• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "nir.h"
25 #include "nir_instr_set.h"
26 
27 /*
28  * Implements Global Code Motion.  A description of GCM can be found in
29  * "Global Code Motion; Global Value Numbering" by Cliff Click.
30  * Unfortunately, the algorithm presented in the paper is broken in a
31  * number of ways.  The algorithm used here differs substantially from the
32  * one in the paper but it is, in my opinion, much easier to read and
33  * verify correcness.
34  */
35 
36 /* This is used to stop GCM moving instruction out of a loop if the loop
37  * contains too many instructions and moving them would create excess spilling.
38  *
39  * TODO: Figure out a better way to decide if we should remove instructions from
40  * a loop.
41  */
42 #define MAX_LOOP_INSTRUCTIONS 100
43 
44 struct gcm_block_info {
45    /* Number of loops this block is inside */
46    unsigned loop_depth;
47 
48    /* Number of ifs this block is inside */
49    unsigned if_depth;
50 
51    unsigned loop_instr_count;
52 
53    /* The loop the block is nested inside or NULL */
54    nir_loop *loop;
55 
56    /* The last instruction inserted into this block.  This is used as we
57     * traverse the instructions and insert them back into the program to
58     * put them in the right order.
59     */
60    nir_instr *last_instr;
61 };
62 
63 struct gcm_instr_info {
64    nir_block *early_block;
65 };
66 
67 /* Flags used in the instr->pass_flags field for various instruction states */
68 enum {
69    GCM_INSTR_PINNED = (1 << 0),
70    GCM_INSTR_SCHEDULE_EARLIER_ONLY = (1 << 1),
71    GCM_INSTR_SCHEDULED_EARLY = (1 << 2),
72    GCM_INSTR_SCHEDULED_LATE = (1 << 3),
73    GCM_INSTR_PLACED = (1 << 4),
74 };
75 
76 struct gcm_state {
77    nir_function_impl *impl;
78    nir_instr *instr;
79 
80    bool progress;
81 
82    /* The list of non-pinned instructions.  As we do the late scheduling,
83     * we pull non-pinned instructions out of their blocks and place them in
84     * this list.  This saves us from having linked-list problems when we go
85     * to put instructions back in their blocks.
86     */
87    struct exec_list instrs;
88 
89    struct gcm_block_info *blocks;
90 
91    unsigned num_instrs;
92    struct gcm_instr_info *instr_infos;
93 };
94 
95 static unsigned
get_loop_instr_count(struct exec_list * cf_list)96 get_loop_instr_count(struct exec_list *cf_list)
97 {
98    unsigned loop_instr_count = 0;
99    foreach_list_typed(nir_cf_node, node, node, cf_list) {
100       switch (node->type) {
101       case nir_cf_node_block: {
102          nir_block *block = nir_cf_node_as_block(node);
103          nir_foreach_instr(instr, block) {
104             loop_instr_count++;
105          }
106          break;
107       }
108       case nir_cf_node_if: {
109          nir_if *if_stmt = nir_cf_node_as_if(node);
110          loop_instr_count += get_loop_instr_count(&if_stmt->then_list);
111          loop_instr_count += get_loop_instr_count(&if_stmt->else_list);
112          break;
113       }
114       case nir_cf_node_loop: {
115          nir_loop *loop = nir_cf_node_as_loop(node);
116          assert(!nir_loop_has_continue_construct(loop));
117          loop_instr_count += get_loop_instr_count(&loop->body);
118          break;
119       }
120       default:
121          unreachable("Invalid CF node type");
122       }
123    }
124 
125    return loop_instr_count;
126 }
127 
128 /* Recursively walks the CFG and builds the block_info structure */
129 static void
gcm_build_block_info(struct exec_list * cf_list,struct gcm_state * state,nir_loop * loop,unsigned loop_depth,unsigned if_depth,unsigned loop_instr_count)130 gcm_build_block_info(struct exec_list *cf_list, struct gcm_state *state,
131                      nir_loop *loop, unsigned loop_depth, unsigned if_depth,
132                      unsigned loop_instr_count)
133 {
134    foreach_list_typed(nir_cf_node, node, node, cf_list) {
135       switch (node->type) {
136       case nir_cf_node_block: {
137          nir_block *block = nir_cf_node_as_block(node);
138          state->blocks[block->index].if_depth = if_depth;
139          state->blocks[block->index].loop_depth = loop_depth;
