• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2010, VMware Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /*
29  * Binning code for points
30  */
31 
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "lp_setup_context.h"
35 #include "lp_perf.h"
36 #include "lp_rast.h"
37 #include "lp_state_fs.h"
38 #include "lp_state_setup.h"
39 #include "lp_context.h"
40 #include "draw/draw_context.h"
41 
42 #define NUM_CHANNELS 4
43 
44 struct point_info {
45    /* x,y deltas */
46    int dy01, dy12;
47    int dx01, dx12;
48 
49    const float (*v0)[4];
50 
51    float (*a0)[4];
52    float (*dadx)[4];
53    float (*dady)[4];
54 
55    bool frontfacing;
56 };
57 
58 
59 /**
60  * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
61  */
62 static void
constant_coef(struct lp_setup_context * setup,struct point_info * info,unsigned slot,const float value,unsigned i)63 constant_coef(struct lp_setup_context *setup,
64               struct point_info *info,
65               unsigned slot,
66               const float value,
67               unsigned i)
68 {
69    info->a0[slot][i] = value;
70    info->dadx[slot][i] = 0.0f;
71    info->dady[slot][i] = 0.0f;
72 }
73 
74 
75 static void
point_persp_coeff(struct lp_setup_context * setup,const struct point_info * info,unsigned slot,unsigned i)76 point_persp_coeff(struct lp_setup_context *setup,
77                   const struct point_info *info,
78                   unsigned slot,
79                   unsigned i)
80 {
81    /*
82     * Fragment shader expects pre-multiplied w for LP_INTERP_PERSPECTIVE. A
83     * better strategy would be to take the primitive in consideration when
84     * generating the fragment shader key, and therefore avoid the per-fragment
85     * perspective divide.
86     */
87 
88    float w0 = info->v0[0][3];
89 
90    assert(i < 4);
91 
92    info->a0[slot][i] = info->v0[slot][i]*w0;
93    info->dadx[slot][i] = 0.0f;
94    info->dady[slot][i] = 0.0f;
95 }
96 
97 
98 /**
99  * Setup automatic texcoord coefficients (for sprite rendering).
100  * \param slot  the vertex attribute slot to setup
101  * \param i  the attribute channel in [0,3]
102  * \param sprite_coord_origin  one of PIPE_SPRITE_COORD_x
103  * \param perspective  does the shader expects pre-multiplied w, i.e.,
104  *    LP_INTERP_PERSPECTIVE is specified in the shader key
105  */
106 static void
texcoord_coef(struct lp_setup_context * setup,const struct point_info * info,unsigned slot,unsigned i,unsigned sprite_coord_origin,bool perspective)107 texcoord_coef(struct lp_setup_context *setup,
108               const struct point_info *info,
109               unsigned slot,
110               unsigned i,
111               unsigned sprite_coord_origin,
112               bool perspective)
113 {
114    float w0 = info->v0[0][3];
115 
116    assert(i < 4);
117 
118    const float pixel_offset = setup->multisample ? 0.0 : setup->pixel_offset;
119    if (i == 0) {
120       float dadx = FIXED_ONE / (float)info->dx12;
121       float dady =  0.0f;
122       float x0 = info->v0[0][0] - pixel_offset;
123       float y0 = info->v0[0][1] - pixel_offset;
124 
125       info->dadx[slot][0] = dadx;
126       info->dady[slot][0] = dady;
127       info->a0[slot][0] = 0.5 - (dadx * x0 + dady * y0);
128 
129       if (perspective) {
130          info->dadx[slot][0] *= w0;
131          info->dady[slot][0] *= w0;
132          info->a0[slot][0] *= w0;
133       }
134    } else if (i == 1) {
135       float dadx = 0.0f;
136       float dady = FIXED_ONE / (float)info->dx12;
137       float x0 = info->v0[0][0] - pixel_offset;
138       float y0 = info->v0[0][1] - pixel_offset;
139 
140       if (sprite_coord_origin == PIPE_SPRITE_COORD_LOWER_LEFT) {
141          dady = -dady;
142       }
143 
144       info->dadx[slot][1] = dadx;
145       info->dady[slot][1] = dady;
146       info->a0[slot][1] = 0.5 - (dadx * x0 + dady * y0);
147 
148       if (perspective) {
