1 // Cyclic garbage collector implementation for free-threaded build.
2 #include "Python.h"
3 #include "pycore_brc.h" // struct _brc_thread_state
4 #include "pycore_ceval.h" // _Py_set_eval_breaker_bit()
5 #include "pycore_context.h"
6 #include "pycore_dict.h" // _PyDict_MaybeUntrack()
7 #include "pycore_initconfig.h"
8 #include "pycore_interp.h" // PyInterpreterState.gc
9 #include "pycore_object.h"
10 #include "pycore_object_alloc.h" // _PyObject_MallocWithType()
11 #include "pycore_object_stack.h"
12 #include "pycore_pyerrors.h"
13 #include "pycore_pystate.h" // _PyThreadState_GET()
14 #include "pycore_tstate.h" // _PyThreadStateImpl
15 #include "pycore_weakref.h" // _PyWeakref_ClearRef()
16 #include "pydtrace.h"
17
18 #ifdef Py_GIL_DISABLED
19
20 typedef struct _gc_runtime_state GCState;
21
22 #ifdef Py_DEBUG
23 # define GC_DEBUG
24 #endif
25
26 // Each thread buffers the count of allocated objects in a thread-local
27 // variable up to +/- this amount to reduce the overhead of updating
28 // the global count.
29 #define LOCAL_ALLOC_COUNT_THRESHOLD 512
30
31 // Automatically choose the generation that needs collecting.
32 #define GENERATION_AUTO (-1)
33
34 // A linked list of objects using the `ob_tid` field as the next pointer.
35 // The linked list pointers are distinct from any real thread ids, because the
36 // thread ids returned by _Py_ThreadId() are also pointers to distinct objects.
37 // No thread will confuse its own id with a linked list pointer.
38 struct worklist {
39 uintptr_t head;
40 };
41
42 struct worklist_iter {
43 uintptr_t *ptr; // pointer to current object
44 uintptr_t *next; // next value of ptr
45 };
46
47 struct visitor_args {
48 size_t offset; // offset of PyObject from start of block
49 };
50
51 // Per-collection state
52 struct collection_state {
53 struct visitor_args base;
54 PyInterpreterState *interp;
55 GCState *gcstate;
56 Py_ssize_t collected;
57 Py_ssize_t uncollectable;
58 Py_ssize_t long_lived_total;
59 struct worklist unreachable;
60 struct worklist legacy_finalizers;
61 struct worklist wrcb_to_call;
62 struct worklist objs_to_decref;
63 };
64
65 // iterate over a worklist
66 #define WORKSTACK_FOR_EACH(stack, op) \
67 for ((op) = (PyObject *)(stack)->head; (op) != NULL; (op) = (PyObject *)(op)->ob_tid)
68
69 // iterate over a worklist with support for removing the current object
70 #define WORKSTACK_FOR_EACH_ITER(stack, iter, op) \
71 for (worklist_iter_init((iter), &(stack)->head), (op) = (PyObject *)(*(iter)->ptr); \
72 (op) != NULL; \
73 worklist_iter_init((iter), (iter)->next), (op) = (PyObject *)(*(iter)->ptr))
74
75 static void
worklist_push(struct worklist * worklist,PyObject * op)76 worklist_push(struct worklist *worklist, PyObject *op)
77 {
78 assert(op->ob_tid == 0);
79 op->ob_tid = worklist->head;
80 worklist->head = (uintptr_t)op;
81 }
82
83 static PyObject *
worklist_pop(struct worklist * worklist)84 worklist_pop(struct worklist *worklist)
85 {
86 PyObject *op = (PyObject *)worklist->head;
87 if (op != NULL) {
88 worklist->head = op->ob_tid;
89 _Py_atomic_store_uintptr_relaxed(&op->ob_tid, 0);
90 }
91 return op;
92 }
93
94 static void
worklist_iter_init(struct worklist_iter * iter,uintptr_t * next)95 worklist_iter_init(struct worklist_iter *iter, uintptr_t *next)
96 {
97 iter->ptr = next;
98 PyObject *op = (PyObject *)*(iter->ptr);
99 if (op) {
100 iter->next = &op->ob_tid;
101 }
102 }
103
104 static void
worklist_remove(struct worklist_iter * iter)105 worklist_remove(struct worklist_iter *iter)
106 {
107 PyObject *op = (PyObject *)*(iter->ptr);
108 *(iter->ptr) = op->ob_tid;
109 op->ob_tid = 0;
110 iter->next = iter->ptr;
111 }
112
113 static inline int
gc_is_frozen(PyObject * op)114 gc_is_frozen(PyObject *op)
115 {
116 return (op->ob_gc_bits & _PyGC_BITS_FROZEN) != 0;
117 }
118
119 static inline int
gc_is_unreachable(PyObject * op)120 gc_is_unreachable(PyObject *op)
121 {
122 return (op->ob_gc_bits & _PyGC_BITS_UNREACHABLE) != 0;
123 }
124
125 static void
gc_set_unreachable(PyObject * op)126 gc_set_unreachable(PyObject *op)
127 {
128 op->ob_gc_bits |= _PyGC_BITS_UNREACHABLE;
129 }
130
131 static void
gc_clear_unreachable(PyObject * op)132 gc_clear_unreachable(PyObject *op)
133 {
134 op->ob_gc_bits &= ~_PyGC_BITS_UNREACHABLE;
135 }
136
137 // Initialize the `ob_tid` field to zero if the object is not already
138 // initialized as unreachable.
139 static void
gc_maybe_init_refs(PyObject * op)140 gc_maybe_init_refs(PyObject *op)
141 {
142 if (!gc_is_unreachable(op)) {
143 gc_set_unreachable(op);
144 op->ob_tid = 0;
145 }
146 }
147
148 static inline Py_ssize_t
gc_get_refs(PyObject * op)149 gc_get_refs(PyObject *op)
150 {
151 return (Py_ssize_t)op->ob_tid;
152 }
153
154 static inline void
gc_add_refs(PyObject * op,Py_ssize_t refs)155 gc_add_refs(PyObject *op, Py_ssize_t refs)
156 {
157 assert(_PyObject_GC_IS_TRACKED(op));
158 op->ob_tid += refs;
159 }
160
161 static inline void
gc_decref(PyObject * op)162 gc_decref(PyObject *op)
163 {
164 op->ob_tid -= 1;
165 }
166
167 static void
disable_deferred_refcounting(PyObject * op)168 disable_deferred_refcounting(PyObject *op)
169 {
170 if (_PyObject_HasDeferredRefcount(op)) {
171 op->ob_gc_bits &= ~_PyGC_BITS_DEFERRED;
172 op->ob_ref_shared -= (1 << _Py_REF_SHARED_SHIFT);
173 }
174 }
175
176 static Py_ssize_t
merge_refcount(PyObject * op,Py_ssize_t extra)177 merge_refcount(PyObject *op, Py_ssize_t extra)
178 {
179 assert(_PyInterpreterState_GET()->stoptheworld.world_stopped);
180
181 Py_ssize_t refcount = Py_REFCNT(op);
182 refcount += extra;
183
184 #ifdef Py_REF_DEBUG
185 _Py_AddRefTotal(_PyThreadState_GET(), extra);
186 #endif
187
188 // No atomics necessary; all other threads in this interpreter are paused.
189 op->ob_tid = 0;
190 op->ob_ref_local = 0;
191 op->ob_ref_shared = _Py_REF_SHARED(refcount, _Py_REF_MERGED);
192 return refcount;
193 }
194
195 static void
gc_restore_tid(PyObject * op)196 gc_restore_tid(PyObject *op)
197 {
198 assert(_PyInterpreterState_GET()->stoptheworld.world_stopped);
199 mi_segment_t *segment = _mi_ptr_segment(op);
200 if (_Py_REF_IS_MERGED(op->ob_ref_shared)) {
201 op->ob_tid = 0;
202 }
203 else {
204 // NOTE: may change ob_tid if the object was re-initialized by
205 // a different thread or its segment was abandoned and reclaimed.
206 // The segment thread id might be zero, in which case we should
207 // ensure the refcounts are now merged.
208 op->ob_tid = segment->thread_id;
209 if (op->ob_tid == 0) {
210 merge_refcount(op, 0);
211 }
212 }
213 }
214
215 static void
gc_restore_refs(PyObject * op)216 gc_restore_refs(PyObject *op)
217 {
218 if (gc_is_unreachable(op)) {
219 gc_restore_tid(op);
220 gc_clear_unreachable(op);
221 }
222 }
223
224 // Given a mimalloc memory block return the PyObject stored in it or NULL if
225 // the block is not allocated or the object is not tracked or is immortal.
226 static PyObject *
op_from_block(void * block,void * arg,bool include_frozen)227 op_from_block(void *block, void *arg, bool include_frozen)
228 {
229 struct visitor_args *a = arg;
230 if (block == NULL) {
231 return NULL;
232 }
233 PyObject *op = (PyObject *)((char*)block + a->offset);
234 assert(PyObject_IS_GC(op));
235 if (!_PyObject_GC_IS_TRACKED(op)) {
236 return NULL;
237 }
238 if (!include_frozen && gc_is_frozen(op)) {
239 return NULL;
240 }
241 return op;
242 }
243
244 static int
gc_visit_heaps_lock_held(PyInterpreterState * interp,mi_block_visit_fun * visitor,struct visitor_args * arg)245 gc_visit_heaps_lock_held(PyInterpreterState *interp, mi_block_visit_fun *visitor,
246 struct visitor_args *arg)
247 {
248 // Offset of PyObject header from start of memory block.