140          state->blocks[block->index].loop_instr_count = loop_instr_count;
141          state->blocks[block->index].loop = loop;
142          break;
143       }
144       case nir_cf_node_if: {
145          nir_if *if_stmt = nir_cf_node_as_if(node);
146          gcm_build_block_info(&if_stmt->then_list, state, loop, loop_depth,
147                               if_depth + 1, ~0u);
148          gcm_build_block_info(&if_stmt->else_list, state, loop, loop_depth,
149                               if_depth + 1, ~0u);
150          break;
151       }
152       case nir_cf_node_loop: {
153          nir_loop *loop = nir_cf_node_as_loop(node);
154          assert(!nir_loop_has_continue_construct(loop));
155          gcm_build_block_info(&loop->body, state, loop, loop_depth + 1, if_depth,
156                               get_loop_instr_count(&loop->body));
157          break;
158       }
159       default:
160          unreachable("Invalid CF node type");
161       }
162    }
163 }
164 
165 static bool
is_src_scalarizable(nir_src * src)166 is_src_scalarizable(nir_src *src)
167 {
168 
169    nir_instr *src_instr = src->ssa->parent_instr;
170    switch (src_instr->type) {
171    case nir_instr_type_alu: {
172       nir_alu_instr *src_alu = nir_instr_as_alu(src_instr);
173 
174       /* ALU operations with output_size == 0 should be scalarized.  We
175        * will also see a bunch of vecN operations from scalarizing ALU
176        * operations and, since they can easily be copy-propagated, they
177        * are ok too.
178        */
179       return nir_op_infos[src_alu->op].output_size == 0 ||
180              src_alu->op == nir_op_vec2 ||
181              src_alu->op == nir_op_vec3 ||
182              src_alu->op == nir_op_vec4;
183    }
184 
185    case nir_instr_type_load_const:
186       /* These are trivially scalarizable */
187       return true;
188 
189    case nir_instr_type_undef:
190       return true;
191 
192    case nir_instr_type_intrinsic: {
193       nir_intrinsic_instr *src_intrin = nir_instr_as_intrinsic(src_instr);
194 
195       switch (src_intrin->intrinsic) {
196       case nir_intrinsic_load_deref: {
197          /* Don't scalarize if we see a load of a local variable because it
198           * might turn into one of the things we can't scalarize.
199           */
200          nir_deref_instr *deref = nir_src_as_deref(src_intrin->src[0]);
201          return !nir_deref_mode_may_be(deref, (nir_var_function_temp |
202                                                nir_var_shader_temp));
203       }
204 
205       case nir_intrinsic_interp_deref_at_centroid:
206       case nir_intrinsic_interp_deref_at_sample:
207       case nir_intrinsic_interp_deref_at_offset:
208       case nir_intrinsic_load_uniform:
209       case nir_intrinsic_load_ubo:
210       case nir_intrinsic_load_ssbo:
211       case nir_intrinsic_load_global:
212       case nir_intrinsic_load_global_constant:
213       case nir_intrinsic_load_input:
214       case nir_intrinsic_load_per_primitive_input:
215          return true;
216       default:
217          break;
218       }
219 
220       return false;
221    }
222 
223    default:
224       /* We can't scalarize this type of instruction */
225       return false;
226    }
227 }
228 
229 static bool
is_binding_uniform(nir_src src)230 is_binding_uniform(nir_src src)
231 {
232    nir_binding binding = nir_chase_binding(src);
233    if (!binding.success)
234       return false;
235 
236    for (unsigned i = 0; i < binding.num_indices; i++) {
237       if (!nir_src_is_always_uniform(binding.indices[i]))
238          return false;
239    }
240 
241    return true;
242 }
243 
244 static void
pin_intrinsic(nir_intrinsic_instr * intrin)245 pin_intrinsic(nir_intrinsic_instr *intrin)
246 {
247    nir_instr *instr = &intrin->instr;
248 
249    if (!nir_intrinsic_can_reorder(intrin)) {
250       instr->pass_flags = GCM_INSTR_PINNED;
251       return;
252    }
253 
254    instr->pass_flags = 0;
255 
256    /* If the intrinsic requires a uniform source, we can't safely move it across non-uniform
257     * control flow if it's not uniform at the point it's defined.
