1 /*
2 * Copyright © 2019 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * Although it's called a load/store "vectorization" pass, this also combines
26 * intersecting and identical loads/stores. It currently supports derefs, ubo,
27 * ssbo and push constant loads/stores.
28 *
29 * This doesn't handle copy_deref intrinsics and assumes that
30 * nir_lower_alu_to_scalar() has been called and that the IR is free from ALU
31 * modifiers. It also assumes that derefs have explicitly laid out types.
32 *
33 * After vectorization, the backend may want to call nir_lower_alu_to_scalar()
34 * and nir_lower_pack(). Also this creates cast instructions taking derefs as a
35 * source and some parts of NIR may not be able to handle that well.
36 *
37 * There are a few situations where this doesn't vectorize as well as it could:
38 * - It won't turn four consecutive vec3 loads into 3 vec4 loads.
39 * - It doesn't do global vectorization.
40 * Handling these cases probably wouldn't provide much benefit though.
41 *
42 * This probably doesn't handle big-endian GPUs correctly.
43 */
44
45 #include "util/u_dynarray.h"
46 #include "nir.h"
47 #include "nir_builder.h"
48 #include "nir_deref.h"
49 #include "nir_worklist.h"
50
51 #include <stdlib.h>
52
53 struct intrinsic_info {
54 nir_variable_mode mode; /* 0 if the mode is obtained from the deref. */
55 nir_intrinsic_op op;
56 bool is_atomic;
57 /* Indices into nir_intrinsic::src[] or -1 if not applicable. */
58 int resource_src; /* resource (e.g. from vulkan_resource_index) */
59 int base_src; /* offset which it loads/stores from */
60 int deref_src; /* deref which is loads/stores from */
61 int value_src; /* the data it is storing */
62
63 /* Number of bytes for an offset delta of 1. */
64 unsigned offset_scale;
65 };
66
67 static const struct intrinsic_info *
get_info(nir_intrinsic_op op)68 get_info(nir_intrinsic_op op)
69 {
70 switch (op) {
71 #define INFO(mode, op, atomic, res, base, deref, val, scale) \
72 case nir_intrinsic_##op: { \
73 static const struct intrinsic_info op##_info = { mode, nir_intrinsic_##op, atomic, res, base, deref, val, scale }; \
74 return &op##_info; \
75 }
76 #define LOAD(mode, op, res, base, deref, scale) INFO(mode, load_##op, false, res, base, deref, -1, scale)
77 #define STORE(mode, op, res, base, deref, val, scale) INFO(mode, store_##op, false, res, base, deref, val, scale)
78 #define ATOMIC(mode, type, res, base, deref, val, scale) \
79 INFO(mode, type##_atomic, true, res, base, deref, val, scale) \
80 INFO(mode, type##_atomic_swap, true, res, base, deref, val, scale)
81
82 LOAD(nir_var_mem_push_const, push_constant, -1, 0, -1, 1)
83 LOAD(nir_var_mem_ubo, ubo, 0, 1, -1, 1)
84 LOAD(nir_var_mem_ssbo, ssbo, 0, 1, -1, 1)
85 STORE(nir_var_mem_ssbo, ssbo, 1, 2, -1, 0, 1)
86 LOAD(0, deref, -1, -1, 0, 1)
87 STORE(0, deref, -1, -1, 0, 1, 1)
88 LOAD(nir_var_mem_shared, shared, -1, 0, -1, 1)
89 STORE(nir_var_mem_shared, shared, -1, 1, -1, 0, 1)
90 LOAD(nir_var_mem_global, global, -1, 0, -1, 1)
91 STORE(nir_var_mem_global, global, -1, 1, -1, 0, 1)
92 LOAD(nir_var_mem_global, global_constant, -1, 0, -1, 1)
93 LOAD(nir_var_mem_task_payload, task_payload, -1, 0, -1, 1)
94 STORE(nir_var_mem_task_payload, task_payload, -1, 1, -1, 0, 1)
95 ATOMIC(nir_var_mem_ssbo, ssbo, 0, 1, -1, 2, 1)
96 ATOMIC(0, deref, -1, -1, 0, 1, 1)
97 ATOMIC(nir_var_mem_shared, shared, -1, 0, -1, 1, 1)
98 ATOMIC(nir_var_mem_global, global, -1, 0, -1, 1, 1)
99 ATOMIC(nir_var_mem_task_payload, task_payload, -1, 0, -1, 1, 1)
100 LOAD(nir_var_shader_temp, stack, -1, -1, -1, 1)
101 STORE(nir_var_shader_temp, stack, -1, -1, -1, 0, 1)
102 LOAD(nir_var_shader_temp, scratch, -1, 0, -1, 1)
103 STORE(nir_var_shader_temp, scratch, -1, 1, -1, 0, 1)
104 LOAD(nir_var_mem_ubo, ubo_uniform_block_intel, 0, 1, -1, 1)
105 LOAD(nir_var_mem_ssbo, ssbo_uniform_block_intel, 0, 1, -1, 1)
106 LOAD(nir_var_mem_shared, shared_uniform_block_intel, -1, 0, -1, 1)
107 LOAD(nir_var_mem_global, global_constant_uniform_block_intel, -1, 0, -1, 1)
108 INFO(nir_var_mem_ubo, ldc_nv, false, 0, 1, -1, -1, 1)
109 INFO(nir_var_mem_ubo, ldcx_nv, false, 0, 1, -1, -1, 1)
110 LOAD(nir_var_uniform, const_ir3, -1, 0, -1, 4)
111 STORE(nir_var_uniform, const_ir3, -1, -1, -1, 0, 4)
112 INFO(nir_var_mem_shared, shared_append_amd, true, -1, -1, -1, -1, 1)
113 INFO(nir_var_mem_shared, shared_consume_amd, true, -1, -1, -1, -1, 1)
114 LOAD(nir_var_mem_global, smem_amd, 0, 1, -1, 1)
115 default:
116 break;
117 #undef ATOMIC
118 #undef STORE
119 #undef LOAD
120 #undef INFO
121 }
122 return NULL;
123 }
124
125 /*
126 * Information used to compare memory operations.
127 * It canonically represents an offset as:
128 * `offset_defs[0]*offset_defs_mul[0] + offset_defs[1]*offset_defs_mul[1] + ...`
129 * "offset_defs" is sorted in ascenting order by the ssa definition's index.
130 * "resource" or "var" may be NULL.
