• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import dalvik.annotation.optimization.NeverInline;
29 
30 import jdk.internal.math.DoubleToDecimal;
31 import jdk.internal.math.FloatToDecimal;
32 import jdk.internal.math.FloatingDecimal;
33 
34 import java.io.IOException;
35 import java.util.Arrays;
36 import java.util.Spliterator;
37 import java.util.stream.IntStream;
38 import java.util.stream.StreamSupport;
39 
40 import static java.lang.String.COMPACT_STRINGS;
41 import static java.lang.String.CODER_UTF16;
42 import static java.lang.String.CODER_LATIN1;
43 import static java.lang.String.checkIndex;
44 import static java.lang.String.checkOffset;
45 
46 /**
47  * A mutable sequence of characters.
48  * <p>
49  * Implements a modifiable string. At any point in time it contains some
50  * particular sequence of characters, but the length and content of the
51  * sequence can be changed through certain method calls.
52  *
53  * <p>Unless otherwise noted, passing a {@code null} argument to a constructor
54  * or method in this class will cause a {@link NullPointerException} to be
55  * thrown.
56  *
57  * @author      Michael McCloskey
58  * @author      Martin Buchholz
59  * @author      Ulf Zibis
60  * @since       1.5
61  */
62 abstract class AbstractStringBuilder implements Appendable, CharSequence {
63     // TODO: remove java.lang.Integer.getChars(int, int, char[]) once updated to byte[] from 11.
64     /**
65      * The value is used for character storage.
66      */
67     byte[] value;
68 
69     /**
70      * The id of the encoding used to encode the bytes in {@code value}.
71      */
72     byte coder;
73 
74     /**
75      * The count is the number of characters used.
76      */
77     int count;
78 
79     private static final byte[] EMPTYVALUE = new byte[0];
80 
81     /**
82      * This no-arg constructor is necessary for serialization of subclasses.
83      */
AbstractStringBuilder()84     AbstractStringBuilder() {
85         value = EMPTYVALUE;
86     }
87 
88     /**
89      * Creates an AbstractStringBuilder of the specified capacity.
90      */
AbstractStringBuilder(int capacity)91     AbstractStringBuilder(int capacity) {
92         if (COMPACT_STRINGS) {
93             value = new byte[capacity];
94             coder = CODER_LATIN1;
95         } else {
96             value = StringUTF16.newBytesFor(capacity);
97             coder = CODER_UTF16;
98         }
99     }
100 
101     /**
102      * Compares the objects of two AbstractStringBuilder implementations lexicographically.
103      *
104      * @since 11
105      */
compareTo(AbstractStringBuilder another)106     int compareTo(AbstractStringBuilder another) {
107         if (this == another) {
108             return 0;
109         }
110 
111         byte val1[] = value;
112         byte val2[] = another.value;
113         int count1 = this.count;
114         int count2 = another.count;
115 
116         if (coder == another.coder) {
117             return isLatin1() ? StringLatin1.compareTo(val1, val2, count1, count2)
118                               : StringUTF16.compareTo(val1, val2, count1, count2);
119         }
120         return isLatin1() ? StringLatin1.compareToUTF16(val1, val2, count1, count2)
121                           : StringUTF16.compareToLatin1(val1, val2, count1, count2);
122     }
123 
124     /**
125      * Returns the length (character count).
126      *
127      * @return  the length of the sequence of characters currently
128      *          represented by this object
129      */
130     @Override
131     // We don't want to inline this method to be able to perform String-related
132     // optimizations with intrinsics.
133     @NeverInline
length()134     public int length() {
135         return count;
136     }
137 
138     /**
139      * Returns the current capacity. The capacity is the amount of storage
140      * available for newly inserted characters, beyond which an allocation
141      * will occur.
142      *
143      * @return  the current capacity
144      */
capacity()145     public int capacity() {
146         return value.length >> coder;
147     }
148 
149     /**
150      * Ensures that the capacity is at least equal to the specified minimum.
151      * If the current capacity is less than the argument, then a new internal
152      * array is allocated with greater capacity. The new capacity is the
153      * larger of:
154      * <ul>
155      * <li>The {@code minimumCapacity} argument.
156      * <li>Twice the old capacity, plus {@code 2}.
157      * </ul>
158      * If the {@code minimumCapacity} argument is nonpositive, this
159      * method takes no action and simply returns.
160      * Note that subsequent operations on this object can reduce the
161      * actual capacity below that requested here.
162      *
163      * @param   minimumCapacity   the minimum desired capacity.
