = {
1793 {"fbo", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0},
1794 {"fbo_msaa2", SURFACETYPE_UNORM_FBO, 2},
1795 {"fbo_msaa4", SURFACETYPE_UNORM_FBO, 4},
1796 {"fbo_float", SURFACETYPE_FLOAT_FBO, 0},
1797 };
1798
1799 static const struct
1800 {
1801 const char *name;
1802 uint32_t hint;
1803 } s_hints[] = {
1804 {"fastest", GL_FASTEST},
1805 {"nicest", GL_NICEST},
1806 };
1807
1808 static const struct
1809 {
1810 const char *name;
1811 SurfaceType surfaceType;
1812 int numSamples;
1813 } s_hintFboConfigs[] = {{"default", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0},
1814 {"fbo_msaa4", SURFACETYPE_UNORM_FBO, 4},
1815 {"fbo_float", SURFACETYPE_FLOAT_FBO, 0}};
1816
1817 static const struct
1818 {
1819 const char *name;
1820 SurfaceType surfaceType;
1821 int numSamples;
1822 uint32_t hint;
1823 } s_textureConfigs[] = {
1824 {"basic", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0, GL_DONT_CARE},
1825 {"msaa4", SURFACETYPE_UNORM_FBO, 4, GL_DONT_CARE},
1826 {"float_fastest", SURFACETYPE_FLOAT_FBO, 0, GL_FASTEST},
1827 {"float_nicest", SURFACETYPE_FLOAT_FBO, 0, GL_NICEST},
1828 };
1829
1830 // .dfdx, .dfdy, .fwidth
1831 for (int funcNdx = 0; funcNdx < DERIVATE_LAST; funcNdx++)
1832 {
1833 const DerivateFunc function = DerivateFunc(funcNdx);
1834 tcu::TestCaseGroup *const functionGroup =
1835 new tcu::TestCaseGroup(m_testCtx, getDerivateFuncCaseName(function), getDerivateFuncName(function));
1836 addChild(functionGroup);
1837
1838 // .constant - no precision variants, checks that derivate of constant arguments is 0
1839 {
1840 tcu::TestCaseGroup *const constantGroup =
1841 new tcu::TestCaseGroup(m_testCtx, "constant", "Derivate of constant argument");
1842 functionGroup->addChild(constantGroup);
1843
1844 for (int vecSize = 1; vecSize <= 4; vecSize++)
1845 {
1846 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1847 constantGroup->addChild(
1848 new ConstantDerivateCase(m_context, glu::getDataTypeName(dataType), "", function, dataType));
1849 }
1850 }
1851
1852 // Cases based on LinearDerivateCase
1853 for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_linearDerivateCases); caseNdx++)
1854 {
1855 tcu::TestCaseGroup *const linearCaseGroup = new tcu::TestCaseGroup(
1856 m_testCtx, s_linearDerivateCases[caseNdx].name, s_linearDerivateCases[caseNdx].description);
1857 const char *source = s_linearDerivateCases[caseNdx].source;
1858 functionGroup->addChild(linearCaseGroup);
1859
1860 for (int vecSize = 1; vecSize <= 4; vecSize++)
1861 {
1862 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1863 {
1864 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1865 const glu::Precision precision = glu::Precision(precNdx);
1866 const SurfaceType surfaceType = SURFACETYPE_DEFAULT_FRAMEBUFFER;
1867 const int numSamples = 0;
1868 const uint32_t hint = GL_DONT_CARE;
1869 ostringstream caseName;
1870
1871 if (caseNdx != 0 && precision == glu::PRECISION_LOWP)
1872 continue; // Skip as lowp doesn't actually produce any bits when rendered to default FB.
