• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.media;
18 
19 import static android.media.codec.Flags.FLAG_CODEC_AVAILABILITY;
20 import static android.media.codec.Flags.FLAG_NULL_OUTPUT_SURFACE;
21 import static android.media.codec.Flags.FLAG_REGION_OF_INTEREST;
22 import static android.media.codec.Flags.FLAG_SUBSESSION_METRICS;
23 import static android.media.tv.flags.Flags.applyPictureProfiles;
24 import static android.media.tv.flags.Flags.mediaQualityFw;
25 
26 import static com.android.media.codec.flags.Flags.FLAG_LARGE_AUDIO_FRAME;
27 
28 import android.Manifest;
29 import android.annotation.FlaggedApi;
30 import android.annotation.IntDef;
31 import android.annotation.NonNull;
32 import android.annotation.Nullable;
33 import android.annotation.RequiresPermission;
34 import android.annotation.SystemApi;
35 import android.annotation.TestApi;
36 import android.compat.annotation.UnsupportedAppUsage;
37 import android.graphics.ImageFormat;
38 import android.graphics.Rect;
39 import android.graphics.SurfaceTexture;
40 import android.hardware.HardwareBuffer;
41 import android.media.MediaCodecInfo.CodecCapabilities;
42 import android.media.quality.PictureProfile;
43 import android.media.quality.PictureProfileHandle;
44 import android.os.Build;
45 import android.os.Bundle;
46 import android.os.Handler;
47 import android.os.IHwBinder;
48 import android.os.Looper;
49 import android.os.Message;
50 import android.os.PersistableBundle;
51 import android.os.Trace;
52 import android.view.Surface;
53 import android.util.Log;
54 
55 import java.io.IOException;
56 import java.lang.annotation.Retention;
57 import java.lang.annotation.RetentionPolicy;
58 import java.nio.ByteBuffer;
59 import java.nio.ByteOrder;
60 import java.nio.ReadOnlyBufferException;
61 import java.util.ArrayDeque;
62 import java.util.ArrayList;
63 import java.util.Arrays;
64 import java.util.BitSet;
65 import java.util.Collections;
66 import java.util.HashMap;
67 import java.util.HashSet;
68 import java.util.List;
69 import java.util.Map;
70 import java.util.Objects;
71 import java.util.Optional;
72 import java.util.Set;
73 import java.util.concurrent.BlockingQueue;
74 import java.util.concurrent.LinkedBlockingQueue;
75 import java.util.concurrent.locks.Lock;
76 import java.util.concurrent.locks.ReentrantLock;
77 import java.util.function.Supplier;
78 
79 /**
80  MediaCodec class can be used to access low-level media codecs, i.e. encoder/decoder components.
81  It is part of the Android low-level multimedia support infrastructure (normally used together
82  with {@link MediaExtractor}, {@link MediaSync}, {@link MediaMuxer}, {@link MediaCrypto},
83  {@link MediaDrm}, {@link Image}, {@link Surface}, and {@link AudioTrack}.)
84  <p>
85  <center>
86    <img src="../../../images/media/mediacodec_buffers.svg" style="width: 540px; height: 205px"
87        alt="MediaCodec buffer flow diagram">
88  </center>
89  <p>
90  In broad terms, a codec processes input data to generate output data. It processes data
91  asynchronously and uses a set of input and output buffers. At a simplistic level, you request
92  (or receive) an empty input buffer, fill it up with data and send it to the codec for
93  processing. The codec uses up the data and transforms it into one of its empty output buffers.
94  Finally, you request (or receive) a filled output buffer, consume its contents and release it
95  back to the codec.
96 
97  <h3 id=qualityFloor><a name="qualityFloor">Minimum Quality Floor for Video Encoding</h3>
98  <p>
99  Beginning with {@link android.os.Build.VERSION_CODES#S}, Android's Video MediaCodecs enforce a
100  minimum quality floor. The intent is to eliminate poor quality video encodings. This quality
101  floor is applied when the codec is in Variable Bitrate (VBR) mode; it is not applied when
102  the codec is in Constant Bitrate (CBR) mode. The quality floor enforcement is also restricted
103  to a particular size range; this size range is currently for video resolutions
104  larger than 320x240 up through 1920x1080.
105 
106  <p>
107  When this quality floor is in effect, the codec and supporting framework code will work to
108  ensure that the generated video is of at least a "fair" or "good" quality. The metric
109  used to choose these targets is the VMAF (Video Multi-method Assessment Function) with a
110  target score of 70 for selected test sequences.
111 
112  <p>
113  The typical effect is that
114  some videos will generate a higher bitrate than originally configured. This will be most
115  notable for videos which were configured with very low bitrates; the codec will use a bitrate
116  that is determined to be more likely to generate an "fair" or "good" quality video. Another
117  situation is where a video includes very complicated content (lots of motion and detail);
118  in such configurations, the codec will use extra bitrate as needed to avoid losing all of
119  the content's finer detail.
120 
121  <p>
122  This quality floor will not impact content captured at high bitrates (a high bitrate should
123  already provide the codec with sufficient capacity to encode all of the detail).
124  The quality floor does not operate on CBR encodings.
125  The quality floor currently does not operate on resolutions of 320x240 or lower, nor on
126  videos with resolution above 1920x1080.
127 
128  <h3>Data Types</h3>
129  <p>
130  Codecs operate on three kinds of data: compressed data, raw audio data and raw video data.
131  All three kinds of data can be processed using {@link ByteBuffer ByteBuffers}, but you should use
132  a {@link Surface} for raw video data to improve codec performance. Surface uses native video
133  buffers without mapping or copying them to ByteBuffers; thus, it is much more efficient.
134  You normally cannot access the raw video data when using a Surface, but you can use the
135  {@link ImageReader} class to access unsecured decoded (raw) video frames. This may still be more
136  efficient than using ByteBuffers, as some native buffers may be mapped into {@linkplain
137  ByteBuffer#isDirect direct} ByteBuffers. When using ByteBuffer mode, you can access raw video
138  frames using the {@link Image} class and {@link #getInputImage getInput}/{@link #getOutputImage
139  OutputImage(int)}.
140 
141  <h4>Compressed Buffers</h4>
142  <p>
143  Input buffers (for decoders) and output buffers (for encoders) contain compressed data according
144  to the {@linkplain MediaFormat#KEY_MIME format's type}. For video types this is normally a single
145  compressed video frame. For audio data this is normally a single access unit (an encoded audio
146  segment typically containing a few milliseconds of audio as dictated by the format type), but
147  this requirement is slightly relaxed in that a buffer may contain multiple encoded access units
148  of audio. In either case, buffers do not start or end on arbitrary byte boundaries, but rather on
149  frame/access unit boundaries unless they are flagged with {@link #BUFFER_FLAG_PARTIAL_FRAME}.
150 
151  <h4>Raw Audio Buffers</h4>
152  <p>
153  Raw audio buffers contain entire frames of PCM audio data, which is one sample for each channel
154  in channel order. Each PCM audio sample is either a 16 bit signed integer or a float,
155  in native byte order.
156  Raw audio buffers in the float PCM encoding are only possible
157  if the MediaFormat's {@linkplain MediaFormat#KEY_PCM_ENCODING}
158  is set to {@linkplain AudioFormat#ENCODING_PCM_FLOAT} during MediaCodec
159  {@link #configure configure(&hellip;)}
160  and confirmed by {@link #getOutputFormat} for decoders
161  or {@link #getInputFormat} for encoders.
162  A sample method to check for float PCM in the MediaFormat is as follows:
163 
164  <pre class=prettyprint>
165  static boolean isPcmFloat(MediaFormat format) {
166    return format.getInteger(MediaFormat.KEY_PCM_ENCODING, AudioFormat.ENCODING_PCM_16BIT)
167        == AudioFormat.ENCODING_PCM_FLOAT;
168  }</pre>
169 
170  In order to extract, in a short array,
171  one channel of a buffer containing 16 bit signed integer audio data,
172  the following code may be used:
173 
174  <pre class=prettyprint>
175  // Assumes the buffer PCM encoding is 16 bit.
176  short[] getSamplesForChannel(MediaCodec codec, int bufferId, int channelIx) {
177    ByteBuffer outputBuffer = codec.getOutputBuffer(bufferId);
178    MediaFormat format = codec.getOutputFormat(bufferId);
179    ShortBuffer samples = outputBuffer.order(ByteOrder.nativeOrder()).asShortBuffer();
180    int numChannels = format.getInteger(MediaFormat.KEY_CHANNEL_COUNT);
181    if (channelIx &lt; 0 || channelIx &gt;= numChannels) {
182      return null;
183    }
184    short[] res = new short[samples.remaining() / numChannels];
185    for (int i = 0; i &lt; res.length; ++i) {
186      res[i] = samples.get(i * numChannels + channelIx);
187    }
188    return res;
189  }</pre>
190 
191  <h4>Raw Video Buffers</h4>
192  <p>
193  In ByteBuffer mode video buffers are laid out according to their {@linkplain
194  MediaFormat#KEY_COLOR_FORMAT color format}. You can get the supported color formats as an array
195  from {@link #getCodecInfo}{@code .}{@link MediaCodecInfo#getCapabilitiesForType
196  getCapabilitiesForType(&hellip;)}{@code .}{@link CodecCapabilities#colorFormats colorFormats}.
197  Video codecs may support three kinds of color formats:
198  <ul>
199  <li><strong>native raw video format:</strong> This is marked by {@link
200  CodecCapabilities#COLOR_FormatSurface} and it can be used with an input or output Surface.</li>
201  <li><strong>flexible YUV buffers</strong> (such as {@link
202  CodecCapabilities#COLOR_FormatYUV420Flexible}): These can be used with an input/output Surface,
203  as well as in ByteBuffer mode, by using {@link #getInputImage getInput}/{@link #getOutputImage
204  OutputImage(int)}.</li>
205  <li><strong>other, specific formats:</strong> These are normally only supported in ByteBuffer
206  mode. Some color formats are vendor specific. Others are defined in {@link CodecCapabilities}.
207  For color formats that are equivalent to a flexible format, you can still use {@link
208  #getInputImage getInput}/{@link #getOutputImage OutputImage(int)}.</li>
209  </ul>
210  <p>
211  All video codecs support flexible YUV 4:2:0 buffers since {@link
212  android.os.Build.VERSION_CODES#LOLLIPOP_MR1}.
213 
214  <h4>Accessing Raw Video ByteBuffers on Older Devices</h4>
215  <p>
216  Prior to {@link android.os.Build.VERSION_CODES#LOLLIPOP} and {@link Image} support, you need to
217  use the {@link MediaFormat#KEY_STRIDE} and {@link MediaFormat#KEY_SLICE_HEIGHT} output format
218  values to understand the layout of the raw output buffers.
219  <p class=note>
220  Note that on some devices the slice-height is advertised as 0. This could mean either that the
221  slice-height is the same as the frame height, or that the slice-height is the frame height
222  aligned to some value (usually a power of 2). Unfortunately, there is no standard and simple way
223  to tell the actual slice height in this case. Furthermore, the vertical stride of the {@code U}
224  plane in planar formats is also not specified or defined, though usually it is half of the slice
225  height.
226  <p>
227  The {@link MediaFormat#KEY_WIDTH} and {@link MediaFormat#KEY_HEIGHT} keys specify the size of the
228  video frames; however, for most encondings the video (picture) only occupies a portion of the
229  video frame. This is represented by the 'crop rectangle'.
230  <p>
231  You need to use the following keys to get the crop rectangle of raw output images from the
232  {@linkplain #getOutputFormat output format}. If these keys are not present, the video occupies the
233  entire video frame.The crop rectangle is understood in the context of the output frame
234  <em>before</em> applying any {@linkplain MediaFormat#KEY_ROTATION rotation}.
235  <table style="width: 0%">
236   <thead>
237    <tr>
238     <th>Format Key</th>
239     <th>Type</th>
240     <th>Description</th>
241    </tr>
242   </thead>
243   <tbody>
244    <tr>
245     <td>{@link MediaFormat#KEY_CROP_LEFT}</td>
246     <td>Integer</td>
247     <td>The left-coordinate (x) of the crop rectangle</td>
248    </tr><tr>
249     <td>{@link MediaFormat#KEY_CROP_TOP}</td>
250     <td>Integer</td>
251     <td>The top-coordinate (y) of the crop rectangle</td>
252    </tr><tr>
253     <td>{@link MediaFormat#KEY_CROP_RIGHT}</td>
254     <td>Integer</td>
255     <td>The right-coordinate (x) <strong>MINUS 1</strong> of the crop rectangle</td>
256    </tr><tr>
257     <td>{@link MediaFormat#KEY_CROP_BOTTOM}</td>
258     <td>Integer</td>
259     <td>The bottom-coordinate (y) <strong>MINUS 1</strong> of the crop rectangle</td>
260    </tr><tr>
261     <td colspan=3>
262      The right and bottom coordinates can be understood as the coordinates of the right-most
263      valid column/bottom-most valid row of the cropped output image.
264     </td>
265    </tr>
266   </tbody>
267  </table>
268  <p>
269  The size of the video frame (before rotation) can be calculated as such:
270  <pre class=prettyprint>
271  MediaFormat format = decoder.getOutputFormat(&hellip;);
272  int width = format.getInteger(MediaFormat.KEY_WIDTH);
273  if (format.containsKey(MediaFormat.KEY_CROP_LEFT)
274          && format.containsKey(MediaFormat.KEY_CROP_RIGHT)) {
275      width = format.getInteger(MediaFormat.KEY_CROP_RIGHT) + 1
276                  - format.getInteger(MediaFormat.KEY_CROP_LEFT);
277  }
278  int height = format.getInteger(MediaFormat.KEY_HEIGHT);
279  if (format.containsKey(MediaFormat.KEY_CROP_TOP)
280          && format.containsKey(MediaFormat.KEY_CROP_BOTTOM)) {
281      height = format.getInteger(MediaFormat.KEY_CROP_BOTTOM) + 1
282                   - format.getInteger(MediaFormat.KEY_CROP_TOP);
283  }
284  </pre>
285  <p class=note>
286  Also note that the meaning of {@link BufferInfo#offset BufferInfo.offset} was not consistent across
287  devices. On some devices the offset pointed to the top-left pixel of the crop rectangle, while on
288  most devices it pointed to the top-left pixel of the entire frame.
289 
290  <h3>States</h3>
291  <p>
292  During its life a codec conceptually exists in one of three states: Stopped, Executing or
293  Released. The Stopped collective state is actually the conglomeration of three states:
294  Uninitialized, Configured and Error, whereas the Executing state conceptually progresses through
295  three sub-states: Flushed, Running and End-of-Stream.
296  <p>
297  <center>
298    <img src="../../../images/media/mediacodec_states.svg" style="width: 519px; height: 356px"
299        alt="MediaCodec state diagram">
300  </center>
301  <p>
302  When you create a codec using one of the factory methods, the codec is in the Uninitialized
303  state. First, you need to configure it via {@link #configure configure(&hellip;)}, which brings
304  it to the Configured state, then call {@link #start} to move it to the Executing state. In this
305  state you can process data through the buffer queue manipulation described above.
306  <p>
307  The Executing state has three sub-states: Flushed, Running and End-of-Stream. Immediately after
308  {@link #start} the codec is in the Flushed sub-state, where it holds all the buffers. As soon
309  as the first input buffer is dequeued, the codec moves to the Running sub-state, where it spends
310  most of its life. When you queue an input buffer with the {@linkplain #BUFFER_FLAG_END_OF_STREAM
311  end-of-stream marker}, the codec transitions to the End-of-Stream sub-state. In this state the
312  codec no longer accepts further input buffers, but still generates output buffers until the
313  end-of-stream is reached on the output. For decoders, you can move back to the Flushed sub-state
314  at any time while in the Executing state using {@link #flush}.
315  <p class=note>
316  <strong>Note:</strong> Going back to Flushed state is only supported for decoders, and may not
317  work for encoders (the behavior is undefined).
318  <p>
319  Call {@link #stop} to return the codec to the Uninitialized state, whereupon it may be configured
320  again. When you are done using a codec, you must release it by calling {@link #release}.
321  <p>
322  On rare occasions the codec may encounter an error and move to the Error state. This is
323  communicated using an invalid return value from a queuing operation, or sometimes via an
324  exception. Call {@link #reset} to make the codec usable again. You can call it from any state to
325  move the codec back to the Uninitialized state. Otherwise, call {@link #release} to move to the
326  terminal Released state.
327 
328  <h3>Creation</h3>
329  <p>
330  Use {@link MediaCodecList} to create a MediaCodec for a specific {@link MediaFormat}. When
331  decoding a file or a stream, you can get the desired format from {@link
332  MediaExtractor#getTrackFormat MediaExtractor.getTrackFormat}. Inject any specific features that
333  you want to add using {@link MediaFormat#setFeatureEnabled MediaFormat.setFeatureEnabled}, then
334  call {@link MediaCodecList#findDecoderForFormat MediaCodecList.findDecoderForFormat} to get the
335  name of a codec that can handle that specific media format. Finally, create the codec using
336  {@link #createByCodecName}.
337  <p class=note>
338  <strong>Note:</strong> On {@link android.os.Build.VERSION_CODES#LOLLIPOP}, the format to
339  {@code MediaCodecList.findDecoder}/{@code EncoderForFormat} must not contain a {@linkplain
340  MediaFormat#KEY_FRAME_RATE frame rate}. Use
341  <code class=prettyprint>format.setString(MediaFormat.KEY_FRAME_RATE, null)</code>
342  to clear any existing frame rate setting in the format.
343  <p>
344  You can also create the preferred codec for a specific MIME type using {@link
345  #createDecoderByType createDecoder}/{@link #createEncoderByType EncoderByType(String)}.
346  This, however, cannot be used to inject features, and may create a codec that cannot handle the
347  specific desired media format.
348 
349  <h4>Creating secure decoders</h4>
350  <p>
351  On versions {@link android.os.Build.VERSION_CODES#KITKAT_WATCH} and earlier, secure codecs might
352  not be listed in {@link MediaCodecList}, but may still be available on the system. Secure codecs
353  that exist can be instantiated by name only, by appending {@code ".secure"} to the name of a
354  regular codec (the name of all secure codecs must end in {@code ".secure"}.) {@link
355  #createByCodecName} will throw an {@code IOException} if the codec is not present on the system.
356  <p>
357  From {@link android.os.Build.VERSION_CODES#LOLLIPOP} onwards, you should use the {@link
358  CodecCapabilities#FEATURE_SecurePlayback} feature in the media format to create a secure decoder.
359 
360  <h3>Initialization</h3>
361  <p>
362  After creating the codec, you can set a callback using {@link #setCallback setCallback} if you
363  want to process data asynchronously. Then, {@linkplain #configure configure} the codec using the
364  specific media format. This is when you can specify the output {@link Surface} for video
365  producers &ndash; codecs that generate raw video data (e.g. video decoders). This is also when
366  you can set the decryption parameters for secure codecs (see {@link MediaCrypto}). Finally, since
367  some codecs can operate in multiple modes, you must specify whether you want it to work as a
368  decoder or an encoder.
369  <p>
370  Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, you can query the resulting input and
371  output format in the Configured state. You can use this to verify the resulting configuration,
372  e.g. color formats, before starting the codec.
373  <p>
374  If you want to process raw input video buffers natively with a video consumer &ndash; a codec
375  that processes raw video input, such as a video encoder &ndash; create a destination Surface for
376  your input data using {@link #createInputSurface} after configuration. Alternately, set up the
377  codec to use a previously created {@linkplain #createPersistentInputSurface persistent input
378  surface} by calling {@link #setInputSurface}.
379 
380  <h4 id=EncoderProfiles><a name="EncoderProfiles"></a>Encoder Profiles</h4>
381  <p>
382  When using an encoder, it is recommended to set the desired codec {@link MediaFormat#KEY_PROFILE
383  profile} during {@link #configure configure()}. (This is only meaningful for
384  {@link MediaFormat#KEY_MIME media formats} for which profiles are defined.)
385  <p>
386  If a profile is not specified during {@code configure}, the encoder will choose a profile for the
387  session based on the available information. We will call this value the <i>default profile</i>.
388  The selection of the default profile is device specific and may not be deterministic
389  (could be ad hoc or even experimental). The encoder may choose a default profile that is not
390  suitable for the intended encoding session, which may result in the encoder ultimately rejecting
391  the session.
392  <p>
393  The encoder may reject the encoding session if the configured (or default if unspecified) profile
394  does not support the codec input (mainly the {@link MediaFormat#KEY_COLOR_FORMAT color format} for
395  video/image codecs, or the {@link MediaFormat#KEY_PCM_ENCODING sample encoding} and the {@link
396  MediaFormat#KEY_CHANNEL_COUNT number of channels} for audio codecs, but also possibly
397  {@link MediaFormat#KEY_WIDTH width}, {@link MediaFormat#KEY_HEIGHT height},
398  {@link MediaFormat#KEY_FRAME_RATE frame rate}, {@link MediaFormat#KEY_BIT_RATE bitrate} or
399  {@link MediaFormat#KEY_SAMPLE_RATE sample rate}.)
400  Alternatively, the encoder may choose to (but is not required to) convert the input to support the
401  selected (or default) profile - or adjust the chosen profile based on the presumed or detected
402  input format - to ensure a successful encoding session. <b>Note</b>: Converting the input to match
403  an incompatible profile will in most cases result in decreased codec performance.
404  <p>
405  To ensure backward compatibility, the following guarantees are provided by Android:
406  <ul>
407  <li>The default video encoder profile always supports 8-bit YUV 4:2:0 color format ({@link
408  CodecCapabilities#COLOR_FormatYUV420Flexible COLOR_FormatYUV420Flexible} and equivalent
409  {@link CodecCapabilities#colorFormats supported formats}) for both Surface and ByteBuffer modes.
410  <li>The default video encoder profile always supports the default 8-bit RGBA color format in
411  Surface mode even if no such formats are enumerated in the {@link CodecCapabilities#colorFormats
412  supported formats}.
413  </ul>
414  <p class=note>
415  <b>Note</b>: the accepted profile can be queried through the {@link #getOutputFormat output
416  format} of the encoder after {@code configure} to allow applications to set up their
417  codec input to a format supported by the encoder profile.
418  <p>
419  <b>Implication:</b>
420  <ul>
421  <li>Applications that want to encode 4:2:2, 4:4:4, 10+ bit or HDR video input <b>MUST</b> configure
422  a suitable profile for encoders.
423  </ul>
424 
425  <h4 id=CSD><a name="CSD"></a>Codec-specific Data</h4>
426  <p>
427  Some formats, notably AAC audio and MPEG4, H.264 and H.265 video formats require the actual data
428  to be prefixed by a number of buffers containing setup data, or codec specific data. When
429  processing such compressed formats, this data must be submitted to the codec after {@link
430  #start} and before any frame data. Such data must be marked using the flag {@link
431  #BUFFER_FLAG_CODEC_CONFIG} in a call to {@link #queueInputBuffer queueInputBuffer}.
432  <p>
433  Codec-specific data can also be included in the format passed to {@link #configure configure} in
434  ByteBuffer entries with keys "csd-0", "csd-1", etc. These keys are always included in the track
435  {@link MediaFormat} obtained from the {@link MediaExtractor#getTrackFormat MediaExtractor}.
436  Codec-specific data in the format is automatically submitted to the codec upon {@link #start};
437  you <strong>MUST NOT</strong> submit this data explicitly. If the format did not contain codec
438  specific data, you can choose to submit it using the specified number of buffers in the correct
439  order, according to the format requirements. In case of H.264 AVC, you can also concatenate all
440  codec-specific data and submit it as a single codec-config buffer.
441  <p>
442  Android uses the following codec-specific data buffers. These are also required to be set in
443  the track format for proper {@link MediaMuxer} track configuration. Each parameter set and the
444  codec-specific-data sections marked with (<sup>*</sup>) must start with a start code of
445  {@code "\x00\x00\x00\x01"}.
446  <p>
447  <style>td.NA { background: #ccc; } .mid > tr > td { vertical-align: middle; }</style>
448  <table>
449   <thead>
450    <th>Format</th>
451    <th>CSD buffer #0</th>
452    <th>CSD buffer #1</th>
453    <th>CSD buffer #2</th>
454   </thead>
455   <tbody class=mid>
456    <tr>
457     <td>AAC</td>
458     <td>Decoder-specific information from ESDS<sup>*</sup></td>
459     <td class=NA>Not Used</td>
460     <td class=NA>Not Used</td>
461    </tr>
462    <tr>
463     <td>VORBIS</td>
464     <td>Identification header</td>
465     <td>Setup header</td>
466     <td class=NA>Not Used</td>
467    </tr>
468    <tr>
469     <td>OPUS</td>
470     <td>Identification header</td>
471     <td>Pre-skip in nanosecs<br>
472         (unsigned 64-bit {@linkplain ByteOrder#nativeOrder native-order} integer.)<br>
473         This overrides the pre-skip value in the identification header.</td>
474     <td>Seek Pre-roll in nanosecs<br>
475         (unsigned 64-bit {@linkplain ByteOrder#nativeOrder native-order} integer.)</td>
476    </tr>
477    <tr>
478     <td>FLAC</td>
479     <td>"fLaC", the FLAC stream marker in ASCII,<br>
480         followed by the STREAMINFO block (the mandatory metadata block),<br>
481         optionally followed by any number of other metadata blocks</td>
482     <td class=NA>Not Used</td>
483     <td class=NA>Not Used</td>
484    </tr>
485    <tr>
486     <td>MPEG-4</td>
487     <td>Decoder-specific information from ESDS<sup>*</sup></td>
488     <td class=NA>Not Used</td>
489     <td class=NA>Not Used</td>
490    </tr>
491    <tr>
492     <td>H.264 AVC</td>
493     <td>SPS (Sequence Parameter Sets<sup>*</sup>)</td>
494     <td>PPS (Picture Parameter Sets<sup>*</sup>)</td>
495     <td class=NA>Not Used</td>
496    </tr>
497    <tr>
498     <td>H.265 HEVC</td>
499     <td>VPS (Video Parameter Sets<sup>*</sup>) +<br>
500      SPS (Sequence Parameter Sets<sup>*</sup>) +<br>
501      PPS (Picture Parameter Sets<sup>*</sup>)</td>
502     <td class=NA>Not Used</td>
503     <td class=NA>Not Used</td>
504    </tr>
505    <tr>
506     <td>VP9</td>
507     <td>VP9 <a href="http://wiki.webmproject.org/vp9-codecprivate">CodecPrivate</a> Data
508         (optional)</td>
509     <td class=NA>Not Used</td>
510     <td class=NA>Not Used</td>
511    </tr>
512    <tr>
513     <td>AV1</td>
514     <td>AV1 <a href="https://aomediacodec.github.io/av1-isobmff/#av1codecconfigurationbox-syntax">
515         AV1CodecConfigurationRecord</a> Data (optional)
516     </td>
517     <td class=NA>Not Used</td>
518     <td class=NA>Not Used</td>
519    </tr>
520   </tbody>
521  </table>
522 
523  <p class=note>
524  <strong>Note:</strong> care must be taken if the codec is flushed immediately or shortly
525  after start, before any output buffer or output format change has been returned, as the codec
526  specific data may be lost during the flush. You must resubmit the data using buffers marked with
527  {@link #BUFFER_FLAG_CODEC_CONFIG} after such flush to ensure proper codec operation.
528  <p>
529  Encoders (or codecs that generate compressed data) will create and return the codec specific data
530  before any valid output buffer in output buffers marked with the {@linkplain
531  #BUFFER_FLAG_CODEC_CONFIG codec-config flag}. Buffers containing codec-specific-data have no
532  meaningful timestamps.
533 
534  <h3>Data Processing</h3>
535  <p>
536  Each codec maintains a set of input and output buffers that are referred to by a buffer-ID in
537  API calls. After a successful call to {@link #start} the client "owns" neither input nor output
538  buffers. In synchronous mode, call {@link #dequeueInputBuffer dequeueInput}/{@link
539  #dequeueOutputBuffer OutputBuffer(&hellip;)} to obtain (get ownership of) an input or output
540  buffer from the codec. In asynchronous mode, you will automatically receive available buffers via
541  the {@link Callback#onInputBufferAvailable MediaCodec.Callback.onInput}/{@link
542  Callback#onOutputBufferAvailable OutputBufferAvailable(&hellip;)} callbacks.
543  <p>
544  Upon obtaining an input buffer, fill it with data and submit it to the codec using {@link
545  #queueInputBuffer queueInputBuffer} &ndash; or {@link #queueSecureInputBuffer
546  queueSecureInputBuffer} if using decryption. Do not submit multiple input buffers with the same
547  timestamp (unless it is <a href="#CSD">codec-specific data</a> marked as such).
548  <p>
549  The codec in turn will return a read-only output buffer via the {@link
550  Callback#onOutputBufferAvailable onOutputBufferAvailable} callback in asynchronous mode, or in
551  response to a {@link #dequeueOutputBuffer dequeueOutputBuffer} call in synchronous mode. After the
552  output buffer has been processed, call one of the {@link #releaseOutputBuffer
553  releaseOutputBuffer} methods to return the buffer to the codec.
554  <p>
555  While you are not required to resubmit/release buffers immediately to the codec, holding onto
556  input and/or output buffers may stall the codec, and this behavior is device dependent.
557  <strong>Specifically, it is possible that a codec may hold off on generating output buffers until
558  <em>all</em> outstanding buffers have been released/resubmitted.</strong> Therefore, try to
559  hold onto to available buffers as little as possible.
560  <p>
561  Depending on the API version, you can process data in three ways:
562  <table>
563   <thead>
564    <tr>
565     <th>Processing Mode</th>
566     <th>API version <= 20<br>Jelly Bean/KitKat</th>
567     <th>API version >= 21<br>Lollipop and later</th>
568    </tr>
569   </thead>
570   <tbody>
571    <tr>
572     <td>Synchronous API using buffer arrays</td>
573     <td>Supported</td>
574     <td>Deprecated</td>
575    </tr>
576    <tr>
577     <td>Synchronous API using buffers</td>
578     <td class=NA>Not Available</td>
579     <td>Supported</td>
580    </tr>
581    <tr>
582     <td>Asynchronous API using buffers</td>
583     <td class=NA>Not Available</td>
584     <td>Supported</td>
585    </tr>
586   </tbody>
587  </table>
588 
589  <h4>Asynchronous Processing using Buffers</h4>
590  <p>
591  Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, the preferred method is to process data
592  asynchronously by setting a callback before calling {@link #configure configure}. Asynchronous
593  mode changes the state transitions slightly, because you must call {@link #start} after {@link
594  #flush} to transition the codec to the Running sub-state and start receiving input buffers.
595  Similarly, upon an initial call to {@code start} the codec will move directly to the Running
596  sub-state and start passing available input buffers via the callback.
597  <p>
598  <center>
599    <img src="../../../images/media/mediacodec_async_states.svg" style="width: 516px; height: 353px"
600        alt="MediaCodec state diagram for asynchronous operation">
601  </center>
602  <p>
603  MediaCodec is typically used like this in asynchronous mode:
604  <pre class=prettyprint>
605  MediaCodec codec = MediaCodec.createByCodecName(name);
606  MediaFormat mOutputFormat; // member variable
607  codec.setCallback(new MediaCodec.Callback() {
608    {@literal @Override}
609    void onInputBufferAvailable(MediaCodec mc, int inputBufferId) {
610      ByteBuffer inputBuffer = codec.getInputBuffer(inputBufferId);
611      // fill inputBuffer with valid data
612      &hellip;
613      codec.queueInputBuffer(inputBufferId, &hellip;);
614    }
615 
616    {@literal @Override}
617    void onOutputBufferAvailable(MediaCodec mc, int outputBufferId, &hellip;) {
618      ByteBuffer outputBuffer = codec.getOutputBuffer(outputBufferId);
619      MediaFormat bufferFormat = codec.getOutputFormat(outputBufferId); // option A
620      // bufferFormat is equivalent to mOutputFormat
621      // outputBuffer is ready to be processed or rendered.
622      &hellip;
623      codec.releaseOutputBuffer(outputBufferId, &hellip;);
624    }
625 
626    {@literal @Override}
627    void onOutputFormatChanged(MediaCodec mc, MediaFormat format) {
628      // Subsequent data will conform to new format.
629      // Can ignore if using getOutputFormat(outputBufferId)
630      mOutputFormat = format; // option B
631    }
632 
633    {@literal @Override}
634    void onError(&hellip;) {
635      &hellip;
636    }
637    {@literal @Override}
638    void onCryptoError(&hellip;) {
639      &hellip;
640    }
641  });
642  codec.configure(format, &hellip;);
643  mOutputFormat = codec.getOutputFormat(); // option B
644  codec.start();
645  // wait for processing to complete
646  codec.stop();
647  codec.release();</pre>
648 
649  <h4>Synchronous Processing using Buffers</h4>
650  <p>
651  Since {@link android.os.Build.VERSION_CODES#LOLLIPOP}, you should retrieve input and output
652  buffers using {@link #getInputBuffer getInput}/{@link #getOutputBuffer OutputBuffer(int)} and/or
653  {@link #getInputImage getInput}/{@link #getOutputImage OutputImage(int)} even when using the
654  codec in synchronous mode. This allows certain optimizations by the framework, e.g. when
655  processing dynamic content. This optimization is disabled if you call {@link #getInputBuffers
656  getInput}/{@link #getOutputBuffers OutputBuffers()}.
657 
658  <p class=note>
659  <strong>Note:</strong> do not mix the methods of using buffers and buffer arrays at the same
660  time. Specifically, only call {@code getInput}/{@code OutputBuffers} directly after {@link
661  #start} or after having dequeued an output buffer ID with the value of {@link
662  #INFO_OUTPUT_FORMAT_CHANGED}.
663  <p>
664  MediaCodec is typically used like this in synchronous mode:
665  <pre>
666  MediaCodec codec = MediaCodec.createByCodecName(name);
667  codec.configure(format, &hellip;);
668  MediaFormat outputFormat = codec.getOutputFormat(); // option B
669  codec.start();
670  for (;;) {
671    int inputBufferId = codec.dequeueInputBuffer(timeoutUs);
672    if (inputBufferId &gt;= 0) {
673      ByteBuffer inputBuffer = codec.getInputBuffer(&hellip;);
674      // fill inputBuffer with valid data
675      &hellip;
676      codec.queueInputBuffer(inputBufferId, &hellip;);
677    }
678    int outputBufferId = codec.dequeueOutputBuffer(&hellip;);
679    if (outputBufferId &gt;= 0) {
680      ByteBuffer outputBuffer = codec.getOutputBuffer(outputBufferId);
681      MediaFormat bufferFormat = codec.getOutputFormat(outputBufferId); // option A
682      // bufferFormat is identical to outputFormat
683      // outputBuffer is ready to be processed or rendered.
684      &hellip;
685      codec.releaseOutputBuffer(outputBufferId, &hellip;);
686    } else if (outputBufferId == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
687      // Subsequent data will conform to new format.
688      // Can ignore if using getOutputFormat(outputBufferId)
689      outputFormat = codec.getOutputFormat(); // option B
690    }
691  }
692  codec.stop();
693  codec.release();</pre>
694 
695  <h4>Synchronous Processing using Buffer Arrays (deprecated)</h4>
696  <p>
697  In versions {@link android.os.Build.VERSION_CODES#KITKAT_WATCH} and before, the set of input and
698  output buffers are represented by the {@code ByteBuffer[]} arrays. After a successful call to
699  {@link #start}, retrieve the buffer arrays using {@link #getInputBuffers getInput}/{@link
700  #getOutputBuffers OutputBuffers()}. Use the buffer ID-s as indices into these arrays (when
701  non-negative), as demonstrated in the sample below. Note that there is no inherent correlation
702  between the size of the arrays and the number of input and output buffers used by the system,
703  although the array size provides an upper bound.