149          info->dadx[slot][1] *= w0;
150          info->dady[slot][1] *= w0;
151          info->a0[slot][1] *= w0;
152       }
153    } else if (i == 2) {
154       info->a0[slot][2] = 0.0f;
155       info->dadx[slot][2] = 0.0f;
156       info->dady[slot][2] = 0.0f;
157    } else {
158       info->a0[slot][3] = perspective ? w0 : 1.0f;
159       info->dadx[slot][3] = 0.0f;
160       info->dady[slot][3] = 0.0f;
161    }
162 }
163 
164 
165 /**
166  * Special coefficient setup for gl_FragCoord.  X and Y are trivial.  Z and W
167  * are copied from position_coef which should have already been computed.  We
168  * could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
169  */
170 static void
setup_point_fragcoord_coef(struct lp_setup_context * setup,struct point_info * info,unsigned slot,unsigned usage_mask)171 setup_point_fragcoord_coef(struct lp_setup_context *setup,
172                            struct point_info *info,
173                            unsigned slot,
174                            unsigned usage_mask)
175 {
176    /*X*/
177    if (usage_mask & TGSI_WRITEMASK_X) {
178       info->a0[slot][0] = 0.0;
179       info->dadx[slot][0] = 1.0;
180       info->dady[slot][0] = 0.0;
181    }
182 
183    /*Y*/
184    if (usage_mask & TGSI_WRITEMASK_Y) {
185       info->a0[slot][1] = 0.0;
186       info->dadx[slot][1] = 0.0;
187       info->dady[slot][1] = 1.0;
188    }
189 
190    /*Z*/
191    if (usage_mask & TGSI_WRITEMASK_Z) {
192       constant_coef(setup, info, slot, info->v0[0][2], 2);
193    }
194 
195    /*W*/
196    if (usage_mask & TGSI_WRITEMASK_W) {
197       constant_coef(setup, info, slot, info->v0[0][3], 3);
198    }
199 }
200 
201 
202 /**
203  * Compute the point->coef[] array dadx, dady, a0 values.
204  */
205 static void
setup_point_coefficients(struct lp_setup_context * setup,struct point_info * info)206 setup_point_coefficients(struct lp_setup_context *setup,
207                          struct point_info *info)
208 {
209    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
210    const struct lp_fragment_shader *shader = setup->fs.current.variant->shader;
211    unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
212 
213    /* setup interpolation for all the remaining attributes:
214     */
215    for (unsigned slot = 0; slot < key->num_inputs; slot++) {
216       unsigned vert_attr = key->inputs[slot].src_index;
217       unsigned usage_mask = key->inputs[slot].usage_mask;
218       enum lp_interp interp = key->inputs[slot].interp;
219       bool perspective = !!(interp == LP_INTERP_PERSPECTIVE);
220       unsigned i;
221 
222       if (perspective && usage_mask) {
223          fragcoord_usage_mask |= TGSI_WRITEMASK_W;
224       }
225 
226       switch (interp) {
227       case LP_INTERP_POSITION:
228          /*
229           * The generated pixel interpolators will pick up the coeffs from
230           * slot 0, so all need to ensure that the usage mask is covers all
231           * usages.
232           */
233          fragcoord_usage_mask |= usage_mask;
234          break;
235       case LP_INTERP_LINEAR:
236          /* Sprite tex coords may use linear interpolation someday */
237          FALLTHROUGH;
238       case LP_INTERP_PERSPECTIVE: {
239          /* check if the sprite coord flag is set for this attribute.
240           * If so, set it up so it up so x and y vary from 0 to 1.
241           */
242          bool do_texcoord_coef = false;
243          if (shader->info.base.input_semantic_name[slot] ==
244              TGSI_SEMANTIC_PCOORD) {
245             do_texcoord_coef = true;
246          } else if (shader->info.base.input_semantic_name[slot] ==
247                   TGSI_SEMANTIC_TEXCOORD) {
248             unsigned semantic_index =
249                shader->info.base.input_semantic_index[slot];
250             /* Note that sprite_coord enable is a bitfield of
251              * PIPE_MAX_SHADER_OUTPUTS bits.