131 */
132 struct entry_key {
133 nir_def *resource;
134 nir_variable *var;
135 unsigned offset_def_count;
136 nir_scalar *offset_defs;
137 uint64_t *offset_defs_mul;
138 };
139
140 /* Information on a single memory operation. */
141 struct entry {
142 struct list_head head;
143 unsigned index;
144
145 struct entry_key *key;
146 union {
147 uint64_t offset; /* sign-extended */
148 int64_t offset_signed;
149 };
150 uint32_t align_mul;
151 uint32_t align_offset;
152
153 nir_instr *instr;
154 nir_intrinsic_instr *intrin;
155 unsigned num_components;
156 const struct intrinsic_info *info;
157 enum gl_access_qualifier access;
158 bool is_store;
159
160 nir_deref_instr *deref;
161 };
162
163 struct vectorize_ctx {
164 nir_shader *shader;
165 const nir_load_store_vectorize_options *options;
166 struct list_head entries[nir_num_variable_modes];
167 struct hash_table *loads[nir_num_variable_modes];
168 struct hash_table *stores[nir_num_variable_modes];
169 };
170
171 static uint32_t
hash_entry_key(const void * key_)172 hash_entry_key(const void *key_)
173 {
174 /* this is careful to not include pointers in the hash calculation so that
175 * the order of the hash table walk is deterministic */
176 struct entry_key *key = (struct entry_key *)key_;
177
178 uint32_t hash = 0;
179 if (key->resource)
180 hash = XXH32(&key->resource->index, sizeof(key->resource->index), hash);
181 if (key->var) {
182 hash = XXH32(&key->var->index, sizeof(key->var->index), hash);
183 unsigned mode = key->var->data.mode;
184 hash = XXH32(&mode, sizeof(mode), hash);
185 }
186
187 for (unsigned i = 0; i < key->offset_def_count; i++) {
188 hash = XXH32(&key->offset_defs[i].def->index, sizeof(key->offset_defs[i].def->index), hash);
189 hash = XXH32(&key->offset_defs[i].comp, sizeof(key->offset_defs[i].comp), hash);
190 }
191
192 hash = XXH32(key->offset_defs_mul, key->offset_def_count * sizeof(uint64_t), hash);
193
194 return hash;
195 }
196
197 static bool
entry_key_equals(const void * a_,const void * b_)198 entry_key_equals(const void *a_, const void *b_)
199 {
200 struct entry_key *a = (struct entry_key *)a_;
201 struct entry_key *b = (struct entry_key *)b_;
202
203 if (a->var != b->var || a->resource != b->resource)
204 return false;
205
206 if (a->offset_def_count != b->offset_def_count)
207 return false;
208
209 for (unsigned i = 0; i < a->offset_def_count; i++) {
210 if (!nir_scalar_equal(a->offset_defs[i], b->offset_defs[i]))
211 return false;
212 }
213
214 size_t offset_def_mul_size = a->offset_def_count * sizeof(uint64_t);
215 if (a->offset_def_count &&
216 memcmp(a->offset_defs_mul, b->offset_defs_mul, offset_def_mul_size))
217 return false;
218
219 return true;
220 }
221
222 static void
delete_entry_dynarray(struct hash_entry * entry)223 delete_entry_dynarray(struct hash_entry *entry)
224 {
225 struct util_dynarray *arr = (struct util_dynarray *)entry->data;
226 ralloc_free(arr);
227 }
228
229 static int
sort_entries(const void * a_,const void * b_)230 sort_entries(const void *a_, const void *b_)
231 {
232 struct entry *a = *(struct entry *const *)a_;
233 struct entry *b = *(struct entry *const *)b_;
234
235 if (a->offset_signed > b->offset_signed)
236 return 1;
237 else if (a->offset_signed < b->offset_signed)
238 return -1;
239 else
240 return 0;
241 }
242
243 static unsigned
get_bit_size(struct entry * entry)244 get_bit_size(struct entry *entry)
245 {
246 unsigned size = entry->is_store ? entry->intrin->src[entry->info->value_src].ssa->bit_size : entry->intrin->def.bit_size;
247 return size == 1 ? 32u : size;
248 }
249
250 static unsigned
get_write_mask(const nir_intrinsic_instr * intrin)251 get_write_mask(const nir_intrinsic_instr *intrin)
252 {
253 if (nir_intrinsic_has_write_mask(intrin))
254 return nir_intrinsic_write_mask(intrin);
255
256 const struct intrinsic_info *info = get_info(intrin->intrinsic);
257 assert(info->value_src >= 0);
258 return nir_component_mask(intrin->src[info->value_src].ssa->num_components);
259 }
260
261 static nir_op
get_effective_alu_op(nir_scalar scalar)262 get_effective_alu_op(nir_scalar scalar)
263 {
264 nir_op op = nir_scalar_alu_op(scalar);
265
266 /* amul can always be replaced by imul and we pattern match on the more
267 * general opcode, so return imul for amul.
268 */
269 if (op == nir_op_amul)
270 return nir_op_imul;
271 else
272 return op;
273 }
274
275 /* If "def" is from an alu instruction with the opcode "op" and one of it's
276 * sources is a constant, update "def" to be the non-constant source, fill "c"
277 * with the constant and return true. */
278 static bool
parse_alu(nir_scalar * def,nir_op op,uint64_t * c)279 parse_alu(nir_scalar *def, nir_op op, uint64_t *c)
280 {
281 if (!nir_scalar_is_alu(*def) || get_effective_alu_op(*def) != op)
282 return false;
283
284 nir_scalar src0 = nir_scalar_chase_alu_src(*def, 0);
285 nir_scalar src1 = nir_scalar_chase_alu_src(*def, 1);
286 if (op != nir_op_ishl && nir_scalar_is_const(src0)) {
287 *c = nir_scalar_as_uint(src0);
288 *def = src1;
289 } else if (nir_scalar_is_const(src1)) {
290 *c = nir_scalar_as_uint(src1);
291 *def = src0;
292 } else {
293 return false;
294 }
295 return true;
296 }
297
298 /* Parses an offset expression such as "a * 16 + 4" and "(a * 16 + 4) * 64 + 32". */
299 static void
parse_offset(nir_scalar * base,uint64_t * base_mul,uint64_t * offset)300 parse_offset(nir_scalar *base, uint64_t *base_mul, uint64_t *offset)
301 {
302 if (nir_scalar_is_const(*base)) {
303 *offset = nir_scalar_as_uint(*base);
304 base->def = NULL;
305 return;
306 }
307
308 uint64_t mul = 1;
309 uint64_t add = 0;
310 bool progress = false;
311 do {
312 uint64_t mul2 = 1, add2 = 0;
313
314 progress = parse_alu(base, nir_op_imul, &mul2);
315 mul *= mul2;
316
317 mul2 = 0;
318 progress |= parse_alu(base, nir_op_ishl, &mul2);
319 mul <<= mul2;
320
321 progress |= parse_alu(base, nir_op_iadd, &add2);
322 add += add2 * mul;
323
324 if (nir_scalar_is_alu(*base) && nir_scalar_alu_op(*base) == nir_op_mov) {
325 *base = nir_scalar_chase_alu_src(*base, 0);
326 progress = true;
327 }
328 } while (progress);
329
330 if (base->def->parent_instr->type == nir_instr_type_intrinsic) {
331 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(base->def->parent_instr);
332 if (intrin->intrinsic == nir_intrinsic_load_vulkan_descriptor)
333 base->def = NULL;
334 }
335
336 *base_mul = mul;
337 *offset = add;
338 }
339
340 static unsigned
type_scalar_size_bytes(const struct glsl_type * type)341 type_scalar_size_bytes(const struct glsl_type *type)
342 {
343 assert(glsl_type_is_vector_or_scalar(type) ||
344 glsl_type_is_matrix(type));
345 return glsl_type_is_boolean(type) ? 4u : glsl_get_bit_size(type) / 8u;
346 }
347
348 static unsigned
add_to_entry_key(nir_scalar * offset_defs,uint64_t * offset_defs_mul,unsigned offset_def_count,nir_scalar def,uint64_t mul)349 add_to_entry_key(nir_scalar *offset_defs, uint64_t *offset_defs_mul,
350 unsigned offset_def_count, nir_scalar def, uint64_t mul)
351 {
352 mul = util_mask_sign_extend(mul, def.def->bit_size);
353
354 for (unsigned i = 0; i <= offset_def_count; i++) {
355 if (i == offset_def_count || def.def->index > offset_defs[i].def->index) {
356 /* insert before i */
357 memmove(offset_defs + i + 1, offset_defs + i,
358 (offset_def_count - i) * sizeof(nir_scalar));
359 memmove(offset_defs_mul + i + 1, offset_defs_mul + i,
360 (offset_def_count - i) * sizeof(uint64_t));
361 offset_defs[i] = def;
362 offset_defs_mul[i] = mul;
363 return 1;
364 } else if (nir_scalar_equal(def, offset_defs[i])) {
365 /* merge with offset_def at i */
366 offset_defs_mul[i] += mul;
367 return 0;
368 }
369 }
370 unreachable("Unreachable.");
371 return 0;
372 }
373
374 static struct entry_key *
create_entry_key_from_deref(void * mem_ctx,nir_deref_path * path,uint64_t * offset_base)375 create_entry_key_from_deref(void *mem_ctx,
376 nir_deref_path *path,
377 uint64_t *offset_base)
378 {
379 unsigned path_len = 0;
380 while (path->path[path_len])
381 path_len++;
382
383 nir_scalar offset_defs_stack[32];
384 uint64_t offset_defs_mul_stack[32];
385 nir_scalar *offset_defs = offset_defs_stack;
386 uint64_t *offset_defs_mul = offset_defs_mul_stack;
387 if (path_len > 32) {
388 offset_defs = malloc(path_len * sizeof(nir_scalar));
389 offset_defs_mul = malloc(path_len * sizeof(uint64_t));
390 }
391 unsigned offset_def_count = 0;
392
393 struct entry_key *key = ralloc(mem_ctx, struct entry_key);
394 key->resource = NULL;
395 key->var = NULL;
396 *offset_base = 0;
397
398 for (unsigned i = 0; i < path_len; i++) {
399 nir_deref_instr *parent = i ? path->path[i - 1] : NULL;
400 nir_deref_instr *deref = path->path[i];
401
402 switch (deref->deref_type) {
403 case nir_deref_type_var: {
404 assert(!parent);
405 key->var = deref->var;
406 break;
407 }
408 case nir_deref_type_array:
409 case nir_deref_type_ptr_as_array: {
410 assert(parent);
411 nir_def *index = deref->arr.index.ssa;
