• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ====================================================================
2  * Copyright (c) 2008 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    openssl-core@openssl.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #include <openssl/type_check.h>
50 
51 #include <assert.h>
52 #include <string.h>
53 
54 #include "internal.h"
55 #include "../../internal.h"
56 
57 
58 // NOTE: the IV/counter CTR mode is big-endian.  The code itself
59 // is endian-neutral.
60 
61 // increment counter (128-bit int) by 1
ctr128_inc(uint8_t * counter)62 static void ctr128_inc(uint8_t *counter) {
63   uint32_t n = 16, c = 1;
64 
65   do {
66     --n;
67     c += counter[n];
68     counter[n] = (uint8_t) c;
69     c >>= 8;
70   } while (n);
71 }
72 
73 OPENSSL_STATIC_ASSERT(16 % sizeof(crypto_word_t) == 0,
74                       "block cannot be divided into crypto_word_t");
75 
76 // The input encrypted as though 128bit counter mode is being used.  The extra
77 // state information to record how much of the 128bit block we have used is
78 // contained in *num, and the encrypted counter is kept in ecount_buf.  Both
79 // *num and ecount_buf must be initialised with zeros before the first call to
80 // CRYPTO_ctr128_encrypt().
81 //
82 // This algorithm assumes that the counter is in the x lower bits of the IV
83 // (ivec), and that the application has full control over overflow and the rest
84 // of the IV.  This implementation takes NO responsibility for checking that
85 // the counter doesn't overflow into the rest of the IV when incremented.
CRYPTO_ctr128_encrypt(const uint8_t * in,uint8_t * out,size_t len,const AES_KEY * key,uint8_t ivec[16],uint8_t ecount_buf[16],unsigned int * num,block128_f block)86 void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
87                            const AES_KEY *key, uint8_t ivec[16],
88                            uint8_t ecount_buf[16], unsigned int *num,
89                            block128_f block) {
90   unsigned int n;
91 
92   assert(key && ecount_buf && num);
93   assert(len == 0 || (in && out));
94   assert(*num < 16);
95 
96   n = *num;
97 
98   while (n && len) {
99     *(out++) = *(in++) ^ ecount_buf[n];
100     --len;
101     n = (n + 1) % 16;
102   }
103   while (len >= 16) {
104     (*block)(ivec, ecount_buf, key);
105     ctr128_inc(ivec);
106     for (n = 0; n < 16; n += sizeof(crypto_word_t)) {
107       CRYPTO_store_word_le(out + n, CRYPTO_load_word_le(in + n) ^
108                                         CRYPTO_load_word_le(ecount_buf + n));
109     }
110     len -= 16;
111     out += 16;
112     in += 16;
113     n = 0;
114   }
115   if (len) {
116     (*block)(ivec, ecount_buf, key);
117     ctr128_inc(ivec);
118     while (len--) {
119       out[n] = in[n] ^ ecount_buf[n];
120       ++n;
121     }
122   }
123   *num = n;
124 }
125 
126 // increment upper 96 bits of 128-bit counter by 1
ctr96_inc(uint8_t * counter)127 static void ctr96_inc(uint8_t *counter) {
128   uint32_t n = 12, c = 1;
129 
130   do {
131     --n;
132     c += counter[n];
133     counter[n] = (uint8_t) c;
134     c >>= 8;
135   } while (n);
136 }
137 
CRYPTO_ctr128_encrypt_ctr32(const uint8_t * in,uint8_t * out,size_t len,const AES_KEY * key,uint8_t ivec[16],uint8_t ecount_buf[16],unsigned int * num,ctr128_f func)138 void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
139                                  const AES_KEY *key, uint8_t ivec[16],
140                                  uint8_t ecount_buf[16], unsigned int *num,
141                                  ctr128_f func) {
142   unsigned int n, ctr32;
143 
144   assert(key && ecount_buf && num);
145   assert(len == 0 || (in && out));
146   assert(*num < 16);
147 
148   n = *num;
149 
150   while (n && len) {
151     *(out++) = *(in++) ^ ecount_buf[n];
152     --len;
153     n = (n + 1) % 16;
154   }
155 
156   ctr32 = CRYPTO_load_u32_be(ivec + 12);
157   while (len >= 16) {
158     size_t blocks = len / 16;
159     // 1<<28 is just a not-so-small yet not-so-large number...
160     // Below condition is practically never met, but it has to
161     // be checked for code correctness.
162     if (sizeof(size_t) > sizeof(unsigned int) && blocks > (1U << 28)) {
163       blocks = (1U << 28);
164     }
165     // As (*func) operates on 32-bit counter, caller
166     // has to handle overflow. 'if' below detects the
167     // overflow, which is then handled by limiting the
168     // amount of blocks to the exact overflow point...
169     ctr32 += (uint32_t)blocks;
170     if (ctr32 < blocks) {
171       blocks -= ctr32;
172       ctr32 = 0;
173     }
174     (*func)(in, out, blocks, key, ivec);
175     // (*func) does not update ivec, caller does:
176     CRYPTO_store_u32_be(ivec + 12, ctr32);
177     // ... overflow was detected, propogate carry.
178     if (ctr32 == 0) {
179       ctr96_inc(ivec);
180     }
181     blocks *= 16;
182     len -= blocks;
183     out += blocks;
184     in += blocks;
185   }
186   if (len) {
187     OPENSSL_memset(ecount_buf, 0, 16);
188     (*func)(ecount_buf, ecount_buf, 1, key, ivec);
189     ++ctr32;
190     CRYPTO_store_u32_be(ivec + 12, ctr32);
191     if (ctr32 == 0) {
192       ctr96_inc(ivec);
193     }
194     while (len--) {
195       out[n] = in[n] ^ ecount_buf[n];
196       ++n;
197     }
198   }
199 
200   *num = n;
201 }
202