258     * Stores and atomics can never be re-ordered, so we don't have to consider them here.
259     */
260    bool non_uniform = nir_intrinsic_has_access(intrin) &&
261                       (nir_intrinsic_access(intrin) & ACCESS_NON_UNIFORM);
262    if (!non_uniform &&
263        (intrin->intrinsic == nir_intrinsic_load_ubo ||
264         intrin->intrinsic == nir_intrinsic_load_ssbo ||
265         intrin->intrinsic == nir_intrinsic_get_ubo_size ||
266         intrin->intrinsic == nir_intrinsic_get_ssbo_size ||
267         nir_intrinsic_has_image_dim(intrin) ||
268         ((intrin->intrinsic == nir_intrinsic_load_deref ||
269           intrin->intrinsic == nir_intrinsic_deref_buffer_array_length) &&
270          nir_deref_mode_may_be(nir_src_as_deref(intrin->src[0]),
271                                nir_var_mem_ubo | nir_var_mem_ssbo)))) {
272       if (!is_binding_uniform(intrin->src[0]))
273          instr->pass_flags = GCM_INSTR_PINNED;
274    } else if (intrin->intrinsic == nir_intrinsic_load_push_constant) {
275       if (!nir_src_is_always_uniform(intrin->src[0]))
276          instr->pass_flags = GCM_INSTR_PINNED;
277    } else if (intrin->intrinsic == nir_intrinsic_load_deref &&
278               nir_deref_mode_is(nir_src_as_deref(intrin->src[0]),
279                                 nir_var_mem_push_const)) {
280       nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
281       while (deref->deref_type != nir_deref_type_var) {
282          if ((deref->deref_type == nir_deref_type_array ||
283               deref->deref_type == nir_deref_type_ptr_as_array) &&
284              !nir_src_is_always_uniform(deref->arr.index)) {
285             instr->pass_flags = GCM_INSTR_PINNED;
286             return;
287          }
288          deref = nir_deref_instr_parent(deref);
289          if (!deref) {
290             instr->pass_flags = GCM_INSTR_PINNED;
291             return;
292          }
293       }
294    }
295 }
296 
297 /* Walks the instruction list and marks immovable instructions as pinned or
298  * placed.
299  *
300  * This function also serves to initialize the instr->pass_flags field.
301  * After this is completed, all instructions' pass_flags fields will be set
302  * to either GCM_INSTR_PINNED, GCM_INSTR_PLACED or 0.
303  */
304 static void
gcm_pin_instructions(nir_function_impl * impl,struct gcm_state * state)305 gcm_pin_instructions(nir_function_impl *impl, struct gcm_state *state)
306 {
307    state->num_instrs = 0;
308 
309    nir_foreach_block(block, impl) {
310       nir_foreach_instr_safe(instr, block) {
311          /* Index the instructions for use in gcm_state::instrs */
312          instr->index = state->num_instrs++;
313 
314          switch (instr->type) {
315          case nir_instr_type_alu: {
316             nir_alu_instr *alu = nir_instr_as_alu(instr);
317 
318             if (alu->op == nir_op_mov && !is_src_scalarizable(&alu->src[0].src)) {
319                instr->pass_flags = GCM_INSTR_PINNED;
320             } else {
321                instr->pass_flags = 0;
322             }
323             break;
324          }
325 
326          case nir_instr_type_tex: {
327             nir_tex_instr *tex = nir_instr_as_tex(instr);
328             if (nir_tex_instr_has_implicit_derivative(tex))
329                instr->pass_flags = GCM_INSTR_SCHEDULE_EARLIER_ONLY;
330 
331             for (unsigned i = 0; i < tex->num_srcs; i++) {
332                nir_tex_src *src = &tex->src[i];
333                switch (src->src_type) {
334                case nir_tex_src_texture_deref:
335                   if (!tex->texture_non_uniform && !is_binding_uniform(src->src))
336                      instr->pass_flags = GCM_INSTR_PINNED;
337                   break;
338                case nir_tex_src_sampler_deref:
339                   if (!tex->sampler_non_uniform && !is_binding_uniform(src->src))
340                      instr->pass_flags = GCM_INSTR_PINNED;
341                   break;
342                case nir_tex_src_texture_offset:
343                case nir_tex_src_texture_handle:
344                   if (!tex->texture_non_uniform && !nir_src_is_always_uniform(src->src))
345                      instr->pass_flags = GCM_INSTR_PINNED;