412 uint32_t stride = nir_deref_instr_array_stride(deref);
413
414 nir_scalar base = { .def = index, .comp = 0 };
415 uint64_t offset = 0, base_mul = 1;
416 parse_offset(&base, &base_mul, &offset);
417 offset = util_mask_sign_extend(offset, index->bit_size);
418
419 *offset_base += offset * stride;
420 if (base.def) {
421 offset_def_count += add_to_entry_key(offset_defs, offset_defs_mul,
422 offset_def_count,
423 base, base_mul * stride);
424 }
425 break;
426 }
427 case nir_deref_type_struct: {
428 assert(parent);
429 int offset = glsl_get_struct_field_offset(parent->type, deref->strct.index);
430 *offset_base += offset;
431 break;
432 }
433 case nir_deref_type_cast: {
434 if (!parent)
435 key->resource = deref->parent.ssa;
436 break;
437 }
438 default:
439 unreachable("Unhandled deref type");
440 }
441 }
442
443 key->offset_def_count = offset_def_count;
444 key->offset_defs = ralloc_array(mem_ctx, nir_scalar, offset_def_count);
445 key->offset_defs_mul = ralloc_array(mem_ctx, uint64_t, offset_def_count);
446 memcpy(key->offset_defs, offset_defs, offset_def_count * sizeof(nir_scalar));
447 memcpy(key->offset_defs_mul, offset_defs_mul, offset_def_count * sizeof(uint64_t));
448
449 if (offset_defs != offset_defs_stack)
450 free(offset_defs);
451 if (offset_defs_mul != offset_defs_mul_stack)
452 free(offset_defs_mul);
453
454 return key;
455 }
456
457 static unsigned
parse_entry_key_from_offset(struct entry_key * key,unsigned size,unsigned left,nir_scalar base,uint64_t base_mul,uint64_t * offset)458 parse_entry_key_from_offset(struct entry_key *key, unsigned size, unsigned left,
459 nir_scalar base, uint64_t base_mul, uint64_t *offset)
460 {
461 uint64_t new_mul;
462 uint64_t new_offset;
463 parse_offset(&base, &new_mul, &new_offset);
464 *offset += new_offset * base_mul;
465
466 if (!base.def)
467 return 0;
468
469 base_mul *= new_mul;
470
471 assert(left >= 1);
472
473 if (left >= 2) {
474 if (nir_scalar_is_alu(base) && nir_scalar_alu_op(base) == nir_op_iadd) {
475 nir_scalar src0 = nir_scalar_chase_alu_src(base, 0);
476 nir_scalar src1 = nir_scalar_chase_alu_src(base, 1);
477 unsigned amount = parse_entry_key_from_offset(key, size, left - 1, src0, base_mul, offset);
478 amount += parse_entry_key_from_offset(key, size + amount, left - amount, src1, base_mul, offset);
479 return amount;
480 }
481 }
482
483 return add_to_entry_key(key->offset_defs, key->offset_defs_mul, size, base, base_mul);
484 }
485
486 static struct entry_key *
create_entry_key_from_offset(void * mem_ctx,nir_def * base,uint64_t base_mul,uint64_t * offset)487 create_entry_key_from_offset(void *mem_ctx, nir_def *base, uint64_t base_mul, uint64_t *offset)
488 {
489 struct entry_key *key = ralloc(mem_ctx, struct entry_key);
490 key->resource = NULL;
491 key->var = NULL;
492 if (base) {
493 nir_scalar offset_defs[32];
494 uint64_t offset_defs_mul[32];
495 key->offset_defs = offset_defs;
496 key->offset_defs_mul = offset_defs_mul;
497
498 nir_scalar scalar = { .def = base, .comp = 0 };
499 key->offset_def_count = parse_entry_key_from_offset(key, 0, 32, scalar, base_mul, offset);
500
501 key->offset_defs = ralloc_array(mem_ctx, nir_scalar, key->offset_def_count);
502 key->offset_defs_mul = ralloc_array(mem_ctx, uint64_t, key->offset_def_count);
503 memcpy(key->offset_defs, offset_defs, key->offset_def_count * sizeof(nir_scalar));
504 memcpy(key->offset_defs_mul, offset_defs_mul, key->offset_def_count * sizeof(uint64_t));
505 } else {
506 key->offset_def_count = 0;
507 key->offset_defs = NULL;
508 key->offset_defs_mul = NULL;
509 }
510 return key;
511 }
512
513 static nir_variable_mode
get_variable_mode(struct entry * entry)514 get_variable_mode(struct entry *entry)
515 {
516 if (entry->info->mode)
517 return entry->info->mode;
518 assert(entry->deref && util_bitcount(entry->deref->modes) == 1);
519 return entry->deref->modes;
520 }
521
522 static unsigned
mode_to_index(nir_variable_mode mode)523 mode_to_index(nir_variable_mode mode)
524 {
525 assert(util_bitcount(mode) == 1);
526
527 /* Globals and SSBOs should be tracked together */
528 if (mode == nir_var_mem_global)
529 mode = nir_var_mem_ssbo;
530
531 return ffs(mode) - 1;
532 }
533
534 static nir_variable_mode
aliasing_modes(nir_variable_mode modes)535 aliasing_modes(nir_variable_mode modes)
536 {
537 /* Global and SSBO can alias */
538 if (modes & (nir_var_mem_ssbo | nir_var_mem_global))
539 modes |= nir_var_mem_ssbo | nir_var_mem_global;
540 return modes;
541 }
542
543 static void
calc_alignment(struct entry * entry)544 calc_alignment(struct entry *entry)
545 {
546 uint32_t align_mul = 31;
547 for (unsigned i = 0; i < entry->key->offset_def_count; i++) {
548 if (entry->key->offset_defs_mul[i])
549 align_mul = MIN2(align_mul, ffsll(entry->key->offset_defs_mul[i]));
550 }
551
552 entry->align_mul = 1u << (align_mul - 1);
553 bool has_align = nir_intrinsic_infos[entry->intrin->intrinsic].index_map[NIR_INTRINSIC_ALIGN_MUL];
554 if (!has_align || entry->align_mul >= nir_intrinsic_align_mul(entry->intrin)) {
555 entry->align_offset = entry->offset % entry->align_mul;
556 } else {
557 entry->align_mul = nir_intrinsic_align_mul(entry->intrin);
558 entry->align_offset = nir_intrinsic_align_offset(entry->intrin);
559 }
560 }
561
562 static struct entry *
create_entry(void * mem_ctx,const struct intrinsic_info * info,nir_intrinsic_instr * intrin)563 create_entry(void *mem_ctx,
564 const struct intrinsic_info *info,
565 nir_intrinsic_instr *intrin)
566 {
567 struct entry *entry = rzalloc(mem_ctx, struct entry);
568 entry->intrin = intrin;
569 entry->instr = &intrin->instr;
570 entry->info = info;
571 entry->is_store = entry->info->value_src >= 0;
572 entry->num_components =
573 entry->is_store ? intrin->num_components :
574 nir_def_last_component_read(&intrin->def) + 1;
575
576 if (entry->info->deref_src >= 0) {
577 entry->deref = nir_src_as_deref(intrin->src[entry->info->deref_src]);
578 nir_deref_path path;
579 nir_deref_path_init(&path, entry->deref, NULL);
580 entry->key = create_entry_key_from_deref(entry, &path, &entry->offset);
581 nir_deref_path_finish(&path);
582 } else {
583 nir_def *base = entry->info->base_src >= 0 ? intrin->src[entry->info->base_src].ssa : NULL;
584 uint64_t offset = 0;
585 if (nir_intrinsic_has_base(intrin))
586 offset += nir_intrinsic_base(intrin) * info->offset_scale;
587 entry->key = create_entry_key_from_offset(entry, base, info->offset_scale, &offset);
588 entry->offset = offset;
589
590 if (base)
591 entry->offset = util_mask_sign_extend(entry->offset, base->bit_size);
592 }
593
594 if (entry->info->resource_src >= 0)
595 entry->key->resource = intrin->src[entry->info->resource_src].ssa;
596
597 if (nir_intrinsic_has_access(intrin))
598 entry->access = nir_intrinsic_access(intrin);
599 else if (entry->key->var)
600 entry->access = entry->key->var->data.access;
601
602 if (nir_intrinsic_can_reorder(intrin))
603 entry->access |= ACCESS_CAN_REORDER;
604
605 uint32_t restrict_modes = nir_var_shader_in | nir_var_shader_out;
606 restrict_modes |= nir_var_shader_temp | nir_var_function_temp;
607 restrict_modes |= nir_var_uniform | nir_var_mem_push_const;
608 restrict_modes |= nir_var_system_value | nir_var_mem_shared;
609 restrict_modes |= nir_var_mem_task_payload;
610 if (get_variable_mode(entry) & restrict_modes)
611 entry->access |= ACCESS_RESTRICT;
612
613 calc_alignment(entry);
614
615 return entry;
616 }
617
618 static nir_deref_instr *
cast_deref(nir_builder * b,unsigned num_components,unsigned bit_size,nir_deref_instr * deref)619 cast_deref(nir_builder *b, unsigned num_components, unsigned bit_size, nir_deref_instr *deref)
620 {
621 if (glsl_get_components(deref->type) == num_components &&
622 type_scalar_size_bytes(deref->type) * 8u == bit_size)
623 return deref;
624
625 enum glsl_base_type types[] = {
626 GLSL_TYPE_UINT8, GLSL_TYPE_UINT16, GLSL_TYPE_UINT, GLSL_TYPE_UINT64
627 };
628 enum glsl_base_type base = types[ffs(bit_size / 8u) - 1u];
629 const struct glsl_type *type = glsl_vector_type(base, num_components);
630
631 if (deref->type == type)
632 return deref;
633
634 return nir_build_deref_cast(b, &deref->def, deref->modes, type, 0);
635 }
636
637 /* Return true if "new_bit_size" is a usable bit size for a vectorized load/store
638 * of "low" and "high". */
639 static bool
new_bitsize_acceptable(struct vectorize_ctx * ctx,unsigned new_bit_size,struct entry * low,struct entry * high,unsigned size)640 new_bitsize_acceptable(struct vectorize_ctx *ctx, unsigned new_bit_size,
641 struct entry *low, struct entry *high, unsigned size)
642 {
643 if (size % new_bit_size != 0)
644 return false;
645
646 unsigned new_num_components = size / new_bit_size;
647
648 if (low->is_store) {
649 if (!nir_num_components_valid(new_num_components))
650 return false;
651 } else {
652 /* Invalid component counts must be rejected by the callback, otherwise
653 * the load will overfetch by aligning the number to the next valid
654 * component count.