249 Py_ssize_t offset_base = 0;
250 if (_PyMem_DebugEnabled()) {
251 // The debug allocator adds two words at the beginning of each block.
252 offset_base += 2 * sizeof(size_t);
253 }
254
255 // Objects with Py_TPFLAGS_PREHEADER have two extra fields
256 Py_ssize_t offset_pre = offset_base + 2 * sizeof(PyObject*);
257
258 // visit each thread's heaps for GC objects
259 for (PyThreadState *p = interp->threads.head; p != NULL; p = p->next) {
260 struct _mimalloc_thread_state *m = &((_PyThreadStateImpl *)p)->mimalloc;
261 if (!_Py_atomic_load_int(&m->initialized)) {
262 // The thread may not have called tstate_mimalloc_bind() yet.
263 continue;
264 }
265
266 arg->offset = offset_base;
267 if (!mi_heap_visit_blocks(&m->heaps[_Py_MIMALLOC_HEAP_GC], true,
268 visitor, arg)) {
269 return -1;
270 }
271 arg->offset = offset_pre;
272 if (!mi_heap_visit_blocks(&m->heaps[_Py_MIMALLOC_HEAP_GC_PRE], true,
273 visitor, arg)) {
274 return -1;
275 }
276 }
277
278 // visit blocks in the per-interpreter abandoned pool (from dead threads)
279 mi_abandoned_pool_t *pool = &interp->mimalloc.abandoned_pool;
280 arg->offset = offset_base;
281 if (!_mi_abandoned_pool_visit_blocks(pool, _Py_MIMALLOC_HEAP_GC, true,
282 visitor, arg)) {
283 return -1;
284 }
285 arg->offset = offset_pre;
286 if (!_mi_abandoned_pool_visit_blocks(pool, _Py_MIMALLOC_HEAP_GC_PRE, true,
287 visitor, arg)) {
288 return -1;
289 }
290 return 0;
291 }
292
293 // Visits all GC objects in the interpreter's heaps.
294 // NOTE: It is not safe to allocate or free any mimalloc managed memory while
295 // this function is running.
296 static int
gc_visit_heaps(PyInterpreterState * interp,mi_block_visit_fun * visitor,struct visitor_args * arg)297 gc_visit_heaps(PyInterpreterState *interp, mi_block_visit_fun *visitor,
298 struct visitor_args *arg)
299 {
300 // Other threads in the interpreter must be paused so that we can safely
301 // traverse their heaps.
302 assert(interp->stoptheworld.world_stopped);
303
304 int err;
305 HEAD_LOCK(&_PyRuntime);
306 err = gc_visit_heaps_lock_held(interp, visitor, arg);
307 HEAD_UNLOCK(&_PyRuntime);
308 return err;
309 }
310
311 static void
merge_queued_objects(_PyThreadStateImpl * tstate,struct collection_state * state)312 merge_queued_objects(_PyThreadStateImpl *tstate, struct collection_state *state)
313 {
314 struct _brc_thread_state *brc = &tstate->brc;
315 _PyObjectStack_Merge(&brc->local_objects_to_merge, &brc->objects_to_merge);
316
317 PyObject *op;
318 while ((op = _PyObjectStack_Pop(&brc->local_objects_to_merge)) != NULL) {
319 // Subtract one when merging because the queue had a reference.
320 Py_ssize_t refcount = merge_refcount(op, -1);
321
322 if (!_PyObject_GC_IS_TRACKED(op) && refcount == 0) {
323 // GC objects with zero refcount are handled subsequently by the
324 // GC as if they were cyclic trash, but we have to handle dead
325 // non-GC objects here. Add one to the refcount so that we can
326 // decref and deallocate the object once we start the world again.
327 op->ob_ref_shared += (1 << _Py_REF_SHARED_SHIFT);
328 #ifdef Py_REF_DEBUG
329 _Py_IncRefTotal(_PyThreadState_GET());
330 #endif
331 worklist_push(&state->objs_to_decref, op);
332 }
333 }
334 }
335
336 static void
merge_all_queued_objects(PyInterpreterState * interp,struct collection_state * state)337 merge_all_queued_objects(PyInterpreterState *interp, struct collection_state *state)
338 {
339 HEAD_LOCK(&_PyRuntime);
340 for (PyThreadState *p = interp->threads.head; p != NULL; p = p->next) {
341 merge_queued_objects((_PyThreadStateImpl *)p, state);
342 }
343 HEAD_UNLOCK(&_PyRuntime);
344 }
345
346 static void
process_delayed_frees(PyInterpreterState * interp)347 process_delayed_frees(PyInterpreterState *interp)
348 {
349 // While we are in a "stop the world" pause, we can observe the latest
350 // write sequence by advancing the write sequence immediately.
351 _Py_qsbr_advance(&interp->qsbr);
352 _PyThreadStateImpl *current_tstate = (_PyThreadStateImpl *)_PyThreadState_GET();
353 _Py_qsbr_quiescent_state(current_tstate->qsbr);
354
355 // Merge the queues from other threads into our own queue so that we can
356 // process all of the pending delayed free requests at once.
357 HEAD_LOCK(&_PyRuntime);
358 for (PyThreadState *p = interp->threads.head; p != NULL; p = p->next) {
359 _PyThreadStateImpl *other = (_PyThreadStateImpl *)p;
360 if (other != current_tstate) {
361 llist_concat(¤t_tstate->mem_free_queue, &other->mem_free_queue);
362 }
363 }
364 HEAD_UNLOCK(&_PyRuntime);
365
366 _PyMem_ProcessDelayed((PyThreadState *)current_tstate);
367 }
368
369 // Subtract an incoming reference from the computed "gc_refs" refcount.
370 static int
visit_decref(PyObject * op,void * arg)371 visit_decref(PyObject *op, void *arg)
372 {
373 if (_PyObject_GC_IS_TRACKED(op)
374 && !_Py_IsImmortal(op)
375 && !gc_is_frozen(op))
376 {
377 // If update_refs hasn't reached this object yet, mark it
378 // as (tentatively) unreachable and initialize ob_tid to zero.
379 gc_maybe_init_refs(op);
380 gc_decref(op);
381 }
382 return 0;
383 }
384
385 // Compute the number of external references to objects in the heap
386 // by subtracting internal references from the refcount. The difference is
387 // computed in the ob_tid field (we restore it later).
388 static bool
update_refs(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)389 update_refs(const mi_heap_t *heap, const mi_heap_area_t *area,
390 void *block, size_t block_size, void *args)
391 {
392 PyObject *op = op_from_block(block, args, false);
393 if (op == NULL) {
394 return true;
395 }
396
397 // Exclude immortal objects from garbage collection
398 if (_Py_IsImmortal(op)) {
399 op->ob_tid = 0;
400 _PyObject_GC_UNTRACK(op);
401 gc_clear_unreachable(op);
402 return true;
403 }
404
405 Py_ssize_t refcount = Py_REFCNT(op);
406 refcount -= _PyObject_HasDeferredRefcount(op);
407 _PyObject_ASSERT(op, refcount >= 0);
408
409 if (refcount > 0 && !_PyObject_HasDeferredRefcount(op)) {
410 // Untrack tuples and dicts as necessary in this pass, but not objects
411 // with zero refcount, which we will want to collect.
412 if (PyTuple_CheckExact(op)) {
413 _PyTuple_MaybeUntrack(op);
414 if (!_PyObject_GC_IS_TRACKED(op)) {
415 gc_restore_refs(op);
416 return true;
417 }
418 }
419 else if (PyDict_CheckExact(op)) {
420 _PyDict_MaybeUntrack(op);
421 if (!_PyObject_GC_IS_TRACKED(op)) {
422 gc_restore_refs(op);
423 return true;
424 }
425 }
426 }
427
428 // We repurpose ob_tid to compute "gc_refs", the number of external
429 // references to the object (i.e., from outside the GC heaps). This means
430 // that ob_tid is no longer a valid thread id until it is restored by
431 // scan_heap_visitor(). Until then, we cannot use the standard reference
432 // counting functions or allow other threads to run Python code.
433 gc_maybe_init_refs(op);
434
435 // Add the actual refcount to ob_tid.
436 gc_add_refs(op, refcount);
437
438 // Subtract internal references from ob_tid. Objects with ob_tid > 0
439 // are directly reachable from outside containers, and so can't be
440 // collected.
441 Py_TYPE(op)->tp_traverse(op, visit_decref, NULL);
442 return true;
443 }
444
445 static int
visit_clear_unreachable(PyObject * op,_PyObjectStack * stack)446 visit_clear_unreachable(PyObject *op, _PyObjectStack *stack)
447 {
448 if (gc_is_unreachable(op)) {
449 _PyObject_ASSERT(op, _PyObject_GC_IS_TRACKED(op));
450 gc_clear_unreachable(op);
451 return _PyObjectStack_Push(stack, op);
452 }
453 return 0;
454 }
455
456 // Transitively clear the unreachable bit on all objects reachable from op.