164      */
ensureCapacity(int minimumCapacity)165     public void ensureCapacity(int minimumCapacity) {
166         if (minimumCapacity > 0) {
167             ensureCapacityInternal(minimumCapacity);
168         }
169     }
170 
171     /**
172      * For positive values of {@code minimumCapacity}, this method
173      * behaves like {@code ensureCapacity}, however it is never
174      * synchronized.
175      * If {@code minimumCapacity} is non positive due to numeric
176      * overflow, this method throws {@code OutOfMemoryError}.
177      */
ensureCapacityInternal(int minimumCapacity)178     private void ensureCapacityInternal(int minimumCapacity) {
179         // overflow-conscious code
180         int oldCapacity = value.length >> coder;
181         if (minimumCapacity - oldCapacity > 0) {
182             value = Arrays.copyOf(value,
183                     newCapacity(minimumCapacity) << coder);
184         }
185     }
186 
187     /**
188      * The maximum size of array to allocate (unless necessary).
189      * Some VMs reserve some header words in an array.
190      * Attempts to allocate larger arrays may result in
191      * OutOfMemoryError: Requested array size exceeds VM limit
192      */
193     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
194 
195     /**
196      * Returns a capacity at least as large as the given minimum capacity.
197      * Returns the current capacity increased by the same amount + 2 if
198      * that suffices.
199      * Will not return a capacity greater than
200      * {@code (MAX_ARRAY_SIZE >> coder)} unless the given minimum capacity
201      * is greater than that.
202      *
203      * @param  minCapacity the desired minimum capacity
204      * @throws OutOfMemoryError if minCapacity is less than zero or
205      *         greater than (Integer.MAX_VALUE >> coder)
206      */
newCapacity(int minCapacity)207     private int newCapacity(int minCapacity) {
208         // overflow-conscious code
209         int oldCapacity = value.length >> coder;
210         int newCapacity = (oldCapacity << 1) + 2;
211         if (newCapacity - minCapacity < 0) {
212             newCapacity = minCapacity;
213         }
214         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
215         return (newCapacity <= 0 || SAFE_BOUND - newCapacity < 0)
216             ? hugeCapacity(minCapacity)
217             : newCapacity;
218     }
219 
hugeCapacity(int minCapacity)220     private int hugeCapacity(int minCapacity) {
221         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
222         int UNSAFE_BOUND = Integer.MAX_VALUE >> coder;
223         if (UNSAFE_BOUND - minCapacity < 0) { // overflow
224             throw new OutOfMemoryError();
225         }
226         return (minCapacity > SAFE_BOUND)
227             ? minCapacity : SAFE_BOUND;
228     }
229 
230     /**
231      * If the coder is "isLatin1", this inflates the internal 8-bit storage
232      * to 16-bit <hi=0, low> pair storage.
233      */
inflate()234     private void inflate() {
235         if (!isLatin1()) {
236             return;
237         }
238         byte[] buf = StringUTF16.newBytesFor(value.length);
239         StringLatin1.inflate(value, 0, buf, 0, count);
240         this.value = buf;
241         this.coder = CODER_UTF16;
242     }
243 
244     /**
245      * Attempts to reduce storage used for the character sequence.
246      * If the buffer is larger than necessary to hold its current sequence of
247      * characters, then it may be resized to become more space efficient.
248      * Calling this method may, but is not required to, affect the value
249      * returned by a subsequent call to the {@link #capacity()} method.
250      */
trimToSize()251     public void trimToSize() {
252         int length = count << coder;
253         if (length < value.length) {
254             value = Arrays.copyOf(value, length);
255         }
256     }
257 
258     /**
259      * Sets the length of the character sequence.
260      * The sequence is changed to a new character sequence
261      * whose length is specified by the argument. For every nonnegative
262      * index <i>k</i> less than {@code newLength}, the character at
263      * index <i>k</i> in the new character sequence is the same as the
264      * character at index <i>k</i> in the old sequence if <i>k</i> is less
265      * than the length of the old character sequence; otherwise, it is the
266      * null character {@code '\u005Cu0000'}.
267      *
268      * In other words, if the {@code newLength} argument is less than
269      * the current length, the length is changed to the specified length.
270      * <p>
271      * If the {@code newLength} argument is greater than or equal
272      * to the current length, sufficient null characters
273      * ({@code '\u005Cu0000'}) are appended so that
274      * length becomes the {@code newLength} argument.
275      * <p>
276      * The {@code newLength} argument must be greater than or equal
277      * to {@code 0}.