252              */
253             if (semantic_index < PIPE_MAX_SHADER_OUTPUTS &&
254                 (setup->sprite_coord_enable & (1u << semantic_index))) {
255                do_texcoord_coef = true;
256             }
257          }
258          if (do_texcoord_coef) {
259             for (i = 0; i < NUM_CHANNELS; i++) {
260                if (usage_mask & (1 << i)) {
261                   texcoord_coef(setup, info, slot + 1, i,
262                                 setup->sprite_coord_origin,
263                                 perspective);
264                }
265             }
266             break;
267          }
268       }
269          FALLTHROUGH;
270       case LP_INTERP_CONSTANT:
271          for (i = 0; i < NUM_CHANNELS; i++) {
272             if (usage_mask & (1 << i)) {
273                if (perspective) {
274                   point_persp_coeff(setup, info, slot+1, i);
275                } else {
276                   constant_coef(setup, info, slot+1, info->v0[vert_attr][i], i);
277                }
278             }
279          }
280          break;
281       case LP_INTERP_FACING:
282          for (i = 0; i < NUM_CHANNELS; i++)
283             if (usage_mask & (1 << i))
284                constant_coef(setup, info, slot+1,
285                              info->frontfacing ? 1.0f : -1.0f, i);
286          break;
287       default:
288          assert(0);
289          break;
290       }
291    }
292 
293    /* The internal position input is in slot zero:
294     */
295    setup_point_fragcoord_coef(setup, info, 0,
296                               fragcoord_usage_mask);
297 }
298 
299 
300 static inline int
subpixel_snap(float a)301 subpixel_snap(float a)
302 {
303    return util_iround(FIXED_ONE * a);
304 }
305 
306 
307 /**
308  * Print point vertex attribs (for debug).
309  */
310 static void
print_point(struct lp_setup_context * setup,const float (* v0)[4],const float size)311 print_point(struct lp_setup_context *setup,
312             const float (*v0)[4],
313             const float size)
314 {
315    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
316 
317    debug_printf("llvmpipe point, width %f\n", size);
318    for (unsigned i = 0; i < 1 + key->num_inputs; i++) {
319       debug_printf("  v0[%d]:  %f %f %f %f\n", i,
320                    v0[i][0], v0[i][1], v0[i][2], v0[i][3]);
321    }
322 }
323 
324 
325 static bool
try_setup_point(struct lp_setup_context * setup,const float (* v0)[4])326 try_setup_point(struct lp_setup_context *setup,
327                 const float (*v0)[4])
328 {
329    struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
330    /* x/y positions in fixed point */
331    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
332    const int sizeAttr = setup->psize_slot;
333    float size
334       = (setup->point_size_per_vertex && sizeAttr > 0) ? v0[sizeAttr][0]
335       : setup->point_size;
336 
337    if (size > LP_MAX_POINT_WIDTH)
338       size = LP_MAX_POINT_WIDTH;
339 
340    /* Yes this is necessary to accurately calculate bounding boxes
341     * with the two fill-conventions we support.  GL (normally) ends
342     * up needing a bottom-left fill convention, which requires
343     * slightly different rounding.
344     */
345    const int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
346    const float pixel_offset = setup->multisample ? 0.0 : setup->pixel_offset;
347    struct lp_scene *scene = setup->scene;
348    int x[2], y[2];
349 
350    unsigned viewport_index = 0;
351    if (setup->viewport_index_slot > 0) {
352       unsigned *udata = (unsigned*)v0[setup->viewport_index_slot];
353       viewport_index = lp_clamp_viewport_idx(*udata);
354    }
355 
356    unsigned layer = 0;
357    if (setup->layer_slot > 0) {
358       layer = *(unsigned*)v0[setup->layer_slot];
359       layer = MIN2(layer, scene->fb_max_layer);
360    }
361 
362    int fixed_width;
363 
364    if (0)
365       print_point(setup, v0, size);
366 
367    /* Bounding rectangle (in pixels) */
368    struct u_rect bbox;
369    if (!setup->legacy_points) {
370       /*
371        * Rasterize points as quads.
372        */
373       int x0, y0;
374       /* Point size as fixed point integer, remove rounding errors
375        * and gives minimum width for very small points.
376        */
377       fixed_width = MAX2(FIXED_ONE, subpixel_snap(size));
378 
379       x0 = subpixel_snap(v0[0][0] - pixel_offset) - fixed_width/2;
380       y0 = subpixel_snap(v0[0][1] - pixel_offset) - fixed_width/2;
381 
382       x[0] = x0;
383       x[1] = x0 + fixed_width;
384       y[0] = y0;
385       y[1] = y0 + fixed_width;
386       bbox.x0 = x[0] >> FIXED_ORDER;
387       bbox.x1 = (x[1] + (FIXED_ONE-1)) >> FIXED_ORDER;
388       bbox.y0 = (y[0] + adj) >> FIXED_ORDER;
389       bbox.y1 = (y[1] + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
390 
391       /* Inclusive coordinates:
392        */
393       bbox.x1--;
394       bbox.y1--;
395    } else {
396       /*
397        * OpenGL legacy rasterization rules for non-sprite points.