457 static int
mark_reachable(PyObject * op)458 mark_reachable(PyObject *op)
459 {
460 _PyObjectStack stack = { NULL };
461 do {
462 traverseproc traverse = Py_TYPE(op)->tp_traverse;
463 if (traverse(op, (visitproc)&visit_clear_unreachable, &stack) < 0) {
464 _PyObjectStack_Clear(&stack);
465 return -1;
466 }
467 op = _PyObjectStack_Pop(&stack);
468 } while (op != NULL);
469 return 0;
470 }
471
472 #ifdef GC_DEBUG
473 static bool
validate_refcounts(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)474 validate_refcounts(const mi_heap_t *heap, const mi_heap_area_t *area,
475 void *block, size_t block_size, void *args)
476 {
477 PyObject *op = op_from_block(block, args, false);
478 if (op == NULL) {
479 return true;
480 }
481
482 _PyObject_ASSERT_WITH_MSG(op, !gc_is_unreachable(op),
483 "object should not be marked as unreachable yet");
484
485 if (_Py_REF_IS_MERGED(op->ob_ref_shared)) {
486 _PyObject_ASSERT_WITH_MSG(op, op->ob_tid == 0,
487 "merged objects should have ob_tid == 0");
488 }
489 else if (!_Py_IsImmortal(op)) {
490 _PyObject_ASSERT_WITH_MSG(op, op->ob_tid != 0,
491 "unmerged objects should have ob_tid != 0");
492 }
493
494 return true;
495 }
496
497 static bool
validate_gc_objects(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)498 validate_gc_objects(const mi_heap_t *heap, const mi_heap_area_t *area,
499 void *block, size_t block_size, void *args)
500 {
501 PyObject *op = op_from_block(block, args, false);
502 if (op == NULL) {
503 return true;
504 }
505
506 _PyObject_ASSERT(op, gc_is_unreachable(op));
507 _PyObject_ASSERT_WITH_MSG(op, gc_get_refs(op) >= 0,
508 "refcount is too small");
509 return true;
510 }
511 #endif
512
513 static bool
mark_heap_visitor(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)514 mark_heap_visitor(const mi_heap_t *heap, const mi_heap_area_t *area,
515 void *block, size_t block_size, void *args)
516 {
517 PyObject *op = op_from_block(block, args, false);
518 if (op == NULL) {
519 return true;
520 }
521
522 _PyObject_ASSERT_WITH_MSG(op, gc_get_refs(op) >= 0,
523 "refcount is too small");
524
525 if (gc_is_unreachable(op) && gc_get_refs(op) != 0) {
526 // Object is reachable but currently marked as unreachable.
527 // Mark it as reachable and traverse its pointers to find
528 // any other object that may be directly reachable from it.
529 gc_clear_unreachable(op);
530
531 // Transitively mark reachable objects by clearing the unreachable flag.
532 if (mark_reachable(op) < 0) {
533 return false;
534 }
535 }
536
537 return true;
538 }
539
540 static bool
restore_refs(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)541 restore_refs(const mi_heap_t *heap, const mi_heap_area_t *area,
542 void *block, size_t block_size, void *args)
543 {
544 PyObject *op = op_from_block(block, args, false);
545 if (op == NULL) {
546 return true;
547 }
548 gc_restore_tid(op);
549 gc_clear_unreachable(op);
550 return true;
551 }
552
553 /* Return true if object has a pre-PEP 442 finalization method. */
554 static int
has_legacy_finalizer(PyObject * op)555 has_legacy_finalizer(PyObject *op)
556 {
557 return Py_TYPE(op)->tp_del != NULL;
558 }
559
560 static bool
scan_heap_visitor(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)561 scan_heap_visitor(const mi_heap_t *heap, const mi_heap_area_t *area,
562 void *block, size_t block_size, void *args)
563 {
564 PyObject *op = op_from_block(block, args, false);
565 if (op == NULL) {
566 return true;
567 }
568
569 struct collection_state *state = (struct collection_state *)args;
570 if (gc_is_unreachable(op)) {
571 // Disable deferred refcounting for unreachable objects so that they
572 // are collected immediately after finalization.
573 disable_deferred_refcounting(op);
574
575 // Merge and add one to the refcount to prevent deallocation while we
576 // are holding on to it in a worklist.
577 merge_refcount(op, 1);
578
579 if (has_legacy_finalizer(op)) {
580 // would be unreachable, but has legacy finalizer
581 gc_clear_unreachable(op);
582 worklist_push(&state->legacy_finalizers, op);
583 }
584 else {
585 worklist_push(&state->unreachable, op);
586 }
587 }
588 else {
589 // object is reachable, restore `ob_tid`; we're done with these objects
590 gc_restore_tid(op);
591 state->long_lived_total++;
592 }
593
594 return true;
595 }
596
597 static int
598 move_legacy_finalizer_reachable(struct collection_state *state);
599
600 static int
deduce_unreachable_heap(PyInterpreterState * interp,struct collection_state * state)601 deduce_unreachable_heap(PyInterpreterState *interp,
602 struct collection_state *state)
603 {
604
605 #ifdef GC_DEBUG
606 // Check that all objects are marked as unreachable and that the computed
607 // reference count difference (stored in `ob_tid`) is non-negative.
608 gc_visit_heaps(interp, &validate_refcounts, &state->base);
609 #endif
610
611 // Identify objects that are directly reachable from outside the GC heap
612 // by computing the difference between the refcount and the number of
613 // incoming references.
614 gc_visit_heaps(interp, &update_refs, &state->base);
615
616 #ifdef GC_DEBUG
617 // Check that all objects are marked as unreachable and that the computed
618 // reference count difference (stored in `ob_tid`) is non-negative.
619 gc_visit_heaps(interp, &validate_gc_objects, &state->base);
620 #endif
621
622 // Transitively mark reachable objects by clearing the
623 // _PyGC_BITS_UNREACHABLE flag.
624 if (gc_visit_heaps(interp, &mark_heap_visitor, &state->base) < 0) {
625 // On out-of-memory, restore the refcounts and bail out.
626 gc_visit_heaps(interp, &restore_refs, &state->base);
627 return -1;
628 }
629
630 // Identify remaining unreachable objects and push them onto a stack.
631 // Restores ob_tid for reachable objects.
632 gc_visit_heaps(interp, &scan_heap_visitor, &state->base);
633
634 if (state->legacy_finalizers.head) {
635 // There may be objects reachable from legacy finalizers that are in
636 // the unreachable set. We need to mark them as reachable.
637 if (move_legacy_finalizer_reachable(state) < 0) {
638 return -1;
639 }
640 }
641
642 return 0;
643 }
644
645 static int
move_legacy_finalizer_reachable(struct collection_state * state)646 move_legacy_finalizer_reachable(struct collection_state *state)
647 {
648 // Clear the reachable bit on all objects transitively reachable
649 // from the objects with legacy finalizers.
650 PyObject *op;
651 WORKSTACK_FOR_EACH(&state->legacy_finalizers, op) {
652 if (mark_reachable(op) < 0) {
653 return -1;
654 }
655 }
656
657 // Move the reachable objects from the unreachable worklist to the legacy
658 // finalizer worklist.
659 struct worklist_iter iter;
660 WORKSTACK_FOR_EACH_ITER(&state->unreachable, &iter, op) {
661 if (!gc_is_unreachable(op)) {
662 worklist_remove(&iter);
663 worklist_push(&state->legacy_finalizers, op);
664 }
665 }
666
667 return 0;
668 }
669
670 // Clear all weakrefs to unreachable objects. Weakrefs with callbacks are
671 // enqueued in `wrcb_to_call`, but not invoked yet.
672 static void
clear_weakrefs(struct collection_state * state)673 clear_weakrefs(struct collection_state *state)
674 {
675 PyObject *op;
676 WORKSTACK_FOR_EACH(&state->unreachable, op) {
677 if (PyWeakref_Check(op)) {
678 // Clear weakrefs that are themselves unreachable to ensure their
679 // callbacks will not be executed later from a `tp_clear()`
680 // inside delete_garbage(). That would be unsafe: it could
681 // resurrect a dead object or access a an already cleared object.
682 // See bpo-38006 for one example.
683 _PyWeakref_ClearRef((PyWeakReference *)op);
684 }
685
686 if (!_PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) {
687 continue;
688 }
689
690 // NOTE: This is never triggered for static types so we can avoid the
691 // (slightly) more costly _PyObject_GET_WEAKREFS_LISTPTR().
692 PyWeakReference **wrlist = _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(op);
693
694 // `op` may have some weakrefs. March over the list, clear
695 // all the weakrefs, and enqueue the weakrefs with callbacks
696 // that must be called into wrcb_to_call.
697 for (PyWeakReference *wr = *wrlist; wr != NULL; wr = *wrlist) {
698 // _PyWeakref_ClearRef clears the weakref but leaves
699 // the callback pointer intact. Obscure: it also
700 // changes *wrlist.
701 _PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
702 _PyWeakref_ClearRef(wr);
703 _PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
704
705 // We do not invoke callbacks for weakrefs that are themselves
706 // unreachable. This is partly for historical reasons: weakrefs
707 // predate safe object finalization, and a weakref that is itself
708 // unreachable may have a callback that resurrects other
709 // unreachable objects.
710 if (wr->wr_callback == NULL || gc_is_unreachable((PyObject *)wr)) {
711 continue;
712 }
713
714 // Create a new reference so that wr can't go away before we can
715 // process it again.