1873
1874 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1875
1876 linearCaseGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function,
1877 dataType, precision, hint, surfaceType, numSamples,
1878 source));
1879 }
1880 }
1881 }
1882
1883 // Fbo cases
1884 for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_fboConfigs); caseNdx++)
1885 {
1886 tcu::TestCaseGroup *const fboGroup =
1887 new tcu::TestCaseGroup(m_testCtx, s_fboConfigs[caseNdx].name, "Derivate usage when rendering into FBO");
1888 const char *source = s_linearDerivateCases[0].source; // use source from .linear group
1889 const SurfaceType surfaceType = s_fboConfigs[caseNdx].surfaceType;
1890 const int numSamples = s_fboConfigs[caseNdx].numSamples;
1891 functionGroup->addChild(fboGroup);
1892
1893 for (int vecSize = 1; vecSize <= 4; vecSize++)
1894 {
1895 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1896 {
1897 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1898 const glu::Precision precision = glu::Precision(precNdx);
1899 const uint32_t hint = GL_DONT_CARE;
1900 ostringstream caseName;
1901
1902 if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
1903 continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
1904
1905 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1906
1907 fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType,
1908 precision, hint, surfaceType, numSamples, source));
1909 }
1910 }
1911 }
1912
1913 // .fastest, .nicest
1914 for (int hintCaseNdx = 0; hintCaseNdx < DE_LENGTH_OF_ARRAY(s_hints); hintCaseNdx++)
1915 {
1916 tcu::TestCaseGroup *const hintGroup =
1917 new tcu::TestCaseGroup(m_testCtx, s_hints[hintCaseNdx].name, "Shader derivate hints");
1918 const char *source = s_linearDerivateCases[0].source; // use source from .linear group
1919 const uint32_t hint = s_hints[hintCaseNdx].hint;
1920 functionGroup->addChild(hintGroup);
1921
1922 for (int fboCaseNdx = 0; fboCaseNdx < DE_LENGTH_OF_ARRAY(s_hintFboConfigs); fboCaseNdx++)
1923 {
1924 tcu::TestCaseGroup *const fboGroup =
1925 new tcu::TestCaseGroup(m_testCtx, s_hintFboConfigs[fboCaseNdx].name, "");
1926 const SurfaceType surfaceType = s_hintFboConfigs[fboCaseNdx].surfaceType;
1927 const int numSamples = s_hintFboConfigs[fboCaseNdx].numSamples;
1928 hintGroup->addChild(fboGroup);
1929
1930 for (int vecSize = 1; vecSize <= 4; vecSize++)
1931 {
1932 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1933 {
1934 const glu::DataType dataType =
1935 vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1936 const glu::Precision precision = glu::Precision(precNdx);
1937 ostringstream caseName;
1938
1939 if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
1940 continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
1941
1942 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1943
1944 fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function,
1945 dataType, precision, hint, surfaceType, numSamples,
1946 source));
1947 }
1948 }
1949 }
1950 }
1951
1952 // .texture
1953 {
1954 tcu::TestCaseGroup *const textureGroup =
1955 new tcu::TestCaseGroup(m_testCtx, "texture", "Derivate of texture lookup result");
1956 functionGroup->addChild(textureGroup);
1957
1958 for (int texCaseNdx = 0; texCaseNdx < DE_LENGTH_OF_ARRAY(s_textureConfigs); texCaseNdx++)
1959 {
1960 tcu::TestCaseGroup *const caseGroup =
1961 new tcu::TestCaseGroup(m_testCtx, s_textureConfigs[texCaseNdx].name, "");
1962 const SurfaceType surfaceType = s_textureConfigs[texCaseNdx].surfaceType;
1963 const int numSamples = s_textureConfigs[texCaseNdx].numSamples;
1964 const uint32_t hint = s_textureConfigs[texCaseNdx].hint;
1965 textureGroup->addChild(caseGroup);
1966
1967 for (int vecSize = 1; vecSize <= 4; vecSize++)
1968 {
1969 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
1970 {
1971 const glu::DataType dataType =
1972 vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
1973 const glu::Precision precision = glu::Precision(precNdx);
1974 ostringstream caseName;
1975
1976 if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
1977 continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
1978
1979 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
1980
1981 caseGroup->addChild(new TextureDerivateCase(m_context, caseName.str().c_str(), "", function,
1982 dataType, precision, hint, surfaceType,
1983 numSamples));
1984 }
1985 }
1986 }
1987 }
1988 }
1989 }
1990
1991 } // namespace Functional
1992 } // namespace gles3
1993 } // namespace deqp
1994