278      *
279      * @param      newLength   the new length
280      * @throws     IndexOutOfBoundsException  if the
281      *               {@code newLength} argument is negative.
282      */
setLength(int newLength)283     public void setLength(int newLength) {
284         if (newLength < 0) {
285             throw new StringIndexOutOfBoundsException(newLength);
286         }
287         ensureCapacityInternal(newLength);
288         if (count < newLength) {
289             if (isLatin1()) {
290                 StringLatin1.fillNull(value, count, newLength);
291             } else {
292                 StringUTF16.fillNull(value, count, newLength);
293             }
294         }
295         count = newLength;
296     }
297 
298     /**
299      * Returns the {@code char} value in this sequence at the specified index.
300      * The first {@code char} value is at index {@code 0}, the next at index
301      * {@code 1}, and so on, as in array indexing.
302      * <p>
303      * The index argument must be greater than or equal to
304      * {@code 0}, and less than the length of this sequence.
305      *
306      * <p>If the {@code char} value specified by the index is a
307      * <a href="Character.html#unicode">surrogate</a>, the surrogate
308      * value is returned.
309      *
310      * @param      index   the index of the desired {@code char} value.
311      * @return     the {@code char} value at the specified index.
312      * @throws     IndexOutOfBoundsException  if {@code index} is
313      *             negative or greater than or equal to {@code length()}.
314      */
315     @Override
charAt(int index)316     public char charAt(int index) {
317         checkIndex(index, count);
318         if (isLatin1()) {
319             return (char)(value[index] & 0xff);
320         }
321         return StringUTF16.charAt(value, index);
322     }
323 
324     /**
325      * Returns the character (Unicode code point) at the specified
326      * index. The index refers to {@code char} values
327      * (Unicode code units) and ranges from {@code 0} to
328      * {@link #length()}{@code  - 1}.
329      *
330      * <p> If the {@code char} value specified at the given index
331      * is in the high-surrogate range, the following index is less
332      * than the length of this sequence, and the
333      * {@code char} value at the following index is in the
334      * low-surrogate range, then the supplementary code point
335      * corresponding to this surrogate pair is returned. Otherwise,
336      * the {@code char} value at the given index is returned.
337      *
338      * @param      index the index to the {@code char} values
339      * @return     the code point value of the character at the
340      *             {@code index}
341      * @throws     IndexOutOfBoundsException  if the {@code index}
342      *             argument is negative or not less than the length of this
343      *             sequence.
344      */
codePointAt(int index)345     public int codePointAt(int index) {
346         int count = this.count;
347         byte[] value = this.value;
348         checkIndex(index, count);
349         if (isLatin1()) {
350             return value[index] & 0xff;
351         }
352         return StringUTF16.codePointAtSB(value, index, count);
353     }
354 
355     /**
356      * Returns the character (Unicode code point) before the specified
357      * index. The index refers to {@code char} values
358      * (Unicode code units) and ranges from {@code 1} to {@link
359      * #length()}.
360      *
361      * <p> If the {@code char} value at {@code (index - 1)}
362      * is in the low-surrogate range, {@code (index - 2)} is not
363      * negative, and the {@code char} value at {@code (index -
364      * 2)} is in the high-surrogate range, then the
365      * supplementary code point value of the surrogate pair is
366      * returned. If the {@code char} value at {@code index -
367      * 1} is an unpaired low-surrogate or a high-surrogate, the
368      * surrogate value is returned.
369      *
370      * @param     index the index following the code point that should be returned
371      * @return    the Unicode code point value before the given index.
372      * @throws    IndexOutOfBoundsException if the {@code index}
373      *            argument is less than 1 or greater than the length
374      *            of this sequence.
375      */
codePointBefore(int index)376     public int codePointBefore(int index) {
377         int i = index - 1;
378         if (i < 0 || i >= count) {
379             throw new StringIndexOutOfBoundsException(index);
380         }
381         if (isLatin1()) {
382             return value[i] & 0xff;
383         }
384         return StringUTF16.codePointBeforeSB(value, index);
385     }
386 
387     /**
388      * Returns the number of Unicode code points in the specified text
389      * range of this sequence. The text range begins at the specified
390      * {@code beginIndex} and extends to the {@code char} at
391      * index {@code endIndex - 1}. Thus the length (in
392      * {@code char}s) of the text range is
393      * {@code endIndex-beginIndex}. Unpaired surrogates within
394      * this sequence count as one code point each.
395      *
396      * @param beginIndex the index to the first {@code char} of
397      * the text range.