704  <pre>
705  MediaCodec codec = MediaCodec.createByCodecName(name);
706  codec.configure(format, &hellip;);
707  codec.start();
708  ByteBuffer[] inputBuffers = codec.getInputBuffers();
709  ByteBuffer[] outputBuffers = codec.getOutputBuffers();
710  for (;;) {
711    int inputBufferId = codec.dequeueInputBuffer(&hellip;);
712    if (inputBufferId &gt;= 0) {
713      // fill inputBuffers[inputBufferId] with valid data
714      &hellip;
715      codec.queueInputBuffer(inputBufferId, &hellip;);
716    }
717    int outputBufferId = codec.dequeueOutputBuffer(&hellip;);
718    if (outputBufferId &gt;= 0) {
719      // outputBuffers[outputBufferId] is ready to be processed or rendered.
720      &hellip;
721      codec.releaseOutputBuffer(outputBufferId, &hellip;);
722    } else if (outputBufferId == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED) {
723      outputBuffers = codec.getOutputBuffers();
724    } else if (outputBufferId == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
725      // Subsequent data will conform to new format.
726      MediaFormat format = codec.getOutputFormat();
727    }
728  }
729  codec.stop();
730  codec.release();</pre>
731 
732  <h4>End-of-stream Handling</h4>
733  <p>
734  When you reach the end of the input data, you must signal it to the codec by specifying the
735  {@link #BUFFER_FLAG_END_OF_STREAM} flag in the call to {@link #queueInputBuffer
736  queueInputBuffer}. You can do this on the last valid input buffer, or by submitting an additional
737  empty input buffer with the end-of-stream flag set. If using an empty buffer, the timestamp will
738  be ignored.
739  <p>
740  The codec will continue to return output buffers until it eventually signals the end of the
741  output stream by specifying the same end-of-stream flag in the {@link BufferInfo} set in {@link
742  #dequeueOutputBuffer dequeueOutputBuffer} or returned via {@link Callback#onOutputBufferAvailable
743  onOutputBufferAvailable}. This can be set on the last valid output buffer, or on an empty buffer
744  after the last valid output buffer. The timestamp of such empty buffer should be ignored.
745  <p>
746  Do not submit additional input buffers after signaling the end of the input stream, unless the
747  codec has been flushed, or stopped and restarted.
748 
749  <h4>Using an Output Surface</h4>
750  <p>
751  The data processing is nearly identical to the ByteBuffer mode when using an output {@link
752  Surface}; however, the output buffers will not be accessible, and are represented as {@code null}
753  values. E.g. {@link #getOutputBuffer getOutputBuffer}/{@link #getOutputImage Image(int)} will
754  return {@code null} and {@link #getOutputBuffers} will return an array containing only {@code
755  null}-s.
756  <p>
757  When using an output Surface, you can select whether or not to render each output buffer on the
758  surface. You have three choices:
759  <ul>
760  <li><strong>Do not render the buffer:</strong> Call {@link #releaseOutputBuffer(int, boolean)
761  releaseOutputBuffer(bufferId, false)}.</li>
762  <li><strong>Render the buffer with the default timestamp:</strong> Call {@link
763  #releaseOutputBuffer(int, boolean) releaseOutputBuffer(bufferId, true)}.</li>
764  <li><strong>Render the buffer with a specific timestamp:</strong> Call {@link
765  #releaseOutputBuffer(int, long) releaseOutputBuffer(bufferId, timestamp)}.</li>
766  </ul>
767  <p>
768  Since {@link android.os.Build.VERSION_CODES#M}, the default timestamp is the {@linkplain
769  BufferInfo#presentationTimeUs presentation timestamp} of the buffer (converted to nanoseconds).
770  It was not defined prior to that.
771  <p>
772  Also since {@link android.os.Build.VERSION_CODES#M}, you can change the output Surface
773  dynamically using {@link #setOutputSurface setOutputSurface}.
774  <p>
775  When rendering output to a Surface, the Surface may be configured to drop excessive frames (that
776  are not consumed by the Surface in a timely manner). Or it may be configured to not drop excessive
777  frames. In the latter mode if the Surface is not consuming output frames fast enough, it will
778  eventually block the decoder. Prior to {@link android.os.Build.VERSION_CODES#Q} the exact behavior
779  was undefined, with the exception that View surfaces (SurfaceView or TextureView) always dropped
780  excessive frames. Since {@link android.os.Build.VERSION_CODES#Q} the default behavior is to drop
781  excessive frames. Applications can opt out of this behavior for non-View surfaces (such as
782  ImageReader or SurfaceTexture) by targeting SDK {@link android.os.Build.VERSION_CODES#Q} and
783  setting the key {@link MediaFormat#KEY_ALLOW_FRAME_DROP} to {@code 0}
784  in their configure format.
785 
786  <h4>Transformations When Rendering onto Surface</h4>
787 
788  If the codec is configured into Surface mode, any crop rectangle, {@linkplain
789  MediaFormat#KEY_ROTATION rotation} and {@linkplain #setVideoScalingMode video scaling
790  mode} will be automatically applied with one exception:
791  <p class=note>
792  Prior to the {@link android.os.Build.VERSION_CODES#M} release, software decoders may not
793  have applied the rotation when being rendered onto a Surface. Unfortunately, there is no standard
794  and simple way to identify software decoders, or if they apply the rotation other than by trying
795  it out.
796  <p>
797  There are also some caveats.
798  <p class=note>
799  Note that the pixel aspect ratio is not considered when displaying the output onto the
800  Surface. This means that if you are using {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT} mode, you
801  must position the output Surface so that it has the proper final display aspect ratio. Conversely,
802  you can only use {@link #VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING} mode for content with
803  square pixels (pixel aspect ratio or 1:1).
804  <p class=note>
805  Note also that as of {@link android.os.Build.VERSION_CODES#N} release, {@link
806  #VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING} mode may not work correctly for videos rotated
807  by 90 or 270 degrees.
808  <p class=note>
809  When setting the video scaling mode, note that it must be reset after each time the output
810  buffers change. Since the {@link #INFO_OUTPUT_BUFFERS_CHANGED} event is deprecated, you can
811  do this after each time the output format changes.
812 
813  <h4>Using an Input Surface</h4>
814  <p>
815  When using an input Surface, there are no accessible input buffers, as buffers are automatically
816  passed from the input surface to the codec. Calling {@link #dequeueInputBuffer
817  dequeueInputBuffer} will throw an {@code IllegalStateException}, and {@link #getInputBuffers}
818  returns a bogus {@code ByteBuffer[]} array that <strong>MUST NOT</strong> be written into.
819  <p>
820  Call {@link #signalEndOfInputStream} to signal end-of-stream. The input surface will stop
821  submitting data to the codec immediately after this call.
822  <p>
823 
824  <h3>Seeking &amp; Adaptive Playback Support</h3>
825  <p>
826  Video decoders (and in general codecs that consume compressed video data) behave differently
827  regarding seek and format change whether or not they support and are configured for adaptive
828  playback. You can check if a decoder supports {@linkplain
829  CodecCapabilities#FEATURE_AdaptivePlayback adaptive playback} via {@link
830  CodecCapabilities#isFeatureSupported CodecCapabilities.isFeatureSupported(String)}. Adaptive
831  playback support for video decoders is only activated if you configure the codec to decode onto a
832  {@link Surface}.
833 
834  <h4 id=KeyFrames><a name="KeyFrames"></a>Stream Boundary and Key Frames</h4>
835  <p>
836  It is important that the input data after {@link #start} or {@link #flush} starts at a suitable
837  stream boundary: the first frame must be a key frame. A <em>key frame</em> can be decoded
838  completely on its own (for most codecs this means an I-frame), and no frames that are to be
839  displayed after a key frame refer to frames before the key frame.
840  <p>
841  The following table summarizes suitable key frames for various video formats.
842  <table>
843   <thead>
844    <tr>
845     <th>Format</th>
846     <th>Suitable key frame</th>
847    </tr>
848   </thead>
849   <tbody class=mid>
850    <tr>
851     <td>VP9/VP8</td>
852     <td>a suitable intraframe where no subsequent frames refer to frames prior to this frame.<br>
853       <i>(There is no specific name for such key frame.)</i></td>
854    </tr>
855    <tr>
856     <td>H.265 HEVC</td>
857     <td>IDR or CRA</td>
858    </tr>
859    <tr>
860     <td>H.264 AVC</td>
861     <td>IDR</td>
862    </tr>
863    <tr>
864     <td>MPEG-4<br>H.263<br>MPEG-2</td>
865     <td>a suitable I-frame where no subsequent frames refer to frames prior to this frame.<br>
866       <i>(There is no specific name for such key frame.)</td>
867    </tr>
868   </tbody>
869  </table>
870 
871  <h4>For decoders that do not support adaptive playback (including when not decoding onto a
872  Surface)</h4>
873  <p>
874  In order to start decoding data that is not adjacent to previously submitted data (i.e. after a
875  seek) you <strong>MUST</strong> flush the decoder. Since all output buffers are immediately
876  revoked at the point of the flush, you may want to first signal then wait for the end-of-stream
877  before you call {@code flush}. It is important that the input data after a flush starts at a
878  suitable stream boundary/key frame.
879  <p class=note>
880  <strong>Note:</strong> the format of the data submitted after a flush must not change; {@link
881  #flush} does not support format discontinuities; for that, a full {@link #stop} - {@link
882  #configure configure(&hellip;)} - {@link #start} cycle is necessary.
883 
884  <p class=note>
885  <strong>Also note:</strong> if you flush the codec too soon after {@link #start} &ndash;
886  generally, before the first output buffer or output format change is received &ndash; you
887  will need to resubmit the codec-specific-data to the codec. See the <a
888  href="#CSD">codec-specific-data section</a> for more info.
889 
890  <h4>For decoders that support and are configured for adaptive playback</h4>
891  <p>
892  In order to start decoding data that is not adjacent to previously submitted data (i.e. after a
893  seek) it is <em>not necessary</em> to flush the decoder; however, input data after the
894  discontinuity must start at a suitable stream boundary/key frame.
895  <p>
896  For some video formats - namely H.264, H.265, VP8 and VP9 - it is also possible to change the
897  picture size or configuration mid-stream. To do this you must package the entire new
898  codec-specific configuration data together with the key frame into a single buffer (including
899  any start codes), and submit it as a <strong>regular</strong> input buffer.
900  <p>
901  You will receive an {@link #INFO_OUTPUT_FORMAT_CHANGED} return value from {@link
902  #dequeueOutputBuffer dequeueOutputBuffer} or a {@link Callback#onOutputFormatChanged
903  onOutputFormatChanged} callback just after the picture-size change takes place and before any
904  frames with the new size have been returned.
905  <p class=note>
906  <strong>Note:</strong> just as the case for codec-specific data, be careful when calling
907  {@link #flush} shortly after you have changed the picture size. If you have not received
908  confirmation of the picture size change, you will need to repeat the request for the new picture
909  size.
910 
911  <h3>Error handling</h3>
912  <p>
913  The factory methods {@link #createByCodecName createByCodecName} and {@link #createDecoderByType
914  createDecoder}/{@link #createEncoderByType EncoderByType} throw {@code IOException} on failure
915  which you must catch or declare to pass up. MediaCodec methods throw {@code
916  IllegalStateException} when the method is called from a codec state that does not allow it; this
917  is typically due to incorrect application API usage. Methods involving secure buffers may throw
918  {@link CryptoException}, which has further error information obtainable from {@link
919  CryptoException#getErrorCode}.
920  <p>
921  Internal codec errors result in a {@link CodecException}, which may be due to media content
922  corruption, hardware failure, resource exhaustion, and so forth, even when the application is
923  correctly using the API. The recommended action when receiving a {@code CodecException}
924  can be determined by calling {@link CodecException#isRecoverable} and {@link
925  CodecException#isTransient}:
926  <ul>
927  <li><strong>recoverable errors:</strong> If {@code isRecoverable()} returns true, then call
928  {@link #stop}, {@link #configure configure(&hellip;)}, and {@link #start} to recover.</li>
929  <li><strong>transient errors:</strong> If {@code isTransient()} returns true, then resources are
930  temporarily unavailable and the method may be retried at a later time.</li>
931  <li><strong>fatal errors:</strong> If both {@code isRecoverable()} and {@code isTransient()}
932  return false, then the {@code CodecException} is fatal and the codec must be {@linkplain #reset
933  reset} or {@linkplain #release released}.</li>
934  </ul>
935  <p>
936  Both {@code isRecoverable()} and {@code isTransient()} do not return true at the same time.
937 
938  <h2 id=History><a name="History"></a>Valid API Calls and API History</h2>
939  <p>
940  This sections summarizes the valid API calls in each state and the API history of the MediaCodec
941  class. For API version numbers, see {@link android.os.Build.VERSION_CODES}.
942 
943  <style>
944  .api > tr > th, .api > tr > td { text-align: center; padding: 4px 4px; }
945  .api > tr > th     { vertical-align: bottom; }
946  .api > tr > td     { vertical-align: middle; }
947  .sml > tr > th, .sml > tr > td { text-align: center; padding: 2px 4px; }
948  .fn { text-align: left; }
949  .fn > code > a { font: 14px/19px Roboto Condensed, sans-serif; }
950  .deg45 {
951    white-space: nowrap; background: none; border: none; vertical-align: bottom;
952    width: 30px; height: 83px;
953  }
954  .deg45 > div {
955    transform: skew(-45deg, 0deg) translate(1px, -67px);
956    transform-origin: bottom left 0;
957    width: 30px; height: 20px;
958  }
959  .deg45 > div > div { border: 1px solid #ddd; background: #999; height: 90px; width: 42px; }
960  .deg45 > div > div > div { transform: skew(45deg, 0deg) translate(-55px, 55px) rotate(-45deg); }
961  </style>
962 
963  <table align="right" style="width: 0%">
964   <thead>
965    <tr><th>Symbol</th><th>Meaning</th></tr>
966   </thead>
967   <tbody class=sml>
968    <tr><td>&#9679;</td><td>Supported</td></tr>
969    <tr><td>&#8277;</td><td>Semantics changed</td></tr>
970    <tr><td>&#9675;</td><td>Experimental support</td></tr>
971    <tr><td>[ ]</td><td>Deprecated</td></tr>
972    <tr><td>&#9099;</td><td>Restricted to surface input mode</td></tr>
973    <tr><td>&#9094;</td><td>Restricted to surface output mode</td></tr>
974    <tr><td>&#9639;</td><td>Restricted to ByteBuffer input mode</td></tr>
975    <tr><td>&#8617;</td><td>Restricted to synchronous mode</td></tr>
976    <tr><td>&#8644;</td><td>Restricted to asynchronous mode</td></tr>
977    <tr><td>( )</td><td>Can be called, but shouldn't</td></tr>
978   </tbody>
979  </table>
980 
981  <table style="width: 100%;">
982   <thead class=api>
983    <tr>
984     <th class=deg45><div><div style="background:#4285f4"><div>Uninitialized</div></div></div></th>
985     <th class=deg45><div><div style="background:#f4b400"><div>Configured</div></div></div></th>
986     <th class=deg45><div><div style="background:#e67c73"><div>Flushed</div></div></div></th>
987     <th class=deg45><div><div style="background:#0f9d58"><div>Running</div></div></div></th>
988     <th class=deg45><div><div style="background:#f7cb4d"><div>End of Stream</div></div></div></th>
989     <th class=deg45><div><div style="background:#db4437"><div>Error</div></div></div></th>
990     <th class=deg45><div><div style="background:#666"><div>Released</div></div></div></th>
991     <th></th>
992     <th colspan="8">SDK Version</th>
993    </tr>
994    <tr>
995     <th colspan="7">State</th>
996     <th>Method</th>
997     <th>16</th>
998     <th>17</th>
999     <th>18</th>
1000     <th>19</th>
1001     <th>20</th>
1002     <th>21</th>
1003     <th>22</th>
1004     <th>23</th>
1005    </tr>
1006   </thead>
1007   <tbody class=api>
1008    <tr>
1009     <td></td>
1010     <td></td>
1011     <td></td>
1012     <td></td>
1013     <td></td>
1014     <td></td>
1015     <td></td>
1016     <td class=fn>{@link #createByCodecName createByCodecName}</td>
1017     <td>&#9679;</td>
1018     <td>&#9679;</td>
1019     <td>&#9679;</td>
1020     <td>&#9679;</td>
1021     <td>&#9679;</td>
1022     <td>&#9679;</td>
1023     <td>&#9679;</td>
1024     <td>&#9679;</td>
1025    </tr>
1026    <tr>
1027     <td></td>
1028     <td></td>
1029     <td></td>
1030     <td></td>
1031     <td></td>
1032     <td></td>
1033     <td></td>
1034     <td class=fn>{@link #createDecoderByType createDecoderByType}</td>
1035     <td>&#9679;</td>
1036     <td>&#9679;</td>
1037     <td>&#9679;</td>
1038     <td>&#9679;</td>
1039     <td>&#9679;</td>
1040     <td>&#9679;</td>
1041     <td>&#9679;</td>
1042     <td>&#9679;</td>
1043    </tr>
1044    <tr>
1045     <td></td>
1046     <td></td>
1047     <td></td>
1048     <td></td>
1049     <td></td>
1050     <td></td>
1051     <td></td>
1052     <td class=fn>{@link #createEncoderByType createEncoderByType}</td>
1053     <td>&#9679;</td>
1054     <td>&#9679;</td>
1055     <td>&#9679;</td>
1056     <td>&#9679;</td>
1057     <td>&#9679;</td>
1058     <td>&#9679;</td>
1059     <td>&#9679;</td>
1060     <td>&#9679;</td>
1061    </tr>
1062    <tr>
1063     <td></td>
1064     <td></td>
1065     <td></td>
1066     <td></td>
1067     <td></td>
1068     <td></td>
1069     <td></td>
1070     <td class=fn>{@link #createPersistentInputSurface createPersistentInputSurface}</td>
1071     <td></td>
1072     <td></td>
1073     <td></td>
1074     <td></td>
1075     <td></td>
1076     <td></td>
1077     <td></td>
1078     <td>&#9679;</td>
1079    </tr>
1080    <tr>
1081     <td>16+</td>
1082     <td>-</td>
1083     <td>-</td>
1084     <td>-</td>
1085     <td>-</td>
1086     <td>-</td>
1087     <td>-</td>
1088     <td class=fn>{@link #configure configure}</td>
1089     <td>&#9679;</td>
1090     <td>&#9679;</td>
1091     <td>&#9679;</td>
1092     <td>&#9679;</td>
1093     <td>&#9679;</td>
1094     <td>&#8277;</td>
1095     <td>&#9679;</td>
1096     <td>&#9679;</td>
1097    </tr>
1098    <tr>
1099     <td>-</td>
1100     <td>18+</td>
1101     <td>-</td>
1102     <td>-</td>
1103     <td>-</td>
1104     <td>-</td>
1105     <td>-</td>
1106     <td class=fn>{@link #createInputSurface createInputSurface}</td>
1107     <td></td>
1108     <td></td>
1109     <td>&#9099;</td>
1110     <td>&#9099;</td>
1111     <td>&#9099;</td>
1112     <td>&#9099;</td>
1113     <td>&#9099;</td>
1114     <td>&#9099;</td>
1115    </tr>
1116    <tr>
1117     <td>-</td>
1118     <td>-</td>
1119     <td>16+</td>
1120     <td>16+</td>
1121     <td>(16+)</td>
1122     <td>-</td>
1123     <td>-</td>
1124     <td class=fn>{@link #dequeueInputBuffer dequeueInputBuffer}</td>
1125     <td>&#9679;</td>
1126     <td>&#9679;</td>
1127     <td>&#9639;</td>
1128     <td>&#9639;</td>
1129     <td>&#9639;</td>
1130     <td>&#8277;&#9639;&#8617;</td>
1131     <td>&#9639;&#8617;</td>
1132     <td>&#9639;&#8617;</td>
1133    </tr>
1134    <tr>
1135     <td>-</td>
1136     <td>-</td>
1137     <td>16+</td>
1138     <td>16+</td>
1139     <td>16+</td>
1140     <td>-</td>
1141     <td>-</td>
1142     <td class=fn>{@link #dequeueOutputBuffer dequeueOutputBuffer}</td>
1143     <td>&#9679;</td>
1144     <td>&#9679;</td>
1145     <td>&#9679;</td>
1146     <td>&#9679;</td>
1147     <td>&#9679;</td>
1148     <td>&#8277;&#8617;</td>
1149     <td>&#8617;</td>
1150     <td>&#8617;</td>
1151    </tr>
1152    <tr>
1153     <td>-</td>
1154     <td>-</td>
1155     <td>16+</td>
1156     <td>16+</td>
1157     <td>16+</td>
1158     <td>-</td>
1159     <td>-</td>
1160     <td class=fn>{@link #flush flush}</td>
1161     <td>&#9679;</td>
1162     <td>&#9679;</td>
1163     <td>&#9679;</td>
1164     <td>&#9679;</td>
1165     <td>&#9679;</td>
1166     <td>&#9679;</td>
1167     <td>&#9679;</td>
1168     <td>&#9679;</td>
1169    </tr>
1170    <tr>
1171     <td>18+</td>
1172     <td>18+</td>
1173     <td>18+</td>
1174     <td>18+</td>
1175     <td>18+</td>
1176     <td>18+</td>
1177     <td>-</td>
1178     <td class=fn>{@link #getCodecInfo getCodecInfo}</td>
1179     <td></td>
1180     <td></td>
1181     <td>&#9679;</td>
1182     <td>&#9679;</td>
1183     <td>&#9679;</td>
1184     <td>&#9679;</td>
1185     <td>&#9679;</td>
1186     <td>&#9679;</td>
1187    </tr>
1188    <tr>
1189     <td>-</td>
1190     <td>-</td>
1191     <td>(21+)</td>
1192     <td>21+</td>
1193     <td>(21+)</td>
1194     <td>-</td>
1195     <td>-</td>
1196     <td class=fn>{@link #getInputBuffer getInputBuffer}</td>
1197     <td></td>
1198     <td></td>
1199     <td></td>
1200     <td></td>
1201     <td></td>
1202     <td>&#9679;</td>
1203     <td>&#9679;</td>
1204     <td>&#9679;</td>
1205    </tr>
1206    <tr>
1207     <td>-</td>
1208     <td>-</td>
1209     <td>16+</td>
1210     <td>(16+)</td>
1211     <td>(16+)</td>
1212     <td>-</td>
1213     <td>-</td>
1214     <td class=fn>{@link #getInputBuffers getInputBuffers}</td>
1215     <td>&#9679;</td>
1216     <td>&#9679;</td>
1217     <td>&#9679;</td>
1218     <td>&#9679;</td>
1219     <td>&#9679;</td>
1220     <td>[&#8277;&#8617;]</td>
1221     <td>[&#8617;]</td>
1222     <td>[&#8617;]</td>
1223    </tr>
1224    <tr>
1225     <td>-</td>
1226     <td>21+</td>
1227     <td>(21+)</td>
1228     <td>(21+)</td>
1229     <td>(21+)</td>
1230     <td>-</td>
1231     <td>-</td>
1232     <td class=fn>{@link #getInputFormat getInputFormat}</td>
1233     <td></td>
1234     <td></td>
1235     <td></td>
1236     <td></td>
1237     <td></td>
1238     <td>&#9679;</td>
1239     <td>&#9679;</td>
1240     <td>&#9679;</td>
1241    </tr>
1242    <tr>
1243     <td>-</td>
1244     <td>-</td>
1245     <td>(21+)</td>
1246     <td>21+</td>
1247     <td>(21+)</td>
1248     <td>-</td>
1249     <td>-</td>
1250     <td class=fn>{@link #getInputImage getInputImage}</td>
1251     <td></td>
1252     <td></td>
1253     <td></td>
1254     <td></td>
1255     <td></td>
1256     <td>&#9675;</td>
1257     <td>&#9679;</td>
1258     <td>&#9679;</td>
1259    </tr>
1260    <tr>
1261     <td>18+</td>
1262     <td>18+</td>
1263     <td>18+</td>
1264     <td>18+</td>
1265     <td>18+</td>
1266     <td>18+</td>
1267     <td>-</td>
1268     <td class=fn>{@link #getName getName}</td>
1269     <td></td>
1270     <td></td>
1271     <td>&#9679;</td>
1272     <td>&#9679;</td>
1273     <td>&#9679;</td>
1274     <td>&#9679;</td>
1275     <td>&#9679;</td>
1276     <td>&#9679;</td>
1277    </tr>
1278    <tr>
1279     <td>-</td>
1280     <td>-</td>
1281     <td>(21+)</td>
1282     <td>21+</td>
1283     <td>21+</td>
1284     <td>-</td>
1285     <td>-</td>
1286     <td class=fn>{@link #getOutputBuffer getOutputBuffer}</td>
1287     <td></td>
1288     <td></td>
1289     <td></td>
1290     <td></td>
1291     <td></td>
1292     <td>&#9679;</td>
1293     <td>&#9679;</td>
1294     <td>&#9679;</td>
1295    </tr>
1296    <tr>
1297     <td>-</td>
1298     <td>-</td>
1299     <td>16+</td>
1300     <td>16+</td>
1301     <td>16+</td>
1302     <td>-</td>
1303     <td>-</td>
1304     <td class=fn>{@link #getOutputBuffers getOutputBuffers}</td>
1305     <td>&#9679;</td>
1306     <td>&#9679;</td>
1307     <td>&#9679;</td>
1308     <td>&#9679;</td>
1309     <td>&#9679;</td>
1310     <td>[&#8277;&#8617;]</td>
1311     <td>[&#8617;]</td>
1312     <td>[&#8617;]</td>
1313    </tr>
1314    <tr>
1315     <td>-</td>
1316     <td>21+</td>
1317     <td>16+</td>
1318     <td>16+</td>
1319     <td>16+</td>
1320     <td>-</td>
1321     <td>-</td>
1322     <td class=fn>{@link #getOutputFormat()}</td>
1323     <td>&#9679;</td>
1324     <td>&#9679;</td>
1325     <td>&#9679;</td>
1326     <td>&#9679;</td>
1327     <td>&#9679;</td>
1328     <td>&#9679;</td>
1329     <td>&#9679;</td>
1330     <td>&#9679;</td>
1331    </tr>
1332    <tr>
1333     <td>-</td>
1334     <td>-</td>
1335     <td>(21+)</td>
1336     <td>21+</td>
1337     <td>21+</td>
1338     <td>-</td>
1339     <td>-</td>
1340     <td class=fn>{@link #getOutputFormat(int)}</td>
1341     <td></td>
1342     <td></td>
1343     <td></td>
1344     <td></td>
1345     <td></td>
1346     <td>&#9679;</td>
1347     <td>&#9679;</td>
1348     <td>&#9679;</td>
1349    </tr>
1350    <tr>
1351     <td>-</td>
1352     <td>-</td>
1353     <td>(21+)</td>
1354     <td>21+</td>
1355     <td>21+</td>
1356     <td>-</td>
1357     <td>-</td>
1358     <td class=fn>{@link #getOutputImage getOutputImage}</td>
1359     <td></td>
1360     <td></td>
1361     <td></td>
1362     <td></td>
1363     <td></td>
1364     <td>&#9675;</td>
1365     <td>&#9679;</td>
1366     <td>&#9679;</td>
1367    </tr>
1368    <tr>
1369     <td>-</td>
1370     <td>-</td>
1371     <td>-</td>
1372     <td>16+</td>
1373     <td>(16+)</td>
1374     <td>-</td>
1375     <td>-</td>
1376     <td class=fn>{@link #queueInputBuffer queueInputBuffer}</td>
1377     <td>&#9679;</td>
1378     <td>&#9679;</td>
1379     <td>&#9679;</td>
1380     <td>&#9679;</td>
1381     <td>&#9679;</td>
1382     <td>&#8277;</td>
1383     <td>&#9679;</td>
1384     <td>&#9679;</td>
1385    </tr>
1386    <tr>
1387     <td>-</td>
1388     <td>-</td>
1389     <td>-</td>
1390     <td>16+</td>
1391     <td>(16+)</td>
1392     <td>-</td>
1393     <td>-</td>
1394     <td class=fn>{@link #queueSecureInputBuffer queueSecureInputBuffer}</td>
1395     <td>&#9679;</td>
1396     <td>&#9679;</td>
1397     <td>&#9679;</td>
1398     <td>&#9679;</td>
1399     <td>&#9679;</td>
1400     <td>&#8277;</td>
1401     <td>&#9679;</td>
1402     <td>&#9679;</td>
1403    </tr>
1404    <tr>
1405     <td>16+</td>
1406     <td>16+</td>
1407     <td>16+</td>
1408     <td>16+</td>
1409     <td>16+</td>
1410     <td>16+</td>
1411     <td>16+</td>
1412     <td class=fn>{@link #release release}</td>
1413     <td>&#9679;</td>
1414     <td>&#9679;</td>
1415     <td>&#9679;</td>
1416     <td>&#9679;</td>
1417     <td>&#9679;</td>
1418     <td>&#9679;</td>
1419     <td>&#9679;</td>
1420     <td>&#9679;</td>
1421    </tr>
1422    <tr>
1423     <td>-</td>
1424     <td>-</td>
1425     <td>-</td>
1426     <td>16+</td>
1427     <td>16+</td>
1428     <td>-</td>
1429     <td>-</td>
1430     <td class=fn>{@link #releaseOutputBuffer(int, boolean)}</td>
1431     <td>&#9679;</td>
1432     <td>&#9679;</td>
1433     <td>&#9679;</td>
1434     <td>&#9679;</td>
1435     <td>&#9679;</td>
1436     <td>&#8277;</td>
1437     <td>&#9679;</td>
1438     <td>&#8277;</td>
1439    </tr>
1440    <tr>
1441     <td>-</td>
1442     <td>-</td>
1443     <td>-</td>
1444     <td>21+</td>
1445     <td>21+</td>
1446     <td>-</td>
1447     <td>-</td>
1448     <td class=fn>{@link #releaseOutputBuffer(int, long)}</td>
1449     <td></td>
1450     <td></td>
1451     <td></td>
1452     <td></td>
1453     <td></td>
1454     <td>&#9094;</td>
1455     <td>&#9094;</td>
1456     <td>&#9094;</td>
1457    </tr>
1458    <tr>
1459     <td>21+</td>
1460     <td>21+</td>
1461     <td>21+</td>
1462     <td>21+</td>
1463     <td>21+</td>
1464     <td>21+</td>
1465     <td>-</td>
1466     <td class=fn>{@link #reset reset}</td>
1467     <td></td>
1468     <td></td>
1469     <td></td>
1470     <td></td>
1471     <td></td>
1472     <td>&#9679;</td>
1473     <td>&#9679;</td>
1474     <td>&#9679;</td>
1475    </tr>
1476    <tr>
1477     <td>21+</td>
1478     <td>-</td>
1479     <td>-</td>
1480     <td>-</td>
1481     <td>-</td>
1482     <td>-</td>
1483     <td>-</td>
1484     <td class=fn>{@link #setCallback(Callback) setCallback}</td>
1485     <td></td>
1486     <td></td>
1487     <td></td>
1488     <td></td>
1489     <td></td>
1490     <td>&#9679;</td>
1491     <td>&#9679;</td>
1492     <td>{@link #setCallback(Callback, Handler) &#8277;}</td>
1493    </tr>
1494    <tr>
1495     <td>-</td>
1496     <td>23+</td>
1497     <td>-</td>
1498     <td>-</td>
1499     <td>-</td>
1500     <td>-</td>
1501     <td>-</td>
1502     <td class=fn>{@link #setInputSurface setInputSurface}</td>
1503     <td></td>
1504     <td></td>
1505     <td></td>
1506     <td></td>
1507     <td></td>
1508     <td></td>
1509     <td></td>
1510     <td>&#9099;</td>
1511    </tr>
1512    <tr>
1513     <td>23+</td>
1514     <td>23+</td>
1515     <td>23+</td>
1516     <td>23+</td>
1517     <td>23+</td>
1518     <td>(23+)</td>
1519     <td>(23+)</td>
1520     <td class=fn>{@link #setOnFrameRenderedListener setOnFrameRenderedListener}</td>
1521     <td></td>
1522     <td></td>
1523     <td></td>
1524     <td></td>
1525     <td></td>
1526     <td></td>
1527     <td></td>
1528     <td>&#9675; &#9094;</td>
1529    </tr>
1530    <tr>
1531     <td>-</td>
1532     <td>23+</td>
1533     <td>23+</td>
1534     <td>23+</td>
1535     <td>23+</td>
1536     <td>-</td>
1537     <td>-</td>
1538     <td class=fn>{@link #setOutputSurface setOutputSurface}</td>
1539     <td></td>
1540     <td></td>
1541     <td></td>
1542     <td></td>
1543     <td></td>
1544     <td></td>
1545     <td></td>
1546     <td>&#9094;</td>
1547    </tr>
1548    <tr>
1549     <td>19+</td>
1550     <td>19+</td>
1551     <td>19+</td>
1552     <td>19+</td>
1553     <td>19+</td>
1554     <td>(19+)</td>
1555     <td>-</td>
1556     <td class=fn>{@link #setParameters setParameters}</td>
1557     <td></td>
1558     <td></td>
1559     <td></td>
1560     <td>&#9679;</td>
1561     <td>&#9679;</td>
1562     <td>&#9679;</td>
1563     <td>&#9679;</td>
1564     <td>&#9679;</td>
1565    </tr>
1566    <tr>
1567     <td>-</td>
1568     <td>(16+)</td>
1569     <td>(16+)</td>
1570     <td>16+</td>
1571     <td>(16+)</td>
1572     <td>(16+)</td>
1573     <td>-</td>
1574     <td class=fn>{@link #setVideoScalingMode setVideoScalingMode}</td>
1575     <td>&#9094;</td>
1576     <td>&#9094;</td>
1577     <td>&#9094;</td>
1578     <td>&#9094;</td>
1579     <td>&#9094;</td>
1580     <td>&#9094;</td>
1581     <td>&#9094;</td>
1582     <td>&#9094;</td>
1583    </tr>
1584    <tr>
1585     <td>(29+)</td>
1586     <td>29+</td>
1587     <td>29+</td>
1588     <td>29+</td>
1589     <td>(29+)</td>
1590     <td>(29+)</td>
1591     <td>-</td>
1592     <td class=fn>{@link #setAudioPresentation setAudioPresentation}</td>
1593     <td></td>
1594     <td></td>
1595     <td></td>
1596     <td></td>
1597     <td></td>
1598     <td></td>
1599     <td></td>
1600     <td></td>
1601    </tr>
1602    <tr>
1603     <td>-</td>
1604     <td>-</td>
1605     <td>18+</td>
1606     <td>18+</td>
1607     <td>-</td>
1608     <td>-</td>
1609     <td>-</td>
1610     <td class=fn>{@link #signalEndOfInputStream signalEndOfInputStream}</td>
1611     <td></td>
1612     <td></td>
1613     <td>&#9099;</td>
1614     <td>&#9099;</td>
1615     <td>&#9099;</td>
1616     <td>&#9099;</td>
1617     <td>&#9099;</td>
1618     <td>&#9099;</td>
1619    </tr>
1620    <tr>
1621     <td>-</td>
1622     <td>16+</td>
1623     <td>21+(&#8644;)</td>
1624     <td>-</td>
1625     <td>-</td>
1626     <td>-</td>
1627     <td>-</td>
1628     <td class=fn>{@link #start start}</td>
1629     <td>&#9679;</td>
1630     <td>&#9679;</td>
1631     <td>&#9679;</td>
1632     <td>&#9679;</td>
1633     <td>&#9679;</td>
1634     <td>&#8277;</td>
1635     <td>&#9679;</td>
1636     <td>&#9679;</td>
1637    </tr>
1638    <tr>
1639     <td>-</td>
1640     <td>-</td>
1641     <td>16+</td>
1642     <td>16+</td>
1643     <td>16+</td>
1644     <td>-</td>
1645     <td>-</td>
1646     <td class=fn>{@link #stop stop}</td>
1647     <td>&#9679;</td>
1648     <td>&#9679;</td>
1649     <td>&#9679;</td>
1650     <td>&#9679;</td>
1651     <td>&#9679;</td>
1652     <td>&#9679;</td>
1653     <td>&#9679;</td>
1654     <td>&#9679;</td>
1655    </tr>
1656   </tbody>
1657  </table>
1658  */
1659 final public class MediaCodec {
1660     private static final String TAG = "MediaCodec";
1661 
1662     /**
1663      * Per buffer metadata includes an offset and size specifying
1664      * the range of valid data in the associated codec (output) buffer.