716 merge_refcount((PyObject *)wr, 1);
717
718 // Enqueue weakref to be called later.
719 worklist_push(&state->wrcb_to_call, (PyObject *)wr);
720 }
721 }
722 }
723
724 static void
call_weakref_callbacks(struct collection_state * state)725 call_weakref_callbacks(struct collection_state *state)
726 {
727 // Invoke the callbacks we decided to honor.
728 PyObject *op;
729 while ((op = worklist_pop(&state->wrcb_to_call)) != NULL) {
730 _PyObject_ASSERT(op, PyWeakref_Check(op));
731
732 PyWeakReference *wr = (PyWeakReference *)op;
733 PyObject *callback = wr->wr_callback;
734 _PyObject_ASSERT(op, callback != NULL);
735
736 /* copy-paste of weakrefobject.c's handle_callback() */
737 PyObject *temp = PyObject_CallOneArg(callback, (PyObject *)wr);
738 if (temp == NULL) {
739 PyErr_WriteUnraisable(callback);
740 }
741 else {
742 Py_DECREF(temp);
743 }
744
745 Py_DECREF(op); // drop worklist reference
746 }
747 }
748
749
750 static GCState *
get_gc_state(void)751 get_gc_state(void)
752 {
753 PyInterpreterState *interp = _PyInterpreterState_GET();
754 return &interp->gc;
755 }
756
757
758 void
_PyGC_InitState(GCState * gcstate)759 _PyGC_InitState(GCState *gcstate)
760 {
761 // TODO: move to pycore_runtime_init.h once the incremental GC lands.
762 gcstate->generations[0].threshold = 2000;
763 }
764
765
766 PyStatus
_PyGC_Init(PyInterpreterState * interp)767 _PyGC_Init(PyInterpreterState *interp)
768 {
769 GCState *gcstate = &interp->gc;
770
771 // gh-117783: immortalize objects that would use deferred refcounting
772 // once the first non-main thread is created (but not in subinterpreters).
773 gcstate->immortalize = _Py_IsMainInterpreter(interp) ? 0 : -1;
774
775 gcstate->garbage = PyList_New(0);
776 if (gcstate->garbage == NULL) {
777 return _PyStatus_NO_MEMORY();
778 }
779
780 gcstate->callbacks = PyList_New(0);
781 if (gcstate->callbacks == NULL) {
782 return _PyStatus_NO_MEMORY();
783 }
784
785 return _PyStatus_OK();
786 }
787
788 static void
debug_cycle(const char * msg,PyObject * op)789 debug_cycle(const char *msg, PyObject *op)
790 {
791 PySys_FormatStderr("gc: %s <%s %p>\n",
792 msg, Py_TYPE(op)->tp_name, op);
793 }
794
795 /* Run first-time finalizers (if any) on all the objects in collectable.
796 * Note that this may remove some (or even all) of the objects from the
797 * list, due to refcounts falling to 0.
798 */
799 static void
finalize_garbage(struct collection_state * state)800 finalize_garbage(struct collection_state *state)
801 {
802 // NOTE: the unreachable worklist holds a strong reference to the object
803 // to prevent it from being deallocated while we are holding on to it.
804 PyObject *op;
805 WORKSTACK_FOR_EACH(&state->unreachable, op) {
806 if (!_PyGC_FINALIZED(op)) {
807 destructor finalize = Py_TYPE(op)->tp_finalize;
808 if (finalize != NULL) {
809 _PyGC_SET_FINALIZED(op);
810 finalize(op);
811 assert(!_PyErr_Occurred(_PyThreadState_GET()));
812 }
813 }
814 }
815 }
816
817 // Break reference cycles by clearing the containers involved.
818 static void
delete_garbage(struct collection_state * state)819 delete_garbage(struct collection_state *state)
820 {
821 PyThreadState *tstate = _PyThreadState_GET();
822 GCState *gcstate = state->gcstate;
823
824 assert(!_PyErr_Occurred(tstate));
825
826 PyObject *op;
827 while ((op = worklist_pop(&state->objs_to_decref)) != NULL) {
828 Py_DECREF(op);
829 }
830
831 while ((op = worklist_pop(&state->unreachable)) != NULL) {
832 _PyObject_ASSERT(op, gc_is_unreachable(op));
833
834 // Clear the unreachable flag.
835 gc_clear_unreachable(op);
836
837 if (!_PyObject_GC_IS_TRACKED(op)) {
838 // Object might have been untracked by some other tp_clear() call.
839 Py_DECREF(op); // drop the reference from the worklist
840 continue;
841 }
842
843 state->collected++;
844
845 if (gcstate->debug & _PyGC_DEBUG_SAVEALL) {
846 assert(gcstate->garbage != NULL);
847 if (PyList_Append(gcstate->garbage, op) < 0) {
848 _PyErr_Clear(tstate);
849 }
850 }
851 else {
852 inquiry clear = Py_TYPE(op)->tp_clear;
853 if (clear != NULL) {
854 (void) clear(op);
855 if (_PyErr_Occurred(tstate)) {
856 PyErr_FormatUnraisable("Exception ignored in tp_clear of %s",
857 Py_TYPE(op)->tp_name);
858 }
859 }
860 }
861
862 Py_DECREF(op); // drop the reference from the worklist
863 }
864 }
865
866 static void
handle_legacy_finalizers(struct collection_state * state)867 handle_legacy_finalizers(struct collection_state *state)
868 {
869 GCState *gcstate = state->gcstate;
870 assert(gcstate->garbage != NULL);
871
872 PyObject *op;
873 while ((op = worklist_pop(&state->legacy_finalizers)) != NULL) {
874 state->uncollectable++;
875
876 if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
877 debug_cycle("uncollectable", op);
878 }
879
880 if ((gcstate->debug & _PyGC_DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
881 if (PyList_Append(gcstate->garbage, op) < 0) {
882 PyErr_Clear();
883 }
884 }
885 Py_DECREF(op); // drop worklist reference
886 }
887 }
888
889 // Show stats for objects in each generations
890 static void
show_stats_each_generations(GCState * gcstate)891 show_stats_each_generations(GCState *gcstate)
892 {
893 // TODO
894 }
895
896 // Traversal callback for handle_resurrected_objects.
897 static int
visit_decref_unreachable(PyObject * op,void * data)898 visit_decref_unreachable(PyObject *op, void *data)
899 {
900 if (gc_is_unreachable(op) && _PyObject_GC_IS_TRACKED(op)) {
901 op->ob_ref_local -= 1;
902 }
903 return 0;
904 }
905
906 // Handle objects that may have resurrected after a call to 'finalize_garbage'.
907 static int
handle_resurrected_objects(struct collection_state * state)908 handle_resurrected_objects(struct collection_state *state)
909 {
910 // First, find externally reachable objects by computing the reference
911 // count difference in ob_ref_local. We can't use ob_tid here because
912 // that's already used to store the unreachable worklist.
913 PyObject *op;
914 struct worklist_iter iter;
915 WORKSTACK_FOR_EACH_ITER(&state->unreachable, &iter, op) {
916 assert(gc_is_unreachable(op));
917 assert(_Py_REF_IS_MERGED(op->ob_ref_shared));
918
919 if (!_PyObject_GC_IS_TRACKED(op)) {
920 // Object was untracked by a finalizer. Schedule it for a Py_DECREF
921 // after we finish with the stop-the-world pause.
922 gc_clear_unreachable(op);
923 worklist_remove(&iter);
924 worklist_push(&state->objs_to_decref, op);
925 continue;
926 }
927
928 Py_ssize_t refcount = (op->ob_ref_shared >> _Py_REF_SHARED_SHIFT);
929 if (refcount > INT32_MAX) {
930 // The refcount is too big to fit in `ob_ref_local`. Mark the
931 // object as immortal and bail out.
932 gc_clear_unreachable(op);
933 worklist_remove(&iter);
934 _Py_SetImmortal(op);
935 continue;
936 }
937
938 op->ob_ref_local += (uint32_t)refcount;
939
940 // Subtract one to account for the reference from the worklist.
941 op->ob_ref_local -= 1;
942
943 traverseproc traverse = Py_TYPE(op)->tp_traverse;
944 (void) traverse(op,
945 (visitproc)visit_decref_unreachable,
946 NULL);
947 }
948
949 // Find resurrected objects
950 bool any_resurrected = false;
951 WORKSTACK_FOR_EACH(&state->unreachable, op) {
952 int32_t gc_refs = (int32_t)op->ob_ref_local;
953 op->ob_ref_local = 0; // restore ob_ref_local
954
955 _PyObject_ASSERT(op, gc_refs >= 0);
956
957 if (gc_is_unreachable(op) && gc_refs > 0) {
958 // Clear the unreachable flag on any transitively reachable objects
959 // from this one.
960 any_resurrected = true;
961 gc_clear_unreachable(op);
962 if (mark_reachable(op) < 0) {
963 return -1;
964 }
965 }
966 }
967
968 if (any_resurrected) {
969 // Remove resurrected objects from the unreachable list.