346                   break;
347                case nir_tex_src_sampler_offset:
348                case nir_tex_src_sampler_handle:
349                   if (!tex->sampler_non_uniform && !nir_src_is_always_uniform(src->src))
350                      instr->pass_flags = GCM_INSTR_PINNED;
351                   break;
352                default:
353                   break;
354                }
355             }
356             break;
357          }
358 
359          case nir_instr_type_deref:
360          case nir_instr_type_load_const:
361             instr->pass_flags = 0;
362             break;
363 
364          case nir_instr_type_intrinsic:
365             pin_intrinsic(nir_instr_as_intrinsic(instr));
366             break;
367 
368          case nir_instr_type_call:
369             instr->pass_flags = GCM_INSTR_PINNED;
370             break;
371 
372          case nir_instr_type_jump:
373          case nir_instr_type_undef:
374          case nir_instr_type_phi:
375             instr->pass_flags = GCM_INSTR_PLACED;
376             break;
377 
378          default:
379             unreachable("Invalid instruction type in GCM");
380          }
381 
382          if (!(instr->pass_flags & GCM_INSTR_PLACED)) {
383             /* If this is an unplaced instruction, go ahead and pull it out of
384              * the program and put it on the instrs list.  This has a couple
385              * of benifits.  First, it makes the scheduling algorithm more
386              * efficient because we can avoid walking over basic blocks.
387              * Second, it keeps us from causing linked list confusion when
388              * we're trying to put everything in its proper place at the end
389              * of the pass.
390              *
391              * Note that we don't use nir_instr_remove here because that also
392              * cleans up uses and defs and we want to keep that information.
393              */
394             exec_node_remove(&instr->node);
395             exec_list_push_tail(&state->instrs, &instr->node);
396          }
397       }
398    }
399 }
400 
401 static void
402 gcm_schedule_early_instr(nir_instr *instr, struct gcm_state *state);
403 
404 /** Update an instructions schedule for the given source
405  *
406  * This function is called iteratively as we walk the sources of an
407  * instruction.  It ensures that the given source instruction has been
408  * scheduled and then update this instruction's block if the source
409  * instruction is lower down the tree.
410  */
411 static bool
gcm_schedule_early_src(nir_src * src,void * void_state)412 gcm_schedule_early_src(nir_src *src, void *void_state)
413 {
414    struct gcm_state *state = void_state;
415    nir_instr *instr = state->instr;
416 
417    gcm_schedule_early_instr(src->ssa->parent_instr, void_state);
418 
419    /* While the index isn't a proper dominance depth, it does have the
420     * property that if A dominates B then A->index <= B->index.  Since we
421     * know that this instruction must have been dominated by all of its
422     * sources at some point (even if it's gone through value-numbering),
423     * all of the sources must lie on the same branch of the dominance tree.
424     * Therefore, we can just go ahead and just compare indices.
425     */
426    struct gcm_instr_info *src_info =
427       &state->instr_infos[src->ssa->parent_instr->index];
428    struct gcm_instr_info *info = &state->instr_infos[instr->index];
429    if (info->early_block->index < src_info->early_block->index)
430       info->early_block = src_info->early_block;
431 
432    /* We need to restore the state instruction because it may have been
433     * changed through the gcm_schedule_early_instr call above.  Since we
434     * may still be iterating through sources and future calls to
435     * gcm_schedule_early_src for the same instruction will still need it.
436     */
437    state->instr = instr;
438 
439    return true;
440 }
441 
442 /** Schedules an instruction early
443  *
444  * This function performs a recursive depth-first search starting at the
445  * given instruction and proceeding through the sources to schedule
446  * instructions as early as they can possibly go in the dominance tree.