398      * @param endIndex the index after the last {@code char} of
399      * the text range.
400      * @return the number of Unicode code points in the specified text
401      * range
402      * @throws    IndexOutOfBoundsException if the
403      * {@code beginIndex} is negative, or {@code endIndex}
404      * is larger than the length of this sequence, or
405      * {@code beginIndex} is larger than {@code endIndex}.
406      */
codePointCount(int beginIndex, int endIndex)407     public int codePointCount(int beginIndex, int endIndex) {
408         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
409             throw new IndexOutOfBoundsException();
410         }
411         if (isLatin1()) {
412             return endIndex - beginIndex;
413         }
414         return StringUTF16.codePointCountSB(value, beginIndex, endIndex);
415     }
416 
417     /**
418      * Returns the index within this sequence that is offset from the
419      * given {@code index} by {@code codePointOffset} code
420      * points. Unpaired surrogates within the text range given by
421      * {@code index} and {@code codePointOffset} count as
422      * one code point each.
423      *
424      * @param index the index to be offset
425      * @param codePointOffset the offset in code points
426      * @return the index within this sequence
427      * @throws    IndexOutOfBoundsException if {@code index}
428      *   is negative or larger then the length of this sequence,
429      *   or if {@code codePointOffset} is positive and the subsequence
430      *   starting with {@code index} has fewer than
431      *   {@code codePointOffset} code points,
432      *   or if {@code codePointOffset} is negative and the subsequence
433      *   before {@code index} has fewer than the absolute value of
434      *   {@code codePointOffset} code points.
435      */
offsetByCodePoints(int index, int codePointOffset)436     public int offsetByCodePoints(int index, int codePointOffset) {
437         if (index < 0 || index > count) {
438             throw new IndexOutOfBoundsException();
439         }
440         return Character.offsetByCodePoints(this,
441                                             index, codePointOffset);
442     }
443 
444     /**
445      * Characters are copied from this sequence into the
446      * destination character array {@code dst}. The first character to
447      * be copied is at index {@code srcBegin}; the last character to
448      * be copied is at index {@code srcEnd-1}. The total number of
449      * characters to be copied is {@code srcEnd-srcBegin}. The
450      * characters are copied into the subarray of {@code dst} starting
451      * at index {@code dstBegin} and ending at index:
452      * <pre>{@code
453      * dstbegin + (srcEnd-srcBegin) - 1
454      * }</pre>
455      *
456      * @param      srcBegin   start copying at this offset.
457      * @param      srcEnd     stop copying at this offset.
458      * @param      dst        the array to copy the data into.
459      * @param      dstBegin   offset into {@code dst}.
460      * @throws     IndexOutOfBoundsException  if any of the following is true:
461      *             <ul>
462      *             <li>{@code srcBegin} is negative
463      *             <li>{@code dstBegin} is negative
464      *             <li>the {@code srcBegin} argument is greater than
465      *             the {@code srcEnd} argument.
466      *             <li>{@code srcEnd} is greater than
467      *             {@code this.length()}.
468      *             <li>{@code dstBegin+srcEnd-srcBegin} is greater than
469      *             {@code dst.length}
470      *             </ul>
471      */
getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)472     public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
473     {
474         checkRangeSIOOBE(srcBegin, srcEnd, count);  // compatible to old version
475         int n = srcEnd - srcBegin;
476         checkRange(dstBegin, dstBegin + n, dst.length);
477         if (isLatin1()) {
478             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
479         } else {
480             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
481         }
482     }
483 
484     /**
485      * The character at the specified index is set to {@code ch}. This
486      * sequence is altered to represent a new character sequence that is
487      * identical to the old character sequence, except that it contains the
488      * character {@code ch} at position {@code index}.
489      * <p>
490      * The index argument must be greater than or equal to
491      * {@code 0}, and less than the length of this sequence.
492      *
493      * @param      index   the index of the character to modify.
494      * @param      ch      the new character.
495      * @throws     IndexOutOfBoundsException  if {@code index} is
496      *             negative or greater than or equal to {@code length()}.
497      */
setCharAt(int index, char ch)498     public void setCharAt(int index, char ch) {
499         checkIndex(index, count);
500         if (isLatin1() && StringLatin1.canEncode(ch)) {
501             value[index] = (byte)ch;
502         } else {
503             if (isLatin1()) {
504                 inflate();
505             }
506             StringUTF16.putCharSB(value, index, ch);
507         }
508     }
509 
510     /**
511      * Appends the string representation of the {@code Object} argument.