1665      */
1666     public final static class BufferInfo {
1667         /**
1668          * Update the buffer metadata information.
1669          *
1670          * @param newOffset the start-offset of the data in the buffer.
1671          * @param newSize   the amount of data (in bytes) in the buffer.
1672          * @param newTimeUs the presentation timestamp in microseconds.
1673          * @param newFlags  buffer flags associated with the buffer.  This
1674          * should be a combination of  {@link #BUFFER_FLAG_KEY_FRAME} and
1675          * {@link #BUFFER_FLAG_END_OF_STREAM}.
1676          */
set( int newOffset, int newSize, long newTimeUs, @BufferFlag int newFlags)1677         public void set(
1678                 int newOffset, int newSize, long newTimeUs, @BufferFlag int newFlags) {
1679             offset = newOffset;
1680             size = newSize;
1681             presentationTimeUs = newTimeUs;
1682             flags = newFlags;
1683         }
1684 
1685         /**
1686          * The start-offset of the data in the buffer.
1687          */
1688         public int offset;
1689 
1690         /**
1691          * The amount of data (in bytes) in the buffer.  If this is {@code 0},
1692          * the buffer has no data in it and can be discarded.  The only
1693          * use of a 0-size buffer is to carry the end-of-stream marker.
1694          */
1695         public int size;
1696 
1697         /**
1698          * The presentation timestamp in microseconds for the buffer.
1699          * This is derived from the presentation timestamp passed in
1700          * with the corresponding input buffer.  This should be ignored for
1701          * a 0-sized buffer.
1702          */
1703         public long presentationTimeUs;
1704 
1705         /**
1706          * Buffer flags associated with the buffer.  A combination of
1707          * {@link #BUFFER_FLAG_KEY_FRAME} and {@link #BUFFER_FLAG_END_OF_STREAM}.
1708          *
1709          * <p>Encoded buffers that are key frames are marked with
1710          * {@link #BUFFER_FLAG_KEY_FRAME}.
1711          *
1712          * <p>The last output buffer corresponding to the input buffer
1713          * marked with {@link #BUFFER_FLAG_END_OF_STREAM} will also be marked
1714          * with {@link #BUFFER_FLAG_END_OF_STREAM}. In some cases this could
1715          * be an empty buffer, whose sole purpose is to carry the end-of-stream
1716          * marker.
1717          */
1718         @BufferFlag
1719         public int flags;
1720 
1721         /** @hide */
1722         @NonNull
dup()1723         public BufferInfo dup() {
1724             BufferInfo copy = new BufferInfo();
1725             copy.set(offset, size, presentationTimeUs, flags);
1726             return copy;
1727         }
1728     };
1729 
1730     // The follow flag constants MUST stay in sync with their equivalents
1731     // in MediaCodec.h !
1732 
1733     /**
1734      * This indicates that the (encoded) buffer marked as such contains
1735      * the data for a key frame.
1736      *
1737      * @deprecated Use {@link #BUFFER_FLAG_KEY_FRAME} instead.
1738      */
1739     public static final int BUFFER_FLAG_SYNC_FRAME = 1;
1740 
1741     /**
1742      * This indicates that the (encoded) buffer marked as such contains
1743      * the data for a key frame.
1744      */
1745     public static final int BUFFER_FLAG_KEY_FRAME = 1;
1746 
1747     /**
1748      * This indicated that the buffer marked as such contains codec
1749      * initialization / codec specific data instead of media data.
1750      */
1751     public static final int BUFFER_FLAG_CODEC_CONFIG = 2;
1752 
1753     /**
1754      * This signals the end of stream, i.e. no buffers will be available
1755      * after this, unless of course, {@link #flush} follows.
1756      */
1757     public static final int BUFFER_FLAG_END_OF_STREAM = 4;
1758 
1759     /**
1760      * This indicates that the buffer only contains part of a frame,
1761      * and the decoder should batch the data until a buffer without
1762      * this flag appears before decoding the frame.
1763      */
1764     public static final int BUFFER_FLAG_PARTIAL_FRAME = 8;
1765 
1766     /**
1767      * This indicates that the buffer contains non-media data for the
1768      * muxer to process.
1769      *
1770      * All muxer data should start with a FOURCC header that determines the type of data.
1771      *
1772      * For example, when it contains Exif data sent to a MediaMuxer track of
1773      * {@link MediaFormat#MIMETYPE_IMAGE_ANDROID_HEIC} type, the data must start with
1774      * Exif header ("Exif\0\0"), followed by the TIFF header (See JEITA CP-3451C Section 4.5.2.)
1775      *
1776      * @hide
1777      */
1778     public static final int BUFFER_FLAG_MUXER_DATA = 16;
1779 
1780     /**
1781      * This indicates that the buffer is decoded and updates the internal state of the decoder,
1782      * but does not produce any output buffer.
1783      *
1784      * When a buffer has this flag set,
1785      * {@link OnFrameRenderedListener#onFrameRendered(MediaCodec, long, long)} and
1786      * {@link Callback#onOutputBufferAvailable(MediaCodec, int, BufferInfo)} will not be called for
1787      * that given buffer.
1788      *
1789      * For example, when seeking to a certain frame, that frame may need to reference previous
1790      * frames in order for it to produce output. The preceding frames can be marked with this flag
1791      * so that they are only decoded and their data is used when decoding the latter frame that
1792      * should be initially displayed post-seek.
1793      * Another example would be trick play, trick play is when a video is fast-forwarded and only a
1794      * subset of the frames is to be rendered on the screen. The frames not to be rendered can be
1795      * marked with this flag for the same reason as the above one.
1796      * Marking frames with this flag improves the overall performance of playing a video stream as
1797      * fewer frames need to be passed back to the app.
1798      *
1799      * In {@link CodecCapabilities#FEATURE_TunneledPlayback}, buffers marked with this flag
1800      * are not rendered on the output surface.
1801      *
1802      * A frame should not be marked with this flag and {@link #BUFFER_FLAG_END_OF_STREAM}
1803      * simultaneously, doing so will produce a {@link InvalidBufferFlagsException}
1804      */
1805     public static final int BUFFER_FLAG_DECODE_ONLY = 32;
1806 
1807     /** @hide */
1808     @IntDef(
1809         flag = true,
1810         value = {
1811             BUFFER_FLAG_SYNC_FRAME,
1812             BUFFER_FLAG_KEY_FRAME,
1813             BUFFER_FLAG_CODEC_CONFIG,
1814             BUFFER_FLAG_END_OF_STREAM,
1815             BUFFER_FLAG_PARTIAL_FRAME,
1816             BUFFER_FLAG_MUXER_DATA,
1817             BUFFER_FLAG_DECODE_ONLY,
1818     })
1819     @Retention(RetentionPolicy.SOURCE)
1820     public @interface BufferFlag {}
1821 
1822     private EventHandler mEventHandler;
1823     private EventHandler mOnFirstTunnelFrameReadyHandler;
1824     private EventHandler mOnFrameRenderedHandler;
1825     private EventHandler mCallbackHandler;
1826     private Callback mCallback;
1827     private OnFirstTunnelFrameReadyListener mOnFirstTunnelFrameReadyListener;
1828     private OnFrameRenderedListener mOnFrameRenderedListener;
1829     private final Object mListenerLock = new Object();
1830     private MediaCodecInfo mCodecInfo;
1831     private final Object mCodecInfoLock = new Object();
1832     private MediaCrypto mCrypto;
1833 
1834     private static final int EVENT_CALLBACK = 1;
1835     private static final int EVENT_SET_CALLBACK = 2;
1836     private static final int EVENT_FRAME_RENDERED = 3;
1837     private static final int EVENT_FIRST_TUNNEL_FRAME_READY = 4;
1838 
1839     private static final int CB_INPUT_AVAILABLE = 1;
1840     private static final int CB_OUTPUT_AVAILABLE = 2;
1841     private static final int CB_ERROR = 3;
1842     private static final int CB_OUTPUT_FORMAT_CHANGE = 4;
1843     private static final String EOS_AND_DECODE_ONLY_ERROR_MESSAGE = "An input buffer cannot have "
1844             + "both BUFFER_FLAG_END_OF_STREAM and BUFFER_FLAG_DECODE_ONLY flags";
1845     private static final int CB_CRYPTO_ERROR = 6;
1846     private static final int CB_LARGE_FRAME_OUTPUT_AVAILABLE = 7;
1847 
1848     /**
1849      * Callback ID for when the metrics for this codec have been flushed due to
1850      * the start of a new subsession. The associated Java Message object will
1851      * contain the flushed metrics as a PersistentBundle in the obj field.
1852      */
1853     private static final int CB_METRICS_FLUSHED = 8;
1854 
1855     /**
1856      * Callback ID to notify the change in resource requirement
1857      * for the codec component.
1858      */
1859     private static final int CB_REQUIRED_RESOURCES_CHANGE = 9;
1860 
1861     private class EventHandler extends Handler {
1862         private MediaCodec mCodec;
1863 
EventHandler(@onNull MediaCodec codec, @NonNull Looper looper)1864         public EventHandler(@NonNull MediaCodec codec, @NonNull Looper looper) {
1865             super(looper);
1866             mCodec = codec;
1867         }
1868 
1869         @Override
handleMessage(@onNull Message msg)1870         public void handleMessage(@NonNull Message msg) {
1871             switch (msg.what) {
1872                 case EVENT_CALLBACK:
1873                 {
1874                     handleCallback(msg);
1875                     break;
1876                 }
1877                 case EVENT_SET_CALLBACK:
1878                 {
1879                     mCallback = (MediaCodec.Callback) msg.obj;
1880                     break;
1881                 }
1882                 case EVENT_FRAME_RENDERED:
1883                     Map<String, Object> map = (Map<String, Object>)msg.obj;
1884                     for (int i = 0; ; ++i) {
1885                         Object mediaTimeUs = map.get(i + "-media-time-us");
1886                         Object systemNano = map.get(i + "-system-nano");
1887                         OnFrameRenderedListener onFrameRenderedListener;
1888                         synchronized (mListenerLock) {
1889                             onFrameRenderedListener = mOnFrameRenderedListener;
1890                         }
1891                         if (mediaTimeUs == null || systemNano == null
1892                                 || onFrameRenderedListener == null) {
1893                             break;
1894                         }
1895                         onFrameRenderedListener.onFrameRendered(
1896                                 mCodec, (long)mediaTimeUs, (long)systemNano);
1897                     }
1898                     break;
1899                 case EVENT_FIRST_TUNNEL_FRAME_READY:
1900                     OnFirstTunnelFrameReadyListener onFirstTunnelFrameReadyListener;
1901                     synchronized (mListenerLock) {
1902                         onFirstTunnelFrameReadyListener = mOnFirstTunnelFrameReadyListener;
1903                     }
1904                     if (onFirstTunnelFrameReadyListener == null) {
1905                         break;
1906                     }
1907                     onFirstTunnelFrameReadyListener.onFirstTunnelFrameReady(mCodec);
1908                     break;
1909                 default:
1910                 {
1911                     break;
1912                 }
1913             }
1914         }
1915 
handleCallback(@onNull Message msg)1916         private void handleCallback(@NonNull Message msg) {
1917             if (mCallback == null) {
1918                 return;
1919             }
1920 
1921             switch (msg.arg1) {
1922                 case CB_INPUT_AVAILABLE:
1923                 {
1924                     int index = msg.arg2;
1925                     synchronized(mBufferLock) {
1926                         switch (mBufferMode) {
1927                             case BUFFER_MODE_LEGACY:
1928                                 validateInputByteBufferLocked(mCachedInputBuffers, index);
1929                                 break;
1930                             case BUFFER_MODE_BLOCK:
1931                                 while (mQueueRequests.size() <= index) {
1932                                     mQueueRequests.add(null);
1933                                 }
1934                                 QueueRequest request = mQueueRequests.get(index);
1935                                 if (request == null) {
1936                                     request = new QueueRequest(mCodec, index);
1937                                     mQueueRequests.set(index, request);
1938                                 }
1939                                 request.setAccessible(true);
1940                                 break;
1941                             default:
1942                                 throw new IllegalStateException(
1943                                         "Unrecognized buffer mode: " + mBufferMode);
1944                         }
1945                     }
1946                     mCallback.onInputBufferAvailable(mCodec, index);
1947                     break;
1948                 }
1949 
1950                 case CB_OUTPUT_AVAILABLE:
1951                 {
1952                     int index = msg.arg2;
1953                     BufferInfo info = (MediaCodec.BufferInfo) msg.obj;
1954                     synchronized(mBufferLock) {
1955                         switch (mBufferMode) {
1956                             case BUFFER_MODE_LEGACY:
1957                                 validateOutputByteBufferLocked(mCachedOutputBuffers, index, info);
1958                                 break;
1959                             case BUFFER_MODE_BLOCK:
1960                                 while (mOutputFrames.size() <= index) {
1961                                     mOutputFrames.add(null);
1962                                 }
1963                                 OutputFrame frame = mOutputFrames.get(index);
1964                                 if (frame == null) {
1965                                     frame = new OutputFrame(index);
1966                                     mOutputFrames.set(index, frame);
1967                                 }
1968                                 frame.setBufferInfo(info);
1969                                 frame.setAccessible(true);
1970                                 break;
1971                             default:
1972                                 throw new IllegalStateException(
1973                                         "Unrecognized buffer mode: " + mBufferMode);
1974                         }
1975                     }
1976                     mCallback.onOutputBufferAvailable(
1977                             mCodec, index, info);
1978                     break;
1979                 }
1980 
1981                 case CB_LARGE_FRAME_OUTPUT_AVAILABLE:
1982                 {
1983                     int index = msg.arg2;
1984                     ArrayDeque<BufferInfo> infos = (ArrayDeque<BufferInfo>)msg.obj;
1985                     synchronized(mBufferLock) {
1986                         switch (mBufferMode) {
1987                             case BUFFER_MODE_LEGACY:
1988                                 validateOutputByteBuffersLocked(mCachedOutputBuffers,
1989                                         index, infos);
1990                                 break;
1991                             case BUFFER_MODE_BLOCK:
1992                                 while (mOutputFrames.size() <= index) {
1993                                     mOutputFrames.add(null);
1994                                 }
1995                                 OutputFrame frame = mOutputFrames.get(index);
1996                                 if (frame == null) {
1997                                     frame = new OutputFrame(index);
1998                                     mOutputFrames.set(index, frame);
1999                                 }
2000                                 frame.setBufferInfos(infos);
2001                                 frame.setAccessible(true);
2002                                 break;
2003                             default:
2004                                 throw new IllegalArgumentException(
2005                                         "Unrecognized buffer mode: for large frame output");
2006                         }
2007                     }
2008                     mCallback.onOutputBuffersAvailable(
2009                             mCodec, index, infos);
2010 
2011                     break;
2012                 }
2013 
2014                 case CB_ERROR:
2015                 {
2016                     mCallback.onError(mCodec, (MediaCodec.CodecException) msg.obj);
2017                     break;
2018                 }
2019 
2020                 case CB_CRYPTO_ERROR:
2021                 {
2022                     mCallback.onCryptoError(mCodec, (MediaCodec.CryptoException) msg.obj);
2023                     break;
2024                 }
2025 
2026                 case CB_OUTPUT_FORMAT_CHANGE:
2027                 {
2028                     mCallback.onOutputFormatChanged(mCodec,
2029                             new MediaFormat((Map<String, Object>) msg.obj));
2030                     break;
2031                 }
2032 
2033                 case CB_METRICS_FLUSHED:
2034                 {
2035                     if (GetFlag(() -> android.media.codec.Flags.subsessionMetrics())) {
2036                         mCallback.onMetricsFlushed(mCodec, (PersistableBundle)msg.obj);
2037                     }
2038                     break;
2039                 }
2040 
2041                 case CB_REQUIRED_RESOURCES_CHANGE: {
2042                     if (android.media.codec.Flags.codecAvailability()) {
2043                         mCallback.onRequiredResourcesChanged(mCodec);
2044                     }
2045                     break;
2046                 }
2047 
2048                 default:
2049                 {
2050                     break;
2051                 }
2052             }
2053         }
2054     }
2055 
2056     // HACKY(b/325389296): aconfig flag accessors may not work in all contexts where MediaCodec API
2057     // is used, so allow accessors to fail. In those contexts use a default value, normally false.
2058 
2059     /* package private */
GetFlag(Supplier<Boolean> flagValueSupplier)2060     static boolean GetFlag(Supplier<Boolean> flagValueSupplier) {
2061         return GetFlag(flagValueSupplier, false /* defaultValue */);
2062     }
2063 
2064     /* package private */
GetFlag(Supplier<Boolean> flagValueSupplier, boolean defaultValue)2065     static boolean GetFlag(Supplier<Boolean> flagValueSupplier, boolean defaultValue) {
2066         try {
2067             return flagValueSupplier.get();
2068         } catch (java.lang.RuntimeException e) {
2069             return defaultValue;
2070         }
2071     }
2072 
2073     private boolean mHasSurface = false;
2074 
2075     /**
2076      * Instantiate the preferred decoder supporting input data of the given mime type.
2077      *
2078      * The following is a partial list of defined mime types and their semantics:
2079      * <ul>
2080      * <li>"video/x-vnd.on2.vp8" - VP8 video (i.e. video in .webm)
2081      * <li>"video/x-vnd.on2.vp9" - VP9 video (i.e. video in .webm)
2082      * <li>"video/avc" - H.264/AVC video
2083      * <li>"video/hevc" - H.265/HEVC video
2084      * <li>"video/mp4v-es" - MPEG4 video
2085      * <li>"video/3gpp" - H.263 video
2086      * <li>"audio/3gpp" - AMR narrowband audio
2087      * <li>"audio/amr-wb" - AMR wideband audio
2088      * <li>"audio/mpeg" - MPEG1/2 audio layer III
2089      * <li>"audio/mp4a-latm" - AAC audio (note, this is raw AAC packets, not packaged in LATM!)
2090      * <li>"audio/vorbis" - vorbis audio
2091      * <li>"audio/g711-alaw" - G.711 alaw audio
2092      * <li>"audio/g711-mlaw" - G.711 ulaw audio
2093      * </ul>
2094      *
2095      * <strong>Note:</strong> It is preferred to use {@link MediaCodecList#findDecoderForFormat}
2096      * and {@link #createByCodecName} to ensure that the resulting codec can handle a
2097      * given format.
2098      *
2099      * @param type The mime type of the input data.
2100      * @throws IOException if the codec cannot be created.
2101      * @throws IllegalArgumentException if type is not a valid mime type.
2102      * @throws NullPointerException if type is null.
2103      */
2104     @NonNull
createDecoderByType(@onNull String type)2105     public static MediaCodec createDecoderByType(@NonNull String type)
2106             throws IOException {
2107         return new MediaCodec(type, true /* nameIsType */, false /* encoder */);
2108     }
2109 
2110     /**
2111      * Instantiate the preferred encoder supporting output data of the given mime type.
2112      *
2113      * <strong>Note:</strong> It is preferred to use {@link MediaCodecList#findEncoderForFormat}
2114      * and {@link #createByCodecName} to ensure that the resulting codec can handle a
2115      * given format.
2116      *
2117      * @param type The desired mime type of the output data.
2118      * @throws IOException if the codec cannot be created.
2119      * @throws IllegalArgumentException if type is not a valid mime type.
2120      * @throws NullPointerException if type is null.
2121      */
2122     @NonNull
createEncoderByType(@onNull String type)2123     public static MediaCodec createEncoderByType(@NonNull String type)
2124             throws IOException {
2125         return new MediaCodec(type, true /* nameIsType */, true /* encoder */);
2126     }
2127 
2128     /**
2129      * If you know the exact name of the component you want to instantiate
2130      * use this method to instantiate it. Use with caution.
2131      * Likely to be used with information obtained from {@link android.media.MediaCodecList}
2132      * @param name The name of the codec to be instantiated.
2133      * @throws IOException if the codec cannot be created.
2134      * @throws IllegalArgumentException if name is not valid.
2135      * @throws NullPointerException if name is null.
2136      */
2137     @NonNull
createByCodecName(@onNull String name)2138     public static MediaCodec createByCodecName(@NonNull String name)
2139             throws IOException {
2140         return new MediaCodec(name, false /* nameIsType */, false /* encoder */);
2141     }
2142 
2143     /**
2144      * This is the same as createByCodecName, but allows for instantiating a codec on behalf of a
2145      * client process. This is used for system apps or system services that create MediaCodecs on
2146      * behalf of other processes and will reclaim resources as necessary from processes with lower
2147      * priority than the client process, rather than processes with lower priority than the system
2148      * app or system service. Likely to be used with information obtained from
2149      * {@link android.media.MediaCodecList}.
2150      * @param name
2151      * @param clientPid
2152      * @param clientUid
2153      * @throws IOException if the codec cannot be created.
2154      * @throws IllegalArgumentException if name is not valid.
2155      * @throws NullPointerException if name is null.
2156      * @throws SecurityException if the MEDIA_RESOURCE_OVERRIDE_PID permission is not granted.
2157      *
2158      * @hide
2159      */
2160     @NonNull
2161     @SystemApi
2162     @RequiresPermission(Manifest.permission.MEDIA_RESOURCE_OVERRIDE_PID)
createByCodecNameForClient(@onNull String name, int clientPid, int clientUid)2163     public static MediaCodec createByCodecNameForClient(@NonNull String name, int clientPid,
2164             int clientUid) throws IOException {
2165         return new MediaCodec(name, false /* nameIsType */, false /* encoder */, clientPid,
2166                 clientUid);
2167     }
2168 
MediaCodec(@onNull String name, boolean nameIsType, boolean encoder)2169     private MediaCodec(@NonNull String name, boolean nameIsType, boolean encoder) {
2170         this(name, nameIsType, encoder, -1 /* pid */, -1 /* uid */);
2171     }
2172 
MediaCodec(@onNull String name, boolean nameIsType, boolean encoder, int pid, int uid)2173     private MediaCodec(@NonNull String name, boolean nameIsType, boolean encoder, int pid,
2174             int uid) {
2175         Looper looper;
2176         if ((looper = Looper.myLooper()) != null) {
2177             mEventHandler = new EventHandler(this, looper);
2178         } else if ((looper = Looper.getMainLooper()) != null) {
2179             mEventHandler = new EventHandler(this, looper);
2180         } else {
2181             mEventHandler = null;
2182         }
2183         mCallbackHandler = mEventHandler;
2184         mOnFirstTunnelFrameReadyHandler = mEventHandler;
2185         mOnFrameRenderedHandler = mEventHandler;
2186 
2187         mBufferLock = new Object();
2188 
2189         // save name used at creation
2190         mNameAtCreation = nameIsType ? null : name;
2191 
2192         native_setup(name, nameIsType, encoder, pid, uid);
2193     }
2194 
2195     private String mNameAtCreation;
2196 
2197     @Override
finalize()2198     protected void finalize() {
2199         native_finalize();
2200         mCrypto = null;
2201     }
2202 
2203     /**
2204      * Returns the codec to its initial (Uninitialized) state.
2205      *
2206      * Call this if an {@link MediaCodec.CodecException#isRecoverable unrecoverable}
2207      * error has occured to reset the codec to its initial state after creation.
2208      *
2209      * @throws CodecException if an unrecoverable error has occured and the codec
2210      * could not be reset.
2211      * @throws IllegalStateException if in the Released state.
2212      */
reset()2213     public final void reset() {
2214         freeAllTrackedBuffers(); // free buffers first
2215         native_reset();
2216         mCrypto = null;
2217     }
2218 
native_reset()2219     private native final void native_reset();
2220 
2221     /**
2222      * Free up resources used by the codec instance.
2223      *
2224      * Make sure you call this when you're done to free up any opened
2225      * component instance instead of relying on the garbage collector
2226      * to do this for you at some point in the future.
2227      */
release()2228     public final void release() {
2229         freeAllTrackedBuffers(); // free buffers first
2230         native_release();
2231         mCrypto = null;
2232     }
2233 
native_release()2234     private native final void native_release();
2235 
2236     /**
2237      * If this codec is to be used as an encoder, pass this flag.
2238      */
2239     public static final int CONFIGURE_FLAG_ENCODE = 1;
2240 
2241     /**
2242      * If this codec is to be used with {@link LinearBlock} and/or {@link
2243      * HardwareBuffer}, pass this flag.
2244      * <p>
2245      * When this flag is set, the following APIs throw {@link IncompatibleWithBlockModelException}.
2246      * <ul>
2247      * <li>{@link #getInputBuffer}
2248      * <li>{@link #getInputImage}
2249      * <li>{@link #getInputBuffers}
2250      * <li>{@link #getOutputBuffer}
2251      * <li>{@link #getOutputImage}
2252      * <li>{@link #getOutputBuffers}
2253      * <li>{@link #queueInputBuffer}
2254      * <li>{@link #queueSecureInputBuffer}
2255      * <li>{@link #dequeueInputBuffer}
2256      * <li>{@link #dequeueOutputBuffer}
2257      * </ul>
2258      */
2259     public static final int CONFIGURE_FLAG_USE_BLOCK_MODEL = 2;
2260 
2261     /**
2262      * This flag should be used on a secure decoder only. MediaCodec configured with this
2263      * flag does decryption in a separate thread. The flag requires MediaCodec to operate
2264      * asynchronously and will throw CryptoException if any, in the onCryptoError()
2265      * callback. Applications should override the default implementation of
2266      * onCryptoError() and access the associated CryptoException.
2267      *
2268      * CryptoException thrown will contain {@link MediaCodec.CryptoInfo}
2269      * This can be accessed using getCryptoInfo()
2270      */
2271     public static final int CONFIGURE_FLAG_USE_CRYPTO_ASYNC = 4;
2272 
2273     /**
2274      * Configure the codec with a detached output surface.
2275      * <p>
2276      * This flag is only defined for a video decoder. MediaCodec
2277      * configured with this flag will be in Surface mode even though
2278      * the surface parameter is null.
2279      *
2280      * @see detachOutputSurface
2281      */
2282     @FlaggedApi(FLAG_NULL_OUTPUT_SURFACE)
2283     public static final int CONFIGURE_FLAG_DETACHED_SURFACE = 8;
2284 
2285     /** @hide */
2286     @IntDef(
2287         flag = true,
2288         value = {
2289             CONFIGURE_FLAG_ENCODE,
2290             CONFIGURE_FLAG_USE_BLOCK_MODEL,
2291             CONFIGURE_FLAG_USE_CRYPTO_ASYNC,
2292     })
2293     @Retention(RetentionPolicy.SOURCE)
2294     public @interface ConfigureFlag {}
2295 
2296     /**
2297      * Thrown when the codec is configured for block model and an incompatible API is called.
2298      */
2299     public class IncompatibleWithBlockModelException extends RuntimeException {
IncompatibleWithBlockModelException()2300         IncompatibleWithBlockModelException() { }
2301 
IncompatibleWithBlockModelException(String message)2302         IncompatibleWithBlockModelException(String message) {
2303             super(message);
2304         }
2305 
IncompatibleWithBlockModelException(String message, Throwable cause)2306         IncompatibleWithBlockModelException(String message, Throwable cause) {
2307             super(message, cause);
2308         }
2309 
IncompatibleWithBlockModelException(Throwable cause)2310         IncompatibleWithBlockModelException(Throwable cause) {
2311             super(cause);
2312         }
2313     }
2314 
2315     /**
2316      * Thrown when a buffer is marked with an invalid combination of flags
2317      * (e.g. both {@link #BUFFER_FLAG_END_OF_STREAM} and {@link #BUFFER_FLAG_DECODE_ONLY})
2318      */
2319     public class InvalidBufferFlagsException extends RuntimeException {
InvalidBufferFlagsException(String message)2320         InvalidBufferFlagsException(String message) {
2321             super(message);
2322         }
2323     }
2324 
2325     /**
2326      * @hide
2327      * Abstraction for the Global Codec resources.
2328      * This encapsulates all the available codec resources on the device.
2329      *
2330      * To be able to enforce and test the implementation of codec availability hal APIs,
2331      * globally available codec resources are exposed only as TestApi.
2332      * This will be tracked and verified through cts.
2333      */
2334     @FlaggedApi(FLAG_CODEC_AVAILABILITY)
2335     @TestApi
2336     public static final class GlobalResourceInfo {
2337         /**
2338          * Identifier for the Resource type.
2339          */
2340         String mName;
2341         /**
2342          * Total count/capacity of resources of this type.
2343          */
2344         long mCapacity;
2345         /**
2346          * Available count of this resource type.
2347          */
2348         long mAvailable;
2349 
2350         @NonNull
getName()2351         public String getName() {
2352             return mName;
2353         }
2354 
getCapacity()2355         public long getCapacity() {
2356             return mCapacity;
2357         }
2358 
getAvailable()2359         public long getAvailable() {
2360             return mAvailable;
2361         }
2362     };
2363 
2364     /**
2365      * @hide
2366      * Get a list of globally available codec resources.
2367      *
2368      * To be able to enforce and test the implementation of codec availability hal APIs,
2369      * it is exposed only as TestApi.
2370      * This will be tracked and verified through cts.
2371      *
2372      * This returns a {@link java.util.List} list of codec resources.
2373      * For every {@link GlobalResourceInfo} in the list, it encapsulates the
2374      * information about each resources available globaly on device.
2375      *
2376      * @return A list of available device codec resources; an empty list if no
2377      *         device codec resources are available.
2378      * @throws UnsupportedOperationException if not implemented.
2379      */
2380     @FlaggedApi(FLAG_CODEC_AVAILABILITY)
2381     @TestApi
getGloballyAvailableResources()2382     public static @NonNull List<GlobalResourceInfo> getGloballyAvailableResources() {
2383         return native_getGloballyAvailableResources();
2384     }
2385 
2386     @NonNull
native_getGloballyAvailableResources()2387     private static native List<GlobalResourceInfo> native_getGloballyAvailableResources();
2388 
2389     /**
2390      * Configures a component.
2391      *
2392      * @param format The format of the input data (decoder) or the desired
2393      *               format of the output data (encoder). Passing {@code null}
2394      *               as {@code format} is equivalent to passing an
2395      *               {@link MediaFormat#MediaFormat an empty mediaformat}.
2396      * @param surface Specify a surface on which to render the output of this
2397      *                decoder. Pass {@code null} as {@code surface} if the
2398      *                codec does not generate raw video output (e.g. not a video
2399      *                decoder) and/or if you want to configure the codec for
2400      *                {@link ByteBuffer} output.
2401      * @param crypto  Specify a crypto object to facilitate secure decryption
2402      *                of the media data. Pass {@code null} as {@code crypto} for
2403      *                non-secure codecs.
2404      *                Please note that {@link MediaCodec} does NOT take ownership
2405      *                of the {@link MediaCrypto} object; it is the application's
2406      *                responsibility to properly cleanup the {@link MediaCrypto} object
2407      *                when not in use.
2408      * @param flags   Specify {@link #CONFIGURE_FLAG_ENCODE} to configure the
2409      *                component as an encoder.
2410      * @throws IllegalArgumentException if the surface has been released (or is invalid),
2411      * or the format is unacceptable (e.g. missing a mandatory key),
2412      * or the flags are not set properly
2413      * (e.g. missing {@link #CONFIGURE_FLAG_ENCODE} for an encoder).
2414      * @throws IllegalStateException if not in the Uninitialized state.
2415      * @throws CryptoException upon DRM error.
2416      * @throws CodecException upon codec error.
2417      */
configure( @ullable MediaFormat format, @Nullable Surface surface, @Nullable MediaCrypto crypto, @ConfigureFlag int flags)2418     public void configure(
2419             @Nullable MediaFormat format,
2420             @Nullable Surface surface, @Nullable MediaCrypto crypto,
2421             @ConfigureFlag int flags) {
2422         configure(format, surface, crypto, null, flags);
2423     }
2424 
2425     /**
2426      * Configure a component to be used with a descrambler.
2427      * @param format The format of the input data (decoder) or the desired
2428      *               format of the output data (encoder). Passing {@code null}
2429      *               as {@code format} is equivalent to passing an
2430      *               {@link MediaFormat#MediaFormat an empty mediaformat}.
2431      * @param surface Specify a surface on which to render the output of this
2432      *                decoder. Pass {@code null} as {@code surface} if the
2433      *                codec does not generate raw video output (e.g. not a video
2434      *                decoder) and/or if you want to configure the codec for
2435      *                {@link ByteBuffer} output.
2436      * @param flags   Specify {@link #CONFIGURE_FLAG_ENCODE} to configure the
2437      *                component as an encoder.
2438      * @param descrambler Specify a descrambler object to facilitate secure
2439      *                descrambling of the media data, or null for non-secure codecs.
2440      * @throws IllegalArgumentException if the surface has been released (or is invalid),
2441      * or the format is unacceptable (e.g. missing a mandatory key),
2442      * or the flags are not set properly
2443      * (e.g. missing {@link #CONFIGURE_FLAG_ENCODE} for an encoder).
2444      * @throws IllegalStateException if not in the Uninitialized state.
2445      * @throws CryptoException upon DRM error.
2446      * @throws CodecException upon codec error.
2447      */
configure( @ullable MediaFormat format, @Nullable Surface surface, @ConfigureFlag int flags, @Nullable MediaDescrambler descrambler)2448     public void configure(
2449             @Nullable MediaFormat format, @Nullable Surface surface,
2450             @ConfigureFlag int flags, @Nullable MediaDescrambler descrambler) {
2451         configure(format, surface, null,
2452                 descrambler != null ? descrambler.getBinder() : null, flags);
2453     }
2454 
2455     private static final int BUFFER_MODE_INVALID = -1;
2456     private static final int BUFFER_MODE_LEGACY = 0;
2457     private static final int BUFFER_MODE_BLOCK = 1;
2458     private int mBufferMode = BUFFER_MODE_INVALID;
2459 
configure( @ullable MediaFormat format, @Nullable Surface surface, @Nullable MediaCrypto crypto, @Nullable IHwBinder descramblerBinder, @ConfigureFlag int flags)2460     private void configure(
2461             @Nullable MediaFormat format, @Nullable Surface surface,
2462             @Nullable MediaCrypto crypto, @Nullable IHwBinder descramblerBinder,
2463             @ConfigureFlag int flags) {
2464         if (crypto != null && descramblerBinder != null) {
2465             throw new IllegalArgumentException("Can't use crypto and descrambler together!");
2466         }
2467 
2468         // at the moment no codecs support detachable surface
2469         boolean canDetach = GetFlag(() -> android.media.codec.Flags.nullOutputSurfaceSupport());
2470         if (GetFlag(() -> android.media.codec.Flags.nullOutputSurface())) {
2471             // Detached surface flag is only meaningful if surface is null. Otherwise, it is
2472             // ignored.