447  * The instructions are "scheduled" by updating the early_block field of
448  * the corresponding gcm_instr_state entry.
449  */
450 static void
gcm_schedule_early_instr(nir_instr * instr,struct gcm_state * state)451 gcm_schedule_early_instr(nir_instr *instr, struct gcm_state *state)
452 {
453    if (instr->pass_flags & GCM_INSTR_SCHEDULED_EARLY)
454       return;
455 
456    instr->pass_flags |= GCM_INSTR_SCHEDULED_EARLY;
457 
458    /* Pinned/placed instructions always get scheduled in their original block so
459     * we don't need to do anything.  Also, bailing here keeps us from ever
460     * following the sources of phi nodes which can be back-edges.
461     */
462    if (instr->pass_flags & GCM_INSTR_PINNED ||
463        instr->pass_flags & GCM_INSTR_PLACED) {
464       state->instr_infos[instr->index].early_block = instr->block;
465       return;
466    }
467 
468    /* Start with the instruction at the top.  As we iterate over the
469     * sources, it will get moved down as needed.
470     */
471    state->instr_infos[instr->index].early_block = nir_start_block(state->impl);
472    state->instr = instr;
473 
474    nir_foreach_src(instr, gcm_schedule_early_src, state);
475 }
476 
477 static bool
set_block_for_loop_instr(struct gcm_state * state,nir_instr * instr,nir_block * block)478 set_block_for_loop_instr(struct gcm_state *state, nir_instr *instr,
479                          nir_block *block)
480 {
481    /* If the instruction wasn't in a loop to begin with we don't want to push
482     * it down into one.
483     */
484    nir_loop *loop = state->blocks[instr->block->index].loop;
485    if (loop == NULL)
486       return true;
487 
488    assert(!nir_loop_has_continue_construct(loop));
489    if (nir_block_dominates(instr->block, block))
490       return true;
491 
492    /* If the loop only executes a single time i.e its wrapped in a:
493     *    do{ ... break; } while(true)
494     * Don't move the instruction as it will not help anything.
495     */
496    if (loop->info->limiting_terminator == NULL && !loop->info->complex_loop &&
497        nir_block_ends_in_break(nir_loop_last_block(loop)))
498       return false;
499 
500    /* Being too aggressive with how we pull instructions out of loops can
501     * result in extra register pressure and spilling. For example its fairly
502     * common for loops in compute shaders to calculate SSBO offsets using
503     * the workgroup id, subgroup id and subgroup invocation, pulling all
504     * these calculations outside the loop causes register pressure.
505     *
506     * To work around these issues for now we only allow constant and texture
507     * instructions to be moved outside their original loops, or instructions
508     * where the total loop instruction count is less than
509     * MAX_LOOP_INSTRUCTIONS.
510     *
511     * TODO: figure out some more heuristics to allow more to be moved out of
512     * loops.
513     */
514    if (state->blocks[instr->block->index].loop_instr_count < MAX_LOOP_INSTRUCTIONS)
515       return true;
516 
517    if (instr->type == nir_instr_type_load_const ||
518        instr->type == nir_instr_type_tex ||
519        (instr->type == nir_instr_type_intrinsic &&
520         nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_resource_intel))
521       return true;
522 
523    return false;
524 }
525 
526 static bool
set_block_to_if_block(struct gcm_state * state,nir_instr * instr,nir_block * block)527 set_block_to_if_block(struct gcm_state *state, nir_instr *instr,
528                       nir_block *block)
529 {
530    if (instr->type == nir_instr_type_load_const)
531       return true;
532 
533    if (instr->type == nir_instr_type_intrinsic &&
534        nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_resource_intel)
535       return true;
536 
537    /* TODO: Figure out some more heuristics to allow more to be moved into
538     * if-statements.