512      * <p>
513      * The overall effect is exactly as if the argument were converted
514      * to a string by the method {@link String#valueOf(Object)},
515      * and the characters of that string were then
516      * {@link #append(String) appended} to this character sequence.
517      *
518      * @param   obj   an {@code Object}.
519      * @return  a reference to this object.
520      */
append(Object obj)521     public AbstractStringBuilder append(Object obj) {
522         return append(String.valueOf(obj));
523     }
524 
525     /**
526      * Appends the specified string to this character sequence.
527      * <p>
528      * The characters of the {@code String} argument are appended, in
529      * order, increasing the length of this sequence by the length of the
530      * argument. If {@code str} is {@code null}, then the four
531      * characters {@code "null"} are appended.
532      * <p>
533      * Let <i>n</i> be the length of this character sequence just prior to
534      * execution of the {@code append} method. Then the character at
535      * index <i>k</i> in the new character sequence is equal to the character
536      * at index <i>k</i> in the old character sequence, if <i>k</i> is less
537      * than <i>n</i>; otherwise, it is equal to the character at index
538      * <i>k-n</i> in the argument {@code str}.
539      *
540      * @param   str   a string.
541      * @return  a reference to this object.
542      */
append(String str)543     public AbstractStringBuilder append(String str) {
544         if (str == null) {
545             return appendNull();
546         }
547         int len = str.length();
548         ensureCapacityInternal(count + len);
549         putStringAt(count, str);
550         count += len;
551         return this;
552     }
553 
554     // Documentation in subclasses because of synchro difference
append(StringBuffer sb)555     public AbstractStringBuilder append(StringBuffer sb) {
556         return this.append((AbstractStringBuilder)sb);
557     }
558 
559     /**
560      * @since 1.8
561      */
append(AbstractStringBuilder asb)562     AbstractStringBuilder append(AbstractStringBuilder asb) {
563         if (asb == null) {
564             return appendNull();
565         }
566         int len = asb.length();
567         ensureCapacityInternal(count + len);
568         if (getCoder() != asb.getCoder()) {
569             inflate();
570         }
571         asb.getBytes(value, count, coder);
572         count += len;
573         return this;
574     }
575 
576     // Documentation in subclasses because of synchro difference
577     @Override
append(CharSequence s)578     public AbstractStringBuilder append(CharSequence s) {
579         if (s == null) {
580             return appendNull();
581         }
582         if (s instanceof String) {
583             return this.append((String)s);
584         }
585         if (s instanceof AbstractStringBuilder) {
586             return this.append((AbstractStringBuilder)s);
587         }
588         return this.append(s, 0, s.length());
589     }
590 
appendNull()591     private AbstractStringBuilder appendNull() {
592         ensureCapacityInternal(count + 4);
593         int count = this.count;
594         byte[] val = this.value;
595         if (isLatin1()) {
596             val[count++] = 'n';
597             val[count++] = 'u';
598             val[count++] = 'l';
599             val[count++] = 'l';
600         } else {
601             count = StringUTF16.putCharsAt(val, count, 'n', 'u', 'l', 'l');
602         }
603         this.count = count;
604         return this;
605     }
606 
607     /**
608      * Appends a subsequence of the specified {@code CharSequence} to this
609      * sequence.
610      * <p>
611      * Characters of the argument {@code s}, starting at
612      * index {@code start}, are appended, in order, to the contents of
613      * this sequence up to the (exclusive) index {@code end}. The length
614      * of this sequence is increased by the value of {@code end - start}.
615      * <p>
616      * Let <i>n</i> be the length of this character sequence just prior to
617      * execution of the {@code append} method. Then the character at
618      * index <i>k</i> in this character sequence becomes equal to the
619      * character at index <i>k</i> in this sequence, if <i>k</i> is less than
620      * <i>n</i>; otherwise, it is equal to the character at index
621      * <i>k+start-n</i> in the argument {@code s}.
622      * <p>
623      * If {@code s} is {@code null}, then this method appends
624      * characters as if the s parameter was a sequence containing the four
625      * characters {@code "null"}.
626      *
627      * @param   s the sequence to append.
628      * @param   start   the starting index of the subsequence to be appended.
629      * @param   end     the end index of the subsequence to be appended.
630      * @return  a reference to this object.