970 WORKSTACK_FOR_EACH_ITER(&state->unreachable, &iter, op) {
971 if (!gc_is_unreachable(op)) {
972 _PyObject_ASSERT(op, Py_REFCNT(op) > 1);
973 worklist_remove(&iter);
974 merge_refcount(op, -1); // remove worklist reference
975 }
976 }
977 }
978
979 #ifdef GC_DEBUG
980 WORKSTACK_FOR_EACH(&state->unreachable, op) {
981 _PyObject_ASSERT(op, gc_is_unreachable(op));
982 _PyObject_ASSERT(op, _PyObject_GC_IS_TRACKED(op));
983 _PyObject_ASSERT(op, op->ob_ref_local == 0);
984 _PyObject_ASSERT(op, _Py_REF_IS_MERGED(op->ob_ref_shared));
985 }
986 #endif
987
988 return 0;
989 }
990
991
992 /* Invoke progress callbacks to notify clients that garbage collection
993 * is starting or stopping
994 */
995 static void
invoke_gc_callback(PyThreadState * tstate,const char * phase,int generation,Py_ssize_t collected,Py_ssize_t uncollectable)996 invoke_gc_callback(PyThreadState *tstate, const char *phase,
997 int generation, Py_ssize_t collected,
998 Py_ssize_t uncollectable)
999 {
1000 assert(!_PyErr_Occurred(tstate));
1001
1002 /* we may get called very early */
1003 GCState *gcstate = &tstate->interp->gc;
1004 if (gcstate->callbacks == NULL) {
1005 return;
1006 }
1007
1008 /* The local variable cannot be rebound, check it for sanity */
1009 assert(PyList_CheckExact(gcstate->callbacks));
1010 PyObject *info = NULL;
1011 if (PyList_GET_SIZE(gcstate->callbacks) != 0) {
1012 info = Py_BuildValue("{sisnsn}",
1013 "generation", generation,
1014 "collected", collected,
1015 "uncollectable", uncollectable);
1016 if (info == NULL) {
1017 PyErr_FormatUnraisable("Exception ignored on invoking gc callbacks");
1018 return;
1019 }
1020 }
1021
1022 PyObject *phase_obj = PyUnicode_FromString(phase);
1023 if (phase_obj == NULL) {
1024 Py_XDECREF(info);
1025 PyErr_FormatUnraisable("Exception ignored on invoking gc callbacks");
1026 return;
1027 }
1028
1029 PyObject *stack[] = {phase_obj, info};
1030 for (Py_ssize_t i=0; i<PyList_GET_SIZE(gcstate->callbacks); i++) {
1031 PyObject *r, *cb = PyList_GET_ITEM(gcstate->callbacks, i);
1032 Py_INCREF(cb); /* make sure cb doesn't go away */
1033 r = PyObject_Vectorcall(cb, stack, 2, NULL);
1034 if (r == NULL) {
1035 PyErr_WriteUnraisable(cb);
1036 }
1037 else {
1038 Py_DECREF(r);
1039 }
1040 Py_DECREF(cb);
1041 }
1042 Py_DECREF(phase_obj);
1043 Py_XDECREF(info);
1044 assert(!_PyErr_Occurred(tstate));
1045 }
1046
1047 static void
cleanup_worklist(struct worklist * worklist)1048 cleanup_worklist(struct worklist *worklist)
1049 {
1050 PyObject *op;
1051 while ((op = worklist_pop(worklist)) != NULL) {
1052 gc_clear_unreachable(op);
1053 Py_DECREF(op);
1054 }
1055 }
1056
1057 static bool
gc_should_collect(GCState * gcstate)1058 gc_should_collect(GCState *gcstate)
1059 {
1060 int count = _Py_atomic_load_int_relaxed(&gcstate->generations[0].count);
1061 int threshold = gcstate->generations[0].threshold;
1062 if (count <= threshold || threshold == 0 || !gcstate->enabled) {
1063 return false;
1064 }
1065 // Avoid quadratic behavior by scaling threshold to the number of live
1066 // objects. A few tests rely on immediate scheduling of the GC so we ignore
1067 // the scaled threshold if generations[1].threshold is set to zero.
1068 return (count > gcstate->long_lived_total / 4 ||
1069 gcstate->generations[1].threshold == 0);
1070 }
1071
1072 static void
record_allocation(PyThreadState * tstate)1073 record_allocation(PyThreadState *tstate)
1074 {
1075 struct _gc_thread_state *gc = &((_PyThreadStateImpl *)tstate)->gc;
1076
1077 // We buffer the allocation count to avoid the overhead of atomic
1078 // operations for every allocation.
1079 gc->alloc_count++;
1080 if (gc->alloc_count >= LOCAL_ALLOC_COUNT_THRESHOLD) {
1081 // TODO: Use Py_ssize_t for the generation count.
1082 GCState *gcstate = &tstate->interp->gc;
1083 _Py_atomic_add_int(&gcstate->generations[0].count, (int)gc->alloc_count);
1084 gc->alloc_count = 0;
1085
1086 if (gc_should_collect(gcstate) &&
1087 !_Py_atomic_load_int_relaxed(&gcstate->collecting))
1088 {
1089 _Py_ScheduleGC(tstate);
1090 }
1091 }
1092 }
1093
1094 static void
record_deallocation(PyThreadState * tstate)1095 record_deallocation(PyThreadState *tstate)
1096 {
1097 struct _gc_thread_state *gc = &((_PyThreadStateImpl *)tstate)->gc;
1098
1099 gc->alloc_count--;
1100 if (gc->alloc_count <= -LOCAL_ALLOC_COUNT_THRESHOLD) {
1101 GCState *gcstate = &tstate->interp->gc;
1102 _Py_atomic_add_int(&gcstate->generations[0].count, (int)gc->alloc_count);
1103 gc->alloc_count = 0;
1104 }
1105 }
1106
1107 static void
gc_collect_internal(PyInterpreterState * interp,struct collection_state * state,int generation)1108 gc_collect_internal(PyInterpreterState *interp, struct collection_state *state, int generation)
1109 {
1110 _PyEval_StopTheWorld(interp);
1111
1112 // update collection and allocation counters
1113 if (generation+1 < NUM_GENERATIONS) {
1114 state->gcstate->generations[generation+1].count += 1;
1115 }
1116 for (int i = 0; i <= generation; i++) {
1117 state->gcstate->generations[i].count = 0;
1118 }
1119
1120 // merge refcounts for all queued objects
1121 merge_all_queued_objects(interp, state);
1122 process_delayed_frees(interp);
1123
1124 // Find unreachable objects
1125 int err = deduce_unreachable_heap(interp, state);
1126 if (err < 0) {
1127 _PyEval_StartTheWorld(interp);
1128 PyErr_NoMemory();
1129 return;
1130 }
1131
1132 // Print debugging information.
1133 if (interp->gc.debug & _PyGC_DEBUG_COLLECTABLE) {
1134 PyObject *op;
1135 WORKSTACK_FOR_EACH(&state->unreachable, op) {
1136 debug_cycle("collectable", op);
1137 }
1138 }
1139
1140 // Record the number of live GC objects
1141 interp->gc.long_lived_total = state->long_lived_total;
1142
1143 // Clear weakrefs and enqueue callbacks (but do not call them).
1144 clear_weakrefs(state);
1145 _PyEval_StartTheWorld(interp);
1146
1147 // Deallocate any object from the refcount merge step
1148 cleanup_worklist(&state->objs_to_decref);
1149
1150 // Call weakref callbacks and finalizers after unpausing other threads to
1151 // avoid potential deadlocks.
1152 call_weakref_callbacks(state);
1153 finalize_garbage(state);
1154
1155 // Handle any objects that may have resurrected after the finalization.
1156 _PyEval_StopTheWorld(interp);
1157 err = handle_resurrected_objects(state);
1158 // Clear free lists in all threads
1159 _PyGC_ClearAllFreeLists(interp);
1160 _PyEval_StartTheWorld(interp);
1161
1162 if (err < 0) {
1163 cleanup_worklist(&state->unreachable);
1164 cleanup_worklist(&state->legacy_finalizers);
1165 cleanup_worklist(&state->wrcb_to_call);
1166 cleanup_worklist(&state->objs_to_decref);
1167 PyErr_NoMemory();
1168 return;
1169 }
1170
1171 // Call tp_clear on objects in the unreachable set. This will cause
1172 // the reference cycles to be broken. It may also cause some objects
1173 // to be freed.
1174 delete_garbage(state);
1175
1176 // Append objects with legacy finalizers to the "gc.garbage" list.
1177 handle_legacy_finalizers(state);
1178 }
1179
1180 /* This is the main function. Read this to understand how the
1181 * collection process works. */
1182 static Py_ssize_t
gc_collect_main(PyThreadState * tstate,int generation,_PyGC_Reason reason)1183 gc_collect_main(PyThreadState *tstate, int generation, _PyGC_Reason reason)
1184 {
1185 Py_ssize_t m = 0; /* # objects collected */
1186 Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
1187 PyTime_t t1 = 0; /* initialize to prevent a compiler warning */
1188 GCState *gcstate = &tstate->interp->gc;
1189
1190 // gc_collect_main() must not be called before _PyGC_Init
1191 // or after _PyGC_Fini()
1192 assert(gcstate->garbage != NULL);
1193 assert(!_PyErr_Occurred(tstate));
1194
1195 int expected = 0;
1196 if (!_Py_atomic_compare_exchange_int(&gcstate->collecting, &expected, 1)) {
1197 // Don't start a garbage collection if one is already in progress.