539     */
540 
541    return false;
542 }
543 
544 static nir_block *
gcm_choose_block_for_instr(nir_instr * instr,nir_block * early_block,nir_block * late_block,struct gcm_state * state)545 gcm_choose_block_for_instr(nir_instr *instr, nir_block *early_block,
546                            nir_block *late_block, struct gcm_state *state)
547 {
548    assert(nir_block_dominates(early_block, late_block));
549 
550    bool block_set = false;
551 
552    /* First see if we can push the instruction down into an if-statements block */
553    nir_block *best = late_block;
554    for (nir_block *block = late_block; block != NULL; block = block->imm_dom) {
555       if (state->blocks[block->index].loop_depth >
556           state->blocks[instr->block->index].loop_depth)
557          continue;
558 
559       if (state->blocks[block->index].if_depth >=
560              state->blocks[best->index].if_depth &&
561           set_block_to_if_block(state, instr, block)) {
562          /* If we are pushing the instruction into an if we want it to be
563           * in the earliest block not the latest to avoid creating register
564           * pressure issues. So we don't break unless we come across the
565           * block the instruction was originally in.
566           */
567          best = block;
568          block_set = true;
569          if (block == instr->block)
570             break;
571       } else if (block == instr->block) {
572          /* If we couldn't push the instruction later just put is back where it
573           * was previously.
574           */
575          if (!block_set)
576             best = block;
577          break;
578       }
579 
580       if (block == early_block)
581          break;
582    }
583 
584    /* Now see if we can evict the instruction from a loop */
585    for (nir_block *block = late_block; block != NULL; block = block->imm_dom) {
586       if (state->blocks[block->index].loop_depth <
587           state->blocks[best->index].loop_depth) {
588          if (set_block_for_loop_instr(state, instr, block)) {
589             best = block;
590          } else if (block == instr->block) {
591             if (!block_set)
592                best = block;
593             break;
594          }
595       }
596 
597       if (block == early_block)
598          break;
599    }
600 
601    return best;
602 }
603 
604 static void
605 gcm_schedule_late_instr(nir_instr *instr, struct gcm_state *state);
606 
607 /** Schedules the instruction associated with the given SSA def late
608  *
609  * This function works by first walking all of the uses of the given SSA
610  * definition, ensuring that they are scheduled, and then computing the LCA
611  * (least common ancestor) of its uses.  It then schedules this instruction
612  * as close to the LCA as possible while trying to stay out of loops.
613  */
614 static bool
gcm_schedule_late_def(nir_def * def,void * void_state)615 gcm_schedule_late_def(nir_def *def, void *void_state)
616 {
617    struct gcm_state *state = void_state;
618 
619    nir_block *lca = NULL;
620 
621    nir_foreach_use(use_src, def) {
622       nir_instr *use_instr = nir_src_parent_instr(use_src);
623 
624       gcm_schedule_late_instr(use_instr, state);
625 
626       /* Phi instructions are a bit special.  SSA definitions don't have to
627        * dominate the sources of the phi nodes that use them; instead, they
628        * have to dominate the predecessor block corresponding to the phi
629        * source.  We handle this by looking through the sources, finding
630        * any that are usingg this SSA def, and using those blocks instead
631        * of the one the phi lives in.
632        */
633       if (use_instr->type == nir_instr_type_phi) {
634          nir_phi_instr *phi = nir_instr_as_phi(use_instr);
635 
636          nir_foreach_phi_src(phi_src, phi) {
637             if (phi_src->src.ssa == def)
638                lca = nir_dominance_lca(lca, phi_src->pred);
639          }
640       } else {
641          lca = nir_dominance_lca(lca, use_instr->block);
642       }
643    }
644 
645    nir_foreach_if_use(use_src, def) {
646       nir_if *if_stmt = nir_src_parent_if(use_src);
647 
648       /* For if statements, we consider the block to be the one immediately
649        * preceding the if CF node.
650        */
651       nir_block *pred_block =
652          nir_cf_node_as_block(nir_cf_node_prev(&if_stmt->cf_node));
653 
654       lca = nir_dominance_lca(lca, pred_block);
655    }
656 
657    nir_block *early_block =
658       state->instr_infos[def->parent_instr->index].early_block;
659 
660    /* Some instructions may never be used.  Flag them and the instruction
661     * placement code will get rid of them for us.