2473             if (surface == null && (flags & CONFIGURE_FLAG_DETACHED_SURFACE) != 0 && !canDetach) {
2474                 throw new IllegalArgumentException("Codec does not support detached surface");
2475             }
2476         } else {
2477             // don't allow detaching if API is disabled
2478             canDetach = false;
2479         }
2480 
2481         String[] keys = null;
2482         Object[] values = null;
2483 
2484         if (format != null) {
2485             Map<String, Object> formatMap = format.getMap();
2486             keys = new String[formatMap.size()];
2487             values = new Object[formatMap.size()];
2488 
2489             int i = 0;
2490             for (Map.Entry<String, Object> entry: formatMap.entrySet()) {
2491                 if (entry.getKey().equals(MediaFormat.KEY_AUDIO_SESSION_ID)) {
2492                     int sessionId = 0;
2493                     try {
2494                         sessionId = (Integer)entry.getValue();
2495                     }
2496                     catch (Exception e) {
2497                         throw new IllegalArgumentException("Wrong Session ID Parameter!");
2498                     }
2499                     keys[i] = "audio-hw-sync";
2500                     values[i] = AudioSystem.getAudioHwSyncForSession(sessionId);
2501                 } else if (applyPictureProfiles() && mediaQualityFw()
2502                         && entry.getKey().equals(MediaFormat.KEY_PICTURE_PROFILE_INSTANCE)) {
2503                     PictureProfile pictureProfile = null;
2504                     try {
2505                         pictureProfile = (PictureProfile) entry.getValue();
2506                     } catch (ClassCastException e) {
2507                         throw new IllegalArgumentException(
2508                                 "Cannot cast the instance parameter to PictureProfile!");
2509                     } catch (Exception e) {
2510                         Log.e(TAG, Log.getStackTraceString(e));
2511                         throw new IllegalArgumentException("Unexpected exception when casting the "
2512                                 + "instance parameter to PictureProfile!");
2513                     }
2514                     if (pictureProfile == null) {
2515                         throw new IllegalArgumentException(
2516                                 "Picture profile instance parameter is null!");
2517                     }
2518                     PictureProfileHandle handle = pictureProfile.getHandle();
2519                     if (handle != PictureProfileHandle.NONE) {
2520                         keys[i] = PARAMETER_KEY_PICTURE_PROFILE_HANDLE;
2521                         values[i] = Long.valueOf(handle.getId());
2522                     }
2523                 } else if (applyPictureProfiles() && mediaQualityFw()
2524                         && entry.getKey().equals(MediaFormat.KEY_PICTURE_PROFILE_ID)) {
2525                     String pictureProfileId = null;
2526                     try {
2527                         pictureProfileId = (String) entry.getValue();
2528                     } catch (ClassCastException e) {
2529                         throw new IllegalArgumentException(
2530                                 "Cannot cast the KEY_PICTURE_PROFILE_ID parameter to String!");
2531                     } catch (Exception e) {
2532                         Log.e(TAG, Log.getStackTraceString(e));
2533                         throw new IllegalArgumentException("Unexpected exception when casting the "
2534                                 + "KEY_PICTURE_PROFILE_ID parameter!");
2535                     }
2536                     if (pictureProfileId == null) {
2537                         throw new IllegalArgumentException(
2538                                 "KEY_PICTURE_PROFILE_ID parameter is null!");
2539                     }
2540                     if (!pictureProfileId.isEmpty()) {
2541                         keys[i] = MediaFormat.KEY_PICTURE_PROFILE_ID;
2542                         values[i] = pictureProfileId;
2543                     }
2544                 } else {
2545                     keys[i] = entry.getKey();
2546                     values[i] = entry.getValue();
2547                 }
2548                 ++i;
2549             }
2550         }
2551 
2552         mHasSurface = surface != null;
2553         mCrypto = crypto;
2554         synchronized (mBufferLock) {
2555             if ((flags & CONFIGURE_FLAG_USE_BLOCK_MODEL) != 0) {
2556                 mBufferMode = BUFFER_MODE_BLOCK;
2557             } else {
2558                 mBufferMode = BUFFER_MODE_LEGACY;
2559             }
2560         }
2561 
2562         native_configure(keys, values, surface, crypto, descramblerBinder, flags);
2563 
2564         if (canDetach) {
2565             // If we were able to configure native codec with a detached surface
2566             // we now know that we have a surface.
2567             if (surface == null && (flags & CONFIGURE_FLAG_DETACHED_SURFACE) != 0) {
2568                 mHasSurface = true;
2569             }
2570         }
2571     }
2572 
2573     /**
2574      * @hide
2575      * Abstraction for the resources associated with a codec instance.
2576      * This encapsulates the required codec resources for a configured codec instance.
2577      *
2578      * To be able to enforce and test the implementation of codec availability hal APIs,
2579      * required codec resources are exposed only as TestApi.
2580      * This will be tracked and verified through cts.
2581      */
2582     @FlaggedApi(FLAG_CODEC_AVAILABILITY)
2583     @TestApi
2584     public static final class InstanceResourceInfo {
2585         /**
2586          * Identifier for the Resource type.
2587          */
2588         String mName;
2589         /**
2590          * Required resource count of this type.
2591          */
2592         long mStaticCount;
2593         /**
2594          * Per frame resource requirement of this resource type.
2595          */
2596         long mPerFrameCount;
2597 
2598         @NonNull
getName()2599         public String getName() {
2600             return mName;
2601         }
2602 
getStaticCount()2603         public long getStaticCount() {
2604             return mStaticCount;
2605         }
2606 
getPerFrameCount()2607         public long getPerFrameCount() {
2608             return mPerFrameCount;
2609         }
2610     };
2611 
2612     /**
2613      * @hide
2614      * Get a list of required codec resources for this configuration.
2615      *
2616      * To be able to enforce and test the implementation of codec availability hal APIs,
2617      * it is exposed only as TestApi.
2618      * This will be tracked and verified through cts.
2619      *
2620      * This returns a {@link java.util.List} list of codec resources.
2621      * For every {@link GlobalResourceInfo} in the list, it encapsulates the
2622      * information about each resources required for the current configuration.
2623      *
2624      * NOTE: This may only be called after {@link #configure}.
2625      *
2626      * @return A list of required device codec resources; an empty list if no
2627      *         device codec resources are required.
2628      * @throws IllegalStateException if the codec wasn't configured yet.
2629      * @throws UnsupportedOperationException if not implemented.
2630      */
2631     @FlaggedApi(FLAG_CODEC_AVAILABILITY)
2632     @TestApi
getRequiredResources()2633     public @NonNull List<InstanceResourceInfo> getRequiredResources() {
2634         return native_getRequiredResources();
2635     }
2636 
2637     @NonNull
native_getRequiredResources()2638     private native List<InstanceResourceInfo> native_getRequiredResources();
2639 
2640     /**
2641      *  Dynamically sets the output surface of a codec.
2642      *  <p>
2643      *  This can only be used if the codec was configured with an output surface.  The
2644      *  new output surface should have a compatible usage type to the original output surface.
2645      *  E.g. codecs may not support switching from a SurfaceTexture (GPU readable) output
2646      *  to ImageReader (software readable) output.
2647      *  @param surface the output surface to use. It must not be {@code null}.
2648      *  @throws IllegalStateException if the codec does not support setting the output
2649      *            surface in the current state.
2650      *  @throws IllegalArgumentException if the new surface is not of a suitable type for the codec.
2651      */
setOutputSurface(@onNull Surface surface)2652     public void setOutputSurface(@NonNull Surface surface) {
2653         if (!mHasSurface) {
2654             throw new IllegalStateException("codec was not configured for an output surface");
2655         }
2656         native_setSurface(surface);
2657     }
2658 
native_setSurface(@onNull Surface surface)2659     private native void native_setSurface(@NonNull Surface surface);
2660 
2661     /**
2662      *  Detach the current output surface of a codec.
2663      *  <p>
2664      *  Detaches the currently associated output Surface from the
2665      *  MediaCodec decoder. This allows the SurfaceView or other
2666      *  component holding the Surface to be safely destroyed or
2667      *  modified without affecting the decoder's operation. After
2668      *  calling this method (and after it returns), the decoder will
2669      *  enter detached-Surface mode and will no longer render
2670      *  output.
2671      *
2672      *  @throws IllegalStateException if the codec was not
2673      *            configured in surface mode or if the codec does not support
2674      *            detaching the output surface.
2675      *  @see CONFIGURE_FLAG_DETACHED_SURFACE
2676      */
2677     @FlaggedApi(FLAG_NULL_OUTPUT_SURFACE)
detachOutputSurface()2678     public void detachOutputSurface() {
2679         if (!mHasSurface) {
2680             throw new IllegalStateException("codec was not configured for an output surface");
2681         }
2682 
2683         // note: we still have a surface in detached mode, so keep mHasSurface
2684         // we also technically allow calling detachOutputSurface multiple times in a row
2685 
2686         if (GetFlag(() -> android.media.codec.Flags.nullOutputSurfaceSupport())) {
2687             native_detachOutputSurface();
2688         } else {
2689             throw new IllegalStateException("codec does not support detaching output surface");
2690         }
2691     }
2692 
native_detachOutputSurface()2693     private native void native_detachOutputSurface();
2694 
2695     /**
2696      * Create a persistent input surface that can be used with codecs that normally have an input
2697      * surface, such as video encoders. A persistent input can be reused by subsequent
2698      * {@link MediaCodec} or {@link MediaRecorder} instances, but can only be used by at
2699      * most one codec or recorder instance concurrently.
2700      * <p>
2701      * The application is responsible for calling release() on the Surface when done.
2702      *
2703      * @return an input surface that can be used with {@link #setInputSurface}.
2704      */
2705     @NonNull
createPersistentInputSurface()2706     public static Surface createPersistentInputSurface() {
2707         return native_createPersistentInputSurface();
2708     }
2709 
2710     static class PersistentSurface extends Surface {
2711         @SuppressWarnings("unused")
PersistentSurface()2712         PersistentSurface() {} // used by native
2713 
2714         @Override
release()2715         public void release() {
2716             native_releasePersistentInputSurface(this);
2717             super.release();
2718         }
2719 
2720         private long mPersistentObject;
2721     };
2722 
2723     /**
2724      * Configures the codec (e.g. encoder) to use a persistent input surface in place of input
2725      * buffers.  This may only be called after {@link #configure} and before {@link #start}, in
2726      * lieu of {@link #createInputSurface}.
2727      * @param surface a persistent input surface created by {@link #createPersistentInputSurface}
2728      * @throws IllegalStateException if not in the Configured state or does not require an input
2729      *           surface.
2730      * @throws IllegalArgumentException if the surface was not created by
2731      *           {@link #createPersistentInputSurface}.
2732      */
setInputSurface(@onNull Surface surface)2733     public void setInputSurface(@NonNull Surface surface) {
2734         if (!(surface instanceof PersistentSurface)) {
2735             throw new IllegalArgumentException("not a PersistentSurface");
2736         }
2737         native_setInputSurface(surface);
2738     }
2739 
2740     @NonNull
native_createPersistentInputSurface()2741     private static native final PersistentSurface native_createPersistentInputSurface();
native_releasePersistentInputSurface(@onNull Surface surface)2742     private static native final void native_releasePersistentInputSurface(@NonNull Surface surface);
native_setInputSurface(@onNull Surface surface)2743     private native final void native_setInputSurface(@NonNull Surface surface);
2744 
native_setCallback(@ullable Callback cb)2745     private native final void native_setCallback(@Nullable Callback cb);
2746 
native_configure( @ullable String[] keys, @Nullable Object[] values, @Nullable Surface surface, @Nullable MediaCrypto crypto, @Nullable IHwBinder descramblerBinder, @ConfigureFlag int flags)2747     private native final void native_configure(
2748             @Nullable String[] keys, @Nullable Object[] values,
2749             @Nullable Surface surface, @Nullable MediaCrypto crypto,
2750             @Nullable IHwBinder descramblerBinder, @ConfigureFlag int flags);
2751 
2752     /**
2753      * Requests a Surface to use as the input to an encoder, in place of input buffers.  This
2754      * may only be called after {@link #configure} and before {@link #start}.
2755      * <p>
2756      * The application is responsible for calling release() on the Surface when
2757      * done.
2758      * <p>
2759      * The Surface must be rendered with a hardware-accelerated API, such as OpenGL ES.
2760      * {@link android.view.Surface#lockCanvas(android.graphics.Rect)} may fail or produce
2761      * unexpected results.
2762      * @throws IllegalStateException if not in the Configured state.
2763      */
2764     @NonNull
createInputSurface()2765     public native final Surface createInputSurface();
2766 
2767     /**
2768      * After successfully configuring the component, call {@code start}.
2769      * <p>
2770      * Call {@code start} also if the codec is configured in asynchronous mode,
2771      * and it has just been flushed, to resume requesting input buffers.
2772      * @throws IllegalStateException if not in the Configured state
2773      *         or just after {@link #flush} for a codec that is configured
2774      *         in asynchronous mode.
2775      * @throws MediaCodec.CodecException upon codec error. Note that some codec errors
2776      * for start may be attributed to future method calls.
2777      */
start()2778     public final void start() {
2779         native_start();
2780     }
native_start()2781     private native final void native_start();
2782 
2783     /**
2784      * Finish the decode/encode session, note that the codec instance
2785      * remains active and ready to be {@link #start}ed again.
2786      * To ensure that it is available to other client call {@link #release}
2787      * and don't just rely on garbage collection to eventually do this for you.
2788      * @throws IllegalStateException if in the Released state.
2789      */
stop()2790     public final void stop() {
2791         native_stop();
2792         freeAllTrackedBuffers();
2793 
2794         synchronized (mListenerLock) {
2795             if (mCallbackHandler != null) {
2796                 mCallbackHandler.removeMessages(EVENT_SET_CALLBACK);
2797                 mCallbackHandler.removeMessages(EVENT_CALLBACK);
2798             }
2799             if (mOnFirstTunnelFrameReadyHandler != null) {
2800                 mOnFirstTunnelFrameReadyHandler.removeMessages(EVENT_FIRST_TUNNEL_FRAME_READY);
2801             }
2802             if (mOnFrameRenderedHandler != null) {
2803                 mOnFrameRenderedHandler.removeMessages(EVENT_FRAME_RENDERED);
2804             }
2805         }
2806     }
2807 
native_stop()2808     private native final void native_stop();
2809 
2810     /**
2811      * Flush both input and output ports of the component.
2812      * <p>
2813      * Upon return, all indices previously returned in calls to {@link #dequeueInputBuffer
2814      * dequeueInputBuffer} and {@link #dequeueOutputBuffer dequeueOutputBuffer} &mdash; or obtained
2815      * via {@link Callback#onInputBufferAvailable onInputBufferAvailable} or
2816      * {@link Callback#onOutputBufferAvailable onOutputBufferAvailable} callbacks &mdash; become
2817      * invalid, and all buffers are owned by the codec.
2818      * <p>
2819      * If the codec is configured in asynchronous mode, call {@link #start}
2820      * after {@code flush} has returned to resume codec operations. The codec
2821      * will not request input buffers until this has happened.
2822      * <strong>Note, however, that there may still be outstanding {@code onOutputBufferAvailable}
2823      * callbacks that were not handled prior to calling {@code flush}.
2824      * The indices returned via these callbacks also become invalid upon calling {@code flush} and
2825      * should be discarded.</strong>
2826      * <p>
2827      * If the codec is configured in synchronous mode, codec will resume
2828      * automatically if it is configured with an input surface.  Otherwise, it
2829      * will resume when {@link #dequeueInputBuffer dequeueInputBuffer} is called.
2830      *
2831      * @throws IllegalStateException if not in the Executing state.
2832      * @throws MediaCodec.CodecException upon codec error.
2833      */
flush()2834     public final void flush() {
2835         synchronized(mBufferLock) {
2836             invalidateByteBuffersLocked(mCachedInputBuffers);
2837             invalidateByteBuffersLocked(mCachedOutputBuffers);
2838             mValidInputIndices.clear();
2839             mValidOutputIndices.clear();
2840             mDequeuedInputBuffers.clear();
2841             mDequeuedOutputBuffers.clear();
2842         }
2843         native_flush();
2844     }
2845 
native_flush()2846     private native final void native_flush();
2847 
2848     /**
2849      * Thrown when an internal codec error occurs.
2850      */
2851     public final static class CodecException extends IllegalStateException {
2852         @UnsupportedAppUsage
CodecException(int errorCode, int actionCode, @Nullable String detailMessage)2853         CodecException(int errorCode, int actionCode, @Nullable String detailMessage) {
2854             super(detailMessage);
2855             mErrorCode = errorCode;
2856             mActionCode = actionCode;
2857 
2858             // TODO get this from codec
2859             final String sign = errorCode < 0 ? "neg_" : "";
2860             mDiagnosticInfo =
2861                 "android.media.MediaCodec.error_" + sign + Math.abs(errorCode);
2862         }
2863 
2864         /**
2865          * Returns true if the codec exception is a transient issue,
2866          * perhaps due to resource constraints, and that the method
2867          * (or encoding/decoding) may be retried at a later time.
2868          */
2869         public boolean isTransient() {
2870             return mActionCode == ACTION_TRANSIENT;
2871         }
2872 
2873         /**
2874          * Returns true if the codec cannot proceed further,
2875          * but can be recovered by stopping, configuring,
2876          * and starting again.
2877          */
2878         public boolean isRecoverable() {
2879             return mActionCode == ACTION_RECOVERABLE;
2880         }
2881 
2882         /**
2883          * Retrieve the error code associated with a CodecException
2884          */
2885         public int getErrorCode() {
2886             return mErrorCode;
2887         }
2888 
2889         /**
2890          * Retrieve a developer-readable diagnostic information string
2891          * associated with the exception. Do not show this to end-users,
2892          * since this string will not be localized or generally
2893          * comprehensible to end-users.
2894          */
2895         public @NonNull String getDiagnosticInfo() {
2896             return mDiagnosticInfo;
2897         }
2898 
2899         /**
2900          * This indicates required resource was not able to be allocated.
2901          */
2902         public static final int ERROR_INSUFFICIENT_RESOURCE = 1100;
2903 
2904         /**
2905          * This indicates the resource manager reclaimed the media resource used by the codec.
2906          * <p>
2907          * With this exception, the codec must be released, as it has moved to terminal state.
2908          */
2909         public static final int ERROR_RECLAIMED = 1101;
2910 
2911         /** @hide */
2912         @IntDef({
2913             ERROR_INSUFFICIENT_RESOURCE,
2914             ERROR_RECLAIMED,
2915         })
2916         @Retention(RetentionPolicy.SOURCE)
2917         public @interface ReasonCode {}
2918 
2919         /* Must be in sync with android_media_MediaCodec.cpp */
2920         private final static int ACTION_TRANSIENT = 1;
2921         private final static int ACTION_RECOVERABLE = 2;
2922 
2923         private final String mDiagnosticInfo;
2924         private final int mErrorCode;
2925         private final int mActionCode;
2926     }
2927 
2928     /**
2929      * Thrown when a crypto error occurs while queueing a secure input buffer.
2930      */
2931     public final static class CryptoException extends RuntimeException
2932             implements MediaDrmThrowable {
2933         public CryptoException(int errorCode, @Nullable String detailMessage) {
2934             this(detailMessage, errorCode, 0, 0, 0, null);
2935         }
2936 
2937         /**
2938          * @hide
2939          */
2940         public CryptoException(String message, int errorCode, int vendorError, int oemError,
2941                 int errorContext, @Nullable CryptoInfo cryptoInfo) {
2942             super(message);
2943             mErrorCode = errorCode;
2944             mVendorError = vendorError;
2945             mOemError = oemError;
2946             mErrorContext = errorContext;
2947             mCryptoInfo = cryptoInfo;
2948         }
2949 
2950         /**
2951          * This indicates that the requested key was not found when trying to
2952          * perform a decrypt operation.  The operation can be retried after adding
2953          * the correct decryption key.
2954          * @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_NO_KEY}.
2955          */
2956         public static final int ERROR_NO_KEY = MediaDrm.ErrorCodes.ERROR_NO_KEY;
2957 
2958         /**
2959          * This indicates that the key used for decryption is no longer
2960          * valid due to license term expiration.  The operation can be retried
2961          * after updating the expired keys.
2962          * @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_KEY_EXPIRED}.
2963          */
2964         public static final int ERROR_KEY_EXPIRED = MediaDrm.ErrorCodes.ERROR_KEY_EXPIRED;
2965 
2966         /**
2967          * This indicates that a required crypto resource was not able to be
2968          * allocated while attempting the requested operation.  The operation
2969          * can be retried if the app is able to release resources.
2970          * @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_RESOURCE_BUSY}
2971          */
2972         public static final int ERROR_RESOURCE_BUSY = MediaDrm.ErrorCodes.ERROR_RESOURCE_BUSY;
2973 
2974         /**
2975          * This indicates that the output protection levels supported by the
2976          * device are not sufficient to meet the requirements set by the
2977          * content owner in the license policy.
2978          * @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_INSUFFICIENT_OUTPUT_PROTECTION}
2979          */
2980         public static final int ERROR_INSUFFICIENT_OUTPUT_PROTECTION =
2981                 MediaDrm.ErrorCodes.ERROR_INSUFFICIENT_OUTPUT_PROTECTION;
2982 
2983         /**
2984          * This indicates that decryption was attempted on a session that is
2985          * not opened, which could be due to a failure to open the session,
2986          * closing the session prematurely, or the session being reclaimed
2987          * by the resource manager.
2988          * @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_SESSION_NOT_OPENED}
2989          */
2990         public static final int ERROR_SESSION_NOT_OPENED =
2991                 MediaDrm.ErrorCodes.ERROR_SESSION_NOT_OPENED;
2992 
2993         /**
2994          * This indicates that an operation was attempted that could not be
2995          * supported by the crypto system of the device in its current
2996          * configuration.  It may occur when the license policy requires
2997          * device security features that aren't supported by the device,
2998          * or due to an internal error in the crypto system that prevents
2999          * the specified security policy from being met.
3000          * @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_UNSUPPORTED_OPERATION}
3001          */
3002         public static final int ERROR_UNSUPPORTED_OPERATION =
3003                 MediaDrm.ErrorCodes.ERROR_UNSUPPORTED_OPERATION;
3004 
3005         /**
3006          * This indicates that the security level of the device is not
3007          * sufficient to meet the requirements set by the content owner
3008          * in the license policy.
3009          * @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_INSUFFICIENT_SECURITY}
3010          */
3011         public static final int ERROR_INSUFFICIENT_SECURITY =
3012                 MediaDrm.ErrorCodes.ERROR_INSUFFICIENT_SECURITY;
3013 
3014         /**
3015          * This indicates that the video frame being decrypted exceeds
3016          * the size of the device's protected output buffers. When
3017          * encountering this error the app should try playing content
3018          * of a lower resolution.
3019          * @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_FRAME_TOO_LARGE}
3020          */
3021         public static final int ERROR_FRAME_TOO_LARGE = MediaDrm.ErrorCodes.ERROR_FRAME_TOO_LARGE;
3022 
3023         /**
3024          * This error indicates that session state has been
3025          * invalidated. It can occur on devices that are not capable
3026          * of retaining crypto session state across device
3027          * suspend/resume. The session must be closed and a new
3028          * session opened to resume operation.
3029          * @deprecated Please use {@link MediaDrm.ErrorCodes#ERROR_LOST_STATE}
3030          */
3031         public static final int ERROR_LOST_STATE = MediaDrm.ErrorCodes.ERROR_LOST_STATE;
3032 
3033         /** @hide */
3034         @IntDef({
3035             MediaDrm.ErrorCodes.ERROR_NO_KEY,
3036             MediaDrm.ErrorCodes.ERROR_KEY_EXPIRED,
3037             MediaDrm.ErrorCodes.ERROR_RESOURCE_BUSY,
3038             MediaDrm.ErrorCodes.ERROR_INSUFFICIENT_OUTPUT_PROTECTION,
3039             MediaDrm.ErrorCodes.ERROR_SESSION_NOT_OPENED,
3040             MediaDrm.ErrorCodes.ERROR_UNSUPPORTED_OPERATION,
3041             MediaDrm.ErrorCodes.ERROR_INSUFFICIENT_SECURITY,
3042             MediaDrm.ErrorCodes.ERROR_FRAME_TOO_LARGE,
3043             MediaDrm.ErrorCodes.ERROR_LOST_STATE,
3044             MediaDrm.ErrorCodes.ERROR_GENERIC_OEM,
3045             MediaDrm.ErrorCodes.ERROR_GENERIC_PLUGIN,
3046             MediaDrm.ErrorCodes.ERROR_LICENSE_PARSE,
3047             MediaDrm.ErrorCodes.ERROR_MEDIA_FRAMEWORK,
3048             MediaDrm.ErrorCodes.ERROR_ZERO_SUBSAMPLES
3049         })
3050         @Retention(RetentionPolicy.SOURCE)
3051         public @interface CryptoErrorCode {}
3052 
3053         /**
3054          * Returns error code associated with this {@link CryptoException}.
3055          * <p>
3056          * Please refer to {@link MediaDrm.ErrorCodes} for the general error
3057          * handling strategy and details about each possible return value.
3058          *
3059          * @return an error code defined in {@link MediaDrm.ErrorCodes}.
3060          */
3061         @CryptoErrorCode
3062         public int getErrorCode() {
3063             return mErrorCode;
3064         }
3065 
3066         /**
3067          * Returns CryptoInfo associated with this {@link CryptoException}
3068          * if any
3069          *
3070          * @return CryptoInfo object if any. {@link MediaCodec.CryptoException}
3071          */
3072         public @Nullable CryptoInfo getCryptoInfo() {
3073             return mCryptoInfo;
3074         }
3075 
3076         @Override
3077         public int getVendorError() {
3078             return mVendorError;
3079         }
3080 
3081         @Override
3082         public int getOemError() {
3083             return mOemError;
3084         }
3085 
3086         @Override
3087         public int getErrorContext() {
3088             return mErrorContext;
3089         }
3090 
3091         private final int mErrorCode, mVendorError, mOemError, mErrorContext;
3092         private CryptoInfo mCryptoInfo;
3093     }
3094 
3095     /**
3096      * After filling a range of the input buffer at the specified index
3097      * submit it to the component. Once an input buffer is queued to
3098      * the codec, it MUST NOT be used until it is later retrieved by
3099      * {@link #getInputBuffer} in response to a {@link #dequeueInputBuffer}
3100      * return value or a {@link Callback#onInputBufferAvailable}
3101      * callback.
3102      * <p>
3103      * Many decoders require the actual compressed data stream to be
3104      * preceded by "codec specific data", i.e. setup data used to initialize
3105      * the codec such as PPS/SPS in the case of AVC video or code tables
3106      * in the case of vorbis audio.
3107      * The class {@link android.media.MediaExtractor} provides codec
3108      * specific data as part of
3109      * the returned track format in entries named "csd-0", "csd-1" ...
3110      * <p>
3111      * These buffers can be submitted directly after {@link #start} or
3112      * {@link #flush} by specifying the flag {@link
3113      * #BUFFER_FLAG_CODEC_CONFIG}.  However, if you configure the
3114      * codec with a {@link MediaFormat} containing these keys, they
3115      * will be automatically submitted by MediaCodec directly after
3116      * start.  Therefore, the use of {@link
3117      * #BUFFER_FLAG_CODEC_CONFIG} flag is discouraged and is
3118      * recommended only for advanced users.
3119      * <p>
3120      * To indicate that this is the final piece of input data (or rather that
3121      * no more input data follows unless the decoder is subsequently flushed)
3122      * specify the flag {@link #BUFFER_FLAG_END_OF_STREAM}.
3123      * <p class=note>
3124      * <strong>Note:</strong> Prior to {@link android.os.Build.VERSION_CODES#M},
3125      * {@code presentationTimeUs} was not propagated to the frame timestamp of (rendered)
3126      * Surface output buffers, and the resulting frame timestamp was undefined.
3127      * Use {@link #releaseOutputBuffer(int, long)} to ensure a specific frame timestamp is set.
3128      * Similarly, since frame timestamps can be used by the destination surface for rendering
3129      * synchronization, <strong>care must be taken to normalize presentationTimeUs so as to not be
3130      * mistaken for a system time. (See {@linkplain #releaseOutputBuffer(int, long)
3131      * SurfaceView specifics}).</strong>
3132      *
3133      * @param index The index of a client-owned input buffer previously returned
3134      *              in a call to {@link #dequeueInputBuffer}.
3135      * @param offset The byte offset into the input buffer at which the data starts.
3136      * @param size The number of bytes of valid input data.
3137      * @param presentationTimeUs The presentation timestamp in microseconds for this
3138      *                           buffer. This is normally the media time at which this
3139      *                           buffer should be presented (rendered). When using an output
3140      *                           surface, this will be propagated as the {@link
3141      *                           SurfaceTexture#getTimestamp timestamp} for the frame (after
3142      *                           conversion to nanoseconds).
3143      * @param flags A bitmask of flags
3144      *              {@link #BUFFER_FLAG_CODEC_CONFIG} and {@link #BUFFER_FLAG_END_OF_STREAM}.
3145      *              While not prohibited, most codecs do not use the
3146      *              {@link #BUFFER_FLAG_KEY_FRAME} flag for input buffers.
3147      * @throws IllegalStateException if not in the Executing state.
3148      * @throws MediaCodec.CodecException upon codec error.
3149      * @throws CryptoException if a crypto object has been specified in
3150      *         {@link #configure}
3151      */
3152     public final void queueInputBuffer(
3153             int index,
3154             int offset, int size, long presentationTimeUs, int flags)
3155         throws CryptoException {
3156         Trace.traceBegin(Trace.TRACE_TAG_VIDEO, "MediaCodec::queueInputBuffer#java");
3157         if ((flags & BUFFER_FLAG_DECODE_ONLY) != 0
3158                 && (flags & BUFFER_FLAG_END_OF_STREAM) != 0) {
3159             throw new InvalidBufferFlagsException(EOS_AND_DECODE_ONLY_ERROR_MESSAGE);
3160         }
3161         synchronized(mBufferLock) {
3162             if (mBufferMode == BUFFER_MODE_BLOCK) {
3163                 throw new IncompatibleWithBlockModelException("queueInputBuffer() "
3164                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
3165                         + "Please use getQueueRequest() to queue buffers");
3166             }
3167             invalidateByteBufferLocked(mCachedInputBuffers, index, true /* input */);
3168             mDequeuedInputBuffers.remove(index);
3169         }
3170         try {
3171             native_queueInputBuffer(
3172                     index, offset, size, presentationTimeUs, flags);
3173         } catch (CryptoException | IllegalStateException e) {
3174             revalidateByteBuffer(mCachedInputBuffers, index, true /* input */);
3175             throw e;
3176         } finally {
3177             Trace.traceEnd(Trace.TRACE_TAG_VIDEO);
3178         }
3179     }
3180 
3181     /**
3182      * Submit multiple access units to the codec along with multiple
3183      * {@link MediaCodec.BufferInfo} describing the contents of the buffer. This method
3184      * is supported only in asynchronous mode. While this method can be used for all codecs,
3185      * it is meant for buffer batching, which is only supported by codecs that advertise
3186      * FEATURE_MultipleFrames. Other codecs will not output large output buffers via
3187      * onOutputBuffersAvailable, and instead will output single-access-unit output via
3188      * onOutputBufferAvailable.
3189      * <p>
3190      * Output buffer size can be configured using the following MediaFormat keys.
3191      * {@link MediaFormat#KEY_BUFFER_BATCH_MAX_OUTPUT_SIZE} and
3192      * {@link MediaFormat#KEY_BUFFER_BATCH_THRESHOLD_OUTPUT_SIZE}.
3193      * Details for each access unit present in the buffer should be described using
3194      * {@link MediaCodec.BufferInfo}. Access units must be laid out contiguously (without any gaps)
3195      * and in order. Multiple access units in the output if present, will be available in
3196      * {@link Callback#onOutputBuffersAvailable} or {@link Callback#onOutputBufferAvailable}
3197      * in case of single-access-unit output or when output does not contain any buffers,
3198      * such as flags.
3199      * <p>
3200      * All other details for populating {@link MediaCodec.BufferInfo} is the same as described in
3201      * {@link #queueInputBuffer}.
3202      *
3203      * @param index The index of a client-owned input buffer previously returned
3204      *              in a call to {@link #dequeueInputBuffer}.
3205      * @param bufferInfos ArrayDeque of {@link MediaCodec.BufferInfo} that describes the
3206      *                    contents in the buffer. The ArrayDeque and the BufferInfo objects provided
3207      *                    can be recycled by the caller for re-use.
3208      * @throws IllegalStateException if not in the Executing state or not in asynchronous mode.
3209      * @throws MediaCodec.CodecException upon codec error.
3210      * @throws IllegalArgumentException upon if bufferInfos is empty, contains null, or if the
3211      *                    access units are not contiguous.
3212      * @throws CryptoException if a crypto object has been specified in
3213      *         {@link #configure}
3214      */
3215     @FlaggedApi(FLAG_LARGE_AUDIO_FRAME)
3216     public final void queueInputBuffers(
3217             int index,
3218             @NonNull ArrayDeque<BufferInfo> bufferInfos) {
3219         Trace.traceBegin(Trace.TRACE_TAG_VIDEO, "MediaCodec::queueInputBuffers#java");
3220         synchronized(mBufferLock) {
3221             if (mBufferMode == BUFFER_MODE_BLOCK) {
3222                 throw new IncompatibleWithBlockModelException("queueInputBuffers() "
3223                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
3224                         + "Please use getQueueRequest() to queue buffers");
3225             }
3226             invalidateByteBufferLocked(mCachedInputBuffers, index, true /* input */);
3227             mDequeuedInputBuffers.remove(index);
3228         }
3229         try {
3230             native_queueInputBuffers(
3231                     index, bufferInfos.toArray());
3232         } catch (CryptoException | IllegalStateException | IllegalArgumentException e) {
3233             revalidateByteBuffer(mCachedInputBuffers, index, true /* input */);
3234             throw e;
3235         } finally {
3236             Trace.traceEnd(Trace.TRACE_TAG_VIDEO);
3237         }
3238     }
3239 
3240     private native final void native_queueInputBuffer(
3241             int index,
3242             int offset, int size, long presentationTimeUs, int flags)
3243         throws CryptoException;
3244 
3245     private native final void native_queueInputBuffers(
3246             int index,
3247             @NonNull Object[] infos)
3248         throws CryptoException, CodecException;
3249 
3250     public static final int CRYPTO_MODE_UNENCRYPTED = 0;
3251     public static final int CRYPTO_MODE_AES_CTR     = 1;
3252     public static final int CRYPTO_MODE_AES_CBC     = 2;
3253 
3254     /**
3255      * Metadata describing the structure of an encrypted input sample.