1198 return 0;
1199 }
1200
1201 if (reason == _Py_GC_REASON_HEAP && !gc_should_collect(gcstate)) {
1202 // Don't collect if the threshold is not exceeded.
1203 _Py_atomic_store_int(&gcstate->collecting, 0);
1204 return 0;
1205 }
1206
1207 assert(generation >= 0 && generation < NUM_GENERATIONS);
1208
1209 #ifdef Py_STATS
1210 if (_Py_stats) {
1211 _Py_stats->object_stats.object_visits = 0;
1212 }
1213 #endif
1214 GC_STAT_ADD(generation, collections, 1);
1215
1216 if (reason != _Py_GC_REASON_SHUTDOWN) {
1217 invoke_gc_callback(tstate, "start", generation, 0, 0);
1218 }
1219
1220 if (gcstate->debug & _PyGC_DEBUG_STATS) {
1221 PySys_WriteStderr("gc: collecting generation %d...\n", generation);
1222 show_stats_each_generations(gcstate);
1223 // ignore error: don't interrupt the GC if reading the clock fails
1224 (void)PyTime_PerfCounterRaw(&t1);
1225 }
1226
1227 if (PyDTrace_GC_START_ENABLED()) {
1228 PyDTrace_GC_START(generation);
1229 }
1230
1231 PyInterpreterState *interp = tstate->interp;
1232
1233 struct collection_state state = {
1234 .interp = interp,
1235 .gcstate = gcstate,
1236 };
1237
1238 gc_collect_internal(interp, &state, generation);
1239
1240 m = state.collected;
1241 n = state.uncollectable;
1242
1243 if (gcstate->debug & _PyGC_DEBUG_STATS) {
1244 PyTime_t t2;
1245 (void)PyTime_PerfCounterRaw(&t2);
1246 double d = PyTime_AsSecondsDouble(t2 - t1);
1247 PySys_WriteStderr(
1248 "gc: done, %zd unreachable, %zd uncollectable, %.4fs elapsed\n",
1249 n+m, n, d);
1250 }
1251
1252 // Clear the current thread's free-list again.
1253 _PyThreadStateImpl *tstate_impl = (_PyThreadStateImpl *)tstate;
1254 _PyObject_ClearFreeLists(&tstate_impl->freelists, 0);
1255
1256 if (_PyErr_Occurred(tstate)) {
1257 if (reason == _Py_GC_REASON_SHUTDOWN) {
1258 _PyErr_Clear(tstate);
1259 }
1260 else {
1261 PyErr_FormatUnraisable("Exception ignored in garbage collection");
1262 }
1263 }
1264
1265 /* Update stats */
1266 struct gc_generation_stats *stats = &gcstate->generation_stats[generation];
1267 stats->collections++;
1268 stats->collected += m;
1269 stats->uncollectable += n;
1270
1271 GC_STAT_ADD(generation, objects_collected, m);
1272 #ifdef Py_STATS
1273 if (_Py_stats) {
1274 GC_STAT_ADD(generation, object_visits,
1275 _Py_stats->object_stats.object_visits);
1276 _Py_stats->object_stats.object_visits = 0;
1277 }
1278 #endif
1279
1280 if (PyDTrace_GC_DONE_ENABLED()) {
1281 PyDTrace_GC_DONE(n + m);
1282 }
1283
1284 if (reason != _Py_GC_REASON_SHUTDOWN) {
1285 invoke_gc_callback(tstate, "stop", generation, m, n);
1286 }
1287
1288 assert(!_PyErr_Occurred(tstate));
1289 _Py_atomic_store_int(&gcstate->collecting, 0);
1290 return n + m;
1291 }
1292
1293 static PyObject *
list_from_object_stack(_PyObjectStack * stack)1294 list_from_object_stack(_PyObjectStack *stack)
1295 {
1296 PyObject *list = PyList_New(_PyObjectStack_Size(stack));
1297 if (list == NULL) {
1298 PyObject *op;
1299 while ((op = _PyObjectStack_Pop(stack)) != NULL) {
1300 Py_DECREF(op);
1301 }
1302 return NULL;
1303 }
1304
1305 PyObject *op;
1306 Py_ssize_t idx = 0;
1307 while ((op = _PyObjectStack_Pop(stack)) != NULL) {
1308 assert(idx < PyList_GET_SIZE(list));
1309 PyList_SET_ITEM(list, idx++, op);
1310 }
1311 assert(idx == PyList_GET_SIZE(list));
1312 return list;
1313 }
1314
1315 struct get_referrers_args {
1316 struct visitor_args base;
1317 PyObject *objs;
1318 _PyObjectStack results;
1319 };
1320
1321 static int
referrersvisit(PyObject * obj,void * arg)1322 referrersvisit(PyObject* obj, void *arg)
1323 {
1324 PyObject *objs = arg;
1325 Py_ssize_t i;
1326 for (i = 0; i < PyTuple_GET_SIZE(objs); i++) {
1327 if (PyTuple_GET_ITEM(objs, i) == obj) {
1328 return 1;
1329 }
1330 }
1331 return 0;
1332 }
1333
1334 static bool
visit_get_referrers(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)1335 visit_get_referrers(const mi_heap_t *heap, const mi_heap_area_t *area,
1336 void *block, size_t block_size, void *args)
1337 {
1338 PyObject *op = op_from_block(block, args, true);
1339 if (op == NULL) {
1340 return true;
1341 }
1342 if (op->ob_gc_bits & (_PyGC_BITS_UNREACHABLE | _PyGC_BITS_FROZEN)) {
1343 // Exclude unreachable objects (in-progress GC) and frozen
1344 // objects from gc.get_objects() to match the default build.
1345 return true;
1346 }
1347
1348 struct get_referrers_args *arg = (struct get_referrers_args *)args;
1349 if (op == arg->objs) {
1350 // Don't include the tuple itself in the referrers list.
1351 return true;
1352 }
1353 if (Py_TYPE(op)->tp_traverse(op, referrersvisit, arg->objs)) {
1354 if (_PyObjectStack_Push(&arg->results, Py_NewRef(op)) < 0) {
1355 return false;
1356 }
1357 }
1358
1359 return true;
1360 }
1361
1362 PyObject *
_PyGC_GetReferrers(PyInterpreterState * interp,PyObject * objs)1363 _PyGC_GetReferrers(PyInterpreterState *interp, PyObject *objs)
1364 {
1365 // NOTE: We can't append to the PyListObject during gc_visit_heaps()
1366 // because PyList_Append() may reclaim an abandoned mimalloc segments
1367 // while we are traversing them.
1368 struct get_referrers_args args = { .objs = objs };
1369 _PyEval_StopTheWorld(interp);
1370 int err = gc_visit_heaps(interp, &visit_get_referrers, &args.base);
1371 _PyEval_StartTheWorld(interp);
1372
1373 PyObject *list = list_from_object_stack(&args.results);
1374 if (err < 0) {
1375 PyErr_NoMemory();
1376 Py_CLEAR(list);
1377 }
1378 return list;
1379 }
1380
1381 struct get_objects_args {
1382 struct visitor_args base;
1383 _PyObjectStack objects;
1384 };
1385
1386 static bool
visit_get_objects(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)1387 visit_get_objects(const mi_heap_t *heap, const mi_heap_area_t *area,
1388 void *block, size_t block_size, void *args)
1389 {
1390 PyObject *op = op_from_block(block, args, true);
1391 if (op == NULL) {
1392 return true;
1393 }
1394 if (op->ob_gc_bits & (_PyGC_BITS_UNREACHABLE | _PyGC_BITS_FROZEN)) {
1395 // Exclude unreachable objects (in-progress GC) and frozen
1396 // objects from gc.get_objects() to match the default build.
1397 return true;
1398 }
1399
1400 struct get_objects_args *arg = (struct get_objects_args *)args;
1401 if (_PyObjectStack_Push(&arg->objects, Py_NewRef(op)) < 0) {
1402 return false;
1403 }
1404 return true;
1405 }
1406
1407 PyObject *
_PyGC_GetObjects(PyInterpreterState * interp,int generation)1408 _PyGC_GetObjects(PyInterpreterState *interp, int generation)
1409 {
1410 // NOTE: We can't append to the PyListObject during gc_visit_heaps()
1411 // because PyList_Append() may reclaim an abandoned mimalloc segments
1412 // while we are traversing them.