655 */
656 if (new_num_components > NIR_MAX_VEC_COMPONENTS)
657 return false;
658 }
659
660 unsigned high_offset = high->offset_signed - low->offset_signed;
661
662 /* check nir_extract_bits limitations */
663 unsigned common_bit_size = MIN2(get_bit_size(low), get_bit_size(high));
664 common_bit_size = MIN2(common_bit_size, new_bit_size);
665 if (high_offset > 0)
666 common_bit_size = MIN2(common_bit_size, (1u << (ffs(high_offset * 8) - 1)));
667 if (new_bit_size / common_bit_size > NIR_MAX_VEC_COMPONENTS)
668 return false;
669
670 unsigned low_size = low->intrin->num_components * get_bit_size(low) / 8;
671 /* The hole size can be less than 0 if low and high instructions overlap. */
672 int64_t hole_size = high->offset_signed - (low->offset_signed + low_size);
673
674 if (!ctx->options->callback(low->align_mul,
675 low->align_offset,
676 new_bit_size, new_num_components, hole_size,
677 low->intrin, high->intrin,
678 ctx->options->cb_data))
679 return false;
680
681 if (low->is_store) {
682 unsigned low_size = low->num_components * get_bit_size(low);
683 unsigned high_size = high->num_components * get_bit_size(high);
684
685 if (low_size % new_bit_size != 0)
686 return false;
687 if (high_size % new_bit_size != 0)
688 return false;
689
690 unsigned write_mask = get_write_mask(low->intrin);
691 if (!nir_component_mask_can_reinterpret(write_mask, get_bit_size(low), new_bit_size))
692 return false;
693
694 write_mask = get_write_mask(high->intrin);
695 if (!nir_component_mask_can_reinterpret(write_mask, get_bit_size(high), new_bit_size))
696 return false;
697 }
698
699 return true;
700 }
701
702 static nir_deref_instr *
subtract_deref(nir_builder * b,nir_deref_instr * deref,int64_t offset)703 subtract_deref(nir_builder *b, nir_deref_instr *deref, int64_t offset)
704 {
705 /* avoid adding another deref to the path */
706 if (deref->deref_type == nir_deref_type_ptr_as_array &&
707 nir_src_is_const(deref->arr.index) &&
708 offset % nir_deref_instr_array_stride(deref) == 0) {
709 unsigned stride = nir_deref_instr_array_stride(deref);
710 assert(stride != 0);
711 nir_def *index = nir_imm_intN_t(b, nir_src_as_int(deref->arr.index) - offset / stride,
712 deref->def.bit_size);
713 return nir_build_deref_ptr_as_array(b, nir_deref_instr_parent(deref), index);
714 }
715
716 if (deref->deref_type == nir_deref_type_array &&
717 nir_src_is_const(deref->arr.index)) {
718 nir_deref_instr *parent = nir_deref_instr_parent(deref);
719 unsigned stride = nir_deref_instr_array_stride(deref);
720 assert(stride != 0);
721 if (offset % stride == 0)
722 return nir_build_deref_array_imm(
723 b, parent, nir_src_as_int(deref->arr.index) - offset / stride);
724 }
725
726 deref = nir_build_deref_cast(b, &deref->def, deref->modes,
727 glsl_scalar_type(GLSL_TYPE_UINT8), 1);
728 return nir_build_deref_ptr_as_array(
729 b, deref, nir_imm_intN_t(b, -offset, deref->def.bit_size));
730 }
731
732 static void
vectorize_loads(nir_builder * b,struct vectorize_ctx * ctx,struct entry * low,struct entry * high,struct entry * first,struct entry * second,unsigned new_bit_size,unsigned new_num_components,unsigned high_start)733 vectorize_loads(nir_builder *b, struct vectorize_ctx *ctx,
734 struct entry *low, struct entry *high,
735 struct entry *first, struct entry *second,
736 unsigned new_bit_size, unsigned new_num_components,
737 unsigned high_start)
738 {
739 unsigned old_low_bit_size = get_bit_size(low);
740 unsigned old_high_bit_size = get_bit_size(high);
741 unsigned old_low_num_components = low->intrin->num_components;
742 unsigned old_high_num_components = high->intrin->num_components;
743 bool low_bool = low->intrin->def.bit_size == 1;
744 bool high_bool = high->intrin->def.bit_size == 1;
745 nir_def *data = &first->intrin->def;
746
747 b->cursor = nir_after_instr(first->instr);
748
749 /* Align num_components to a supported vector size, effectively
750 * overfetching. Drivers can reject this in the callback by returning
751 * false for invalid num_components.
752 */
753 new_num_components = nir_round_up_components(new_num_components);
754 new_num_components = MAX2(new_num_components, 1);
755
756 /* update the load's destination size and extract data for each of the original loads */
757 data->num_components = new_num_components;
758 data->bit_size = new_bit_size;
759
760 /* Since this pass is shrinking merged loads if they have unused components
761 * due to using nir_def_last_component_read, nir_extract_bits might not have
762 * enough data to extract. Pad the extraction with these undefs to compensate.
763 * It will be eliminated by DCE.