662     */
663    if (lca == NULL) {
664       def->parent_instr->block = NULL;
665       return true;
666    }
667 
668    if (def->parent_instr->pass_flags & GCM_INSTR_SCHEDULE_EARLIER_ONLY &&
669        lca != def->parent_instr->block &&
670        nir_block_dominates(def->parent_instr->block, lca)) {
671       lca = def->parent_instr->block;
672    }
673 
674    /* We now have the LCA of all of the uses.  If our invariants hold,
675     * this is dominated by the block that we chose when scheduling early.
676     * We now walk up the dominance tree and pick the lowest block that is
677     * as far outside loops as we can get.
678     */
679    nir_block *best_block =
680       gcm_choose_block_for_instr(def->parent_instr, early_block, lca, state);
681 
682    if (def->parent_instr->block != best_block)
683       state->progress = true;
684 
685    def->parent_instr->block = best_block;
686 
687    return true;
688 }
689 
690 /** Schedules an instruction late
691  *
692  * This function performs a depth-first search starting at the given
693  * instruction and proceeding through its uses to schedule instructions as
694  * late as they can reasonably go in the dominance tree.  The instructions
695  * are "scheduled" by updating their instr->block field.
696  *
697  * The name of this function is actually a bit of a misnomer as it doesn't
698  * schedule them "as late as possible" as the paper implies.  Instead, it
699  * first finds the lates possible place it can schedule the instruction and
700  * then possibly schedules it earlier than that.  The actual location is as
701  * far down the tree as we can go while trying to stay out of loops.
702  */
703 static void
gcm_schedule_late_instr(nir_instr * instr,struct gcm_state * state)704 gcm_schedule_late_instr(nir_instr *instr, struct gcm_state *state)
705 {
706    if (instr->pass_flags & GCM_INSTR_SCHEDULED_LATE)
707       return;
708 
709    instr->pass_flags |= GCM_INSTR_SCHEDULED_LATE;
710 
711    /* Pinned/placed instructions are already scheduled so we don't need to do
712     * anything.  Also, bailing here keeps us from ever following phi nodes
713     * which can be back-edges.
714     */
715    if (instr->pass_flags & GCM_INSTR_PLACED ||
716        instr->pass_flags & GCM_INSTR_PINNED)
717       return;
718 
719    nir_foreach_def(instr, gcm_schedule_late_def, state);
720 }
721 
722 static bool
gcm_replace_def_with_undef(nir_def * def,void * void_state)723 gcm_replace_def_with_undef(nir_def *def, void *void_state)
724 {
725    struct gcm_state *state = void_state;
726 
727    if (nir_def_is_unused(def))
728       return true;
729 
730    nir_undef_instr *undef =
731       nir_undef_instr_create(state->impl->function->shader,
732                              def->num_components, def->bit_size);
733    nir_instr_insert(nir_before_impl(state->impl), &undef->instr);
734    nir_def_rewrite_uses(def, &undef->def);
735 
736    return true;
737 }
738 
739 /** Places an instrution back into the program
740  *
741  * The earlier passes of GCM simply choose blocks for each instruction and
742  * otherwise leave them alone.  This pass actually places the instructions
743  * into their chosen blocks.
744  *
745  * To do so, we simply insert instructions in the reverse order they were
746  * extracted. This will simply place instructions that were scheduled earlier
747  * onto the end of their new block and instructions that were scheduled later to
748  * the start of their new block.
749  */
750 static void
gcm_place_instr(nir_instr * instr,struct gcm_state * state)751 gcm_place_instr(nir_instr *instr, struct gcm_state *state)
752 {
753    if (instr->pass_flags & GCM_INSTR_PLACED)
754       return;
755 
756    instr->pass_flags |= GCM_INSTR_PLACED;
757 
758    if (instr->block == NULL) {
759       nir_foreach_def(instr, gcm_replace_def_with_undef, state);
760       nir_instr_remove(instr);
761       return;
762    }
763 
764    struct gcm_block_info *block_info = &state->blocks[instr->block->index];
765    exec_node_remove(&instr->node);
766 
767    if (block_info->last_instr) {
768       exec_node_insert_node_before(&block_info->last_instr->node,
769                                    &instr->node);
770    } else {
771       /* Schedule it at the end of the block */
772       nir_instr *jump_instr = nir_block_last_instr(instr->block);
773       if (jump_instr && jump_instr->type == nir_instr_type_jump) {
774          exec_node_insert_node_before(&jump_instr->node, &instr->node);
775       } else {
776          exec_list_push_tail(&instr->block->instr_list, &instr->node);
777       }
778    }
779 
780    block_info->last_instr = instr;
781 }
782 
783 /**
784  * Are instructions a and b both contained in the same if/else block?