1413 struct get_objects_args args = { 0 };
1414 _PyEval_StopTheWorld(interp);
1415 int err = gc_visit_heaps(interp, &visit_get_objects, &args.base);
1416 _PyEval_StartTheWorld(interp);
1417
1418 PyObject *list = list_from_object_stack(&args.objects);
1419 if (err < 0) {
1420 PyErr_NoMemory();
1421 Py_CLEAR(list);
1422 }
1423 return list;
1424 }
1425
1426 static bool
visit_freeze(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)1427 visit_freeze(const mi_heap_t *heap, const mi_heap_area_t *area,
1428 void *block, size_t block_size, void *args)
1429 {
1430 PyObject *op = op_from_block(block, args, true);
1431 if (op != NULL && !gc_is_unreachable(op)) {
1432 op->ob_gc_bits |= _PyGC_BITS_FROZEN;
1433 }
1434 return true;
1435 }
1436
1437 void
_PyGC_Freeze(PyInterpreterState * interp)1438 _PyGC_Freeze(PyInterpreterState *interp)
1439 {
1440 struct visitor_args args;
1441 _PyEval_StopTheWorld(interp);
1442 gc_visit_heaps(interp, &visit_freeze, &args);
1443 _PyEval_StartTheWorld(interp);
1444 }
1445
1446 static bool
visit_unfreeze(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)1447 visit_unfreeze(const mi_heap_t *heap, const mi_heap_area_t *area,
1448 void *block, size_t block_size, void *args)
1449 {
1450 PyObject *op = op_from_block(block, args, true);
1451 if (op != NULL) {
1452 op->ob_gc_bits &= ~_PyGC_BITS_FROZEN;
1453 }
1454 return true;
1455 }
1456
1457 void
_PyGC_Unfreeze(PyInterpreterState * interp)1458 _PyGC_Unfreeze(PyInterpreterState *interp)
1459 {
1460 struct visitor_args args;
1461 _PyEval_StopTheWorld(interp);
1462 gc_visit_heaps(interp, &visit_unfreeze, &args);
1463 _PyEval_StartTheWorld(interp);
1464 }
1465
1466 struct count_frozen_args {
1467 struct visitor_args base;
1468 Py_ssize_t count;
1469 };
1470
1471 static bool
visit_count_frozen(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)1472 visit_count_frozen(const mi_heap_t *heap, const mi_heap_area_t *area,
1473 void *block, size_t block_size, void *args)
1474 {
1475 PyObject *op = op_from_block(block, args, true);
1476 if (op != NULL && gc_is_frozen(op)) {
1477 struct count_frozen_args *arg = (struct count_frozen_args *)args;
1478 arg->count++;
1479 }
1480 return true;
1481 }
1482
1483 Py_ssize_t
_PyGC_GetFreezeCount(PyInterpreterState * interp)1484 _PyGC_GetFreezeCount(PyInterpreterState *interp)
1485 {
1486 struct count_frozen_args args = { .count = 0 };
1487 _PyEval_StopTheWorld(interp);
1488 gc_visit_heaps(interp, &visit_count_frozen, &args.base);
1489 _PyEval_StartTheWorld(interp);
1490 return args.count;
1491 }
1492
1493 /* C API for controlling the state of the garbage collector */
1494 int
PyGC_Enable(void)1495 PyGC_Enable(void)
1496 {
1497 GCState *gcstate = get_gc_state();
1498 int old_state = gcstate->enabled;
1499 gcstate->enabled = 1;
1500 return old_state;
1501 }
1502
1503 int
PyGC_Disable(void)1504 PyGC_Disable(void)
1505 {
1506 GCState *gcstate = get_gc_state();
1507 int old_state = gcstate->enabled;
1508 gcstate->enabled = 0;
1509 return old_state;
1510 }
1511
1512 int
PyGC_IsEnabled(void)1513 PyGC_IsEnabled(void)
1514 {
1515 GCState *gcstate = get_gc_state();
1516 return gcstate->enabled;
1517 }
1518
1519 /* Public API to invoke gc.collect() from C */
1520 Py_ssize_t
PyGC_Collect(void)1521 PyGC_Collect(void)
1522 {
1523 PyThreadState *tstate = _PyThreadState_GET();
1524 GCState *gcstate = &tstate->interp->gc;
1525
1526 if (!gcstate->enabled) {
1527 return 0;
1528 }
1529
1530 Py_ssize_t n;
1531 PyObject *exc = _PyErr_GetRaisedException(tstate);
1532 n = gc_collect_main(tstate, NUM_GENERATIONS - 1, _Py_GC_REASON_MANUAL);
1533 _PyErr_SetRaisedException(tstate, exc);
1534
1535 return n;
1536 }
1537
1538 Py_ssize_t
_PyGC_Collect(PyThreadState * tstate,int generation,_PyGC_Reason reason)1539 _PyGC_Collect(PyThreadState *tstate, int generation, _PyGC_Reason reason)
1540 {
1541 return gc_collect_main(tstate, generation, reason);
1542 }
1543
1544 void
_PyGC_CollectNoFail(PyThreadState * tstate)1545 _PyGC_CollectNoFail(PyThreadState *tstate)
1546 {
1547 /* Ideally, this function is only called on interpreter shutdown,
1548 and therefore not recursively. Unfortunately, when there are daemon
1549 threads, a daemon thread can start a cyclic garbage collection
1550 during interpreter shutdown (and then never finish it).
1551 See http://bugs.python.org/issue8713#msg195178 for an example.
1552 */
1553 gc_collect_main(tstate, NUM_GENERATIONS - 1, _Py_GC_REASON_SHUTDOWN);
1554 }
1555
1556 void
_PyGC_DumpShutdownStats(PyInterpreterState * interp)1557 _PyGC_DumpShutdownStats(PyInterpreterState *interp)
1558 {
1559 GCState *gcstate = &interp->gc;
1560 if (!(gcstate->debug & _PyGC_DEBUG_SAVEALL)
1561 && gcstate->garbage != NULL && PyList_GET_SIZE(gcstate->garbage) > 0) {
1562 const char *message;
1563 if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
1564 message = "gc: %zd uncollectable objects at shutdown";
1565 }
1566 else {
1567 message = "gc: %zd uncollectable objects at shutdown; " \
1568 "use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them";
1569 }
1570 /* PyErr_WarnFormat does too many things and we are at shutdown,
1571 the warnings module's dependencies (e.g. linecache) may be gone
1572 already. */
1573 if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
1574 "gc", NULL, message,
1575 PyList_GET_SIZE(gcstate->garbage)))
1576 {
1577 PyErr_WriteUnraisable(NULL);
1578 }
1579 if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
1580 PyObject *repr = NULL, *bytes = NULL;
1581 repr = PyObject_Repr(gcstate->garbage);
1582 if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr))) {
1583 PyErr_WriteUnraisable(gcstate->garbage);
1584 }
1585 else {
1586 PySys_WriteStderr(
1587 " %s\n",
1588 PyBytes_AS_STRING(bytes)
1589 );
1590 }
1591 Py_XDECREF(repr);
1592 Py_XDECREF(bytes);
1593 }
1594 }
1595 }
1596
1597
1598 void
_PyGC_Fini(PyInterpreterState * interp)1599 _PyGC_Fini(PyInterpreterState *interp)
1600 {
1601 GCState *gcstate = &interp->gc;
1602 Py_CLEAR(gcstate->garbage);
1603 Py_CLEAR(gcstate->callbacks);
1604
1605 /* We expect that none of this interpreters objects are shared
1606 with other interpreters.
1607 See https://github.com/python/cpython/issues/90228. */
1608 }
1609
1610 /* for debugging */
1611
1612 #ifdef Py_DEBUG
1613 static int
visit_validate(PyObject * op,void * parent_raw)1614 visit_validate(PyObject *op, void *parent_raw)
1615 {
1616 PyObject *parent = _PyObject_CAST(parent_raw);
1617 if (_PyObject_IsFreed(op)) {
1618 _PyObject_ASSERT_FAILED_MSG(parent,
1619 "PyObject_GC_Track() object is not valid");
1620 }
1621 return 0;
1622 }
1623 #endif
1624
1625
1626 /* extension modules might be compiled with GC support so these
1627 functions must always be available */
1628
1629 void
PyObject_GC_Track(void * op_raw)1630 PyObject_GC_Track(void *op_raw)
1631 {
1632 PyObject *op = _PyObject_CAST(op_raw);
1633 if (_PyObject_GC_IS_TRACKED(op)) {
1634 _PyObject_ASSERT_FAILED_MSG(op,
1635 "object already tracked "
1636 "by the garbage collector");
1637 }
1638 _PyObject_GC_TRACK(op);
1639
1640 #ifdef Py_DEBUG
1641 /* Check that the object is valid: validate objects traversed
1642 by tp_traverse() */
1643 traverseproc traverse = Py_TYPE(op)->tp_traverse;
1644 (void)traverse(op, visit_validate, op);
1645 #endif
1646 }
1647
1648 void
PyObject_GC_UnTrack(void * op_raw)1649 PyObject_GC_UnTrack(void *op_raw)
1650 {
1651 PyObject *op = _PyObject_CAST(op_raw);
1652 /* Obscure: the Py_TRASHCAN mechanism requires that we be able to
1653 * call PyObject_GC_UnTrack twice on an object.