398        *
399        * Per OpenGL 2.1 spec, section 3.3.1, "Basic Point Rasterization".
400        *
401        * This type of point rasterization is only available in pre 3.0 contexts
402        * (or compatibility contexts which we don't support) anyway.
403        */
404 
405       const int x0 = subpixel_snap(v0[0][0]);
406       const int y0 = subpixel_snap(v0[0][1]) - adj;
407 
408       /* Point size as fixed point integer. For GL legacy points
409        * the point size is always a whole integer.
410        */
411       fixed_width = MAX2(FIXED_ONE,
412                          (subpixel_snap(size) + FIXED_ONE/2 - 1) & ~(FIXED_ONE-1));
413       int int_width = fixed_width >> FIXED_ORDER;
414 
415       assert(setup->pixel_offset != 0);
416 
417       if (int_width == 1) {
418          bbox.x0 = x0 >> FIXED_ORDER;
419          bbox.y0 = y0 >> FIXED_ORDER;
420          bbox.x1 = bbox.x0;
421          bbox.y1 = bbox.y0;
422       } else {
423          if (int_width & 1) {
424             /* Odd width */
425             bbox.x0 = (x0 >> FIXED_ORDER) - (int_width - 1)/2;
426             bbox.y0 = (y0 >> FIXED_ORDER) - (int_width - 1)/2;
427          } else {
428             /* Even width */
429             bbox.x0 = ((x0 + FIXED_ONE/2) >> FIXED_ORDER) - int_width/2;
430             bbox.y0 = ((y0 + FIXED_ONE/2) >> FIXED_ORDER) - int_width/2;
431          }
432 
433          bbox.x1 = bbox.x0 + int_width - 1;
434          bbox.y1 = bbox.y0 + int_width - 1;
435       }
436 
437       x[0] = (bbox.x0 - 1) << 8;
438       x[1] = (bbox.x1 + 1) << 8;
439       y[0] = (bbox.y0 - 1) << 8;
440       y[1] = (bbox.y1 + 1) << 8;
441    }
442 
443    if (0) {
444       debug_printf("  bbox: (%i, %i) - (%i, %i)\n",
445                    bbox.x0, bbox.y0,
446                    bbox.x1, bbox.y1);
447    }
448 
449    if (lp_context->active_statistics_queries) {
450       lp_context->pipeline_statistics.c_primitives++;
451    }
452 
453    if (lp_setup_zero_sample_mask(setup)) {
454       if (0) debug_printf("zero sample mask\n");
455       LP_COUNT(nr_culled_tris);
456       return true;
457    }
458 
459    if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
460       if (0) debug_printf("no intersection\n");
461       LP_COUNT(nr_culled_tris);
462       return true;
463    }
464 
465    u_rect_find_intersection(&setup->draw_regions[viewport_index], &bbox);
466 
467    /* We can't use rectangle reasterizer for non-legacy points for now. */
468    if (!setup->legacy_points || setup->multisample) {
469       struct lp_rast_triangle *point;
470       struct lp_rast_plane *plane;
471       unsigned nr_planes = 4;
472 
473       point = lp_setup_alloc_triangle(scene,
474                                       key->num_inputs,
475                                       nr_planes);
476      if (!point)
477         return false;
478 
479 #if MESA_DEBUG
480       point->v[0][0] = v0[0][0];
481       point->v[0][1] = v0[0][1];
482 #endif
483 
484       LP_COUNT(nr_tris);
485 
486       if (draw_will_inject_frontface(lp_context->draw) &&
487           setup->face_slot > 0) {
488          point->inputs.frontfacing = v0[setup->face_slot][0];
489       } else {
490          point->inputs.frontfacing = true;
491       }
492 
493       struct point_info info;
494       info.v0 = v0;
495       info.dx01 = 0;
496       info.dx12 = fixed_width;
497       info.dy01 = fixed_width;
498       info.dy12 = 0;
499       info.a0 = GET_A0(&point->inputs);
500       info.dadx = GET_DADX(&point->inputs);
501       info.dady = GET_DADY(&point->inputs);
502       info.frontfacing = point->inputs.frontfacing;
503 
504       /* Setup parameter interpolants:
505        */
506       setup_point_coefficients(setup, &info);
507 
508       point->inputs.disable = false;
509       point->inputs.is_blit = false;
510       point->inputs.layer = layer;
511       point->inputs.viewport_index = viewport_index;