764 */
765 nir_def *low_undef = nir_undef(b, old_low_num_components, old_low_bit_size);
766 nir_def *high_undef = nir_undef(b, old_high_num_components, old_high_bit_size);
767
768 nir_def *low_def = nir_extract_bits(
769 b, (nir_def*[]){data, low_undef}, 2, 0, old_low_num_components,
770 old_low_bit_size);
771
772 nir_def *high_def = nir_extract_bits(
773 b, (nir_def*[]){data, high_undef}, 2, high_start,
774 old_high_num_components, old_high_bit_size);
775
776 /* convert booleans */
777 low_def = low_bool ? nir_i2b(b, low_def) : nir_mov(b, low_def);
778 high_def = high_bool ? nir_i2b(b, high_def) : nir_mov(b, high_def);
779
780 /* update uses */
781 if (first == low) {
782 nir_def_rewrite_uses_after(&low->intrin->def, low_def,
783 high_def->parent_instr);
784 nir_def_rewrite_uses(&high->intrin->def, high_def);
785 } else {
786 nir_def_rewrite_uses(&low->intrin->def, low_def);
787 nir_def_rewrite_uses_after(&high->intrin->def, high_def,
788 high_def->parent_instr);
789 }
790
791 /* update the intrinsic */
792 first->intrin->num_components = new_num_components;
793 first->num_components = nir_def_last_component_read(data) + 1;
794
795 const struct intrinsic_info *info = first->info;
796
797 /* update the offset */
798 if (first != low && info->base_src >= 0) {
799 /* let nir_opt_algebraic() remove this addition. this doesn't have much
800 * issues with subtracting 16 from expressions like "(i + 1) * 16" because
801 * nir_opt_algebraic() turns them into "i * 16 + 16" */
802 b->cursor = nir_before_instr(first->instr);
803
804 nir_def *new_base = first->intrin->src[info->base_src].ssa;
805 new_base = nir_iadd_imm(b, new_base, -(int)(high_start / 8u / first->info->offset_scale));
806
807 nir_src_rewrite(&first->intrin->src[info->base_src], new_base);
808 }
809
810 /* update the deref */
811 if (info->deref_src >= 0) {
812 b->cursor = nir_before_instr(first->instr);
813
814 nir_deref_instr *deref = nir_src_as_deref(first->intrin->src[info->deref_src]);
815 if (first != low && high_start != 0)
816 deref = subtract_deref(b, deref, high_start / 8u / first->info->offset_scale);
817 first->deref = cast_deref(b, new_num_components, new_bit_size, deref);
818
819 nir_src_rewrite(&first->intrin->src[info->deref_src],
820 &first->deref->def);
821 }
822
823 /* update align */
824 if (nir_intrinsic_has_range_base(first->intrin)) {
825 uint32_t old_low_range_base = nir_intrinsic_range_base(low->intrin);
826 uint32_t old_high_range_base = nir_intrinsic_range_base(high->intrin);
827 uint32_t old_low_range_end = old_low_range_base + nir_intrinsic_range(low->intrin);
828 uint32_t old_high_range_end = old_high_range_base + nir_intrinsic_range(high->intrin);
829
830 uint32_t old_low_size = old_low_num_components * old_low_bit_size / 8;
831 uint32_t old_high_size = old_high_num_components * old_high_bit_size / 8;
832 uint32_t old_combined_size_up_to_high = high_start / 8u + old_high_size;
833 uint32_t old_combined_size = MAX2(old_low_size, old_combined_size_up_to_high);
834 uint32_t old_combined_range = MAX2(old_low_range_end, old_high_range_end) -
835 old_low_range_base;
836 uint32_t new_size = new_num_components * new_bit_size / 8;
837
838 /* If we are trimming (e.g. merging vec1 + vec7as8 removes 1 component)
839 * or overfetching, we need to adjust the range accordingly.
840 */
841 int size_change = new_size - old_combined_size;
842 uint32_t range = old_combined_range + size_change;
843 assert(range);
844
845 nir_intrinsic_set_range_base(first->intrin, old_low_range_base);
846 nir_intrinsic_set_range(first->intrin, range);
847 } else if (nir_intrinsic_has_base(first->intrin) && info->base_src == -1 && info->deref_src == -1) {
848 nir_intrinsic_set_base(first->intrin, nir_intrinsic_base(low->intrin));
849 }
850
851 first->key = low->key;
852 first->offset = low->offset;
853
854 first->align_mul = low->align_mul;
855 first->align_offset = low->align_offset;
856
857 nir_instr_remove(second->instr);
858 }
859
860 static void
vectorize_stores(nir_builder * b,struct vectorize_ctx * ctx,struct entry * low,struct entry * high,struct entry * first,struct entry * second,unsigned new_bit_size,unsigned new_num_components,unsigned high_start)861 vectorize_stores(nir_builder *b, struct vectorize_ctx *ctx,
862 struct entry *low, struct entry *high,
863 struct entry *first, struct entry *second,
864 unsigned new_bit_size, unsigned new_num_components,
865 unsigned high_start)
866 {
867 ASSERTED unsigned low_size = low->num_components * get_bit_size(low);
868 assert(low_size % new_bit_size == 0);
869
870 b->cursor = nir_before_instr(second->instr);
871
872 /* get new writemasks */
873 uint32_t low_write_mask = get_write_mask(low->intrin);
874 uint32_t high_write_mask = get_write_mask(high->intrin);
875 low_write_mask = nir_component_mask_reinterpret(low_write_mask,
876 get_bit_size(low),
877 new_bit_size);
878 high_write_mask = nir_component_mask_reinterpret(high_write_mask,
879 get_bit_size(high),
880 new_bit_size);
881 high_write_mask <<= high_start / new_bit_size;
882
883 uint32_t write_mask = low_write_mask | high_write_mask;
884
885 /* convert booleans */
886 nir_def *low_val = low->intrin->src[low->info->value_src].ssa;
887 nir_def *high_val = high->intrin->src[high->info->value_src].ssa;
888 low_val = low_val->bit_size == 1 ? nir_b2iN(b, low_val, 32) : low_val;
889 high_val = high_val->bit_size == 1 ? nir_b2iN(b, high_val, 32) : high_val;
890
891 /* combine the data */
892 nir_def *data_channels[NIR_MAX_VEC_COMPONENTS];
893 for (unsigned i = 0; i < new_num_components; i++) {
894 bool set_low = low_write_mask & (1 << i);
895 bool set_high = high_write_mask & (1 << i);
896
897 if (set_low && (!set_high || low == second)) {
898 unsigned offset = i * new_bit_size;
899 data_channels[i] = nir_extract_bits(b, &low_val, 1, offset, 1, new_bit_size);
900 } else if (set_high) {
901 assert(!set_low || high == second);
902 unsigned offset = i * new_bit_size - high_start;
903 data_channels[i] = nir_extract_bits(b, &high_val, 1, offset, 1, new_bit_size);
904 } else {
905 data_channels[i] = nir_undef(b, 1, new_bit_size);
906 }
907 }
908 nir_def *data = nir_vec(b, data_channels, new_num_components);
909
910 /* update the intrinsic */
911 if (nir_intrinsic_has_write_mask(second->intrin))
912 nir_intrinsic_set_write_mask(second->intrin, write_mask);
913 second->intrin->num_components = data->num_components;
914 second->num_components = data->num_components;
915
916 const struct intrinsic_info *info = second->info;
917 assert(info->value_src >= 0);
918 nir_src_rewrite(&second->intrin->src[info->value_src], data);
919
920 /* update the offset */
921 if (second != low && info->base_src >= 0)
922 nir_src_rewrite(&second->intrin->src[info->base_src],
923 low->intrin->src[info->base_src].ssa);
924
925 /* update the deref */
926 if (info->deref_src >= 0) {
927 b->cursor = nir_before_instr(second->instr);
928 second->deref = cast_deref(b, new_num_components, new_bit_size,
929 nir_src_as_deref(low->intrin->src[info->deref_src]));
930 nir_src_rewrite(&second->intrin->src[info->deref_src],
931 &second->deref->def);
932 }
933
934 /* update base/align */
935 if (second != low && nir_intrinsic_has_base(second->intrin))
936 nir_intrinsic_set_base(second->intrin, nir_intrinsic_base(low->intrin));
937
938 second->key = low->key;
939 second->offset = low->offset;
940
941 second->align_mul = low->align_mul;
942 second->align_offset = low->align_offset;
943
944 list_del(&first->head);
945 nir_instr_remove(first->instr);
946 }
947
948 /* Returns true if it can prove that "a" and "b" point to different bindings