785  */
786 static bool
weak_gvn(const nir_instr * a,const nir_instr * b)787 weak_gvn(const nir_instr *a, const nir_instr *b)
788 {
789    const struct nir_cf_node *ap = a->block->cf_node.parent;
790    const struct nir_cf_node *bp = b->block->cf_node.parent;
791    return ap && ap == bp && ap->type == nir_cf_node_if;
792 }
793 
794 static bool
opt_gcm_impl(nir_shader * shader,nir_function_impl * impl,bool value_number)795 opt_gcm_impl(nir_shader *shader, nir_function_impl *impl, bool value_number)
796 {
797    nir_metadata_require(impl, nir_metadata_control_flow);
798    nir_metadata_require(impl, nir_metadata_loop_analysis,
799                         shader->options->force_indirect_unrolling,
800                         shader->options->force_indirect_unrolling_sampler);
801 
802    /* A previous pass may have left pass_flags dirty, so clear it all out. */
803    nir_foreach_block(block, impl)
804       nir_foreach_instr(instr, block)
805          instr->pass_flags = 0;
806 
807    struct gcm_state state;
808 
809    state.impl = impl;
810    state.instr = NULL;
811    state.progress = false;
812    exec_list_make_empty(&state.instrs);
813    state.blocks = rzalloc_array(NULL, struct gcm_block_info, impl->num_blocks);
814 
815    gcm_build_block_info(&impl->body, &state, NULL, 0, 0, ~0u);
816 
817    gcm_pin_instructions(impl, &state);
818 
819    state.instr_infos =
820       rzalloc_array(NULL, struct gcm_instr_info, state.num_instrs);
821 
822    /* Perform (at least some) Global Value Numbering (GVN).
823     *
824     * We perform full GVN when `value_number' is true.  This can be too
825     * aggressive, moving values far away and extending their live ranges,
826     * so we don't always want to do it.
827     *
828     * Otherwise, we perform 'weaker' GVN: if identical ALU instructions appear
829     * on both sides of the same if/else block, we allow them to be moved.
830     * This cleans up a lot of mess without being -too- aggressive.
831     */
832    struct set *gvn_set = nir_instr_set_create(NULL);
833    foreach_list_typed_safe(nir_instr, instr, node, &state.instrs) {
834       if (instr->pass_flags & GCM_INSTR_PINNED)
835          continue;
836 
837       if (nir_instr_set_add_or_rewrite(gvn_set, instr,
838                                        value_number ? NULL : weak_gvn)) {
839          state.progress = true;
840          nir_instr_remove(instr);
841       }
842    }
843    nir_instr_set_destroy(gvn_set);
844 
845    foreach_list_typed(nir_instr, instr, node, &state.instrs)
846       gcm_schedule_early_instr(instr, &state);
847 
848    foreach_list_typed(nir_instr, instr, node, &state.instrs)
849       gcm_schedule_late_instr(instr, &state);
850 
851    while (!exec_list_is_empty(&state.instrs)) {
852       nir_instr *instr = exec_node_data(nir_instr,
853                                         state.instrs.tail_sentinel.prev, node);
854       gcm_place_instr(instr, &state);
855    }
856 
857    ralloc_free(state.blocks);
858    ralloc_free(state.instr_infos);
859 
860    nir_metadata_preserve(impl, nir_metadata_control_flow |
861                                   nir_metadata_loop_analysis);
862 
863    return state.progress;
864 }
865 
866 bool
nir_opt_gcm(nir_shader * shader,bool value_number)867 nir_opt_gcm(nir_shader *shader, bool value_number)
868 {
869    bool progress = false;
870 
871    nir_foreach_function_impl(impl, shader) {
872       progress |= opt_gcm_impl(shader, impl, value_number);
873    }
874 
875    return progress;
876 }
877