3256      * <p>
3257      * A buffer's data is considered to be partitioned into "subSamples". Each subSample starts with
3258      * a run of plain, unencrypted bytes followed by a run of encrypted bytes. Either of these runs
3259      * may be empty. If pattern encryption applies, each of the encrypted runs is encrypted only
3260      * partly, according to a repeating pattern of "encrypt" and "skip" blocks.
3261      * {@link #numBytesOfClearData} can be null to indicate that all data is encrypted, and
3262      * {@link #numBytesOfEncryptedData} can be null to indicate that all data is clear. At least one
3263      * of {@link #numBytesOfClearData} and {@link #numBytesOfEncryptedData} must be non-null.
3264      * <p>
3265      * This information encapsulates per-sample metadata as outlined in ISO/IEC FDIS 23001-7:2016
3266      * "Common encryption in ISO base media file format files".
3267      * <p>
3268      * <h3>ISO-CENC Schemes</h3>
3269      * ISO/IEC FDIS 23001-7:2016 defines four possible schemes by which media may be encrypted,
3270      * corresponding to each possible combination of an AES mode with the presence or absence of
3271      * patterned encryption.
3272      *
3273      * <table style="width: 0%">
3274      *   <thead>
3275      *     <tr>
3276      *       <th>&nbsp;</th>
3277      *       <th>AES-CTR</th>
3278      *       <th>AES-CBC</th>
3279      *     </tr>
3280      *   </thead>
3281      *   <tbody>
3282      *     <tr>
3283      *       <th>Without Patterns</th>
3284      *       <td>cenc</td>
3285      *       <td>cbc1</td>
3286      *     </tr><tr>
3287      *       <th>With Patterns</th>
3288      *       <td>cens</td>
3289      *       <td>cbcs</td>
3290      *     </tr>
3291      *   </tbody>
3292      * </table>
3293      *
3294      * For {@code CryptoInfo}, the scheme is selected implicitly by the combination of the
3295      * {@link #mode} field and the value set with {@link #setPattern}. For the pattern, setting the
3296      * pattern to all zeroes (that is, both {@code blocksToEncrypt} and {@code blocksToSkip} are
3297      * zero) is interpreted as turning patterns off completely. A scheme that does not use patterns
3298      * will be selected, either cenc or cbc1. Setting the pattern to any nonzero value will choose
3299      * one of the pattern-supporting schemes, cens or cbcs. The default pattern if
3300      * {@link #setPattern} is never called is all zeroes.
3301      * <p>
3302      * <h4>HLS SAMPLE-AES Audio</h4>
3303      * HLS SAMPLE-AES audio is encrypted in a manner compatible with the cbcs scheme, except that it
3304      * does not use patterned encryption. However, if {@link #setPattern} is used to set the pattern
3305      * to all zeroes, this will be interpreted as selecting the cbc1 scheme. The cbc1 scheme cannot
3306      * successfully decrypt HLS SAMPLE-AES audio because of differences in how the IVs are handled.
3307      * For this reason, it is recommended that a pattern of {@code 1} encrypted block and {@code 0}
3308      * skip blocks be used with HLS SAMPLE-AES audio. This will trigger decryption to use cbcs mode
3309      * while still decrypting every block.
3310      */
3311     public final static class CryptoInfo {
3312         /**
3313          * The number of subSamples that make up the buffer's contents.
3314          */
3315         public int numSubSamples;
3316         /**
3317          * The number of leading unencrypted bytes in each subSample. If null, all bytes are treated
3318          * as encrypted and {@link #numBytesOfEncryptedData} must be specified.
3319          */
3320         public int[] numBytesOfClearData;
3321         /**
3322          * The number of trailing encrypted bytes in each subSample. If null, all bytes are treated
3323          * as clear and {@link #numBytesOfClearData} must be specified.
3324          */
3325         public int[] numBytesOfEncryptedData;
3326         /**
3327          * A 16-byte key id
3328          */
3329         public byte[] key;
3330         /**
3331          * A 16-byte initialization vector
3332          */
3333         public byte[] iv;
3334         /**
3335          * The type of encryption that has been applied,
3336          * see {@link #CRYPTO_MODE_UNENCRYPTED}, {@link #CRYPTO_MODE_AES_CTR}
3337          * and {@link #CRYPTO_MODE_AES_CBC}
3338          */
3339         public int mode;
3340 
3341         /**
3342          * Metadata describing an encryption pattern for the protected bytes in a subsample.  An
3343          * encryption pattern consists of a repeating sequence of crypto blocks comprised of a
3344          * number of encrypted blocks followed by a number of unencrypted, or skipped, blocks.
3345          */
3346         public final static class Pattern {
3347             /**
3348              * Number of blocks to be encrypted in the pattern. If both this and
3349              * {@link #mSkipBlocks} are zero, pattern encryption is inoperative.
3350              */
3351             private int mEncryptBlocks;
3352 
3353             /**
3354              * Number of blocks to be skipped (left clear) in the pattern. If both this and
3355              * {@link #mEncryptBlocks} are zero, pattern encryption is inoperative.
3356              */
3357             private int mSkipBlocks;
3358 
3359             /**
3360              * Construct a sample encryption pattern given the number of blocks to encrypt and skip
3361              * in the pattern. If both parameters are zero, pattern encryption is inoperative.
3362              */
3363             public Pattern(int blocksToEncrypt, int blocksToSkip) {
3364                 set(blocksToEncrypt, blocksToSkip);
3365             }
3366 
3367             /**
3368              * Set the number of blocks to encrypt and skip in a sample encryption pattern. If both
3369              * parameters are zero, pattern encryption is inoperative.
3370              */
3371             public void set(int blocksToEncrypt, int blocksToSkip) {
3372                 mEncryptBlocks = blocksToEncrypt;
3373                 mSkipBlocks = blocksToSkip;
3374             }
3375 
3376             /**
3377              * Return the number of blocks to skip in a sample encryption pattern.
3378              */
3379             public int getSkipBlocks() {
3380                 return mSkipBlocks;
3381             }
3382 
3383             /**
3384              * Return the number of blocks to encrypt in a sample encryption pattern.
3385              */
3386             public int getEncryptBlocks() {
3387                 return mEncryptBlocks;
3388             }
3389         };
3390 
3391         private static final Pattern ZERO_PATTERN = new Pattern(0, 0);
3392 
3393         /**
3394          * The pattern applicable to the protected data in each subsample.
3395          */
3396         private Pattern mPattern = ZERO_PATTERN;
3397 
3398         /**
3399          * Set the subsample count, clear/encrypted sizes, key, IV and mode fields of
3400          * a {@link MediaCodec.CryptoInfo} instance.
3401          */
3402         public void set(
3403                 int newNumSubSamples,
3404                 @NonNull int[] newNumBytesOfClearData,
3405                 @NonNull int[] newNumBytesOfEncryptedData,
3406                 @NonNull byte[] newKey,
3407                 @NonNull byte[] newIV,
3408                 int newMode) {
3409             numSubSamples = newNumSubSamples;
3410             numBytesOfClearData = newNumBytesOfClearData;
3411             numBytesOfEncryptedData = newNumBytesOfEncryptedData;
3412             key = newKey;
3413             iv = newIV;
3414             mode = newMode;
3415             mPattern = ZERO_PATTERN;
3416         }
3417 
3418         /**
3419          * Returns the {@link Pattern encryption pattern}.
3420          */
3421         public @NonNull Pattern getPattern() {
3422             return new Pattern(mPattern.getEncryptBlocks(), mPattern.getSkipBlocks());
3423         }
3424 
3425         /**
3426          * Set the encryption pattern on a {@link MediaCodec.CryptoInfo} instance.
3427          * See {@link Pattern}.
3428          */
3429         public void setPattern(Pattern newPattern) {
3430             if (newPattern == null) {
3431                 newPattern = ZERO_PATTERN;
3432             }
3433             setPattern(newPattern.getEncryptBlocks(), newPattern.getSkipBlocks());
3434         }
3435 
3436         // Accessed from android_media_MediaExtractor.cpp.
3437         private void setPattern(int blocksToEncrypt, int blocksToSkip) {
3438             mPattern = new Pattern(blocksToEncrypt, blocksToSkip);
3439         }
3440 
3441         @Override
3442         public String toString() {
3443             StringBuilder builder = new StringBuilder();
3444             builder.append(numSubSamples + " subsamples, key [");
3445             String hexdigits = "0123456789abcdef";
3446             for (int i = 0; i < key.length; i++) {
3447                 builder.append(hexdigits.charAt((key[i] & 0xf0) >> 4));
3448                 builder.append(hexdigits.charAt(key[i] & 0x0f));
3449             }
3450             builder.append("], iv [");
3451             for (int i = 0; i < iv.length; i++) {
3452                 builder.append(hexdigits.charAt((iv[i] & 0xf0) >> 4));
3453                 builder.append(hexdigits.charAt(iv[i] & 0x0f));
3454             }
3455             builder.append("], clear ");
Arrays.toString(numBytesOfClearData)3456             builder.append(Arrays.toString(numBytesOfClearData));
3457             builder.append(", encrypted ");
Arrays.toString(numBytesOfEncryptedData)3458             builder.append(Arrays.toString(numBytesOfEncryptedData));
3459             builder.append(", pattern (encrypt: ");
builder.append(mPattern.mEncryptBlocks)3460             builder.append(mPattern.mEncryptBlocks);
3461             builder.append(", skip: ");
builder.append(mPattern.mSkipBlocks)3462             builder.append(mPattern.mSkipBlocks);
3463             builder.append(")");
3464             return builder.toString();
3465         }
3466     };
3467 
3468     /**
3469      * Similar to {@link #queueInputBuffer queueInputBuffer} but submits a buffer that is
3470      * potentially encrypted.
3471      * <strong>Check out further notes at {@link #queueInputBuffer queueInputBuffer}.</strong>
3472      *
3473      * @param index The index of a client-owned input buffer previously returned
3474      *              in a call to {@link #dequeueInputBuffer}.
3475      * @param offset The byte offset into the input buffer at which the data starts.
3476      * @param info Metadata required to facilitate decryption, the object can be
3477      *             reused immediately after this call returns.
3478      * @param presentationTimeUs The presentation timestamp in microseconds for this
3479      *                           buffer. This is normally the media time at which this
3480      *                           buffer should be presented (rendered).
3481      * @param flags A bitmask of flags
3482      *              {@link #BUFFER_FLAG_CODEC_CONFIG} and {@link #BUFFER_FLAG_END_OF_STREAM}.
3483      *              While not prohibited, most codecs do not use the
3484      *              {@link #BUFFER_FLAG_KEY_FRAME} flag for input buffers.
3485      * @throws IllegalStateException if not in the Executing state.
3486      * @throws MediaCodec.CodecException upon codec error.
3487      * @throws CryptoException if an error occurs while attempting to decrypt the buffer.
3488      *              An error code associated with the exception helps identify the
3489      *              reason for the failure.
3490      */
queueSecureInputBuffer( int index, int offset, @NonNull CryptoInfo info, long presentationTimeUs, int flags)3491     public final void queueSecureInputBuffer(
3492             int index,
3493             int offset,
3494             @NonNull CryptoInfo info,
3495             long presentationTimeUs,
3496             int flags) throws CryptoException {
3497         Trace.traceBegin(Trace.TRACE_TAG_VIDEO, "MediaCodec::queueSecureInputBuffer#java");
3498         if ((flags & BUFFER_FLAG_DECODE_ONLY) != 0
3499                 && (flags & BUFFER_FLAG_END_OF_STREAM) != 0) {
3500             throw new InvalidBufferFlagsException(EOS_AND_DECODE_ONLY_ERROR_MESSAGE);
3501         }
3502         synchronized(mBufferLock) {
3503             if (mBufferMode == BUFFER_MODE_BLOCK) {
3504                 throw new IncompatibleWithBlockModelException("queueSecureInputBuffer() "
3505                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
3506                         + "Please use getQueueRequest() to queue buffers");
3507             }
3508             invalidateByteBufferLocked(mCachedInputBuffers, index, true /* input */);
3509             mDequeuedInputBuffers.remove(index);
3510         }
3511         try {
3512             native_queueSecureInputBuffer(
3513                     index, offset, info, presentationTimeUs, flags);
3514         } catch (CryptoException | IllegalStateException e) {
3515             revalidateByteBuffer(mCachedInputBuffers, index, true /* input */);
3516             throw e;
3517         } finally {
3518             Trace.traceEnd(Trace.TRACE_TAG_VIDEO);
3519         }
3520     }
3521 
3522     /**
3523      * Similar to {@link #queueInputBuffers queueInputBuffers} but submits multiple access units
3524      * in a buffer that is potentially encrypted.
3525      * <strong>Check out further notes at {@link #queueInputBuffers queueInputBuffers}.</strong>
3526      *
3527      * @param index The index of a client-owned input buffer previously returned
3528      *              in a call to {@link #dequeueInputBuffer}.
3529      * @param bufferInfos ArrayDeque of {@link MediaCodec.BufferInfo} that describes the
3530      *                    contents in the buffer. The ArrayDeque and the BufferInfo objects provided
3531      *                    can be recycled by the caller for re-use.
3532      * @param cryptoInfos ArrayDeque of {@link MediaCodec.CryptoInfo} objects to facilitate the
3533      *                    decryption of the contents. The ArrayDeque and the CryptoInfo objects
3534      *                    provided can be reused immediately after the call returns. These objects
3535      *                    should correspond to bufferInfo objects to ensure correct decryption.
3536      * @throws IllegalStateException if not in the Executing state or not in asynchronous mode.
3537      * @throws MediaCodec.CodecException upon codec error.
3538      * @throws IllegalArgumentException upon if bufferInfos is empty, contains null, or if the
3539      *                    access units are not contiguous.
3540      * @throws CryptoException if an error occurs while attempting to decrypt the buffer.
3541      *              An error code associated with the exception helps identify the
3542      *              reason for the failure.
3543      */
3544     @FlaggedApi(FLAG_LARGE_AUDIO_FRAME)
queueSecureInputBuffers( int index, @NonNull ArrayDeque<BufferInfo> bufferInfos, @NonNull ArrayDeque<CryptoInfo> cryptoInfos)3545     public final void queueSecureInputBuffers(
3546             int index,
3547             @NonNull ArrayDeque<BufferInfo> bufferInfos,
3548             @NonNull ArrayDeque<CryptoInfo> cryptoInfos) {
3549         Trace.traceBegin(Trace.TRACE_TAG_VIDEO, "MediaCodec::queueSecureInputBuffers#java");
3550         synchronized(mBufferLock) {
3551             if (mBufferMode == BUFFER_MODE_BLOCK) {
3552                 throw new IncompatibleWithBlockModelException("queueSecureInputBuffers() "
3553                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
3554                         + "Please use getQueueRequest() to queue buffers");
3555             }
3556             invalidateByteBufferLocked(mCachedInputBuffers, index, true /* input */);
3557             mDequeuedInputBuffers.remove(index);
3558         }
3559         try {
3560             native_queueSecureInputBuffers(
3561                     index, bufferInfos.toArray(), cryptoInfos.toArray());
3562         } catch (CryptoException | IllegalStateException | IllegalArgumentException e) {
3563             revalidateByteBuffer(mCachedInputBuffers, index, true /* input */);
3564             throw e;
3565         } finally {
3566             Trace.traceEnd(Trace.TRACE_TAG_VIDEO);
3567         }
3568     }
3569 
native_queueSecureInputBuffer( int index, int offset, @NonNull CryptoInfo info, long presentationTimeUs, int flags)3570     private native final void native_queueSecureInputBuffer(
3571             int index,
3572             int offset,
3573             @NonNull CryptoInfo info,
3574             long presentationTimeUs,
3575             int flags) throws CryptoException;
3576 
native_queueSecureInputBuffers( int index, @NonNull Object[] bufferInfos, @NonNull Object[] cryptoInfos)3577     private native final void native_queueSecureInputBuffers(
3578             int index,
3579             @NonNull Object[] bufferInfos,
3580             @NonNull Object[] cryptoInfos) throws CryptoException, CodecException;
3581 
3582     /**
3583      * Returns the index of an input buffer to be filled with valid data
3584      * or -1 if no such buffer is currently available.
3585      * This method will return immediately if timeoutUs == 0, wait indefinitely
3586      * for the availability of an input buffer if timeoutUs &lt; 0 or wait up
3587      * to "timeoutUs" microseconds if timeoutUs &gt; 0.
3588      * @param timeoutUs The timeout in microseconds, a negative timeout indicates "infinite".
3589      * @throws IllegalStateException if not in the Executing state,
3590      *         or codec is configured in asynchronous mode.
3591      * @throws MediaCodec.CodecException upon codec error.
3592      */
dequeueInputBuffer(long timeoutUs)3593     public final int dequeueInputBuffer(long timeoutUs) {
3594         Trace.traceBegin(Trace.TRACE_TAG_VIDEO, "MediaCodec::dequeueInputBuffer#java");
3595         synchronized (mBufferLock) {
3596             if (mBufferMode == BUFFER_MODE_BLOCK) {
3597                 throw new IncompatibleWithBlockModelException("dequeueInputBuffer() "
3598                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
3599                         + "Please use MediaCodec.Callback objectes to get input buffer slots.");
3600             }
3601         }
3602         int res = native_dequeueInputBuffer(timeoutUs);
3603         if (res >= 0) {
3604             synchronized(mBufferLock) {
3605                 validateInputByteBufferLocked(mCachedInputBuffers, res);
3606             }
3607         }
3608         Trace.traceEnd(Trace.TRACE_TAG_VIDEO);
3609         return res;
3610     }
3611 
native_dequeueInputBuffer(long timeoutUs)3612     private native final int native_dequeueInputBuffer(long timeoutUs);
3613 
3614     /**
3615      * Section of memory that represents a linear block. Applications may
3616      * acquire a block via {@link LinearBlock#obtain} and queue all or part
3617      * of the block as an input buffer to a codec, or get a block allocated by
3618      * codec as an output buffer from {@link OutputFrame}.
3619      *
3620      * {@see QueueRequest#setLinearBlock}
3621      * {@see QueueRequest#setEncryptedLinearBlock}
3622      * {@see OutputFrame#getLinearBlock}
3623      */
3624     public static final class LinearBlock {
3625         // No public constructors.
LinearBlock()3626         private LinearBlock() {}
3627 
3628         /**
3629          * Returns true if the buffer is mappable.
3630          * @throws IllegalStateException if invalid
3631          */
isMappable()3632         public boolean isMappable() {
3633             synchronized (mLock) {
3634                 if (!mValid) {
3635                     throw new IllegalStateException("The linear block is invalid");
3636                 }
3637                 return mMappable;
3638             }
3639         }
3640 
3641         /**
3642          * Map the memory and return the mapped region.
3643          * <p>
3644          * The returned memory region becomes inaccessible after
3645          * {@link #recycle}, or the buffer is queued to the codecs and not
3646          * returned to the client yet.
3647          *
3648          * @return mapped memory region as {@link ByteBuffer} object
3649          * @throws IllegalStateException if not mappable or invalid
3650          */
map()3651         public @NonNull ByteBuffer map() {
3652             synchronized (mLock) {
3653                 if (!mValid) {
3654                     throw new IllegalStateException("The linear block is invalid");
3655                 }
3656                 if (!mMappable) {
3657                     throw new IllegalStateException("The linear block is not mappable");
3658                 }
3659                 if (mMapped == null) {
3660                     mMapped = native_map();
3661                 }
3662                 return mMapped;
3663             }
3664         }
3665 
native_map()3666         private native ByteBuffer native_map();
3667 
3668         /**
3669          * Mark this block as ready to be recycled by the framework once it is
3670          * no longer in use. All operations to this object after
3671          * this call will cause exceptions, as well as attempt to access the
3672          * previously mapped memory region. Caller should clear all references
3673          * to this object after this call.
3674          * <p>
3675          * To avoid excessive memory consumption, it is recommended that callers
3676          * recycle buffers as soon as they no longer need the buffers
3677          *
3678          * @throws IllegalStateException if invalid
3679          */
recycle()3680         public void recycle() {
3681             synchronized (mLock) {
3682                 if (!mValid) {
3683                     throw new IllegalStateException("The linear block is invalid");
3684                 }
3685                 if (mMapped != null) {
3686                     mMapped.setAccessible(false);
3687                     mMapped = null;
3688                 }
3689                 native_recycle();
3690                 mValid = false;
3691                 mNativeContext = 0;
3692             }
3693 
3694             if (!mInternal) {
3695                 sPool.offer(this);
3696             }
3697         }
3698 
native_recycle()3699         private native void native_recycle();
3700 
native_obtain(int capacity, String[] codecNames)3701         private native void native_obtain(int capacity, String[] codecNames);
3702 
3703         @Override
finalize()3704         protected void finalize() {
3705             native_recycle();
3706         }
3707 
3708         /**
3709          * Returns true if it is possible to allocate a linear block that can be
3710          * passed to all listed codecs as input buffers without copying the
3711          * content.
3712          * <p>
3713          * Note that even if this function returns true, {@link #obtain} may
3714          * still throw due to invalid arguments or allocation failure.
3715          *
3716          * @param codecNames  list of codecs that the client wants to use a
3717          *                    linear block without copying. Null entries are
3718          *                    ignored.
3719          */
isCodecCopyFreeCompatible(@onNull String[] codecNames)3720         public static boolean isCodecCopyFreeCompatible(@NonNull String[] codecNames) {
3721             return native_checkCompatible(codecNames);
3722         }
3723 
native_checkCompatible(@onNull String[] codecNames)3724         private static native boolean native_checkCompatible(@NonNull String[] codecNames);
3725 
3726         /**
3727          * Obtain a linear block object no smaller than {@code capacity}.
3728          * If {@link #isCodecCopyFreeCompatible} with the same
3729          * {@code codecNames} returned true, the returned
3730          * {@link LinearBlock} object can be queued to the listed codecs without
3731          * copying. The returned {@link LinearBlock} object is always
3732          * read/write mappable.
3733          *
3734          * @param capacity requested capacity of the linear block in bytes
3735          * @param codecNames  list of codecs that the client wants to use this
3736          *                    linear block without copying. Null entries are
3737          *                    ignored.
3738          * @return  a linear block object.
3739          * @throws IllegalArgumentException if the capacity is invalid or
3740          *                                  codecNames contains invalid name
3741          * @throws IOException if an error occurred while allocating a buffer
3742          */
obtain( int capacity, @NonNull String[] codecNames)3743         public static @Nullable LinearBlock obtain(
3744                 int capacity, @NonNull String[] codecNames) {
3745             LinearBlock buffer = sPool.poll();
3746             if (buffer == null) {
3747                 buffer = new LinearBlock();
3748             }
3749             synchronized (buffer.mLock) {
3750                 buffer.native_obtain(capacity, codecNames);
3751             }
3752             return buffer;
3753         }
3754 
3755         // Called from native
setInternalStateLocked(long context, boolean isMappable)3756         private void setInternalStateLocked(long context, boolean isMappable) {
3757             mNativeContext = context;
3758             mMappable = isMappable;
3759             mValid = (context != 0);
3760             mInternal = true;
3761         }
3762 
3763         private static final BlockingQueue<LinearBlock> sPool =
3764                 new LinkedBlockingQueue<>();
3765 
3766         private final Object mLock = new Object();
3767         private boolean mValid = false;
3768         private boolean mMappable = false;
3769         private ByteBuffer mMapped = null;
3770         private long mNativeContext = 0;
3771         private boolean mInternal = false;
3772     }
3773 
3774     /**
3775      * Map a {@link HardwareBuffer} object into {@link Image}, so that the content of the buffer is
3776      * accessible. Depending on the usage and pixel format of the hardware buffer, it may not be
3777      * mappable; this method returns null in that case.
3778      *
3779      * @param hardwareBuffer {@link HardwareBuffer} to map.
3780      * @return Mapped {@link Image} object, or null if the buffer is not mappable.
3781      */
mapHardwareBuffer(@onNull HardwareBuffer hardwareBuffer)3782     public static @Nullable Image mapHardwareBuffer(@NonNull HardwareBuffer hardwareBuffer) {
3783         return native_mapHardwareBuffer(hardwareBuffer);
3784     }
3785 
native_mapHardwareBuffer( @onNull HardwareBuffer hardwareBuffer)3786     private static native @Nullable Image native_mapHardwareBuffer(
3787             @NonNull HardwareBuffer hardwareBuffer);
3788 
native_closeMediaImage(long context)3789     private static native void native_closeMediaImage(long context);
3790 
3791     /**
3792      * Builder-like class for queue requests. Use this class to prepare a
3793      * queue request and send it.
3794      */
3795     public final class QueueRequest {
3796         // No public constructor
QueueRequest(@onNull MediaCodec codec, int index)3797         private QueueRequest(@NonNull MediaCodec codec, int index) {
3798             mCodec = codec;
3799             mIndex = index;
3800         }
3801 
3802         /**
3803          * Set a linear block to this queue request. Exactly one buffer must be
3804          * set for a queue request before calling {@link #queue}. It is possible
3805          * to use the same {@link LinearBlock} object for multiple queue
3806          * requests. The behavior is undefined if the range of the buffer
3807          * overlaps for multiple requests, or the application writes into the
3808          * region being processed by the codec.
3809          *
3810          * @param block The linear block object
3811          * @param offset The byte offset into the input buffer at which the data starts.
3812          * @param size The number of bytes of valid input data.
3813          * @return this object
3814          * @throws IllegalStateException if a buffer is already set
3815          */
setLinearBlock( @onNull LinearBlock block, int offset, int size)3816         public @NonNull QueueRequest setLinearBlock(
3817                 @NonNull LinearBlock block,
3818                 int offset,
3819                 int size) {
3820             if (!isAccessible()) {
3821                 throw new IllegalStateException("The request is stale");
3822             }
3823             if (mLinearBlock != null || mHardwareBuffer != null) {
3824                 throw new IllegalStateException("Cannot set block twice");
3825             }
3826             mLinearBlock = block;
3827             mOffset = offset;
3828             mSize = size;
3829             mCryptoInfos.clear();
3830             return this;
3831         }
3832 
3833         /**
3834          * Set a linear block that contain multiple non-encrypted access unit to this
3835          * queue request. Exactly one buffer must be set for a queue request before
3836          * calling {@link #queue}. Multiple access units if present must be laid out contiguously
3837          * and without gaps and in order. An IllegalArgumentException will be thrown
3838          * during {@link #queue} if access units are not laid out contiguously.
3839          *
3840          * @param block The linear block object
3841          * @param infos Represents {@link MediaCodec.BufferInfo} objects to mark
3842          *              individual access-unit boundaries and the timestamps associated with it.
3843          * @return this object
3844          * @throws IllegalStateException if a buffer is already set
3845          */
3846         @FlaggedApi(FLAG_LARGE_AUDIO_FRAME)
setMultiFrameLinearBlock( @onNull LinearBlock block, @NonNull ArrayDeque<BufferInfo> infos)3847         public @NonNull QueueRequest setMultiFrameLinearBlock(
3848                 @NonNull LinearBlock block,
3849                 @NonNull ArrayDeque<BufferInfo> infos) {
3850             if (!isAccessible()) {
3851                 throw new IllegalStateException("The request is stale");
3852             }
3853             if (mLinearBlock != null || mHardwareBuffer != null) {
3854                 throw new IllegalStateException("Cannot set block twice");
3855             }
3856             mLinearBlock = block;
3857             mBufferInfos.clear();
3858             mBufferInfos.addAll(infos);
3859             mCryptoInfos.clear();
3860             return this;
3861         }
3862 
3863         /**
3864          * Set an encrypted linear block to this queue request. Exactly one buffer must be
3865          * set for a queue request before calling {@link #queue}. It is possible
3866          * to use the same {@link LinearBlock} object for multiple queue
3867          * requests. The behavior is undefined if the range of the buffer
3868          * overlaps for multiple requests, or the application writes into the
3869          * region being processed by the codec.
3870          *
3871          * @param block The linear block object
3872          * @param offset The byte offset into the input buffer at which the data starts.
3873          * @param size The number of bytes of valid input data.
3874          * @param cryptoInfo Metadata describing the structure of the encrypted input sample.
3875          * @return this object
3876          * @throws IllegalStateException if a buffer is already set
3877          */
setEncryptedLinearBlock( @onNull LinearBlock block, int offset, int size, @NonNull MediaCodec.CryptoInfo cryptoInfo)3878         public @NonNull QueueRequest setEncryptedLinearBlock(
3879                 @NonNull LinearBlock block,
3880                 int offset,
3881                 int size,
3882                 @NonNull MediaCodec.CryptoInfo cryptoInfo) {
3883             Objects.requireNonNull(cryptoInfo);
3884             if (!isAccessible()) {
3885                 throw new IllegalStateException("The request is stale");
3886             }
3887             if (mLinearBlock != null || mHardwareBuffer != null) {
3888                 throw new IllegalStateException("Cannot set block twice");
3889             }
3890             mLinearBlock = block;
3891             mOffset = offset;
3892             mSize = size;
3893             mCryptoInfos.clear();
3894             mCryptoInfos.add(cryptoInfo);
3895             return this;
3896         }
3897 
3898         /**
3899          * Set an encrypted linear block to this queue request. Exactly one buffer must be
3900          * set for a queue request before calling {@link #queue}. The block can contain multiple
3901          * access units and if present should be laid out contiguously and without gaps.
3902          *
3903          * @param block The linear block object
3904          * @param bufferInfos ArrayDeque of {@link MediaCodec.BufferInfo} that describes the
3905          *                    contents in the buffer. The ArrayDeque and the BufferInfo objects
3906          *                    provided can be recycled by the caller for re-use.
3907          * @param cryptoInfos ArrayDeque of {@link MediaCodec.CryptoInfo} that describes the
3908          *                    structure of the encrypted input samples. The ArrayDeque and the
3909          *                    BufferInfo objects provided can be recycled by the caller for re-use.
3910          * @return this object
3911          * @throws IllegalStateException if a buffer is already set
3912          * @throws IllegalArgumentException upon if bufferInfos is empty, contains null, or if the
3913          *                     access units are not contiguous.
3914          */
3915         @FlaggedApi(FLAG_LARGE_AUDIO_FRAME)
setMultiFrameEncryptedLinearBlock( @onNull LinearBlock block, @NonNull ArrayDeque<MediaCodec.BufferInfo> bufferInfos, @NonNull ArrayDeque<MediaCodec.CryptoInfo> cryptoInfos)3916         public @NonNull QueueRequest setMultiFrameEncryptedLinearBlock(
3917                 @NonNull LinearBlock block,
3918                 @NonNull ArrayDeque<MediaCodec.BufferInfo> bufferInfos,
3919                 @NonNull ArrayDeque<MediaCodec.CryptoInfo> cryptoInfos) {
3920             if (!isAccessible()) {
3921                 throw new IllegalStateException("The request is stale");
3922             }
3923             if (mLinearBlock != null || mHardwareBuffer != null) {
3924                 throw new IllegalStateException("Cannot set block twice");
3925             }
3926             mLinearBlock = block;
3927             mBufferInfos.clear();
3928             mBufferInfos.addAll(bufferInfos);
3929             mCryptoInfos.clear();
3930             mCryptoInfos.addAll(cryptoInfos);
3931             return this;
3932         }
3933 
3934         /**
3935          * Set a hardware graphic buffer to this queue request. Exactly one buffer must
3936          * be set for a queue request before calling {@link #queue}. Ownership of the
3937          * hardware buffer is not transferred to this queue request, nor will it be transferred
3938          * to the codec once {@link #queue} is called.
3939          * <p>
3940          * Note: buffers should have format {@link HardwareBuffer#YCBCR_420_888},
3941          * a single layer, and an appropriate usage ({@link HardwareBuffer#USAGE_CPU_READ_OFTEN}
3942          * for software codecs and {@link HardwareBuffer#USAGE_VIDEO_ENCODE} for hardware)
3943          * for codecs to recognize. Format {@link ImageFormat#PRIVATE} together with
3944          * usage {@link HardwareBuffer#USAGE_VIDEO_ENCODE} will also work for hardware codecs.
3945          * Codecs may throw exception if the buffer is not recognizable.
3946          *
3947          * @param buffer The hardware graphic buffer object
3948          * @return this object
3949          * @throws IllegalStateException if a buffer is already set
3950          */
setHardwareBuffer( @onNull HardwareBuffer buffer)3951         public @NonNull QueueRequest setHardwareBuffer(
3952                 @NonNull HardwareBuffer buffer) {
3953             if (!isAccessible()) {
3954                 throw new IllegalStateException("The request is stale");
3955             }
3956             if (mLinearBlock != null || mHardwareBuffer != null) {
3957                 throw new IllegalStateException("Cannot set block twice");
3958             }
3959             mHardwareBuffer = buffer;
3960             return this;
3961         }
3962 
3963         /**
3964          * Set timestamp to this queue request.
3965          *
3966          * @param presentationTimeUs The presentation timestamp in microseconds for this
3967          *                           buffer. This is normally the media time at which this
3968          *                           buffer should be presented (rendered). When using an output
3969          *                           surface, this will be propagated as the {@link
3970          *                           SurfaceTexture#getTimestamp timestamp} for the frame (after
3971          *                           conversion to nanoseconds).
3972          * @return this object
3973          */
setPresentationTimeUs(long presentationTimeUs)3974         public @NonNull QueueRequest setPresentationTimeUs(long presentationTimeUs) {
3975             if (!isAccessible()) {
3976                 throw new IllegalStateException("The request is stale");
3977             }
3978             mPresentationTimeUs = presentationTimeUs;
3979             return this;
3980         }
3981 
3982         /**
3983          * Set flags to this queue request.
3984          *
3985          * @param flags A bitmask of flags
3986          *              {@link #BUFFER_FLAG_CODEC_CONFIG} and {@link #BUFFER_FLAG_END_OF_STREAM}.
3987          *              While not prohibited, most codecs do not use the
3988          *              {@link #BUFFER_FLAG_KEY_FRAME} flag for input buffers.
3989          * @return this object
3990          */
setFlags(@ufferFlag int flags)3991         public @NonNull QueueRequest setFlags(@BufferFlag int flags) {
3992             if (!isAccessible()) {
3993                 throw new IllegalStateException("The request is stale");
3994             }
3995             mFlags = flags;
3996             return this;
3997         }
3998 
3999         /**
4000          * Add an integer parameter.
4001          * See {@link MediaFormat} for an exhaustive list of supported keys with
4002          * values of type int, that can also be set with {@link MediaFormat#setInteger}.
4003          *
4004          * If there was {@link MediaCodec#setParameters}
4005          * call with the same key which is not processed by the codec yet, the
4006          * value set from this method will override the unprocessed value.
4007          *
4008          * @return this object
4009          */
setIntegerParameter( @onNull String key, int value)4010         public @NonNull QueueRequest setIntegerParameter(
4011                 @NonNull String key, int value) {
4012             if (!isAccessible()) {
4013                 throw new IllegalStateException("The request is stale");
4014             }
4015             mTuningKeys.add(key);
4016             mTuningValues.add(Integer.valueOf(value));
4017             return this;
4018         }
4019 
4020         /**
4021          * Add a long parameter.
4022          * See {@link MediaFormat} for an exhaustive list of supported keys with
4023          * values of type long, that can also be set with {@link MediaFormat#setLong}.
4024          *
4025          * If there was {@link MediaCodec#setParameters}
4026          * call with the same key which is not processed by the codec yet, the
4027          * value set from this method will override the unprocessed value.