949 * and either one uses ACCESS_RESTRICT. */
950 static bool
bindings_different_restrict(nir_shader * shader,struct entry * a,struct entry * b)951 bindings_different_restrict(nir_shader *shader, struct entry *a, struct entry *b)
952 {
953 bool different_bindings = false;
954 nir_variable *a_var = NULL, *b_var = NULL;
955 if (a->key->resource && b->key->resource) {
956 nir_binding a_res = nir_chase_binding(nir_src_for_ssa(a->key->resource));
957 nir_binding b_res = nir_chase_binding(nir_src_for_ssa(b->key->resource));
958 if (!a_res.success || !b_res.success)
959 return false;
960
961 if (a_res.num_indices != b_res.num_indices ||
962 a_res.desc_set != b_res.desc_set ||
963 a_res.binding != b_res.binding)
964 different_bindings = true;
965
966 for (unsigned i = 0; i < a_res.num_indices; i++) {
967 if (nir_src_is_const(a_res.indices[i]) && nir_src_is_const(b_res.indices[i]) &&
968 nir_src_as_uint(a_res.indices[i]) != nir_src_as_uint(b_res.indices[i]))
969 different_bindings = true;
970 }
971
972 if (different_bindings) {
973 a_var = nir_get_binding_variable(shader, a_res);
974 b_var = nir_get_binding_variable(shader, b_res);
975 }
976 } else if (a->key->var && b->key->var) {
977 a_var = a->key->var;
978 b_var = b->key->var;
979 different_bindings = a_var != b_var;
980 } else if (!!a->key->resource != !!b->key->resource) {
981 /* comparing global and ssbo access */
982 different_bindings = true;
983
984 if (a->key->resource) {
985 nir_binding a_res = nir_chase_binding(nir_src_for_ssa(a->key->resource));
986 a_var = nir_get_binding_variable(shader, a_res);
987 }
988
989 if (b->key->resource) {
990 nir_binding b_res = nir_chase_binding(nir_src_for_ssa(b->key->resource));
991 b_var = nir_get_binding_variable(shader, b_res);
992 }
993 } else {
994 return false;
995 }
996
997 unsigned a_access = a->access | (a_var ? a_var->data.access : 0);
998 unsigned b_access = b->access | (b_var ? b_var->data.access : 0);
999
1000 return different_bindings &&
1001 ((a_access | b_access) & ACCESS_RESTRICT);
1002 }
1003
1004 static int64_t
compare_entries(struct entry * a,struct entry * b)1005 compare_entries(struct entry *a, struct entry *b)
1006 {
1007 if (!entry_key_equals(a->key, b->key))
1008 return INT64_MAX;
1009 return b->offset_signed - a->offset_signed;
1010 }
1011
1012 static bool
may_alias(nir_shader * shader,struct entry * a,struct entry * b)1013 may_alias(nir_shader *shader, struct entry *a, struct entry *b)
1014 {
1015 assert(mode_to_index(get_variable_mode(a)) ==
1016 mode_to_index(get_variable_mode(b)));
1017
1018 if ((a->access | b->access) & ACCESS_CAN_REORDER)
1019 return false;
1020
1021 /* if the resources/variables are definitively different and both have
1022 * ACCESS_RESTRICT, we can assume they do not alias. */
1023 if (bindings_different_restrict(shader, a, b))
1024 return false;
1025
1026 /* we can't compare offsets if the resources/variables might be different */
1027 if (a->key->var != b->key->var || a->key->resource != b->key->resource)
1028 return true;
1029
1030 /* use adjacency information */
1031 /* TODO: we can look closer at the entry keys */
1032 int64_t diff = compare_entries(a, b);
1033 if (diff != INT64_MAX) {
1034 /* with atomics, nir_intrinsic_instr::num_components can be 0 */
1035 if (diff < 0)
1036 return llabs(diff) < MAX2(b->num_components, 1u) * (get_bit_size(b) / 8u);
1037 else
1038 return diff < MAX2(a->num_components, 1u) * (get_bit_size(a) / 8u);
1039 }
1040
1041 /* TODO: we can use deref information */
1042
1043 return true;
1044 }
1045
1046 static bool
check_for_aliasing(struct vectorize_ctx * ctx,struct entry * first,struct entry * second)1047 check_for_aliasing(struct vectorize_ctx *ctx, struct entry *first, struct entry *second)
1048 {
1049 nir_variable_mode mode = get_variable_mode(first);
1050 if (mode & (nir_var_uniform | nir_var_system_value |
1051 nir_var_mem_push_const | nir_var_mem_ubo))
1052 return false;
1053
1054 unsigned mode_index = mode_to_index(mode);
1055 if (first->is_store) {
1056 /* find first entry that aliases "first" */
1057 list_for_each_entry_from(struct entry, next, first, &ctx->entries[mode_index], head) {
1058 if (next == first)
1059 continue;
1060 if (next == second)
1061 return false;
1062 if (may_alias(ctx->shader, first, next))
1063 return true;
1064 }
1065 } else {
1066 /* find previous store that aliases this load */
1067 list_for_each_entry_from_rev(struct entry, prev, second, &ctx->entries[mode_index], head) {
1068 if (prev == second)
1069 continue;
1070 if (prev == first)
1071 return false;
1072 if (prev->is_store && may_alias(ctx->shader, second, prev))
1073 return true;
1074 }
1075 }
1076
1077 return false;
1078 }
1079
1080 static uint64_t
calc_gcd(uint64_t a,uint64_t b)1081 calc_gcd(uint64_t a, uint64_t b)
1082 {
1083 while (b != 0) {
1084 int tmp_a = a;
1085 a = b;
1086 b = tmp_a % b;
1087 }
1088 return a;
1089 }
1090
1091 static uint64_t
round_down(uint64_t a,uint64_t b)1092 round_down(uint64_t a, uint64_t b)
1093 {
1094 return a / b * b;
1095 }
1096
1097 static bool
addition_wraps(uint64_t a,uint64_t b,unsigned bits)1098 addition_wraps(uint64_t a, uint64_t b, unsigned bits)
1099 {
1100 uint64_t mask = BITFIELD64_MASK(bits);
1101 return ((a + b) & mask) < (a & mask);
1102 }
1103
1104 /* Return true if the addition of "low"'s offset and "high_offset" could wrap
1105 * around.
1106 *
1107 * This is to prevent a situation where the hardware considers the high load
1108 * out-of-bounds after vectorization if the low load is out-of-bounds, even if
1109 * the wrap-around from the addition could make the high load in-bounds.
1110 */
1111 static bool
check_for_robustness(struct vectorize_ctx * ctx,struct entry * low,uint64_t high_offset)1112 check_for_robustness(struct vectorize_ctx *ctx, struct entry *low, uint64_t high_offset)
1113 {
1114 nir_variable_mode mode = get_variable_mode(low);
1115 if (!(mode & ctx->options->robust_modes))
1116 return false;
1117
1118 unsigned scale = low->info->offset_scale;
1119
1120 /* First, try to use alignment information in case the application provided some. If the addition
1121 * of the maximum offset of the low load and "high_offset" wraps around, we can't combine the low
1122 * and high loads.
1123 */
1124 uint64_t max_low = round_down(UINT64_MAX, low->align_mul) + low->align_offset;
1125 if (!addition_wraps(max_low / scale, high_offset / scale, 64))
1126 return false;
1127
1128 /* We can't obtain addition_bits */
1129 if (low->info->base_src < 0)
1130 return true;
1131
1132 /* Second, use information about the factors from address calculation (offset_defs_mul). These
1133 * are not guaranteed to be power-of-2.
1134 */
1135 uint64_t stride = 0;
1136 for (unsigned i = 0; i < low->key->offset_def_count; i++)
1137 stride = calc_gcd(low->key->offset_defs_mul[i], stride);
1138
1139 unsigned addition_bits = low->intrin->src[low->info->base_src].ssa->bit_size;
1140 /* low's offset must be a multiple of "stride" plus "low->offset". */
1141 max_low = low->offset;
1142 if (stride)
1143 max_low = round_down(BITFIELD64_MASK(addition_bits), stride) + (low->offset % stride);
1144 return addition_wraps(max_low / scale, high_offset / scale, addition_bits);
1145 }
1146
1147 static bool
is_strided_vector(const struct glsl_type * type)1148 is_strided_vector(const struct glsl_type *type)
1149 {
1150 if (glsl_type_is_vector(type)) {
1151 unsigned explicit_stride = glsl_get_explicit_stride(type);
1152 return explicit_stride != 0 && explicit_stride !=
1153 type_scalar_size_bytes(glsl_get_array_element(type));
1154 } else {
1155 return false;
1156 }
1157 }