1654 */
1655 if (_PyObject_GC_IS_TRACKED(op)) {
1656 _PyObject_GC_UNTRACK(op);
1657 }
1658 }
1659
1660 int
PyObject_IS_GC(PyObject * obj)1661 PyObject_IS_GC(PyObject *obj)
1662 {
1663 return _PyObject_IS_GC(obj);
1664 }
1665
1666 void
_Py_ScheduleGC(PyThreadState * tstate)1667 _Py_ScheduleGC(PyThreadState *tstate)
1668 {
1669 if (!_Py_eval_breaker_bit_is_set(tstate, _PY_GC_SCHEDULED_BIT))
1670 {
1671 _Py_set_eval_breaker_bit(tstate, _PY_GC_SCHEDULED_BIT);
1672 }
1673 }
1674
1675 void
_PyObject_GC_Link(PyObject * op)1676 _PyObject_GC_Link(PyObject *op)
1677 {
1678 record_allocation(_PyThreadState_GET());
1679 }
1680
1681 void
_Py_RunGC(PyThreadState * tstate)1682 _Py_RunGC(PyThreadState *tstate)
1683 {
1684 GCState *gcstate = get_gc_state();
1685 if (!gcstate->enabled) {
1686 return;
1687 }
1688 gc_collect_main(tstate, 0, _Py_GC_REASON_HEAP);
1689 }
1690
1691 static PyObject *
gc_alloc(PyTypeObject * tp,size_t basicsize,size_t presize)1692 gc_alloc(PyTypeObject *tp, size_t basicsize, size_t presize)
1693 {
1694 PyThreadState *tstate = _PyThreadState_GET();
1695 if (basicsize > PY_SSIZE_T_MAX - presize) {
1696 return _PyErr_NoMemory(tstate);
1697 }
1698 size_t size = presize + basicsize;
1699 char *mem = _PyObject_MallocWithType(tp, size);
1700 if (mem == NULL) {
1701 return _PyErr_NoMemory(tstate);
1702 }
1703 if (presize) {
1704 ((PyObject **)mem)[0] = NULL;
1705 ((PyObject **)mem)[1] = NULL;
1706 }
1707 PyObject *op = (PyObject *)(mem + presize);
1708 record_allocation(tstate);
1709 return op;
1710 }
1711
1712 PyObject *
_PyObject_GC_New(PyTypeObject * tp)1713 _PyObject_GC_New(PyTypeObject *tp)
1714 {
1715 size_t presize = _PyType_PreHeaderSize(tp);
1716 size_t size = _PyObject_SIZE(tp);
1717 if (_PyType_HasFeature(tp, Py_TPFLAGS_INLINE_VALUES)) {
1718 size += _PyInlineValuesSize(tp);
1719 }
1720 PyObject *op = gc_alloc(tp, size, presize);
1721 if (op == NULL) {
1722 return NULL;
1723 }
1724 _PyObject_Init(op, tp);
1725 return op;
1726 }
1727
1728 PyVarObject *
_PyObject_GC_NewVar(PyTypeObject * tp,Py_ssize_t nitems)1729 _PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
1730 {
1731 PyVarObject *op;
1732
1733 if (nitems < 0) {
1734 PyErr_BadInternalCall();
1735 return NULL;
1736 }
1737 size_t presize = _PyType_PreHeaderSize(tp);
1738 size_t size = _PyObject_VAR_SIZE(tp, nitems);
1739 op = (PyVarObject *)gc_alloc(tp, size, presize);
1740 if (op == NULL) {
1741 return NULL;
1742 }
1743 _PyObject_InitVar(op, tp, nitems);
1744 return op;
1745 }
1746
1747 PyObject *
PyUnstable_Object_GC_NewWithExtraData(PyTypeObject * tp,size_t extra_size)1748 PyUnstable_Object_GC_NewWithExtraData(PyTypeObject *tp, size_t extra_size)
1749 {
1750 size_t presize = _PyType_PreHeaderSize(tp);
1751 PyObject *op = gc_alloc(tp, _PyObject_SIZE(tp) + extra_size, presize);
1752 if (op == NULL) {
1753 return NULL;
1754 }
1755 memset(op, 0, _PyObject_SIZE(tp) + extra_size);
1756 _PyObject_Init(op, tp);
1757 return op;
1758 }
1759
1760 PyVarObject *
_PyObject_GC_Resize(PyVarObject * op,Py_ssize_t nitems)1761 _PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
1762 {
1763 const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
1764 const size_t presize = _PyType_PreHeaderSize(((PyObject *)op)->ob_type);
1765 _PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
1766 if (basicsize > (size_t)PY_SSIZE_T_MAX - presize) {
1767 return (PyVarObject *)PyErr_NoMemory();
1768 }
1769 char *mem = (char *)op - presize;
1770 mem = (char *)_PyObject_ReallocWithType(Py_TYPE(op), mem, presize + basicsize);
1771 if (mem == NULL) {
1772 return (PyVarObject *)PyErr_NoMemory();
1773 }
1774 op = (PyVarObject *) (mem + presize);
1775 Py_SET_SIZE(op, nitems);
1776 return op;
1777 }
1778
1779 void
PyObject_GC_Del(void * op)1780 PyObject_GC_Del(void *op)
1781 {
1782 size_t presize = _PyType_PreHeaderSize(((PyObject *)op)->ob_type);
1783 if (_PyObject_GC_IS_TRACKED(op)) {
1784 _PyObject_GC_UNTRACK(op);
1785 #ifdef Py_DEBUG
1786 PyObject *exc = PyErr_GetRaisedException();
1787 if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
1788 "gc", NULL, "Object of type %s is not untracked before destruction",
1789 ((PyObject*)op)->ob_type->tp_name)) {
1790 PyErr_WriteUnraisable(NULL);
1791 }
1792 PyErr_SetRaisedException(exc);
1793 #endif
1794 }
1795
1796 record_deallocation(_PyThreadState_GET());
1797 PyObject *self = (PyObject *)op;
1798 if (_PyObject_GC_IS_SHARED_INLINE(self)) {
1799 _PyObject_FreeDelayed(((char *)op)-presize);
1800 }
1801 else {
1802 PyObject_Free(((char *)op)-presize);
1803 }
1804 }
1805
1806 int
PyObject_GC_IsTracked(PyObject * obj)1807 PyObject_GC_IsTracked(PyObject* obj)
1808 {
1809 return _PyObject_GC_IS_TRACKED(obj);
1810 }
1811
1812 int
PyObject_GC_IsFinalized(PyObject * obj)1813 PyObject_GC_IsFinalized(PyObject *obj)
1814 {
1815 return _PyGC_FINALIZED(obj);
1816 }
1817
1818 struct custom_visitor_args {
1819 struct visitor_args base;
1820 gcvisitobjects_t callback;
1821 void *arg;
1822 };
1823
1824 static bool
custom_visitor_wrapper(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)1825 custom_visitor_wrapper(const mi_heap_t *heap, const mi_heap_area_t *area,
1826 void *block, size_t block_size, void *args)
1827 {
1828 PyObject *op = op_from_block(block, args, false);
1829 if (op == NULL) {
1830 return true;
1831 }
1832
1833 struct custom_visitor_args *wrapper = (struct custom_visitor_args *)args;
1834 if (!wrapper->callback(op, wrapper->arg)) {
1835 return false;
1836 }
1837
1838 return true;
1839 }
1840
1841 // gh-117783: Immortalize objects that use deferred reference counting to
1842 // temporarily work around scaling bottlenecks.
1843 static bool
immortalize_visitor(const mi_heap_t * heap,const mi_heap_area_t * area,void * block,size_t block_size,void * args)1844 immortalize_visitor(const mi_heap_t *heap, const mi_heap_area_t *area,
1845 void *block, size_t block_size, void *args)
1846 {
1847 PyObject *op = op_from_block(block, args, false);
1848 if (op != NULL && _PyObject_HasDeferredRefcount(op)) {
1849 _Py_SetImmortal(op);
1850 op->ob_gc_bits &= ~_PyGC_BITS_DEFERRED;
1851 }
1852 return true;
1853 }
1854
1855 void
_PyGC_ImmortalizeDeferredObjects(PyInterpreterState * interp)1856 _PyGC_ImmortalizeDeferredObjects(PyInterpreterState *interp)
1857 {
1858 struct visitor_args args;
1859 _PyEval_StopTheWorld(interp);
1860 if (interp->gc.immortalize == 0) {
1861 gc_visit_heaps(interp, &immortalize_visitor, &args);
1862 interp->gc.immortalize = 1;
1863 }
1864 _PyEval_StartTheWorld(interp);
1865 }
1866
1867 void
PyUnstable_GC_VisitObjects(gcvisitobjects_t callback,void * arg)1868 PyUnstable_GC_VisitObjects(gcvisitobjects_t callback, void *arg)
1869 {
1870 PyInterpreterState *interp = _PyInterpreterState_GET();
1871 struct custom_visitor_args wrapper = {
1872 .callback = callback,
1873 .arg = arg,
1874 };
1875
1876 _PyEval_StopTheWorld(interp);
1877 gc_visit_heaps(interp, &custom_visitor_wrapper, &wrapper.base);
1878 _PyEval_StartTheWorld(interp);
1879 }
1880
1881 /* Clear all free lists
1882 * All free lists are cleared during the collection of the highest generation.
1883 * Allocated items in the free list may keep a pymalloc arena occupied.
1884 * Clearing the free lists may give back memory to the OS earlier.
1885 * Free-threading version: Since freelists are managed per thread,
1886 * GC should clear all freelists by traversing all threads.
1887 */
1888 void
_PyGC_ClearAllFreeLists(PyInterpreterState * interp)1889 _PyGC_ClearAllFreeLists(PyInterpreterState *interp)
1890 {
1891 HEAD_LOCK(&_PyRuntime);
1892 _PyThreadStateImpl *tstate = (_PyThreadStateImpl *)interp->threads.head;
1893 while (tstate != NULL) {
1894 _PyObject_ClearFreeLists(&tstate->freelists, 0);
1895 tstate = (_PyThreadStateImpl *)tstate->base.next;
1896 }
1897 HEAD_UNLOCK(&_PyRuntime);
1898 }
1899
1900 #endif // Py_GIL_DISABLED
1901