4028          *
4029          * @return this object
4030          */
setLongParameter( @onNull String key, long value)4031         public @NonNull QueueRequest setLongParameter(
4032                 @NonNull String key, long value) {
4033             if (!isAccessible()) {
4034                 throw new IllegalStateException("The request is stale");
4035             }
4036             mTuningKeys.add(key);
4037             mTuningValues.add(Long.valueOf(value));
4038             return this;
4039         }
4040 
4041         /**
4042          * Add a float parameter.
4043          * See {@link MediaFormat} for an exhaustive list of supported keys with
4044          * values of type float, that can also be set with {@link MediaFormat#setFloat}.
4045          *
4046          * If there was {@link MediaCodec#setParameters}
4047          * call with the same key which is not processed by the codec yet, the
4048          * value set from this method will override the unprocessed value.
4049          *
4050          * @return this object
4051          */
setFloatParameter( @onNull String key, float value)4052         public @NonNull QueueRequest setFloatParameter(
4053                 @NonNull String key, float value) {
4054             if (!isAccessible()) {
4055                 throw new IllegalStateException("The request is stale");
4056             }
4057             mTuningKeys.add(key);
4058             mTuningValues.add(Float.valueOf(value));
4059             return this;
4060         }
4061 
4062         /**
4063          * Add a {@link ByteBuffer} parameter.
4064          * See {@link MediaFormat} for an exhaustive list of supported keys with
4065          * values of byte buffer, that can also be set with {@link MediaFormat#setByteBuffer}.
4066          *
4067          * If there was {@link MediaCodec#setParameters}
4068          * call with the same key which is not processed by the codec yet, the
4069          * value set from this method will override the unprocessed value.
4070          *
4071          * @return this object
4072          */
setByteBufferParameter( @onNull String key, @NonNull ByteBuffer value)4073         public @NonNull QueueRequest setByteBufferParameter(
4074                 @NonNull String key, @NonNull ByteBuffer value) {
4075             if (!isAccessible()) {
4076                 throw new IllegalStateException("The request is stale");
4077             }
4078             mTuningKeys.add(key);
4079             mTuningValues.add(value);
4080             return this;
4081         }
4082 
4083         /**
4084          * Add a string parameter.
4085          * See {@link MediaFormat} for an exhaustive list of supported keys with
4086          * values of type string, that can also be set with {@link MediaFormat#setString}.
4087          *
4088          * If there was {@link MediaCodec#setParameters}
4089          * call with the same key which is not processed by the codec yet, the
4090          * value set from this method will override the unprocessed value.
4091          *
4092          * @return this object
4093          */
setStringParameter( @onNull String key, @NonNull String value)4094         public @NonNull QueueRequest setStringParameter(
4095                 @NonNull String key, @NonNull String value) {
4096             if (!isAccessible()) {
4097                 throw new IllegalStateException("The request is stale");
4098             }
4099             mTuningKeys.add(key);
4100             mTuningValues.add(value);
4101             return this;
4102         }
4103 
4104         /**
4105          * Finish building a queue request and queue the buffers with tunings.
4106          */
queue()4107         public void queue() {
4108             Trace.traceBegin(Trace.TRACE_TAG_VIDEO, "MediaCodec::queueRequest-queue#java");
4109             if (!isAccessible()) {
4110                 throw new IllegalStateException("The request is stale");
4111             }
4112             if (mLinearBlock == null && mHardwareBuffer == null) {
4113                 throw new IllegalStateException("No block is set");
4114             }
4115             setAccessible(false);
4116             if (mBufferInfos.isEmpty()) {
4117                 BufferInfo info = new BufferInfo();
4118                 info.size = mSize;
4119                 info.offset = mOffset;
4120                 info.presentationTimeUs = mPresentationTimeUs;
4121                 info.flags = mFlags;
4122                 mBufferInfos.add(info);
4123             }
4124             if (mLinearBlock != null) {
4125 
4126                 mCodec.native_queueLinearBlock(
4127                         mIndex, mLinearBlock,
4128                         mCryptoInfos.isEmpty() ? null : mCryptoInfos.toArray(),
4129                         mBufferInfos.toArray(),
4130                         mTuningKeys, mTuningValues);
4131             } else if (mHardwareBuffer != null) {
4132                 mCodec.native_queueHardwareBuffer(
4133                         mIndex, mHardwareBuffer, mPresentationTimeUs, mFlags,
4134                         mTuningKeys, mTuningValues);
4135             }
4136             clear();
4137             Trace.traceEnd(Trace.TRACE_TAG_VIDEO);
4138         }
4139 
clear()4140         @NonNull QueueRequest clear() {
4141             mLinearBlock = null;
4142             mOffset = 0;
4143             mSize = 0;
4144             mHardwareBuffer = null;
4145             mPresentationTimeUs = 0;
4146             mFlags = 0;
4147             mBufferInfos.clear();
4148             mCryptoInfos.clear();
4149             mTuningKeys.clear();
4150             mTuningValues.clear();
4151             return this;
4152         }
4153 
isAccessible()4154         boolean isAccessible() {
4155             return mAccessible;
4156         }
4157 
setAccessible(boolean accessible)4158         @NonNull QueueRequest setAccessible(boolean accessible) {
4159             mAccessible = accessible;
4160             return this;
4161         }
4162 
4163         private final MediaCodec mCodec;
4164         private final int mIndex;
4165         private LinearBlock mLinearBlock = null;
4166         private int mOffset = 0;
4167         private int mSize = 0;
4168         private HardwareBuffer mHardwareBuffer = null;
4169         private long mPresentationTimeUs = 0;
4170         private @BufferFlag int mFlags = 0;
4171         private final ArrayDeque<BufferInfo> mBufferInfos = new ArrayDeque<>();
4172         private final ArrayDeque<CryptoInfo> mCryptoInfos = new ArrayDeque<>();
4173         private final ArrayList<String> mTuningKeys = new ArrayList<>();
4174         private final ArrayList<Object> mTuningValues = new ArrayList<>();
4175 
4176         private boolean mAccessible = false;
4177     }
4178 
native_queueLinearBlock( int index, @NonNull LinearBlock block, @Nullable Object[] cryptoInfos, @NonNull Object[] bufferInfos, @NonNull ArrayList<String> keys, @NonNull ArrayList<Object> values)4179     private native void native_queueLinearBlock(
4180             int index,
4181             @NonNull LinearBlock block,
4182             @Nullable Object[] cryptoInfos,
4183             @NonNull Object[] bufferInfos,
4184             @NonNull ArrayList<String> keys,
4185             @NonNull ArrayList<Object> values);
4186 
native_queueHardwareBuffer( int index, @NonNull HardwareBuffer buffer, long presentationTimeUs, int flags, @NonNull ArrayList<String> keys, @NonNull ArrayList<Object> values)4187     private native void native_queueHardwareBuffer(
4188             int index,
4189             @NonNull HardwareBuffer buffer,
4190             long presentationTimeUs,
4191             int flags,
4192             @NonNull ArrayList<String> keys,
4193             @NonNull ArrayList<Object> values);
4194 
4195     private final ArrayList<QueueRequest> mQueueRequests = new ArrayList<>();
4196 
4197     /**
4198      * Return a {@link QueueRequest} object for an input slot index.
4199      *
4200      * @param index input slot index from
4201      *              {@link Callback#onInputBufferAvailable}
4202      * @return queue request object
4203      * @throws IllegalStateException if not using block model
4204      * @throws IllegalArgumentException if the input slot is not available or
4205      *                                  the index is out of range
4206      */
getQueueRequest(int index)4207     public @NonNull QueueRequest getQueueRequest(int index) {
4208         synchronized (mBufferLock) {
4209             if (mBufferMode != BUFFER_MODE_BLOCK) {
4210                 throw new IllegalStateException("The codec is not configured for block model");
4211             }
4212             if (index < 0 || index >= mQueueRequests.size()) {
4213                 throw new IndexOutOfBoundsException("Expected range of index: [0,"
4214                         + (mQueueRequests.size() - 1) + "]; actual: " + index);
4215             }
4216             QueueRequest request = mQueueRequests.get(index);
4217             if (request == null) {
4218                 throw new IllegalArgumentException("Unavailable index: " + index);
4219             }
4220             if (!request.isAccessible()) {
4221                 throw new IllegalArgumentException(
4222                         "The request is stale at index " + index);
4223             }
4224             return request.clear();
4225         }
4226     }
4227 
4228     /**
4229      * If a non-negative timeout had been specified in the call
4230      * to {@link #dequeueOutputBuffer}, indicates that the call timed out.
4231      */
4232     public static final int INFO_TRY_AGAIN_LATER        = -1;
4233 
4234     /**
4235      * The output format has changed, subsequent data will follow the new
4236      * format. {@link #getOutputFormat()} returns the new format.  Note, that
4237      * you can also use the new {@link #getOutputFormat(int)} method to
4238      * get the format for a specific output buffer.  This frees you from
4239      * having to track output format changes.
4240      */
4241     public static final int INFO_OUTPUT_FORMAT_CHANGED  = -2;
4242 
4243     /**
4244      * The output buffers have changed, the client must refer to the new
4245      * set of output buffers returned by {@link #getOutputBuffers} from
4246      * this point on.
4247      *
4248      * <p>Additionally, this event signals that the video scaling mode
4249      * may have been reset to the default.</p>
4250      *
4251      * @deprecated This return value can be ignored as {@link
4252      * #getOutputBuffers} has been deprecated.  Client should
4253      * request a current buffer using on of the get-buffer or
4254      * get-image methods each time one has been dequeued.
4255      */
4256     public static final int INFO_OUTPUT_BUFFERS_CHANGED = -3;
4257 
4258     /** @hide */
4259     @IntDef({
4260         INFO_TRY_AGAIN_LATER,
4261         INFO_OUTPUT_FORMAT_CHANGED,
4262         INFO_OUTPUT_BUFFERS_CHANGED,
4263     })
4264     @Retention(RetentionPolicy.SOURCE)
4265     public @interface OutputBufferInfo {}
4266 
4267     /**
4268      * Dequeue an output buffer, block at most "timeoutUs" microseconds.
4269      * Returns the index of an output buffer that has been successfully
4270      * decoded or one of the INFO_* constants.
4271      * @param info Will be filled with buffer meta data.
4272      * @param timeoutUs The timeout in microseconds, a negative timeout indicates "infinite".
4273      * @throws IllegalStateException if not in the Executing state,
4274      *         or codec is configured in asynchronous mode.
4275      * @throws MediaCodec.CodecException upon codec error.
4276      */
4277     @OutputBufferInfo
dequeueOutputBuffer( @onNull BufferInfo info, long timeoutUs)4278     public final int dequeueOutputBuffer(
4279             @NonNull BufferInfo info, long timeoutUs) {
4280         synchronized (mBufferLock) {
4281             if (mBufferMode == BUFFER_MODE_BLOCK) {
4282                 throw new IncompatibleWithBlockModelException("dequeueOutputBuffer() "
4283                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
4284                         + "Please use MediaCodec.Callback objects to get output buffer slots.");
4285             }
4286         }
4287         int res = native_dequeueOutputBuffer(info, timeoutUs);
4288         synchronized (mBufferLock) {
4289             if (res == INFO_OUTPUT_BUFFERS_CHANGED) {
4290                 cacheBuffersLocked(false /* input */);
4291             } else if (res >= 0) {
4292                 validateOutputByteBufferLocked(mCachedOutputBuffers, res, info);
4293                 if (mHasSurface || mCachedOutputBuffers == null) {
4294                     mDequeuedOutputInfos.put(res, info.dup());
4295                 }
4296             }
4297         }
4298         return res;
4299     }
4300 
native_dequeueOutputBuffer( @onNull BufferInfo info, long timeoutUs)4301     private native final int native_dequeueOutputBuffer(
4302             @NonNull BufferInfo info, long timeoutUs);
4303 
4304     /**
4305      * If you are done with a buffer, use this call to return the buffer to the codec
4306      * or to render it on the output surface. If you configured the codec with an
4307      * output surface, setting {@code render} to {@code true} will first send the buffer
4308      * to that output surface. The surface will release the buffer back to the codec once
4309      * it is no longer used/displayed.
4310      *
4311      * Once an output buffer is released to the codec, it MUST NOT
4312      * be used until it is later retrieved by {@link #getOutputBuffer} in response
4313      * to a {@link #dequeueOutputBuffer} return value or a
4314      * {@link Callback#onOutputBufferAvailable} callback.
4315      *
4316      * @param index The index of a client-owned output buffer previously returned
4317      *              from a call to {@link #dequeueOutputBuffer}.
4318      * @param render If a valid surface was specified when configuring the codec,
4319      *               passing true renders this output buffer to the surface.
4320      * @throws IllegalStateException if not in the Executing state.
4321      * @throws MediaCodec.CodecException upon codec error.
4322      */
releaseOutputBuffer(int index, boolean render)4323     public final void releaseOutputBuffer(int index, boolean render) {
4324         releaseOutputBufferInternal(index, render, false /* updatePTS */, 0 /* dummy */);
4325     }
4326 
4327     /**
4328      * If you are done with a buffer, use this call to update its surface timestamp
4329      * and return it to the codec to render it on the output surface. If you
4330      * have not specified an output surface when configuring this video codec,
4331      * this call will simply return the buffer to the codec.<p>
4332      *
4333      * The timestamp may have special meaning depending on the destination surface.
4334      *
4335      * <table>
4336      * <tr><th>SurfaceView specifics</th></tr>
4337      * <tr><td>
4338      * If you render your buffer on a {@link android.view.SurfaceView},
4339      * you can use the timestamp to render the buffer at a specific time (at the
4340      * VSYNC at or after the buffer timestamp).  For this to work, the timestamp
4341      * needs to be <i>reasonably close</i> to the current {@link System#nanoTime}.
4342      * Currently, this is set as within one (1) second. A few notes:
4343      *
4344      * <ul>
4345      * <li>the buffer will not be returned to the codec until the timestamp
4346      * has passed and the buffer is no longer used by the {@link android.view.Surface}.
4347      * <li>buffers are processed sequentially, so you may block subsequent buffers to
4348      * be displayed on the {@link android.view.Surface}.  This is important if you
4349      * want to react to user action, e.g. stop the video or seek.
4350      * <li>if multiple buffers are sent to the {@link android.view.Surface} to be
4351      * rendered at the same VSYNC, the last one will be shown, and the other ones
4352      * will be dropped.
4353      * <li>if the timestamp is <em>not</em> "reasonably close" to the current system
4354      * time, the {@link android.view.Surface} will ignore the timestamp, and
4355      * display the buffer at the earliest feasible time.  In this mode it will not
4356      * drop frames.
4357      * <li>for best performance and quality, call this method when you are about
4358      * two VSYNCs' time before the desired render time.  For 60Hz displays, this is
4359      * about 33 msec.
4360      * </ul>
4361      * </td></tr>
4362      * </table>
4363      *
4364      * Once an output buffer is released to the codec, it MUST NOT
4365      * be used until it is later retrieved by {@link #getOutputBuffer} in response
4366      * to a {@link #dequeueOutputBuffer} return value or a
4367      * {@link Callback#onOutputBufferAvailable} callback.
4368      *
4369      * @param index The index of a client-owned output buffer previously returned
4370      *              from a call to {@link #dequeueOutputBuffer}.
4371      * @param renderTimestampNs The timestamp to associate with this buffer when
4372      *              it is sent to the Surface.
4373      * @throws IllegalStateException if not in the Executing state.
4374      * @throws MediaCodec.CodecException upon codec error.
4375      */
releaseOutputBuffer(int index, long renderTimestampNs)4376     public final void releaseOutputBuffer(int index, long renderTimestampNs) {
4377         releaseOutputBufferInternal(
4378                 index, true /* render */, true /* updatePTS */, renderTimestampNs);
4379     }
4380 
releaseOutputBufferInternal( int index, boolean render, boolean updatePts, long renderTimestampNs)4381     private void releaseOutputBufferInternal(
4382             int index, boolean render, boolean updatePts, long renderTimestampNs) {
4383         BufferInfo info = null;
4384         synchronized(mBufferLock) {
4385             switch (mBufferMode) {
4386                 case BUFFER_MODE_LEGACY:
4387                     invalidateByteBufferLocked(mCachedOutputBuffers, index, false /* input */);
4388                     mDequeuedOutputBuffers.remove(index);
4389                     if (mHasSurface || mCachedOutputBuffers == null) {
4390                         info = mDequeuedOutputInfos.remove(index);
4391                     }
4392                     break;
4393                 case BUFFER_MODE_BLOCK:
4394                     OutputFrame frame = mOutputFrames.get(index);
4395                     frame.setAccessible(false);
4396                     frame.clear();
4397                     break;
4398                 default:
4399                     throw new IllegalStateException(
4400                             "Unrecognized buffer mode: " + mBufferMode);
4401             }
4402         }
4403         releaseOutputBuffer(
4404                 index, render, updatePts, renderTimestampNs);
4405     }
4406 
4407     @UnsupportedAppUsage
releaseOutputBuffer( int index, boolean render, boolean updatePTS, long timeNs)4408     private native final void releaseOutputBuffer(
4409             int index, boolean render, boolean updatePTS, long timeNs);
4410 
4411     /**
4412      * Signals end-of-stream on input.  Equivalent to submitting an empty buffer with
4413      * {@link #BUFFER_FLAG_END_OF_STREAM} set.  This may only be used with
4414      * encoders receiving input from a Surface created by {@link #createInputSurface}.
4415      * @throws IllegalStateException if not in the Executing state.
4416      * @throws MediaCodec.CodecException upon codec error.
4417      */
signalEndOfInputStream()4418     public native final void signalEndOfInputStream();
4419 
4420     /**
4421      * Call this after dequeueOutputBuffer signals a format change by returning
4422      * {@link #INFO_OUTPUT_FORMAT_CHANGED}.
4423      * You can also call this after {@link #configure} returns
4424      * successfully to get the output format initially configured
4425      * for the codec.  Do this to determine what optional
4426      * configuration parameters were supported by the codec.
4427      *
4428      * @throws IllegalStateException if not in the Executing or
4429      *                               Configured state.
4430      * @throws MediaCodec.CodecException upon codec error.
4431      */
4432     @NonNull
getOutputFormat()4433     public final MediaFormat getOutputFormat() {
4434         return new MediaFormat(getFormatNative(false /* input */));
4435     }
4436 
4437     /**
4438      * Call this after {@link #configure} returns successfully to
4439      * get the input format accepted by the codec. Do this to
4440      * determine what optional configuration parameters were
4441      * supported by the codec.
4442      *
4443      * @throws IllegalStateException if not in the Executing or
4444      *                               Configured state.
4445      * @throws MediaCodec.CodecException upon codec error.
4446      */
4447     @NonNull
getInputFormat()4448     public final MediaFormat getInputFormat() {
4449         return new MediaFormat(getFormatNative(true /* input */));
4450     }
4451 
4452     /**
4453      * Returns the output format for a specific output buffer.
4454      *
4455      * @param index The index of a client-owned input buffer previously
4456      *              returned from a call to {@link #dequeueInputBuffer}.
4457      *
4458      * @return the format for the output buffer, or null if the index
4459      * is not a dequeued output buffer.
4460      */
4461     @NonNull
getOutputFormat(int index)4462     public final MediaFormat getOutputFormat(int index) {
4463         return new MediaFormat(getOutputFormatNative(index));
4464     }
4465 
4466     @NonNull
getFormatNative(boolean input)4467     private native final Map<String, Object> getFormatNative(boolean input);
4468 
4469     @NonNull
getOutputFormatNative(int index)4470     private native final Map<String, Object> getOutputFormatNative(int index);
4471 
4472     // used to track dequeued buffers
4473     private static class BufferMap {
4474         // various returned representations of the codec buffer
4475         private static class CodecBuffer {
4476             private Image mImage;
4477             private ByteBuffer mByteBuffer;
4478 
free()4479             public void free() {
4480                 if (mByteBuffer != null) {
4481                     // all of our ByteBuffers are direct
4482                     java.nio.NioUtils.freeDirectBuffer(mByteBuffer);
4483                     mByteBuffer = null;
4484                 }
4485                 if (mImage != null) {
4486                     mImage.close();
4487                     mImage = null;
4488                 }
4489             }
4490 
setImage(@ullable Image image)4491             public void setImage(@Nullable Image image) {
4492                 free();
4493                 mImage = image;
4494             }
4495 
setByteBuffer(@ullable ByteBuffer buffer)4496             public void setByteBuffer(@Nullable ByteBuffer buffer) {
4497                 free();
4498                 mByteBuffer = buffer;
4499             }
4500         }
4501 
4502         private final Map<Integer, CodecBuffer> mMap =
4503             new HashMap<Integer, CodecBuffer>();
4504 
remove(int index)4505         public void remove(int index) {
4506             CodecBuffer buffer = mMap.get(index);
4507             if (buffer != null) {
4508                 buffer.free();
4509                 mMap.remove(index);
4510             }
4511         }
4512 
put(int index, @Nullable ByteBuffer newBuffer)4513         public void put(int index, @Nullable ByteBuffer newBuffer) {
4514             CodecBuffer buffer = mMap.get(index);
4515             if (buffer == null) { // likely
4516                 buffer = new CodecBuffer();
4517                 mMap.put(index, buffer);
4518             }
4519             buffer.setByteBuffer(newBuffer);
4520         }
4521 
put(int index, @Nullable Image newImage)4522         public void put(int index, @Nullable Image newImage) {
4523             CodecBuffer buffer = mMap.get(index);
4524             if (buffer == null) { // likely
4525                 buffer = new CodecBuffer();
4526                 mMap.put(index, buffer);
4527             }
4528             buffer.setImage(newImage);
4529         }
4530 
clear()4531         public void clear() {
4532             for (CodecBuffer buffer: mMap.values()) {
4533                 buffer.free();
4534             }
4535             mMap.clear();
4536         }
4537     }
4538 
4539     private ByteBuffer[] mCachedInputBuffers;
4540     private ByteBuffer[] mCachedOutputBuffers;
4541     private BitSet mValidInputIndices = new BitSet();
4542     private BitSet mValidOutputIndices = new BitSet();
4543 
4544     private final BufferMap mDequeuedInputBuffers = new BufferMap();
4545     private final BufferMap mDequeuedOutputBuffers = new BufferMap();
4546     private final Map<Integer, BufferInfo> mDequeuedOutputInfos =
4547         new HashMap<Integer, BufferInfo>();
4548     final private Object mBufferLock;
4549 
invalidateByteBufferLocked( @ullable ByteBuffer[] buffers, int index, boolean input)4550     private void invalidateByteBufferLocked(
4551             @Nullable ByteBuffer[] buffers, int index, boolean input) {
4552         if (buffers == null) {
4553             if (index >= 0) {
4554                 BitSet indices = input ? mValidInputIndices : mValidOutputIndices;
4555                 indices.clear(index);
4556             }
4557         } else if (index >= 0 && index < buffers.length) {
4558             ByteBuffer buffer = buffers[index];
4559             if (buffer != null) {
4560                 buffer.setAccessible(false);
4561             }
4562         }
4563     }
4564 
validateInputByteBufferLocked( @ullable ByteBuffer[] buffers, int index)4565     private void validateInputByteBufferLocked(
4566             @Nullable ByteBuffer[] buffers, int index) {
4567         if (buffers == null) {
4568             if (index >= 0) {
4569                 mValidInputIndices.set(index);
4570             }
4571         } else if (index >= 0 && index < buffers.length) {
4572             ByteBuffer buffer = buffers[index];
4573             if (buffer != null) {
4574                 buffer.setAccessible(true);
4575                 buffer.clear();
4576             }
4577         }
4578     }
4579 
revalidateByteBuffer( @ullable ByteBuffer[] buffers, int index, boolean input)4580     private void revalidateByteBuffer(
4581             @Nullable ByteBuffer[] buffers, int index, boolean input) {
4582         synchronized(mBufferLock) {
4583             if (buffers == null) {
4584                 if (index >= 0) {
4585                     BitSet indices = input ? mValidInputIndices : mValidOutputIndices;
4586                     indices.set(index);
4587                 }
4588             } else if (index >= 0 && index < buffers.length) {
4589                 ByteBuffer buffer = buffers[index];
4590                 if (buffer != null) {
4591                     buffer.setAccessible(true);
4592                 }
4593             }
4594         }
4595     }
4596 
validateOutputByteBuffersLocked( @ullable ByteBuffer[] buffers, int index, @NonNull ArrayDeque<BufferInfo> infoDeque)4597     private void validateOutputByteBuffersLocked(
4598         @Nullable ByteBuffer[] buffers, int index, @NonNull ArrayDeque<BufferInfo> infoDeque) {
4599         Optional<BufferInfo> minInfo = infoDeque.stream().min(
4600                 (info1, info2) -> Integer.compare(info1.offset, info2.offset));
4601         Optional<BufferInfo> maxInfo = infoDeque.stream().max(
4602                 (info1, info2) -> Integer.compare(info1.offset, info2.offset));
4603         if (buffers == null) {
4604             if (index >= 0) {
4605                 mValidOutputIndices.set(index);
4606             }
4607         } else if (index >= 0 && index < buffers.length) {
4608             ByteBuffer buffer = buffers[index];
4609             if (buffer != null && minInfo.isPresent() && maxInfo.isPresent()) {
4610                 buffer.setAccessible(true);
4611                 buffer.limit(maxInfo.get().offset + maxInfo.get().size);
4612                 buffer.position(minInfo.get().offset);
4613             }
4614         }
4615 
4616     }
4617 
validateOutputByteBufferLocked( @ullable ByteBuffer[] buffers, int index, @NonNull BufferInfo info)4618     private void validateOutputByteBufferLocked(
4619             @Nullable ByteBuffer[] buffers, int index, @NonNull BufferInfo info) {
4620         if (buffers == null) {
4621             if (index >= 0) {
4622                 mValidOutputIndices.set(index);
4623             }
4624         } else if (index >= 0 && index < buffers.length) {
4625             ByteBuffer buffer = buffers[index];
4626             if (buffer != null) {
4627                 buffer.setAccessible(true);
4628                 buffer.limit(info.offset + info.size).position(info.offset);
4629             }
4630         }
4631     }
4632 
invalidateByteBuffersLocked(@ullable ByteBuffer[] buffers)4633     private void invalidateByteBuffersLocked(@Nullable ByteBuffer[] buffers) {
4634         if (buffers != null) {
4635             for (ByteBuffer buffer: buffers) {
4636                 if (buffer != null) {
4637                     buffer.setAccessible(false);
4638                 }
4639             }
4640         }
4641     }
4642 
freeByteBufferLocked(@ullable ByteBuffer buffer)4643     private void freeByteBufferLocked(@Nullable ByteBuffer buffer) {
4644         if (buffer != null /* && buffer.isDirect() */) {
4645             // all of our ByteBuffers are direct
4646             java.nio.NioUtils.freeDirectBuffer(buffer);
4647         }
4648     }
4649 
freeByteBuffersLocked(@ullable ByteBuffer[] buffers)4650     private void freeByteBuffersLocked(@Nullable ByteBuffer[] buffers) {
4651         if (buffers != null) {
4652             for (ByteBuffer buffer: buffers) {
4653                 freeByteBufferLocked(buffer);
4654             }
4655         }
4656     }
4657 
freeAllTrackedBuffers()4658     private void freeAllTrackedBuffers() {
4659         synchronized(mBufferLock) {
4660             freeByteBuffersLocked(mCachedInputBuffers);
4661             freeByteBuffersLocked(mCachedOutputBuffers);
4662             mCachedInputBuffers = null;
4663             mCachedOutputBuffers = null;
4664             mValidInputIndices.clear();
4665             mValidOutputIndices.clear();
4666             mDequeuedInputBuffers.clear();
4667             mDequeuedOutputBuffers.clear();
4668             mQueueRequests.clear();
4669             mOutputFrames.clear();
4670         }
4671     }
4672 
cacheBuffersLocked(boolean input)4673     private void cacheBuffersLocked(boolean input) {
4674         ByteBuffer[] buffers = null;
4675         try {
4676             buffers = getBuffers(input);
4677             invalidateByteBuffersLocked(buffers);
4678         } catch (IllegalStateException e) {
4679             // we don't get buffers in async mode
4680         }
4681         if (buffers != null) {
4682             BitSet indices = input ? mValidInputIndices : mValidOutputIndices;
4683             for (int i = 0; i < buffers.length; ++i) {
4684                 ByteBuffer buffer = buffers[i];
4685                 if (buffer == null || !indices.get(i)) {
4686                     continue;
4687                 }
4688                 buffer.setAccessible(true);
4689                 if (!input) {
4690                     BufferInfo info = mDequeuedOutputInfos.get(i);
4691                     if (info != null) {
4692                         buffer.limit(info.offset + info.size).position(info.offset);
4693                     }
4694                 }
4695             }
4696             indices.clear();
4697         }
4698         if (input) {
4699             mCachedInputBuffers = buffers;
4700         } else {
4701             mCachedOutputBuffers = buffers;
4702         }
4703     }
4704 
4705     /**
4706      * Retrieve the set of input buffers.  Call this after start()
4707      * returns. After calling this method, any ByteBuffers
4708      * previously returned by an earlier call to this method MUST no
4709      * longer be used.
4710      *
4711      * @deprecated Use the new {@link #getInputBuffer} method instead
4712      * each time an input buffer is dequeued.
4713      *
4714      * <b>Note:</b> As of API 21, dequeued input buffers are
4715      * automatically {@link java.nio.Buffer#clear cleared}.
4716      *
4717      * <em>Do not use this method if using an input surface.</em>
4718      *
4719      * @throws IllegalStateException if not in the Executing state,
4720      *         or codec is configured in asynchronous mode.
4721      * @throws MediaCodec.CodecException upon codec error.
4722      */
4723     @NonNull
getInputBuffers()4724     public ByteBuffer[] getInputBuffers() {
4725         synchronized (mBufferLock) {
4726             if (mBufferMode == BUFFER_MODE_BLOCK) {
4727                 throw new IncompatibleWithBlockModelException("getInputBuffers() "
4728                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
4729                         + "Please obtain MediaCodec.LinearBlock or HardwareBuffer "
4730                         + "objects and attach to QueueRequest objects.");
4731             }
4732             if (mCachedInputBuffers == null) {
4733                 cacheBuffersLocked(true /* input */);
4734             }
4735             if (mCachedInputBuffers == null) {
4736                 throw new IllegalStateException();
4737             }
4738             // FIXME: check codec status
4739             return mCachedInputBuffers;
4740         }
4741     }
4742 
4743     /**
4744      * Retrieve the set of output buffers.  Call this after start()
4745      * returns and whenever dequeueOutputBuffer signals an output
4746      * buffer change by returning {@link
4747      * #INFO_OUTPUT_BUFFERS_CHANGED}. After calling this method, any
4748      * ByteBuffers previously returned by an earlier call to this
4749      * method MUST no longer be used.
4750      *
4751      * @deprecated Use the new {@link #getOutputBuffer} method instead
4752      * each time an output buffer is dequeued.  This method is not
4753      * supported if codec is configured in asynchronous mode.
4754      *
4755      * <b>Note:</b> As of API 21, the position and limit of output
4756      * buffers that are dequeued will be set to the valid data
4757      * range.
4758      *
4759      * <em>Do not use this method if using an output surface.</em>
4760      *
4761      * @throws IllegalStateException if not in the Executing state,
4762      *         or codec is configured in asynchronous mode.
4763      * @throws MediaCodec.CodecException upon codec error.
4764      */
4765     @NonNull
getOutputBuffers()4766     public ByteBuffer[] getOutputBuffers() {
4767         synchronized (mBufferLock) {
4768             if (mBufferMode == BUFFER_MODE_BLOCK) {
4769                 throw new IncompatibleWithBlockModelException("getOutputBuffers() "
4770                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
4771                         + "Please use getOutputFrame to get output frames.");
4772             }
4773             if (mCachedOutputBuffers == null) {
4774                 cacheBuffersLocked(false /* input */);
4775             }
4776             if (mCachedOutputBuffers == null) {
4777                 throw new IllegalStateException();
4778             }
4779             // FIXME: check codec status
4780             return mCachedOutputBuffers;
4781         }
4782     }
4783 
4784     /**
4785      * Returns a {@link java.nio.Buffer#clear cleared}, writable ByteBuffer
4786      * object for a dequeued input buffer index to contain the input data.
4787      *
4788      * After calling this method any ByteBuffer or Image object
4789      * previously returned for the same input index MUST no longer
4790      * be used.
4791      *
4792      * @param index The index of a client-owned input buffer previously
4793      *              returned from a call to {@link #dequeueInputBuffer},
4794      *              or received via an onInputBufferAvailable callback.
4795      *
4796      * @return the input buffer, or null if the index is not a dequeued
4797      * input buffer, or if the codec is configured for surface input.
4798      *
4799      * @throws IllegalStateException if not in the Executing state.
4800      * @throws MediaCodec.CodecException upon codec error.
4801      */
4802     @Nullable
getInputBuffer(int index)4803     public ByteBuffer getInputBuffer(int index) {
4804         synchronized (mBufferLock) {
4805             if (mBufferMode == BUFFER_MODE_BLOCK) {
4806                 throw new IncompatibleWithBlockModelException("getInputBuffer() "
4807                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
4808                         + "Please obtain MediaCodec.LinearBlock or HardwareBuffer "
4809                         + "objects and attach to QueueRequest objects.");
4810             }
4811         }
4812         ByteBuffer newBuffer = getBuffer(true /* input */, index);
4813         synchronized (mBufferLock) {
4814             invalidateByteBufferLocked(mCachedInputBuffers, index, true /* input */);
4815             mDequeuedInputBuffers.put(index, newBuffer);
4816         }
4817         return newBuffer;
4818     }
4819 
4820     /**
4821      * Returns a writable Image object for a dequeued input buffer
4822      * index to contain the raw input video frame.
4823      *
4824      * After calling this method any ByteBuffer or Image object
4825      * previously returned for the same input index MUST no longer
4826      * be used.
4827      *
4828      * @param index The index of a client-owned input buffer previously
4829      *              returned from a call to {@link #dequeueInputBuffer},
4830      *              or received via an onInputBufferAvailable callback.
4831      *
4832      * @return the input image, or null if the index is not a
4833      * dequeued input buffer, or not a ByteBuffer that contains a
4834      * raw image.
4835      *
4836      * @throws IllegalStateException if not in the Executing state.
4837      * @throws MediaCodec.CodecException upon codec error.
4838      */
4839     @Nullable
getInputImage(int index)4840     public Image getInputImage(int index) {
4841         synchronized (mBufferLock) {
4842             if (mBufferMode == BUFFER_MODE_BLOCK) {
4843                 throw new IncompatibleWithBlockModelException("getInputImage() "
4844                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
4845                         + "Please obtain MediaCodec.LinearBlock or HardwareBuffer "
4846                         + "objects and attach to QueueRequest objects.");
4847             }
4848         }
4849         Image newImage = getImage(true /* input */, index);
4850         synchronized (mBufferLock) {
4851             invalidateByteBufferLocked(mCachedInputBuffers, index, true /* input */);
4852             mDequeuedInputBuffers.put(index, newImage);
4853         }
4854         return newImage;
4855     }
4856 
4857     /**
4858      * Returns a read-only ByteBuffer for a dequeued output buffer
4859      * index. The position and limit of the returned buffer are set
4860      * to the valid output data.
4861      *
4862      * After calling this method, any ByteBuffer or Image object
4863      * previously returned for the same output index MUST no longer
4864      * be used.