1158
1159 static bool
can_vectorize(struct vectorize_ctx * ctx,struct entry * first,struct entry * second)1160 can_vectorize(struct vectorize_ctx *ctx, struct entry *first, struct entry *second)
1161 {
1162 if ((first->access | second->access) & ACCESS_KEEP_SCALAR)
1163 return false;
1164
1165 if (!(get_variable_mode(first) & ctx->options->modes) ||
1166 !(get_variable_mode(second) & ctx->options->modes))
1167 return false;
1168
1169 if (check_for_aliasing(ctx, first, second))
1170 return false;
1171
1172 /* we can only vectorize non-volatile loads/stores of the same type and with
1173 * the same access */
1174 if (first->info != second->info || first->access != second->access ||
1175 (first->access & ACCESS_VOLATILE) || first->info->is_atomic)
1176 return false;
1177
1178 return true;
1179 }
1180
1181 static bool
try_vectorize(nir_function_impl * impl,struct vectorize_ctx * ctx,struct entry * low,struct entry * high,struct entry * first,struct entry * second)1182 try_vectorize(nir_function_impl *impl, struct vectorize_ctx *ctx,
1183 struct entry *low, struct entry *high,
1184 struct entry *first, struct entry *second)
1185 {
1186 if (!can_vectorize(ctx, first, second))
1187 return false;
1188
1189 uint64_t diff = high->offset_signed - low->offset_signed;
1190 if (check_for_robustness(ctx, low, diff))
1191 return false;
1192
1193 /* don't attempt to vectorize accesses of row-major matrix columns */
1194 if (first->deref) {
1195 const struct glsl_type *first_type = first->deref->type;
1196 const struct glsl_type *second_type = second->deref->type;
1197 if (is_strided_vector(first_type) || is_strided_vector(second_type))
1198 return false;
1199 }
1200
1201 /* gather information */
1202 unsigned low_bit_size = get_bit_size(low);
1203 unsigned high_bit_size = get_bit_size(high);
1204 unsigned low_size = low->num_components * low_bit_size;
1205 unsigned high_size = high->num_components * high_bit_size;
1206 unsigned new_size = MAX2(diff * 8u + high_size, low_size);
1207
1208 /* find a good bit size for the new load/store */
1209 unsigned new_bit_size = 0;
1210 if (new_bitsize_acceptable(ctx, low_bit_size, low, high, new_size)) {
1211 new_bit_size = low_bit_size;
1212 } else if (low_bit_size != high_bit_size &&
1213 new_bitsize_acceptable(ctx, high_bit_size, low, high, new_size)) {
1214 new_bit_size = high_bit_size;
1215 } else {
1216 new_bit_size = 64;
1217 for (; new_bit_size >= 8; new_bit_size /= 2) {
1218 /* don't repeat trying out bitsizes */
1219 if (new_bit_size == low_bit_size || new_bit_size == high_bit_size)
1220 continue;
1221 if (new_bitsize_acceptable(ctx, new_bit_size, low, high, new_size))
1222 break;
1223 }
1224 if (new_bit_size < 8)
1225 return false;
1226 }
1227 unsigned new_num_components = new_size / new_bit_size;
1228
1229 /* vectorize the loads/stores */
1230 nir_builder b = nir_builder_create(impl);
1231
1232 if (first->is_store)
1233 vectorize_stores(&b, ctx, low, high, first, second,
1234 new_bit_size, new_num_components, diff * 8u);
1235 else
1236 vectorize_loads(&b, ctx, low, high, first, second,
1237 new_bit_size, new_num_components, diff * 8u);
1238
1239 return true;
1240 }
1241
1242 static bool
try_vectorize_shared2(struct vectorize_ctx * ctx,struct entry * low,struct entry * high,struct entry * first,struct entry * second)1243 try_vectorize_shared2(struct vectorize_ctx *ctx,
1244 struct entry *low, struct entry *high,
1245 struct entry *first, struct entry *second)
1246 {
1247 if (!can_vectorize(ctx, first, second) || first->deref)
1248 return false;
1249
1250 unsigned low_bit_size = get_bit_size(low);
1251 unsigned high_bit_size = get_bit_size(high);
1252 unsigned low_size = low->num_components * low_bit_size / 8;
1253 unsigned high_size = high->num_components * high_bit_size / 8;
1254 if ((low_size != 4 && low_size != 8) || (high_size != 4 && high_size != 8))
1255 return false;
1256 if (low_size != high_size)
1257 return false;
1258 if (low->align_mul % low_size || low->align_offset % low_size)
1259 return false;
1260 if (high->align_mul % low_size || high->align_offset % low_size)
1261 return false;
1262
1263 uint64_t diff = high->offset_signed - low->offset_signed;
1264 bool st64 = diff % (64 * low_size) == 0;
1265 unsigned stride = st64 ? 64 * low_size : low_size;
1266 if (diff % stride || diff > 255 * stride)
1267 return false;
1268
1269 /* try to avoid creating accesses we can't combine additions/offsets into */
1270 if (high->offset > 255 * stride || (st64 && high->offset % stride))
1271 return false;
1272
1273 if (first->is_store) {
1274 if (get_write_mask(low->intrin) != BITFIELD_MASK(low->num_components))
1275 return false;
1276 if (get_write_mask(high->intrin) != BITFIELD_MASK(high->num_components))
1277 return false;
1278 }
1279
1280 /* vectorize the accesses */
1281 nir_builder b = nir_builder_at(nir_after_instr(first->is_store ? second->instr : first->instr));
1282
1283 nir_def *offset = first->intrin->src[first->is_store].ssa;
1284 offset = nir_iadd_imm(&b, offset, nir_intrinsic_base(first->intrin));
1285 if (first != low)
1286 offset = nir_iadd_imm(&b, offset, -(int)diff);
1287
1288 if (first->is_store) {
1289 nir_def *low_val = low->intrin->src[low->info->value_src].ssa;
1290 nir_def *high_val = high->intrin->src[high->info->value_src].ssa;
1291 nir_def *val = nir_vec2(&b, nir_bitcast_vector(&b, low_val, low_size * 8u),
1292 nir_bitcast_vector(&b, high_val, low_size * 8u));
1293 nir_store_shared2_amd(&b, val, offset, .offset1 = diff / stride, .st64 = st64);
1294 } else {
1295 nir_def *new_def = nir_load_shared2_amd(&b, low_size * 8u, offset, .offset1 = diff / stride,
1296 .st64 = st64);
1297 nir_def_rewrite_uses(&low->intrin->def,
1298 nir_bitcast_vector(&b, nir_channel(&b, new_def, 0), low_bit_size));
1299 nir_def_rewrite_uses(&high->intrin->def,
1300 nir_bitcast_vector(&b, nir_channel(&b, new_def, 1), high_bit_size));
1301 }
1302
1303 nir_instr_remove(first->instr);
1304 nir_instr_remove(second->instr);
1305
1306 return true;
1307 }
1308
1309 static bool
update_align(struct entry * entry)1310 update_align(struct entry *entry)
1311 {
1312 if (nir_intrinsic_has_align_mul(entry->intrin) &&
1313 (entry->align_mul != nir_intrinsic_align_mul(entry->intrin) ||
1314 entry->align_offset != nir_intrinsic_align_offset(entry->intrin))) {
1315 nir_intrinsic_set_align(entry->intrin, entry->align_mul, entry->align_offset);
1316 return true;
1317 }
1318 return false;
1319 }
1320
1321 static bool
vectorize_sorted_entries(struct vectorize_ctx * ctx,nir_function_impl * impl,struct util_dynarray * arr)1322 vectorize_sorted_entries(struct vectorize_ctx *ctx, nir_function_impl *impl,
1323 struct util_dynarray *arr)
1324 {
1325 unsigned num_entries = util_dynarray_num_elements(arr, struct entry *);
1326
1327 bool progress = false;
1328 for (unsigned first_idx = 0; first_idx < num_entries; first_idx++) {
1329 struct entry *low = *util_dynarray_element(arr, struct entry *, first_idx);
1330 if (!low)
1331 continue;
1332
1333 for (unsigned second_idx = first_idx + 1; second_idx < num_entries; second_idx++) {
1334 struct entry *high = *util_dynarray_element(arr, struct entry *, second_idx);
1335 if (!high)
1336 continue;
1337
1338 struct entry *first = low->index < high->index ? low : high;
1339 struct entry *second = low->index < high->index ? high : low;
1340
1341 uint64_t diff = high->offset_signed - low->offset_signed;
1342 /* Allow overfetching by 28 bytes, which can be rejected by the
1343 * callback if needed. Driver callbacks will likely want to
1344 * restrict this to a smaller value, say 4 bytes (or none).