512       point->inputs.view_index = setup->view_index;
513 
514       plane = GET_PLANES(point);
515 
516       plane[0].dcdx = ~0U << 8;
517       plane[0].dcdy = 0;
518       plane[0].c = -MAX2(x[0], bbox.x0 << 8);
519       plane[0].eo = 1 << 8;
520 
521       plane[1].dcdx = 1 << 8;
522       plane[1].dcdy = 0;
523       plane[1].c = MIN2(x[1], (bbox.x1 + 1) << 8);
524       plane[1].eo = 0;
525 
526       plane[2].dcdx = 0;
527       plane[2].dcdy = 1 << 8;
528       plane[2].c = -MAX2(y[0], (bbox.y0 << 8) - adj);
529       plane[2].eo = 1 << 8;
530 
531       plane[3].dcdx = 0;
532       plane[3].dcdy = ~0U << 8;
533       plane[3].c = MIN2(y[1], (bbox.y1 + 1) << 8);
534       plane[3].eo = 0;
535 
536       if (!setup->legacy_points) {
537          /* adjust for fill-rule*/
538          plane[0].c++; /* left */
539          if (setup->bottom_edge_rule == 0)
540             plane[2].c++; /* top-left */
541          else
542             plane[3].c++; /* bottom-left */
543       }
544 
545       int max_szorig = ((bbox.x1 - (bbox.x0 & ~3)) |
546                         (bbox.y1 - (bbox.y0 & ~3)));
547       bool use_32bits = max_szorig <= MAX_FIXED_LENGTH32;
548 
549       return lp_setup_bin_triangle(setup, point, use_32bits,
550                                    setup->fs.current.variant->opaque,
551                                    &bbox, nr_planes, viewport_index);
552 
553    } else {
554       struct lp_rast_rectangle *point =
555          lp_setup_alloc_rectangle(scene, key->num_inputs);
556       if (!point)
557          return false;
558 #if MESA_DEBUG
559       point->v[0][0] = v0[0][0];
560       point->v[0][1] = v0[0][1];
561 #endif
562 
563       point->box.x0 = bbox.x0;
564       point->box.x1 = bbox.x1;
565       point->box.y0 = bbox.y0;
566       point->box.y1 = bbox.y1;
567 
568       LP_COUNT(nr_tris);
569 
570       if (draw_will_inject_frontface(lp_context->draw) &&
571           setup->face_slot > 0) {
572          point->inputs.frontfacing = v0[setup->face_slot][0];
573       } else {
574          point->inputs.frontfacing = true;
575       }
576 
577       struct point_info info;
578       info.v0 = v0;
579       info.dx01 = 0;
580       info.dx12 = fixed_width;
581       info.dy01 = fixed_width;
582       info.dy12 = 0;
583       info.a0 = GET_A0(&point->inputs);
584       info.dadx = GET_DADX(&point->inputs);
585       info.dady = GET_DADY(&point->inputs);
586       info.frontfacing = point->inputs.frontfacing;
587 
588       /* Setup parameter interpolants:
589        */
590       setup_point_coefficients(setup, &info);
591 
592       point->inputs.disable = false;
593       point->inputs.is_blit = false;
594       point->inputs.layer = layer;
595       point->inputs.viewport_index = viewport_index;
596       point->inputs.view_index = setup->view_index;
597 
598       return lp_setup_bin_rectangle(setup, point,
599                                     setup->fs.current.variant->opaque);
600    }
601 }
602 
603 
604 static void
lp_setup_point_discard(struct lp_setup_context * setup,const float (* v0)[4])605 lp_setup_point_discard(struct lp_setup_context *setup,
606                        const float (*v0)[4])
607 {
608 }
609 
610 
611 static void
lp_setup_point(struct lp_setup_context * setup,const float (* v0)[4])612 lp_setup_point(struct lp_setup_context *setup,
613                const float (*v0)[4])
614 {
615    if (!try_setup_point(setup, v0)) {
616       if (!lp_setup_flush_and_restart(setup))
617          return;
618 
619       if (!try_setup_point(setup, v0))
620          return;
621    }
622 }
623 
624 
625 void
lp_setup_choose_point(struct lp_setup_context * setup)626 lp_setup_choose_point(struct lp_setup_context *setup)
627 {
628    if (setup->rasterizer_discard) {
629       setup->point = lp_setup_point_discard;
630    } else {
631       setup->point = lp_setup_point;
632    }
633 }
634