4865      *
4866      * @param index The index of a client-owned output buffer previously
4867      *              returned from a call to {@link #dequeueOutputBuffer},
4868      *              or received via an onOutputBufferAvailable callback.
4869      *
4870      * @return the output buffer, or null if the index is not a dequeued
4871      * output buffer, or the codec is configured with an output surface.
4872      *
4873      * @throws IllegalStateException if not in the Executing state.
4874      * @throws MediaCodec.CodecException upon codec error.
4875      */
4876     @Nullable
getOutputBuffer(int index)4877     public ByteBuffer getOutputBuffer(int index) {
4878         synchronized (mBufferLock) {
4879             if (mBufferMode == BUFFER_MODE_BLOCK) {
4880                 throw new IncompatibleWithBlockModelException("getOutputBuffer() "
4881                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
4882                         + "Please use getOutputFrame() to get output frames.");
4883             }
4884         }
4885         ByteBuffer newBuffer = getBuffer(false /* input */, index);
4886         synchronized (mBufferLock) {
4887             invalidateByteBufferLocked(mCachedOutputBuffers, index, false /* input */);
4888             mDequeuedOutputBuffers.put(index, newBuffer);
4889         }
4890         return newBuffer;
4891     }
4892 
4893     /**
4894      * Returns a read-only Image object for a dequeued output buffer
4895      * index that contains the raw video frame.
4896      *
4897      * After calling this method, any ByteBuffer or Image object previously
4898      * returned for the same output index MUST no longer be used.
4899      *
4900      * @param index The index of a client-owned output buffer previously
4901      *              returned from a call to {@link #dequeueOutputBuffer},
4902      *              or received via an onOutputBufferAvailable callback.
4903      *
4904      * @return the output image, or null if the index is not a
4905      * dequeued output buffer, not a raw video frame, or if the codec
4906      * was configured with an output surface.
4907      *
4908      * @throws IllegalStateException if not in the Executing state.
4909      * @throws MediaCodec.CodecException upon codec error.
4910      */
4911     @Nullable
getOutputImage(int index)4912     public Image getOutputImage(int index) {
4913         synchronized (mBufferLock) {
4914             if (mBufferMode == BUFFER_MODE_BLOCK) {
4915                 throw new IncompatibleWithBlockModelException("getOutputImage() "
4916                         + "is not compatible with CONFIGURE_FLAG_USE_BLOCK_MODEL. "
4917                         + "Please use getOutputFrame() to get output frames.");
4918             }
4919         }
4920         Image newImage = getImage(false /* input */, index);
4921         synchronized (mBufferLock) {
4922             invalidateByteBufferLocked(mCachedOutputBuffers, index, false /* input */);
4923             mDequeuedOutputBuffers.put(index, newImage);
4924         }
4925         return newImage;
4926     }
4927 
4928     /**
4929      * A single output frame and its associated metadata.
4930      */
4931     public static final class OutputFrame {
4932         // No public constructor
OutputFrame(int index)4933         OutputFrame(int index) {
4934             mIndex = index;
4935         }
4936 
4937         /**
4938          * Returns the output linear block, or null if this frame is empty.
4939          *
4940          * @throws IllegalStateException if this output frame is not linear.
4941          */
getLinearBlock()4942         public @Nullable LinearBlock getLinearBlock() {
4943             if (mHardwareBuffer != null) {
4944                 throw new IllegalStateException("This output frame is not linear");
4945             }
4946             return mLinearBlock;
4947         }
4948 
4949         /**
4950          * Returns the output hardware graphic buffer, or null if this frame is empty.
4951          *
4952          * @throws IllegalStateException if this output frame is not graphic.
4953          */
getHardwareBuffer()4954         public @Nullable HardwareBuffer getHardwareBuffer() {
4955             if (mLinearBlock != null) {
4956                 throw new IllegalStateException("This output frame is not graphic");
4957             }
4958             return mHardwareBuffer;
4959         }
4960 
4961         /**
4962          * Returns the presentation timestamp in microseconds.
4963          */
getPresentationTimeUs()4964         public long getPresentationTimeUs() {
4965             return mPresentationTimeUs;
4966         }
4967 
4968         /**
4969          * Returns the buffer flags.
4970          */
getFlags()4971         public @BufferFlag int getFlags() {
4972             return mFlags;
4973         }
4974 
4975         /*
4976          * Returns the BufferInfos associated with this OutputFrame. These BufferInfos
4977          * describes the access units present in the OutputFrame. Access units are laid
4978          * out contiguously without gaps and in order.
4979          */
4980         @FlaggedApi(FLAG_LARGE_AUDIO_FRAME)
getBufferInfos()4981         public @NonNull ArrayDeque<BufferInfo> getBufferInfos() {
4982             if (mBufferInfos.isEmpty()) {
4983                 // single BufferInfo could be present.
4984                 BufferInfo bufferInfo = new BufferInfo();
4985                 bufferInfo.set(0, 0, mPresentationTimeUs, mFlags);
4986                 mBufferInfos.add(bufferInfo);
4987             }
4988             return mBufferInfos;
4989         }
4990 
4991         /**
4992          * Returns a read-only {@link MediaFormat} for this frame. The returned
4993          * object is valid only until the client calls {@link MediaCodec#releaseOutputBuffer}.
4994          */
getFormat()4995         public @NonNull MediaFormat getFormat() {
4996             return mFormat;
4997         }
4998 
4999         /**
5000          * Returns an unmodifiable set of the names of entries that has changed from
5001          * the previous frame. The entries may have been removed/changed/added.
5002          * Client can find out what the change is by querying {@link MediaFormat}
5003          * object returned from {@link #getFormat}.
5004          */
getChangedKeys()5005         public @NonNull Set<String> getChangedKeys() {
5006             if (mKeySet.isEmpty() && !mChangedKeys.isEmpty()) {
5007                 mKeySet.addAll(mChangedKeys);
5008             }
5009             return Collections.unmodifiableSet(mKeySet);
5010         }
5011 
clear()5012         void clear() {
5013             mLinearBlock = null;
5014             mHardwareBuffer = null;
5015             mFormat = null;
5016             mBufferInfos.clear();
5017             mChangedKeys.clear();
5018             mKeySet.clear();
5019             mLoaded = false;
5020         }
5021 
isAccessible()5022         boolean isAccessible() {
5023             return mAccessible;
5024         }
5025 
setAccessible(boolean accessible)5026         void setAccessible(boolean accessible) {
5027             mAccessible = accessible;
5028         }
5029 
setBufferInfo(MediaCodec.BufferInfo info)5030         void setBufferInfo(MediaCodec.BufferInfo info) {
5031             // since any of setBufferInfo(s) should translate to getBufferInfos,
5032             // mBufferInfos needs to be reset for every setBufferInfo(s)
5033             mBufferInfos.clear();
5034             mPresentationTimeUs = info.presentationTimeUs;
5035             mFlags = info.flags;
5036         }
5037 
setBufferInfos(ArrayDeque<BufferInfo> infos)5038         void setBufferInfos(ArrayDeque<BufferInfo> infos) {
5039             mBufferInfos.clear();
5040             mBufferInfos.addAll(infos);
5041         }
5042 
isLoaded()5043         boolean isLoaded() {
5044             return mLoaded;
5045         }
5046 
setLoaded(boolean loaded)5047         void setLoaded(boolean loaded) {
5048             mLoaded = loaded;
5049         }
5050 
5051         private final int mIndex;
5052         private LinearBlock mLinearBlock = null;
5053         private HardwareBuffer mHardwareBuffer = null;
5054         private long mPresentationTimeUs = 0;
5055         private @BufferFlag int mFlags = 0;
5056         private MediaFormat mFormat = null;
5057         private final ArrayDeque<BufferInfo> mBufferInfos = new ArrayDeque<>();
5058         private final ArrayList<String> mChangedKeys = new ArrayList<>();
5059         private final Set<String> mKeySet = new HashSet<>();
5060         private boolean mAccessible = false;
5061         private boolean mLoaded = false;
5062     }
5063 
5064     private final ArrayList<OutputFrame> mOutputFrames = new ArrayList<>();
5065 
5066     /**
5067      * Returns an {@link OutputFrame} object.
5068      *
5069      * @param index output buffer index from
5070      *              {@link Callback#onOutputBufferAvailable}
5071      * @return {@link OutputFrame} object describing the output buffer
5072      * @throws IllegalStateException if not using block model
5073      * @throws IllegalArgumentException if the output buffer is not available or
5074      *                                  the index is out of range
5075      */
getOutputFrame(int index)5076     public @NonNull OutputFrame getOutputFrame(int index) {
5077         synchronized (mBufferLock) {
5078             if (mBufferMode != BUFFER_MODE_BLOCK) {
5079                 throw new IllegalStateException("The codec is not configured for block model");
5080             }
5081             if (index < 0 || index >= mOutputFrames.size()) {
5082                 throw new IndexOutOfBoundsException("Expected range of index: [0,"
5083                         + (mQueueRequests.size() - 1) + "]; actual: " + index);
5084             }
5085             OutputFrame frame = mOutputFrames.get(index);
5086             if (frame == null) {
5087                 throw new IllegalArgumentException("Unavailable index: " + index);
5088             }
5089             if (!frame.isAccessible()) {
5090                 throw new IllegalArgumentException(
5091                         "The output frame is stale at index " + index);
5092             }
5093             if (!frame.isLoaded()) {
5094                 native_getOutputFrame(frame, index);
5095                 frame.setLoaded(true);
5096             }
5097             return frame;
5098         }
5099     }
5100 
native_getOutputFrame(OutputFrame frame, int index)5101     private native void native_getOutputFrame(OutputFrame frame, int index);
5102 
5103     /**
5104      * The content is scaled to the surface dimensions
5105      */
5106     public static final int VIDEO_SCALING_MODE_SCALE_TO_FIT               = 1;
5107 
5108     /**
5109      * The content is scaled, maintaining its aspect ratio, the whole
5110      * surface area is used, content may be cropped.
5111      * <p class=note>
5112      * This mode is only suitable for content with 1:1 pixel aspect ratio as you cannot
5113      * configure the pixel aspect ratio for a {@link Surface}.
5114      * <p class=note>
5115      * As of {@link android.os.Build.VERSION_CODES#N} release, this mode may not work if
5116      * the video is {@linkplain MediaFormat#KEY_ROTATION rotated} by 90 or 270 degrees.
5117      */
5118     public static final int VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING = 2;
5119 
5120     /** @hide */
5121     @IntDef({
5122         VIDEO_SCALING_MODE_SCALE_TO_FIT,
5123         VIDEO_SCALING_MODE_SCALE_TO_FIT_WITH_CROPPING,
5124     })
5125     @Retention(RetentionPolicy.SOURCE)
5126     public @interface VideoScalingMode {}
5127 
5128     /**
5129      * If a surface has been specified in a previous call to {@link #configure}
5130      * specifies the scaling mode to use. The default is "scale to fit".
5131      * <p class=note>
5132      * The scaling mode may be reset to the <strong>default</strong> each time an
5133      * {@link #INFO_OUTPUT_BUFFERS_CHANGED} event is received from the codec; therefore, the client
5134      * must call this method after every buffer change event (and before the first output buffer is
5135      * released for rendering) to ensure consistent scaling mode.
5136      * <p class=note>
5137      * Since the {@link #INFO_OUTPUT_BUFFERS_CHANGED} event is deprecated, this can also be done
5138      * after each {@link #INFO_OUTPUT_FORMAT_CHANGED} event.
5139      *
5140      * @throws IllegalArgumentException if mode is not recognized.
5141      * @throws IllegalStateException if in the Released state.
5142      */
setVideoScalingMode(@ideoScalingMode int mode)5143     public native final void setVideoScalingMode(@VideoScalingMode int mode);
5144 
5145     /**
5146      * Sets the audio presentation.
5147      * @param presentation see {@link AudioPresentation}. In particular, id should be set.
5148      */
setAudioPresentation(@onNull AudioPresentation presentation)5149     public void setAudioPresentation(@NonNull AudioPresentation presentation) {
5150         if (presentation == null) {
5151             throw new NullPointerException("audio presentation is null");
5152         }
5153         native_setAudioPresentation(presentation.getPresentationId(), presentation.getProgramId());
5154     }
5155 
native_setAudioPresentation(int presentationId, int programId)5156     private native void native_setAudioPresentation(int presentationId, int programId);
5157 
5158     /**
5159      * Retrieve the codec name.
5160      *
5161      * If the codec was created by createDecoderByType or createEncoderByType, what component is
5162      * chosen is not known beforehand. This method returns the name of the codec that was
5163      * selected by the platform.
5164      *
5165      * <strong>Note:</strong> Implementations may provide multiple aliases (codec
5166      * names) for the same underlying codec, any of which can be used to instantiate the same
5167      * underlying codec in {@link MediaCodec#createByCodecName}. This method returns the
5168      * name used to create the codec in this case.
5169      *
5170      * @throws IllegalStateException if in the Released state.
5171      */
5172     @NonNull
getName()5173     public final String getName() {
5174         // get canonical name to handle exception
5175         String canonicalName = getCanonicalName();
5176         return mNameAtCreation != null ? mNameAtCreation : canonicalName;
5177     }
5178 
5179     /**
5180      * Retrieve the underlying codec name.
5181      *
5182      * This method is similar to {@link #getName}, except that it returns the underlying component
5183      * name even if an alias was used to create this MediaCodec object by name,
5184      *
5185      * @throws IllegalStateException if in the Released state.
5186      */
5187     @NonNull
getCanonicalName()5188     public native final String getCanonicalName();
5189 
5190     /**
5191      * Return Metrics data about the current codec instance.
5192      * <p>
5193      * Call this method after configuration, during execution, or after
5194      * the codec has been already stopped.
5195      * <p>
5196      * Beginning with {@link android.os.Build.VERSION_CODES#B}
5197      * this method can be used to get the Metrics data prior to an error.
5198      * (e.g. in {@link Callback#onError} or after a method throws
5199      * {@link MediaCodec.CodecException}.) Before that, the Metrics data was
5200      * cleared on error, resulting in a null return value.
5201      *
5202      * @return a {@link PersistableBundle} containing the set of attributes and values
5203      * available for the media being handled by this instance of MediaCodec
5204      * The attributes are descibed in {@link MetricsConstants}.
5205      *
5206      * Additional vendor-specific fields may also be present in
5207      * the return value. Returns null if there is no Metrics data.
5208      *
5209      */
getMetrics()5210     public PersistableBundle getMetrics() {
5211         PersistableBundle bundle = native_getMetrics();
5212         return bundle;
5213     }
5214 
native_getMetrics()5215     private native PersistableBundle native_getMetrics();
5216 
5217     /**
5218      * Change a video encoder's target bitrate on the fly. The value is an
5219      * Integer object containing the new bitrate in bps.
5220      *
5221      * @see #setParameters(Bundle)
5222      */
5223     public static final String PARAMETER_KEY_VIDEO_BITRATE = "video-bitrate";
5224 
5225     /**
5226      * Temporarily suspend/resume encoding of input data. While suspended
5227      * input data is effectively discarded instead of being fed into the
5228      * encoder. This parameter really only makes sense to use with an encoder
5229      * in "surface-input" mode, as the client code has no control over the
5230      * input-side of the encoder in that case.
5231      * The value is an Integer object containing the value 1 to suspend
5232      * or the value 0 to resume.
5233      *
5234      * @see #setParameters(Bundle)
5235      */
5236     public static final String PARAMETER_KEY_SUSPEND = "drop-input-frames";
5237 
5238     /**
5239      * When {@link #PARAMETER_KEY_SUSPEND} is present, the client can also
5240      * optionally use this key to specify the timestamp (in micro-second)
5241      * at which the suspend/resume operation takes effect.
5242      *
5243      * Note that the specified timestamp must be greater than or equal to the
5244      * timestamp of any previously queued suspend/resume operations.
5245      *
5246      * The value is a long int, indicating the timestamp to suspend/resume.
5247      *
5248      * @see #setParameters(Bundle)
5249      */
5250     public static final String PARAMETER_KEY_SUSPEND_TIME = "drop-start-time-us";
5251 
5252     /**
5253      * Specify an offset (in micro-second) to be added on top of the timestamps
5254      * onward. A typical use case is to apply an adjust to the timestamps after
5255      * a period of pause by the user.
5256      *
5257      * This parameter can only be used on an encoder in "surface-input" mode.
5258      *
5259      * The value is a long int, indicating the timestamp offset to be applied.
5260      *
5261      * @see #setParameters(Bundle)
5262      */
5263     public static final String PARAMETER_KEY_OFFSET_TIME = "time-offset-us";
5264 
5265     /**
5266      * Request that the encoder produce a sync frame "soon".
5267      * Provide an Integer with the value 0.
5268      *
5269      * @see #setParameters(Bundle)
5270      */
5271     public static final String PARAMETER_KEY_REQUEST_SYNC_FRAME = "request-sync";
5272 
5273     /**
5274      * Set the HDR10+ metadata on the next queued input frame.
5275      *
5276      * Provide a byte array of data that's conforming to the
5277      * user_data_registered_itu_t_t35() syntax of SEI message for ST 2094-40.
5278      *<p>
5279      * For decoders:
5280      *<p>
5281      * When a decoder is configured for one of the HDR10+ profiles that uses
5282      * out-of-band metadata (such as {@link
5283      * MediaCodecInfo.CodecProfileLevel#VP9Profile2HDR10Plus} or {@link
5284      * MediaCodecInfo.CodecProfileLevel#VP9Profile3HDR10Plus}), this
5285      * parameter sets the HDR10+ metadata on the next input buffer queued
5286      * to the decoder. A decoder supporting these profiles must propagate
5287      * the metadata to the format of the output buffer corresponding to this
5288      * particular input buffer (under key {@link MediaFormat#KEY_HDR10_PLUS_INFO}).
5289      * The metadata should be applied to that output buffer and the buffers
5290      * following it (in display order), until the next output buffer (in
5291      * display order) upon which an HDR10+ metadata is set.
5292      *<p>
5293      * This parameter shouldn't be set if the decoder is not configured for
5294      * an HDR10+ profile that uses out-of-band metadata. In particular,
5295      * it shouldn't be set for HDR10+ profiles that uses in-band metadata
5296      * where the metadata is embedded in the input buffers, for example
5297      * {@link MediaCodecInfo.CodecProfileLevel#HEVCProfileMain10HDR10Plus}.
5298      *<p>
5299      * For encoders:
5300      *<p>
5301      * When an encoder is configured for one of the HDR10+ profiles and the
5302      * operates in byte buffer input mode (instead of surface input mode),
5303      * this parameter sets the HDR10+ metadata on the next input buffer queued
5304      * to the encoder. For the HDR10+ profiles that uses out-of-band metadata
5305      * (such as {@link MediaCodecInfo.CodecProfileLevel#VP9Profile2HDR10Plus},
5306      * or {@link MediaCodecInfo.CodecProfileLevel#VP9Profile3HDR10Plus}),
5307      * the metadata must be propagated to the format of the output buffer
5308      * corresponding to this particular input buffer (under key {@link
5309      * MediaFormat#KEY_HDR10_PLUS_INFO}). For the HDR10+ profiles that uses
5310      * in-band metadata (such as {@link
5311      * MediaCodecInfo.CodecProfileLevel#HEVCProfileMain10HDR10Plus}), the
5312      * metadata info must be embedded in the corresponding output buffer itself.
5313      *<p>
5314      * This parameter shouldn't be set if the encoder is not configured for
5315      * an HDR10+ profile, or if it's operating in surface input mode.
5316      *<p>
5317      *
5318      * @see MediaFormat#KEY_HDR10_PLUS_INFO
5319      */
5320     public static final String PARAMETER_KEY_HDR10_PLUS_INFO = MediaFormat.KEY_HDR10_PLUS_INFO;
5321 
5322     /**
5323      * Enable/disable low latency decoding mode.
5324      * When enabled, the decoder doesn't hold input and output data more than
5325      * required by the codec standards.
5326      * The value is an Integer object containing the value 1 to enable
5327      * or the value 0 to disable.
5328      *
5329      * @see #setParameters(Bundle)
5330      * @see MediaFormat#KEY_LOW_LATENCY
5331      */
5332     public static final String PARAMETER_KEY_LOW_LATENCY =
5333             MediaFormat.KEY_LOW_LATENCY;
5334 
5335     /**
5336      * Control video peek of the first frame when a codec is configured for tunnel mode with
5337      * {@link MediaFormat#KEY_AUDIO_SESSION_ID} while the {@link AudioTrack} is paused.
5338      *<p>
5339      * When disabled (1) after a {@link #flush} or {@link #start}, (2) while the corresponding
5340      * {@link AudioTrack} is paused and (3) before any buffers are queued, the first frame is not to
5341      * be rendered until either this parameter is enabled or the corresponding {@link AudioTrack}
5342      * has begun playback. Once the frame is decoded and ready to be rendered,
5343      * {@link OnFirstTunnelFrameReadyListener#onFirstTunnelFrameReady} is called but the frame is
5344      * not rendered. The surface continues to show the previously-rendered content, or black if the
5345      * surface is new. A subsequent call to {@link AudioTrack#play} renders this frame and triggers
5346      * a callback to {@link OnFrameRenderedListener#onFrameRendered}, and video playback begins.
5347      *<p>
5348      * <b>Note</b>: To clear any previously rendered content and show black, configure the
5349      * MediaCodec with {@code KEY_PUSH_BLANK_BUFFERS_ON_STOP(1)}, and call {@link #stop} before
5350      * pushing new video frames to the codec.
5351      *<p>
5352      * When enabled (1) after a {@link #flush} or {@link #start} and (2) while the corresponding
5353      * {@link AudioTrack} is paused, the first frame is rendered as soon as it is decoded, or
5354      * immediately, if it has already been decoded. If not already decoded, when the frame is
5355      * decoded and ready to be rendered,
5356      * {@link OnFirstTunnelFrameReadyListener#onFirstTunnelFrameReady} is called. The frame is then
5357      * immediately rendered and {@link OnFrameRenderedListener#onFrameRendered} is subsequently
5358      * called.
5359      *<p>
5360      * The value is an Integer object containing the value 1 to enable or the value 0 to disable.
5361      *<p>
5362      * The default for this parameter is <b>enabled</b>. Once a frame has been rendered, changing
5363      * this parameter has no effect until a subsequent {@link #flush} or
5364      * {@link #stop}/{@link #start}.
5365      *
5366      * @see #setParameters(Bundle)
5367      */
5368     public static final String PARAMETER_KEY_TUNNEL_PEEK = "tunnel-peek";
5369 
5370     /**
5371      * Set the region of interest as QpOffset-Map on the next queued input frame.
5372      * <p>
5373      * The associated value is a byte array containing quantization parameter (QP) offsets in
5374      * raster scan order for the entire frame at 16x16 granularity. The size of the byte array
5375      * shall be ((frame_width + 15) / 16) * ((frame_height + 15) / 16), where frame_width and
5376      * frame_height correspond to width and height configured using {@link MediaFormat#KEY_WIDTH}
5377      * and {@link MediaFormat#KEY_HEIGHT} keys respectively. During encoding, if the coding unit
5378      * size is larger than 16x16, then the qpOffset information of all 16x16 blocks that
5379      * encompass the coding unit is combined and used. The QP of target block will be calculated
5380      * as 'frameQP + offsetQP'. If the result exceeds minQP or maxQP configured then the value
5381      * will be clamped. Negative offset results in blocks encoded at lower QP than frame QP and
5382      * positive offsets will result in encoding blocks at higher QP than frame QP. If the areas
5383      * of negative QP and positive QP are chosen wisely, the overall viewing experience can be
5384      * improved.
5385      * <p>
5386      * If byte array size is smaller than the expected size, components will ignore the
5387      * configuration and print an error message. If the byte array exceeds the expected size,
5388      * components will use the initial portion and ignore the rest.
5389      * <p>
5390      * The scope of this key is throughout the encoding session until it is reconfigured during
5391      * running state.
5392      * <p>
5393      * @see #setParameters(Bundle)
5394      */
5395     @FlaggedApi(FLAG_REGION_OF_INTEREST)
5396     public static final String PARAMETER_KEY_QP_OFFSET_MAP = "qp-offset-map";
5397 
5398     /**
5399      * Set the region of interest as QpOffset-Rects on the next queued input frame.
5400      * <p>
5401      * The associated value is a String in the format "Top1,Left1-Bottom1,Right1=Offset1;Top2,
5402      * Left2-Bottom2,Right2=Offset2;...". If the configuration doesn't follow this pattern,
5403      * it will be ignored. Co-ordinates (Top, Left), (Top, Right), (Bottom, Left)
5404      * and (Bottom, Right) form the vertices of bounding box of region of interest in pixels.
5405      * Pixel (0, 0) points to the top-left corner of the frame. Offset is the suggested
5406      * quantization parameter (QP) offset of the blocks in the bounding box. The bounding box
5407      * will get stretched outwards to align to LCU boundaries during encoding. The Qp Offset is
5408      * integral and shall be in the range [-128, 127]. The QP of target block will be calculated
5409      * as frameQP + offsetQP. If the result exceeds minQP or maxQP configured then the value will
5410      * be clamped. Negative offset results in blocks encoded at lower QP than frame QP and
5411      * positive offsets will result in blocks encoded at higher QP than frame QP. If the areas of
5412      * negative QP and positive QP are chosen wisely, the overall viewing experience can be
5413      * improved.
5414      * <p>
5415      * If roi (region of interest) rect is outside the frame boundaries, that is, left < 0 or
5416      * top < 0 or right > width or bottom > height, then rect shall be clamped to the frame
5417      * boundaries. If roi rect is not valid, that is left > right or top > bottom, then the
5418      * parameter setting is ignored.
5419      * <p>
5420      * The scope of this key is throughout the encoding session until it is reconfigured during
5421      * running state.
5422      * <p>
5423      * The maximum number of contours (rectangles) that can be specified for a given input frame
5424      * is device specific. Implementations will drop/ignore the rectangles that are beyond their
5425      * supported limit. Hence it is preferable to place the rects in descending order of
5426      * importance. Transitively, if the bounding boxes overlap, then the most preferred
5427      * rectangle's qp offset (earlier rectangle qp offset) will be used to quantize the block.
5428      * <p>
5429      * @see #setParameters(Bundle)
5430      */
5431     @FlaggedApi(FLAG_REGION_OF_INTEREST)
5432     public static final String PARAMETER_KEY_QP_OFFSET_RECTS = "qp-offset-rects";
5433 
5434     /**
5435      * Communicate additional parameter changes to the component instance.
5436      * <b>Note:</b> Some of these parameter changes may silently fail to apply.
5437      *
5438      * @param params The bundle of parameters to set.
5439      * @throws IllegalStateException if in the Released state.
5440      */
5441 
5442     private static final String PARAMETER_KEY_PICTURE_PROFILE_HANDLE = "picture-profile-handle";
5443 
setParameters(@ullable Bundle params)5444     public final void setParameters(@Nullable Bundle params) {
5445         if (params == null) {
5446             return;
5447         }
5448 
5449         String[] keys = new String[params.size()];
5450         Object[] values = new Object[params.size()];
5451 
5452         int i = 0;
5453         for (final String key: params.keySet()) {
5454             if (key.equals(MediaFormat.KEY_AUDIO_SESSION_ID)) {
5455                 int sessionId = 0;
5456                 try {
5457                     sessionId = (Integer) params.get(key);
5458                 } catch (Exception e) {
5459                     throw new IllegalArgumentException("Wrong Session ID Parameter!");
5460                 }
5461                 keys[i] = "audio-hw-sync";
5462                 values[i] = AudioSystem.getAudioHwSyncForSession(sessionId);
5463             } else if (applyPictureProfiles() && mediaQualityFw()
5464                     && key.equals(MediaFormat.KEY_PICTURE_PROFILE_INSTANCE)) {
5465                 PictureProfile pictureProfile = null;
5466                 try {
5467                     pictureProfile = (PictureProfile) params.get(key);
5468                 } catch (ClassCastException e) {
5469                     throw new IllegalArgumentException(
5470                             "Cannot cast the instance parameter to PictureProfile!");
5471                 } catch (Exception e) {
5472                     Log.e(TAG, Log.getStackTraceString(e));
5473                     throw new IllegalArgumentException("Unexpected exception when casting the "
5474                                                        + "instance parameter to PictureProfile!");
5475                 }
5476                 if (pictureProfile == null) {
5477                     throw new IllegalArgumentException(
5478                             "Picture profile instance parameter is null!");
5479                 }
5480                 PictureProfileHandle handle = pictureProfile.getHandle();
5481                 if (handle != PictureProfileHandle.NONE) {
5482                     keys[i] = PARAMETER_KEY_PICTURE_PROFILE_HANDLE;
5483                     values[i] = Long.valueOf(handle.getId());
5484                 }
5485             } else if (applyPictureProfiles() && mediaQualityFw()
5486                     && key.equals(MediaFormat.KEY_PICTURE_PROFILE_ID)) {
5487                 String pictureProfileId = null;
5488                 try {
5489                     pictureProfileId = (String) params.get(key);
5490                 } catch (ClassCastException e) {
5491                     throw new IllegalArgumentException(
5492                             "Cannot cast the KEY_PICTURE_PROFILE_ID parameter to String!");
5493                 } catch (Exception e) {
5494                     Log.e(TAG, Log.getStackTraceString(e));
5495                     throw new IllegalArgumentException("Unexpected exception when casting the "
5496                             + "KEY_PICTURE_PROFILE_ID parameter!");
5497                 }
5498                 if (pictureProfileId == null) {
5499                     throw new IllegalArgumentException("KEY_PICTURE_PROFILE_ID parameter is null!");
5500                 }
5501                 if (!pictureProfileId.isEmpty()) {
5502                     keys[i] = MediaFormat.KEY_PICTURE_PROFILE_ID;
5503                     values[i] = pictureProfileId;
5504                 }
5505             } else {
5506                 keys[i] = key;
5507                 Object value = params.get(key);
5508 
5509                 // Bundle's byte array is a byte[], JNI layer only takes ByteBuffer
5510                 if (value instanceof byte[]) {
5511                     values[i] = ByteBuffer.wrap((byte[]) value);
5512                 } else {
5513                     values[i] = value;
5514                 }
5515             }
5516             ++i;
5517         }
5518 
5519         setParameters(keys, values);
5520     }
5521 
logAndRun(String message, Runnable r)5522     private void logAndRun(String message, Runnable r) {
5523         Log.d(TAG, "enter: " + message);
5524         r.run();
5525         Log.d(TAG, "exit : " + message);
5526     }
5527 
5528     /**
5529      * Sets an asynchronous callback for actionable MediaCodec events.
5530      *
5531      * If the client intends to use the component in asynchronous mode,
5532      * a valid callback should be provided before {@link #configure} is called.
5533      *
5534      * When asynchronous callback is enabled, the client should not call
5535      * {@link #getInputBuffers}, {@link #getOutputBuffers},
5536      * {@link #dequeueInputBuffer(long)} or {@link #dequeueOutputBuffer(BufferInfo, long)}.
5537      * <p>
5538      * Also, {@link #flush} behaves differently in asynchronous mode.  After calling
5539      * {@code flush}, you must call {@link #start} to "resume" receiving input buffers,
5540      * even if an input surface was created.
5541      *
5542      * @param cb The callback that will run.  Use {@code null} to clear a previously
5543      *           set callback (before {@link #configure configure} is called and run
5544      *           in synchronous mode).
5545      * @param handler Callbacks will happen on the handler's thread. If {@code null},
5546      *           callbacks are done on the default thread (the caller's thread or the
5547      *           main thread.)
5548      */
setCallback(@ullable Callback cb, @Nullable Handler handler)5549     public void setCallback(@Nullable /* MediaCodec. */ Callback cb, @Nullable Handler handler) {
5550         boolean setCallbackStallFlag =
5551             GetFlag(() -> android.media.codec.Flags.setCallbackStall());
5552         if (cb != null) {
5553             synchronized (mListenerLock) {
5554                 EventHandler newHandler = getEventHandlerOn(handler, mCallbackHandler);
5555                 // NOTE: there are no callbacks on the handler at this time, but check anyways
5556                 // even if we were to extend this to be callable dynamically, it must
5557                 // be called when codec is flushed, so no messages are pending.
5558                 if (newHandler != mCallbackHandler) {
5559                     if (setCallbackStallFlag) {
5560                         logAndRun(
5561                                 "[new handler] removeMessages(SET_CALLBACK)",
5562                                 () -> {
5563                                     mCallbackHandler.removeMessages(EVENT_SET_CALLBACK);
5564                                 });
5565                         logAndRun(
5566                                 "[new handler] removeMessages(CALLBACK)",
5567                                 () -> {
5568                                     mCallbackHandler.removeMessages(EVENT_CALLBACK);
5569                                 });
5570                     } else {
5571                         mCallbackHandler.removeMessages(EVENT_SET_CALLBACK);
5572                         mCallbackHandler.removeMessages(EVENT_CALLBACK);
5573                     }
5574                     mCallbackHandler = newHandler;
5575                 }
5576             }
5577         } else if (mCallbackHandler != null) {
5578             if (setCallbackStallFlag) {
5579                 logAndRun(
5580                         "[null handler] removeMessages(SET_CALLBACK)",
5581                         () -> {
5582                             mCallbackHandler.removeMessages(EVENT_SET_CALLBACK);
5583                         });
5584                 logAndRun(
5585                         "[null handler] removeMessages(CALLBACK)",
5586                         () -> {
5587                             mCallbackHandler.removeMessages(EVENT_CALLBACK);
5588                         });
5589             } else {
5590                 mCallbackHandler.removeMessages(EVENT_SET_CALLBACK);
5591                 mCallbackHandler.removeMessages(EVENT_CALLBACK);
5592             }
5593         }
5594 
5595         if (mCallbackHandler != null) {
5596             // set java callback on main handler
5597             Message msg = mCallbackHandler.obtainMessage(EVENT_SET_CALLBACK, 0, 0, cb);
5598             mCallbackHandler.sendMessage(msg);
5599 
5600             // set native handler here, don't post to handler because
5601             // it may cause the callback to be delayed and set in a wrong state.
5602             // Note that native codec may start sending events to the callback
5603             // handler after this returns.
5604             native_setCallback(cb);
5605         }
5606     }
5607 
5608     /**
5609      * Sets an asynchronous callback for actionable MediaCodec events on the default
5610      * looper.
5611      * <p>
5612      * Same as {@link #setCallback(Callback, Handler)} with handler set to null.
5613      * @param cb The callback that will run.  Use {@code null} to clear a previously
5614      *           set callback (before {@link #configure configure} is called and run
5615      *           in synchronous mode).
5616      * @see #setCallback(Callback, Handler)
5617      */
setCallback(@ullable Callback cb)5618     public void setCallback(@Nullable /* MediaCodec. */ Callback cb) {
5619         setCallback(cb, null /* handler */);
5620     }
5621 
5622     /**
5623      * Listener to be called when the first output frame has been decoded
5624      * and is ready to be rendered for a codec configured for tunnel mode with
5625      * {@code KEY_AUDIO_SESSION_ID}.
5626      *
5627      * @see MediaCodec#setOnFirstTunnelFrameReadyListener
5628      */
5629     public interface OnFirstTunnelFrameReadyListener {
5630 
5631         /**
5632          * Called when the first output frame has been decoded and is ready to be
5633          * rendered.