1345 */
1346 unsigned max_hole =
1347 first->is_store ||
1348 (ctx->options->has_shared2_amd &&
1349 get_variable_mode(first) == nir_var_mem_shared) ? 0 : 28;
1350 unsigned low_size = get_bit_size(low) / 8u * low->num_components;
1351 bool separate = diff > max_hole + low_size;
1352
1353 if (separate) {
1354 if (!ctx->options->has_shared2_amd ||
1355 get_variable_mode(first) != nir_var_mem_shared)
1356 break;
1357
1358 if (try_vectorize_shared2(ctx, low, high, first, second)) {
1359 low = NULL;
1360 *util_dynarray_element(arr, struct entry *, second_idx) = NULL;
1361 progress = true;
1362 break;
1363 }
1364 } else {
1365 if (try_vectorize(impl, ctx, low, high, first, second)) {
1366 low = low->is_store ? second : first;
1367 *util_dynarray_element(arr, struct entry *, second_idx) = NULL;
1368 progress = true;
1369 }
1370 }
1371 }
1372
1373 *util_dynarray_element(arr, struct entry *, first_idx) = low;
1374 }
1375
1376 return progress;
1377 }
1378
1379 static bool
vectorize_entries(struct vectorize_ctx * ctx,nir_function_impl * impl,struct hash_table * ht)1380 vectorize_entries(struct vectorize_ctx *ctx, nir_function_impl *impl, struct hash_table *ht)
1381 {
1382 if (!ht)
1383 return false;
1384
1385 bool progress = false;
1386 hash_table_foreach(ht, entry) {
1387 struct util_dynarray *arr = entry->data;
1388 if (!arr->size)
1389 continue;
1390
1391 qsort(util_dynarray_begin(arr),
1392 util_dynarray_num_elements(arr, struct entry *),
1393 sizeof(struct entry *), &sort_entries);
1394
1395 while (vectorize_sorted_entries(ctx, impl, arr))
1396 progress = true;
1397
1398 util_dynarray_foreach(arr, struct entry *, elem) {
1399 if (*elem)
1400 progress |= update_align(*elem);
1401 }
1402 }
1403
1404 _mesa_hash_table_clear(ht, delete_entry_dynarray);
1405
1406 return progress;
1407 }
1408
1409 static bool
handle_barrier(struct vectorize_ctx * ctx,bool * progress,nir_function_impl * impl,nir_instr * instr)1410 handle_barrier(struct vectorize_ctx *ctx, bool *progress, nir_function_impl *impl, nir_instr *instr)
1411 {
1412 unsigned modes = 0;
1413 bool acquire = true;
1414 bool release = true;
1415 if (instr->type == nir_instr_type_intrinsic) {
1416 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1417 switch (intrin->intrinsic) {
1418 /* prevent speculative loads/stores */
1419 case nir_intrinsic_terminate_if:
1420 case nir_intrinsic_terminate:
1421 case nir_intrinsic_launch_mesh_workgroups:
1422 modes = nir_var_all;
1423 break;
1424 case nir_intrinsic_demote_if:
1425 case nir_intrinsic_demote:
1426 acquire = false;
1427 modes = nir_var_all;
1428 break;
1429 case nir_intrinsic_barrier:
1430 if (nir_intrinsic_memory_scope(intrin) == SCOPE_NONE)
1431 break;
1432
1433 modes = nir_intrinsic_memory_modes(intrin) & (nir_var_mem_ssbo |
1434 nir_var_mem_shared |
1435 nir_var_mem_global |
1436 nir_var_mem_task_payload);
1437 acquire = nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE;
1438 release = nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_RELEASE;
1439 switch (nir_intrinsic_memory_scope(intrin)) {
1440 case SCOPE_INVOCATION:
1441 /* a barier should never be required for correctness with these scopes */
1442 modes = 0;
1443 break;
1444 default:
1445 break;
1446 }
1447 break;
1448 default:
1449 return false;
1450 }
1451 } else if (instr->type == nir_instr_type_call) {
1452 modes = nir_var_all;
1453 } else {
1454 return false;
1455 }
1456
1457 while (modes) {
1458 unsigned mode_index = u_bit_scan(&modes);
1459 if ((1 << mode_index) == nir_var_mem_global) {
1460 /* Global should be rolled in with SSBO */
1461 assert(list_is_empty(&ctx->entries[mode_index]));
1462 assert(ctx->loads[mode_index] == NULL);
1463 assert(ctx->stores[mode_index] == NULL);
1464 continue;
1465 }
1466
1467 if (acquire)
1468 *progress |= vectorize_entries(ctx, impl, ctx->loads[mode_index]);
1469 if (release)
1470 *progress |= vectorize_entries(ctx, impl, ctx->stores[mode_index]);
1471 }
1472
1473 return true;
1474 }
1475
1476 static bool
process_block(nir_function_impl * impl,struct vectorize_ctx * ctx,nir_block * block)1477 process_block(nir_function_impl *impl, struct vectorize_ctx *ctx, nir_block *block)
1478 {
1479 bool progress = false;
1480
1481 for (unsigned i = 0; i < nir_num_variable_modes; i++) {
1482 list_inithead(&ctx->entries[i]);
1483 if (ctx->loads[i])
1484 _mesa_hash_table_clear(ctx->loads[i], delete_entry_dynarray);
1485 if (ctx->stores[i])
1486 _mesa_hash_table_clear(ctx->stores[i], delete_entry_dynarray);
1487 }
1488
1489 /* create entries */
1490 unsigned next_index = 0;
1491
1492 nir_foreach_instr_safe(instr, block) {
1493 if (handle_barrier(ctx, &progress, impl, instr))
1494 continue;
1495
1496 /* gather information */
1497 if (instr->type != nir_instr_type_intrinsic)
1498 continue;
1499 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1500
1501 const struct intrinsic_info *info = get_info(intrin->intrinsic);
1502 if (!info)
1503 continue;
1504
1505 nir_variable_mode mode = info->mode;
1506 if (!mode)
1507 mode = nir_src_as_deref(intrin->src[info->deref_src])->modes;
1508 if (!(mode & aliasing_modes(ctx->options->modes)))
1509 continue;
1510 unsigned mode_index = mode_to_index(mode);
1511
1512 /* create entry */
1513 struct entry *entry = create_entry(ctx, info, intrin);
1514 entry->index = next_index++;
1515
1516 list_addtail(&entry->head, &ctx->entries[mode_index]);
1517
1518 /* add the entry to a hash table */
1519
1520 struct hash_table *adj_ht = NULL;
1521 if (entry->is_store) {
1522 if (!ctx->stores[mode_index])
1523 ctx->stores[mode_index] = _mesa_hash_table_create(ctx, &hash_entry_key, &entry_key_equals);
1524 adj_ht = ctx->stores[mode_index];
1525 } else {
1526 if (!ctx->loads[mode_index])
1527 ctx->loads[mode_index] = _mesa_hash_table_create(ctx, &hash_entry_key, &entry_key_equals);
1528 adj_ht = ctx->loads[mode_index];
1529 }
1530
1531 uint32_t key_hash = hash_entry_key(entry->key);
1532 struct hash_entry *adj_entry = _mesa_hash_table_search_pre_hashed(adj_ht, key_hash, entry->key);
1533 struct util_dynarray *arr;
1534 if (adj_entry && adj_entry->data) {
1535 arr = (struct util_dynarray *)adj_entry->data;
1536 } else {
1537 arr = ralloc(ctx, struct util_dynarray);
1538 util_dynarray_init(arr, arr);
1539 _mesa_hash_table_insert_pre_hashed(adj_ht, key_hash, entry->key, arr);
1540 }
1541 util_dynarray_append(arr, struct entry *, entry);
1542 }
1543
1544 /* sort and combine entries */
1545 for (unsigned i = 0; i < nir_num_variable_modes; i++) {
1546 progress |= vectorize_entries(ctx, impl, ctx->loads[i]);
1547 progress |= vectorize_entries(ctx, impl, ctx->stores[i]);
1548 }
1549
1550 return progress;
1551 }
1552
1553 bool
nir_opt_load_store_vectorize(nir_shader * shader,const nir_load_store_vectorize_options * options)1554 nir_opt_load_store_vectorize(nir_shader *shader, const nir_load_store_vectorize_options *options)
1555 {
1556 bool progress = false;
1557
1558 struct vectorize_ctx *ctx = rzalloc(NULL, struct vectorize_ctx);
1559 ctx->shader = shader;
1560 ctx->options = options;
1561
1562 nir_shader_index_vars(shader, options->modes);
1563
1564 nir_foreach_function_impl(impl, shader) {
1565 if (options->modes & nir_var_function_temp)
1566 nir_function_impl_index_vars(impl);
1567
1568 nir_foreach_block(block, impl)
1569 progress |= process_block(impl, ctx, block);
1570
1571 nir_metadata_preserve(impl,
1572 nir_metadata_control_flow |
1573 nir_metadata_live_defs);
1574 }
1575
1576 ralloc_free(ctx);
1577 return progress;
1578 }
1579
1580 static bool
opt_load_store_update_alignments_callback(struct nir_builder * b,nir_intrinsic_instr * intrin,UNUSED void * s)1581 opt_load_store_update_alignments_callback(struct nir_builder *b,
1582 nir_intrinsic_instr *intrin,
1583 UNUSED void *s)
1584 {
1585 if (!nir_intrinsic_has_align_mul(intrin))
1586 return false;
1587
1588 const struct intrinsic_info *info = get_info(intrin->intrinsic);
1589 if (!info)
1590 return false;
1591
1592 struct entry *entry = create_entry(NULL, info, intrin);
1593 const bool progress = update_align(entry);
1594 ralloc_free(entry);
1595
1596 return progress;
1597 }
1598
1599 bool
nir_opt_load_store_update_alignments(nir_shader * shader)1600 nir_opt_load_store_update_alignments(nir_shader *shader)
1601 {
1602 return nir_shader_intrinsics_pass(shader,
1603 opt_load_store_update_alignments_callback,
1604 nir_metadata_control_flow |
1605 nir_metadata_live_defs |
1606 nir_metadata_instr_index, NULL);
1607 }
1608