5634          */
onFirstTunnelFrameReady(@onNull MediaCodec codec)5635         void onFirstTunnelFrameReady(@NonNull MediaCodec codec);
5636     }
5637 
5638     /**
5639      * Registers a callback to be invoked when the first output frame has been decoded
5640      * and is ready to be rendered on a codec configured for tunnel mode with {@code
5641      * KEY_AUDIO_SESSION_ID}.
5642      *
5643      * @param handler the callback will be run on the handler's thread. If {@code
5644      * null}, the callback will be run on the default thread, which is the looper from
5645      * which the codec was created, or a new thread if there was none.
5646      *
5647      * @param listener the callback that will be run. If {@code null}, clears any registered
5648      * listener.
5649      */
setOnFirstTunnelFrameReadyListener( @ullable Handler handler, @Nullable OnFirstTunnelFrameReadyListener listener)5650     public void setOnFirstTunnelFrameReadyListener(
5651             @Nullable Handler handler, @Nullable OnFirstTunnelFrameReadyListener listener) {
5652         synchronized (mListenerLock) {
5653             mOnFirstTunnelFrameReadyListener = listener;
5654             if (listener != null) {
5655                 EventHandler newHandler = getEventHandlerOn(
5656                         handler,
5657                         mOnFirstTunnelFrameReadyHandler);
5658                 if (newHandler != mOnFirstTunnelFrameReadyHandler) {
5659                     mOnFirstTunnelFrameReadyHandler.removeMessages(EVENT_FIRST_TUNNEL_FRAME_READY);
5660                 }
5661                 mOnFirstTunnelFrameReadyHandler = newHandler;
5662             } else if (mOnFirstTunnelFrameReadyHandler != null) {
5663                 mOnFirstTunnelFrameReadyHandler.removeMessages(EVENT_FIRST_TUNNEL_FRAME_READY);
5664             }
5665             native_enableOnFirstTunnelFrameReadyListener(listener != null);
5666         }
5667     }
5668 
native_enableOnFirstTunnelFrameReadyListener(boolean enable)5669     private native void native_enableOnFirstTunnelFrameReadyListener(boolean enable);
5670 
5671     /**
5672      * Listener to be called when an output frame has rendered on the output surface
5673      *
5674      * @see MediaCodec#setOnFrameRenderedListener
5675      */
5676     public interface OnFrameRenderedListener {
5677 
5678         /**
5679          * Called when an output frame has rendered on the output surface.
5680          * <p>
5681          * <strong>Note:</strong> This callback is for informational purposes only: to get precise
5682          * render timing samples, and can be significantly delayed and batched. Starting with
5683          * Android {@link android.os.Build.VERSION_CODES#UPSIDE_DOWN_CAKE}, a callback will always
5684          * be received for each rendered frame providing the MediaCodec is still in the executing
5685          * state when the callback is dispatched. Prior to Android
5686          * {@link android.os.Build.VERSION_CODES#UPSIDE_DOWN_CAKE}, some frames may have been
5687          * rendered even if there was no callback generated.
5688          *
5689          * @param codec the MediaCodec instance
5690          * @param presentationTimeUs the presentation time (media time) of the frame rendered.
5691          *          This is usually the same as specified in {@link #queueInputBuffer}; however,
5692          *          some codecs may alter the media time by applying some time-based transformation,
5693          *          such as frame rate conversion. In that case, presentation time corresponds
5694          *          to the actual output frame rendered.
5695          * @param nanoTime The system time when the frame was rendered.
5696          *
5697          * @see System#nanoTime
5698          */
onFrameRendered( @onNull MediaCodec codec, long presentationTimeUs, long nanoTime)5699         public void onFrameRendered(
5700                 @NonNull MediaCodec codec, long presentationTimeUs, long nanoTime);
5701     }
5702 
5703     /**
5704      * Registers a callback to be invoked when an output frame is rendered on the output surface.
5705      * <p>
5706      * This method can be called in any codec state, but will only have an effect in the
5707      * Executing state for codecs that render buffers to the output surface.
5708      * <p>
5709      * <strong>Note:</strong> This callback is for informational purposes only: to get precise
5710      * render timing samples, and can be significantly delayed and batched. Some frames may have
5711      * been rendered even if there was no callback generated.
5712      *
5713      * @param listener the callback that will be run
5714      * @param handler the callback will be run on the handler's thread. If {@code null},
5715      *           the callback will be run on the default thread, which is the looper
5716      *           from which the codec was created, or a new thread if there was none.
5717      */
setOnFrameRenderedListener( @ullable OnFrameRenderedListener listener, @Nullable Handler handler)5718     public void setOnFrameRenderedListener(
5719             @Nullable OnFrameRenderedListener listener, @Nullable Handler handler) {
5720         synchronized (mListenerLock) {
5721             mOnFrameRenderedListener = listener;
5722             if (listener != null) {
5723                 EventHandler newHandler = getEventHandlerOn(handler, mOnFrameRenderedHandler);
5724                 if (newHandler != mOnFrameRenderedHandler) {
5725                     mOnFrameRenderedHandler.removeMessages(EVENT_FRAME_RENDERED);
5726                 }
5727                 mOnFrameRenderedHandler = newHandler;
5728             } else if (mOnFrameRenderedHandler != null) {
5729                 mOnFrameRenderedHandler.removeMessages(EVENT_FRAME_RENDERED);
5730             }
5731             native_enableOnFrameRenderedListener(listener != null);
5732         }
5733     }
5734 
native_enableOnFrameRenderedListener(boolean enable)5735     private native void native_enableOnFrameRenderedListener(boolean enable);
5736 
5737     /**
5738      * Returns a list of vendor parameter names.
5739      * <p>
5740      * This method can be called in any codec state except for released state.
5741      *
5742      * @return a list containing supported vendor parameters; an empty
5743      *         list if no vendor parameters are supported. The order of the
5744      *         parameters is arbitrary.
5745      * @throws IllegalStateException if in the Released state.
5746      */
5747     @NonNull
getSupportedVendorParameters()5748     public List<String> getSupportedVendorParameters() {
5749         return native_getSupportedVendorParameters();
5750     }
5751 
5752     @NonNull
native_getSupportedVendorParameters()5753     private native List<String> native_getSupportedVendorParameters();
5754 
5755     /**
5756      * Contains description of a parameter.
5757      */
5758     public static class ParameterDescriptor {
ParameterDescriptor()5759         private ParameterDescriptor() {}
5760 
5761         /**
5762          * Returns the name of the parameter.
5763          */
5764         @NonNull
getName()5765         public String getName() {
5766             return mName;
5767         }
5768 
5769         /**
5770          * Returns the type of the parameter.
5771          * {@link MediaFormat#TYPE_NULL} is never returned.
5772          */
5773         @MediaFormat.Type
getType()5774         public int getType() {
5775             return mType;
5776         }
5777 
5778         @Override
equals(Object o)5779         public boolean equals(Object o) {
5780             if (o == null) {
5781                 return false;
5782             }
5783             if (!(o instanceof ParameterDescriptor)) {
5784                 return false;
5785             }
5786             ParameterDescriptor other = (ParameterDescriptor) o;
5787             return this.mName.equals(other.mName) && this.mType == other.mType;
5788         }
5789 
5790         @Override
hashCode()5791         public int hashCode() {
5792             return Arrays.asList(
5793                     (Object) mName,
5794                     (Object) Integer.valueOf(mType)).hashCode();
5795         }
5796 
5797         private String mName;
5798         private @MediaFormat.Type int mType;
5799     }
5800 
5801     /**
5802      * Describe a parameter with the name.
5803      * <p>
5804      * This method can be called in any codec state except for released state.
5805      *
5806      * @param name name of the parameter to describe, typically one from
5807      *             {@link #getSupportedVendorParameters}.
5808      * @return {@link ParameterDescriptor} object that describes the parameter.
5809      *         {@code null} if unrecognized / not able to describe.
5810      * @throws IllegalStateException if in the Released state.
5811      */
5812     @Nullable
getParameterDescriptor(@onNull String name)5813     public ParameterDescriptor getParameterDescriptor(@NonNull String name) {
5814         return native_getParameterDescriptor(name);
5815     }
5816 
5817     @Nullable
native_getParameterDescriptor(@onNull String name)5818     private native ParameterDescriptor native_getParameterDescriptor(@NonNull String name);
5819 
5820     /**
5821      * Subscribe to vendor parameters, so that these parameters will be present in
5822      * {@link #getOutputFormat} and changes to these parameters generate
5823      * output format change event.
5824      * <p>
5825      * Unrecognized parameter names or standard (non-vendor) parameter names will be ignored.
5826      * {@link #reset} also resets the list of subscribed parameters.
5827      * If a parameter in {@code names} is already subscribed, it will remain subscribed.
5828      * <p>
5829      * This method can be called in any codec state except for released state. When called in
5830      * running state with newly subscribed parameters, it takes effect no later than the
5831      * processing of the subsequently queued buffer. For the new parameters, the codec will generate
5832      * output format change event.
5833      * <p>
5834      * Note that any vendor parameters set in a {@link #configure} or
5835      * {@link #setParameters} call are automatically subscribed.
5836      * <p>
5837      * See also {@link #INFO_OUTPUT_FORMAT_CHANGED} or {@link Callback#onOutputFormatChanged}
5838      * for output format change events.
5839      *
5840      * @param names names of the vendor parameters to subscribe. This may be an empty list,
5841      *              and in that case this method will not change the list of subscribed parameters.
5842      * @throws IllegalStateException if in the Released state.
5843      */
subscribeToVendorParameters(@onNull List<String> names)5844     public void subscribeToVendorParameters(@NonNull List<String> names) {
5845         native_subscribeToVendorParameters(names);
5846     }
5847 
native_subscribeToVendorParameters(@onNull List<String> names)5848     private native void native_subscribeToVendorParameters(@NonNull List<String> names);
5849 
5850     /**
5851      * Unsubscribe from vendor parameters, so that these parameters will not be present in
5852      * {@link #getOutputFormat} and changes to these parameters no longer generate
5853      * output format change event.
5854      * <p>
5855      * Unrecognized parameter names, standard (non-vendor) parameter names will be ignored.
5856      * {@link #reset} also resets the list of subscribed parameters.
5857      * If a parameter in {@code names} is already unsubscribed, it will remain unsubscribed.
5858      * <p>
5859      * This method can be called in any codec state except for released state. When called in
5860      * running state with newly unsubscribed parameters, it takes effect no later than the
5861      * processing of the subsequently queued buffer. For the removed parameters, the codec will
5862      * generate output format change event.
5863      * <p>
5864      * Note that any vendor parameters set in a {@link #configure} or
5865      * {@link #setParameters} call are automatically subscribed, and with this method
5866      * they can be unsubscribed.
5867      * <p>
5868      * See also {@link #INFO_OUTPUT_FORMAT_CHANGED} or {@link Callback#onOutputFormatChanged}
5869      * for output format change events.
5870      *
5871      * @param names names of the vendor parameters to unsubscribe. This may be an empty list,
5872      *              and in that case this method will not change the list of subscribed parameters.
5873      * @throws IllegalStateException if in the Released state.
5874      */
unsubscribeFromVendorParameters(@onNull List<String> names)5875     public void unsubscribeFromVendorParameters(@NonNull List<String> names) {
5876         native_unsubscribeFromVendorParameters(names);
5877     }
5878 
native_unsubscribeFromVendorParameters(@onNull List<String> names)5879     private native void native_unsubscribeFromVendorParameters(@NonNull List<String> names);
5880 
getEventHandlerOn( @ullable Handler handler, @NonNull EventHandler lastHandler)5881     private EventHandler getEventHandlerOn(
5882             @Nullable Handler handler, @NonNull EventHandler lastHandler) {
5883         if (handler == null) {
5884             return mEventHandler;
5885         } else {
5886             Looper looper = handler.getLooper();
5887             if (lastHandler.getLooper() == looper) {
5888                 return lastHandler;
5889             } else {
5890                 return new EventHandler(this, looper);
5891             }
5892         }
5893     }
5894 
5895     /**
5896      * MediaCodec callback interface. Used to notify the user asynchronously
5897      * of various MediaCodec events.
5898      */
5899     public static abstract class Callback {
5900         /**
5901          * Called when an input buffer becomes available.
5902          *
5903          * @param codec The MediaCodec object.
5904          * @param index The index of the available input buffer.
5905          */
onInputBufferAvailable(@onNull MediaCodec codec, int index)5906         public abstract void onInputBufferAvailable(@NonNull MediaCodec codec, int index);
5907 
5908         /**
5909          * Called when an output buffer becomes available.
5910          *
5911          * @param codec The MediaCodec object.
5912          * @param index The index of the available output buffer.
5913          * @param info Info regarding the available output buffer {@link MediaCodec.BufferInfo}.
5914          */
onOutputBufferAvailable( @onNull MediaCodec codec, int index, @NonNull BufferInfo info)5915         public abstract void onOutputBufferAvailable(
5916                 @NonNull MediaCodec codec, int index, @NonNull BufferInfo info);
5917 
5918         /**
5919          * Called when multiple access-units are available in the output.
5920          *
5921          * @param codec The MediaCodec object.
5922          * @param index The index of the available output buffer.
5923          * @param infos Infos describing the available output buffer {@link MediaCodec.BufferInfo}.
5924          *              Access units present in the output buffer are laid out contiguously
5925          *              without gaps and in order.
5926          */
5927         @FlaggedApi(FLAG_LARGE_AUDIO_FRAME)
onOutputBuffersAvailable( @onNull MediaCodec codec, int index, @NonNull ArrayDeque<BufferInfo> infos)5928         public void onOutputBuffersAvailable(
5929                 @NonNull MediaCodec codec, int index, @NonNull ArrayDeque<BufferInfo> infos) {
5930             /*
5931              * This callback returns multiple BufferInfos when codecs are configured to operate on
5932              * large audio frame. Since at this point, we have a single large buffer, returning
5933              * each BufferInfo using
5934              * {@link Callback#onOutputBufferAvailable onOutputBufferAvailable} may cause the
5935              * index to be released to the codec using {@link MediaCodec#releaseOutputBuffer}
5936              * before all BuffersInfos can be returned to the client.
5937              * Hence this callback is required to be implemented or else an exception is thrown.
5938              */
5939             throw new IllegalStateException(
5940                     "Client must override onOutputBuffersAvailable when codec is " +
5941                     "configured to operate with multiple access units");
5942         }
5943 
5944         /**
5945          * Called when the MediaCodec encountered an error
5946          *
5947          * @param codec The MediaCodec object.
5948          * @param e The {@link MediaCodec.CodecException} object describing the error.
5949          */
onError(@onNull MediaCodec codec, @NonNull CodecException e)5950         public abstract void onError(@NonNull MediaCodec codec, @NonNull CodecException e);
5951 
5952         /**
5953          * Called only when MediaCodec encountered a crypto(decryption) error when using
5954          * a decoder configured with CONFIGURE_FLAG_USE_CRYPTO_ASYNC flag along with crypto
5955          * or descrambler object.
5956          *
5957          * @param codec The MediaCodec object
5958          * @param e The {@link MediaCodec.CryptoException} object with error details.
5959          */
onCryptoError(@onNull MediaCodec codec, @NonNull CryptoException e)5960         public void onCryptoError(@NonNull MediaCodec codec, @NonNull CryptoException e) {
5961             /*
5962              * A default implementation for backward compatibility.
5963              * Use of CONFIGURE_FLAG_USE_CRYPTO_ASYNC requires override of this callback
5964              * to receive CrytoInfo. Without an orverride an exception is thrown.
5965              */
5966             throw new IllegalStateException(
5967                     "Client must override onCryptoError when the codec is " +
5968                     "configured with CONFIGURE_FLAG_USE_CRYPTO_ASYNC.", e);
5969         }
5970 
5971         /**
5972          * Called when the output format has changed
5973          *
5974          * @param codec The MediaCodec object.
5975          * @param format The new output format.
5976          */
onOutputFormatChanged( @onNull MediaCodec codec, @NonNull MediaFormat format)5977         public abstract void onOutputFormatChanged(
5978                 @NonNull MediaCodec codec, @NonNull MediaFormat format);
5979 
5980         /**
5981          * Called when the metrics for this codec have been flushed "mid-stream"
5982          * due to the start of a new subsession during execution.
5983          * <p>
5984          * A new codec subsession normally starts when the codec is reconfigured
5985          * after stop(), but it can also happen mid-stream e.g. if the video size
5986          * changes. When this happens, the metrics for the previous subsession
5987          * are flushed, and {@link MediaCodec#getMetrics} will return the metrics
5988          * for the new subsession.
5989          * <p>
5990          * For subsessions that begin due to a reconfiguration, the metrics for
5991          * the prior subsession can be retrieved via {@link MediaCodec#getMetrics}
5992          * prior to calling {@link #configure}.
5993          * <p>
5994          * When a new subsession begins "mid-stream", the metrics for the prior
5995          * subsession are flushed just before the {@link Callback#onOutputFormatChanged}
5996          * event, so this <b>optional</b> callback is provided to be able to
5997          * capture the final metrics for the previous subsession.
5998          *
5999          * @param codec The MediaCodec object.
6000          * @param metrics The flushed metrics for this codec. This is a
6001          *                {@link PersistableBundle} containing the set of
6002          *                attributes and values available for the media being
6003          *                handled by this instance of MediaCodec. The attributes
6004          *                are described in {@link MetricsConstants}. Additional
6005          *                vendor-specific fields may also be present.
6006          */
6007         @FlaggedApi(FLAG_SUBSESSION_METRICS)
onMetricsFlushed( @onNull MediaCodec codec, @NonNull PersistableBundle metrics)6008         public void onMetricsFlushed(
6009                 @NonNull MediaCodec codec, @NonNull PersistableBundle metrics) {
6010             // default implementation ignores this callback.
6011         }
6012 
6013         /**
6014          * @hide
6015          * Called when there is a change in the required resources for the codec.
6016          * <p>
6017          * Upon receiving this notification, the updated resource requirement
6018          * can be queried through {@link #getRequiredResources}.
6019          *
6020          * @param codec The MediaCodec object.
6021          */
6022         @FlaggedApi(FLAG_CODEC_AVAILABILITY)
6023         @TestApi
onRequiredResourcesChanged(@onNull MediaCodec codec)6024         public void onRequiredResourcesChanged(@NonNull MediaCodec codec) {
6025             /*
6026              * A default implementation for backward compatibility.
6027              * Since this is a TestApi, we are not enforcing the callback to be
6028              * overridden.
6029              */
6030         }
6031     }
6032 
postEventFromNative( int what, int arg1, int arg2, @Nullable Object obj)6033     private void postEventFromNative(
6034             int what, int arg1, int arg2, @Nullable Object obj) {
6035         synchronized (mListenerLock) {
6036             EventHandler handler = mEventHandler;
6037             if (what == EVENT_CALLBACK) {
6038                 handler = mCallbackHandler;
6039             } else if (what == EVENT_FIRST_TUNNEL_FRAME_READY) {
6040                 handler = mOnFirstTunnelFrameReadyHandler;
6041             } else if (what == EVENT_FRAME_RENDERED) {
6042                 handler = mOnFrameRenderedHandler;
6043             }
6044             if (handler != null) {
6045                 Message msg = handler.obtainMessage(what, arg1, arg2, obj);
6046                 handler.sendMessage(msg);
6047             }
6048         }
6049     }
6050 
6051     @UnsupportedAppUsage
setParameters(@onNull String[] keys, @NonNull Object[] values)6052     private native final void setParameters(@NonNull String[] keys, @NonNull Object[] values);
6053 
6054     /**
6055      * Get the codec info. If the codec was created by createDecoderByType
6056      * or createEncoderByType, what component is chosen is not known beforehand,
6057      * and thus the caller does not have the MediaCodecInfo.
6058      * @throws IllegalStateException if in the Released state.
6059      */
6060     @NonNull
getCodecInfo()6061     public MediaCodecInfo getCodecInfo() {
6062         // Get the codec name first. If the codec is already released,
6063         // IllegalStateException will be thrown here.
6064         String name = getName();
6065         synchronized (mCodecInfoLock) {
6066             if (mCodecInfo == null) {
6067                 // Get the codec info for this codec itself first. Only initialize
6068                 // the full codec list if this somehow fails because it can be slow.
6069                 mCodecInfo = getOwnCodecInfo();
6070                 if (mCodecInfo == null) {
6071                     mCodecInfo = MediaCodecList.getInfoFor(name);
6072                 }
6073             }
6074             return mCodecInfo;
6075         }
6076     }
6077 
6078     @NonNull
getOwnCodecInfo()6079     private native final MediaCodecInfo getOwnCodecInfo();
6080 
6081     @NonNull
6082     @UnsupportedAppUsage
getBuffers(boolean input)6083     private native final ByteBuffer[] getBuffers(boolean input);
6084 
6085     @Nullable
getBuffer(boolean input, int index)6086     private native final ByteBuffer getBuffer(boolean input, int index);
6087 
6088     @Nullable
getImage(boolean input, int index)6089     private native final Image getImage(boolean input, int index);
6090 
native_init()6091     private static native final void native_init();
6092 
native_setup( @onNull String name, boolean nameIsType, boolean encoder, int pid, int uid)6093     private native final void native_setup(
6094             @NonNull String name, boolean nameIsType, boolean encoder, int pid, int uid);
6095 
native_finalize()6096     private native final void native_finalize();
6097 
6098     static {
6099         System.loadLibrary("media_jni");
native_init()6100         native_init();
6101     }
6102 
6103     @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 115609023)
6104     private long mNativeContext = 0;
6105     private final Lock mNativeContextLock = new ReentrantLock();
6106 
lockAndGetContext()6107     private final long lockAndGetContext() {
6108         mNativeContextLock.lock();
6109         return mNativeContext;
6110     }
6111 
setAndUnlockContext(long context)6112     private final void setAndUnlockContext(long context) {
6113         mNativeContext = context;
6114         mNativeContextLock.unlock();
6115     }
6116 
6117     /** @hide */
6118     public static class MediaImage extends Image {
6119         private final boolean mIsReadOnly;
6120         private final int mWidth;
6121         private final int mHeight;
6122         private final int mFormat;
6123         private long mTimestamp;
6124         private final Plane[] mPlanes;
6125         private final ByteBuffer mBuffer;
6126         private final ByteBuffer mInfo;
6127         private final int mXOffset;
6128         private final int mYOffset;
6129         private final long mBufferContext;
6130 
6131         private final static int TYPE_YUV = 1;
6132 
6133         private final int mTransform = 0; //Default no transform
6134         private final int mScalingMode = 0; //Default frozen scaling mode
6135 
6136         @Override
getFormat()6137         public int getFormat() {
6138             throwISEIfImageIsInvalid();
6139             return mFormat;
6140         }
6141 
6142         @Override
getHeight()6143         public int getHeight() {
6144             throwISEIfImageIsInvalid();
6145             return mHeight;
6146         }
6147 
6148         @Override
getWidth()6149         public int getWidth() {
6150             throwISEIfImageIsInvalid();
6151             return mWidth;
6152         }
6153 
6154         @Override
getTransform()6155         public int getTransform() {
6156             throwISEIfImageIsInvalid();
6157             return mTransform;
6158         }
6159 
6160         @Override
getScalingMode()6161         public int getScalingMode() {
6162             throwISEIfImageIsInvalid();
6163             return mScalingMode;
6164         }
6165 
6166         @Override
getTimestamp()6167         public long getTimestamp() {
6168             throwISEIfImageIsInvalid();
6169             return mTimestamp;
6170         }
6171 
6172         @Override
6173         @NonNull
getPlanes()6174         public Plane[] getPlanes() {
6175             throwISEIfImageIsInvalid();
6176             return Arrays.copyOf(mPlanes, mPlanes.length);
6177         }
6178 
6179         @Override
close()6180         public void close() {
6181             if (mIsImageValid) {
6182                 if (mBuffer != null) {
6183                     java.nio.NioUtils.freeDirectBuffer(mBuffer);
6184                 }
6185                 if (mBufferContext != 0) {
6186                     native_closeMediaImage(mBufferContext);
6187                 }
6188                 mIsImageValid = false;
6189             }
6190         }
6191 
6192         /**
6193          * Set the crop rectangle associated with this frame.
6194          * <p>
6195          * The crop rectangle specifies the region of valid pixels in the image,
6196          * using coordinates in the largest-resolution plane.
6197          */
6198         @Override
setCropRect(@ullable Rect cropRect)6199         public void setCropRect(@Nullable Rect cropRect) {
6200             if (mIsReadOnly) {
6201                 throw new ReadOnlyBufferException();
6202             }
6203             super.setCropRect(cropRect);
6204         }
6205 
MediaImage( @onNull ByteBuffer buffer, @NonNull ByteBuffer info, boolean readOnly, long timestamp, int xOffset, int yOffset, @Nullable Rect cropRect)6206         public MediaImage(
6207                 @NonNull ByteBuffer buffer, @NonNull ByteBuffer info, boolean readOnly,
6208                 long timestamp, int xOffset, int yOffset, @Nullable Rect cropRect) {
6209             mTimestamp = timestamp;
6210             mIsImageValid = true;
6211             mIsReadOnly = buffer.isReadOnly();
6212             mBuffer = buffer.duplicate();
6213 
6214             // save offsets and info
6215             mXOffset = xOffset;
6216             mYOffset = yOffset;
6217             mInfo = info;
6218 
6219             mBufferContext = 0;
6220 
6221             int cbPlaneOffset = -1;
6222             int crPlaneOffset = -1;
6223             int planeOffsetInc = -1;
6224             int pixelStride = -1;
6225 
6226             // read media-info.  See MediaImage2
6227             if (info.remaining() == 104) {
6228                 int type = info.getInt();
6229                 if (type != TYPE_YUV) {
6230                     throw new UnsupportedOperationException("unsupported type: " + type);
6231                 }
6232                 int numPlanes = info.getInt();
6233                 if (numPlanes != 3) {
6234                     throw new RuntimeException("unexpected number of planes: " + numPlanes);
6235                 }
6236                 mWidth = info.getInt();
6237                 mHeight = info.getInt();
6238                 if (mWidth < 1 || mHeight < 1) {
6239                     throw new UnsupportedOperationException(
6240                             "unsupported size: " + mWidth + "x" + mHeight);
6241                 }
6242                 int bitDepth = info.getInt();
6243                 if (bitDepth != 8 && bitDepth != 10) {
6244                     throw new UnsupportedOperationException("unsupported bit depth: " + bitDepth);
6245                 }
6246                 int bitDepthAllocated = info.getInt();
6247                 if (bitDepthAllocated != 8 && bitDepthAllocated != 16) {
6248                     throw new UnsupportedOperationException(
6249                             "unsupported allocated bit depth: " + bitDepthAllocated);
6250                 }
6251                 if (bitDepth == 8 && bitDepthAllocated == 8) {
6252                     mFormat = ImageFormat.YUV_420_888;
6253                     planeOffsetInc = 1;
6254                     pixelStride = 2;
6255                 } else if (bitDepth == 10 && bitDepthAllocated == 16) {
6256                     mFormat = ImageFormat.YCBCR_P010;
6257                     planeOffsetInc = 2;
6258                     pixelStride = 4;
6259                 } else {
6260                     throw new UnsupportedOperationException("couldn't infer ImageFormat"
6261                       + " bitDepth: " + bitDepth + " bitDepthAllocated: " + bitDepthAllocated);
6262                 }
6263 
6264                 mPlanes = new MediaPlane[numPlanes];
6265                 for (int ix = 0; ix < numPlanes; ix++) {
6266                     int planeOffset = info.getInt();
6267                     int colInc = info.getInt();
6268                     int rowInc = info.getInt();
6269                     int horiz = info.getInt();
6270                     int vert = info.getInt();
6271                     if (horiz != vert || horiz != (ix == 0 ? 1 : 2)) {
6272                         throw new UnsupportedOperationException("unexpected subsampling: "
6273                                 + horiz + "x" + vert + " on plane " + ix);
6274                     }
6275                     if (colInc < 1 || rowInc < 1) {
6276                         throw new UnsupportedOperationException("unexpected strides: "
6277                                 + colInc + " pixel, " + rowInc + " row on plane " + ix);
6278                     }
6279                     buffer.clear();
6280                     buffer.position(mBuffer.position() + planeOffset
6281                             + (xOffset / horiz) * colInc + (yOffset / vert) * rowInc);
6282                     buffer.limit(buffer.position() + Utils.divUp(bitDepth, 8)
6283                             + (mHeight / vert - 1) * rowInc + (mWidth / horiz - 1) * colInc);
6284                     mPlanes[ix] = new MediaPlane(buffer.slice(), rowInc, colInc);
6285                     if ((mFormat == ImageFormat.YUV_420_888 || mFormat == ImageFormat.YCBCR_P010
6286                                 || mFormat == ImageFormat.YCBCR_P210)
6287                             && ix == 1) {
6288                         cbPlaneOffset = planeOffset;
6289                     } else if ((mFormat == ImageFormat.YUV_420_888
6290                                        || mFormat == ImageFormat.YCBCR_P010
6291                                        || mFormat == ImageFormat.YCBCR_P210)
6292                             && ix == 2) {
6293                         crPlaneOffset = planeOffset;
6294                     }
6295                 }
6296             } else {
6297                 throw new UnsupportedOperationException(
6298                         "unsupported info length: " + info.remaining());
6299             }
6300 
6301             // Validate chroma semiplanerness.
6302             if (mFormat == ImageFormat.YCBCR_P010 || mFormat == ImageFormat.YCBCR_P210) {
6303                 if (crPlaneOffset != cbPlaneOffset + planeOffsetInc) {
6304                     throw new UnsupportedOperationException("Invalid plane offsets"
6305                     + " cbPlaneOffset: " + cbPlaneOffset + " crPlaneOffset: " + crPlaneOffset);
6306                 }
6307                 if (mPlanes[1].getPixelStride() != pixelStride
6308                         || mPlanes[2].getPixelStride() != pixelStride) {
6309                     throw new UnsupportedOperationException("Invalid pixelStride");
6310                 }
6311             }
6312 
6313             if (cropRect == null) {
6314                 cropRect = new Rect(0, 0, mWidth, mHeight);
6315             }
6316             cropRect.offset(-xOffset, -yOffset);
6317             super.setCropRect(cropRect);
6318         }
6319 
MediaImage( @onNull ByteBuffer[] buffers, int[] rowStrides, int[] pixelStrides, int width, int height, int format, boolean readOnly, long timestamp, int xOffset, int yOffset, @Nullable Rect cropRect, long context)6320         public MediaImage(
6321                 @NonNull ByteBuffer[] buffers, int[] rowStrides, int[] pixelStrides,
6322                 int width, int height, int format, boolean readOnly,
6323                 long timestamp, int xOffset, int yOffset, @Nullable Rect cropRect, long context) {
6324             if (buffers.length != rowStrides.length || buffers.length != pixelStrides.length) {
6325                 throw new IllegalArgumentException(
6326                         "buffers, rowStrides and pixelStrides should have the same length");
6327             }
6328             mWidth = width;
6329             mHeight = height;
6330             mFormat = format;
6331             mTimestamp = timestamp;
6332             mIsImageValid = true;
6333             mIsReadOnly = readOnly;
6334             mBuffer = null;
6335             mInfo = null;
6336             mPlanes = new MediaPlane[buffers.length];
6337             for (int i = 0; i < buffers.length; ++i) {
6338                 mPlanes[i] = new MediaPlane(buffers[i], rowStrides[i], pixelStrides[i]);
6339             }
6340 
6341             // save offsets and info
6342             mXOffset = xOffset;
6343             mYOffset = yOffset;
6344 
6345             if (cropRect == null) {
6346                 cropRect = new Rect(0, 0, mWidth, mHeight);
6347             }
6348             cropRect.offset(-xOffset, -yOffset);
6349             super.setCropRect(cropRect);
6350 
6351             mBufferContext = context;
6352         }
6353 
6354         private class MediaPlane extends Plane {
MediaPlane(@onNull ByteBuffer buffer, int rowInc, int colInc)6355             public MediaPlane(@NonNull ByteBuffer buffer, int rowInc, int colInc) {
6356                 mData = buffer;
6357                 mRowInc = rowInc;
6358                 mColInc = colInc;
6359             }
6360 
6361             @Override
getRowStride()6362             public int getRowStride() {
6363                 throwISEIfImageIsInvalid();
6364                 return mRowInc;
6365             }
6366 
6367             @Override
getPixelStride()6368             public int getPixelStride() {
6369                 throwISEIfImageIsInvalid();
6370                 return mColInc;
6371             }
6372 
6373             @Override
6374             @NonNull
getBuffer()6375             public ByteBuffer getBuffer() {
6376                 throwISEIfImageIsInvalid();
6377                 return mData;
6378             }
6379 
6380             private final int mRowInc;
6381             private final int mColInc;
6382             private final ByteBuffer mData;
6383         }
6384     }
6385 
6386     public final static class MetricsConstants
6387     {
MetricsConstants()6388         private MetricsConstants() {}
6389 
6390         /**
6391          * Key to extract the codec being used
6392          * from the {@link MediaCodec#getMetrics} return value.
6393          * The value is a String.
6394          */
6395         public static final String CODEC = "android.media.mediacodec.codec";
6396 
6397         /**
6398          * Key to extract the MIME type
6399          * from the {@link MediaCodec#getMetrics} return value.
6400          * The value is a String.
6401          */
6402         public static final String MIME_TYPE = "android.media.mediacodec.mime";
6403 
6404         /**
6405          * Key to extract what the codec mode
6406          * from the {@link MediaCodec#getMetrics} return value.
6407          * The value is a String. Values will be one of the constants
6408          * {@link #MODE_AUDIO} or {@link #MODE_VIDEO}.
6409          */
6410         public static final String MODE = "android.media.mediacodec.mode";
6411 
6412         /**
6413          * The value returned for the key {@link #MODE} when the
6414          * codec is a audio codec.
6415          */
6416         public static final String MODE_AUDIO = "audio";
6417 
6418         /**
6419          * The value returned for the key {@link #MODE} when the
6420          * codec is a video codec.
6421          */
6422         public static final String MODE_VIDEO = "video";
6423 
6424         /**
6425          * Key to extract the flag indicating whether the codec is running
6426          * as an encoder or decoder from the {@link MediaCodec#getMetrics} return value.
6427          * The value is an integer.
6428          * A 0 indicates decoder; 1 indicates encoder.
6429          */
6430         public static final String ENCODER = "android.media.mediacodec.encoder";
6431 
6432         /**
6433          * Key to extract the flag indicating whether the codec is running
6434          * in secure (DRM) mode from the {@link MediaCodec#getMetrics} return value.
6435          * The value is an integer.
6436          */
6437         public static final String SECURE = "android.media.mediacodec.secure";
6438 
6439         /**
6440          * Key to extract the width (in pixels) of the video track
6441          * from the {@link MediaCodec#getMetrics} return value.
6442          * The value is an integer.
6443          */
6444         public static final String WIDTH = "android.media.mediacodec.width";
6445 
6446         /**
6447          * Key to extract the height (in pixels) of the video track
6448          * from the {@link MediaCodec#getMetrics} return value.
6449          * The value is an integer.
6450          */
6451         public static final String HEIGHT = "android.media.mediacodec.height";
6452 
6453         /**
6454          * Key to extract the rotation (in degrees) to properly orient the video
6455          * from the {@link MediaCodec#getMetrics} return.
6456          * The value is a integer.
6457          */
6458         public static final String ROTATION = "android.media.mediacodec.rotation";
6459 
6460     }
6461 }
6462