631      * @throws     IndexOutOfBoundsException if
632      *             {@code start} is negative, or
633      *             {@code start} is greater than {@code end} or
634      *             {@code end} is greater than {@code s.length()}
635      */
636     @Override
append(CharSequence s, int start, int end)637     public AbstractStringBuilder append(CharSequence s, int start, int end) {
638         if (s == null) {
639             s = "null";
640         }
641         checkRange(start, end, s.length());
642         int len = end - start;
643         ensureCapacityInternal(count + len);
644         appendChars(s, start, end);
645         return this;
646     }
647 
648     /**
649      * Appends the string representation of the {@code char} array
650      * argument to this sequence.
651      * <p>
652      * The characters of the array argument are appended, in order, to
653      * the contents of this sequence. The length of this sequence
654      * increases by the length of the argument.
655      * <p>
656      * The overall effect is exactly as if the argument were converted
657      * to a string by the method {@link String#valueOf(char[])},
658      * and the characters of that string were then
659      * {@link #append(String) appended} to this character sequence.
660      *
661      * @param   str   the characters to be appended.
662      * @return  a reference to this object.
663      */
append(char[] str)664     public AbstractStringBuilder append(char[] str) {
665         int len = str.length;
666         ensureCapacityInternal(count + len);
667         appendChars(str, 0, len);
668         return this;
669     }
670 
671     /**
672      * Appends the string representation of a subarray of the
673      * {@code char} array argument to this sequence.
674      * <p>
675      * Characters of the {@code char} array {@code str}, starting at
676      * index {@code offset}, are appended, in order, to the contents
677      * of this sequence. The length of this sequence increases
678      * by the value of {@code len}.
679      * <p>
680      * The overall effect is exactly as if the arguments were converted
681      * to a string by the method {@link String#valueOf(char[],int,int)},
682      * and the characters of that string were then
683      * {@link #append(String) appended} to this character sequence.
684      *
685      * @param   str      the characters to be appended.
686      * @param   offset   the index of the first {@code char} to append.
687      * @param   len      the number of {@code char}s to append.
688      * @return  a reference to this object.
689      * @throws IndexOutOfBoundsException
690      *         if {@code offset < 0} or {@code len < 0}
691      *         or {@code offset+len > str.length}
692      */
append(char str[], int offset, int len)693     public AbstractStringBuilder append(char str[], int offset, int len) {
694         int end = offset + len;
695         checkRange(offset, end, str.length);
696         ensureCapacityInternal(count + len);
697         appendChars(str, offset, end);
698         return this;
699     }
700 
701     /**
702      * Appends the string representation of the {@code boolean}
703      * argument to the sequence.
704      * <p>
705      * The overall effect is exactly as if the argument were converted
706      * to a string by the method {@link String#valueOf(boolean)},
707      * and the characters of that string were then
708      * {@link #append(String) appended} to this character sequence.
709      *
710      * @param   b   a {@code boolean}.
711      * @return  a reference to this object.
712      */
append(boolean b)713     public AbstractStringBuilder append(boolean b) {
714         ensureCapacityInternal(count + (b ? 4 : 5));
715         int count = this.count;
716         byte[] val = this.value;
717         if (isLatin1()) {
718             if (b) {
719                 val[count++] = 't';
720                 val[count++] = 'r';
721                 val[count++] = 'u';
722                 val[count++] = 'e';
723             } else {
724                 val[count++] = 'f';
725                 val[count++] = 'a';
726                 val[count++] = 'l';
727                 val[count++] = 's';
728                 val[count++] = 'e';
729             }
730         } else {
731             if (b) {
732                 count = StringUTF16.putCharsAt(val, count, 't', 'r', 'u', 'e');
733             } else {
734                 count = StringUTF16.putCharsAt(val, count, 'f', 'a', 'l', 's', 'e');
735             }
736         }
737         this.count = count;
738         return this;
739     }
740 
741     /**
742      * Appends the string representation of the {@code char}
743      * argument to this sequence.
744      * <p>
745      * The argument is appended to the contents of this sequence.
746      * The length of this sequence increases by {@code 1}.
747      * <p>
748      * The overall effect is exactly as if the argument were converted
749      * to a string by the method {@link String#valueOf(char)},
750      * and the character in that string were then
751      * {@link #append(String) appended} to this character sequence.
752      *
753      * @param   c   a {@code char}.
754      * @return  a reference to this object.
755      */
756     @Override
append(char c)757     public AbstractStringBuilder append(char c) {
758         ensureCapacityInternal(count + 1);
759         if (isLatin1() && StringLatin1.canEncode(c)) {
760             value[count++] = (byte)c;
761         } else {
762             if (isLatin1()) {
763                 inflate();
764             }
765             StringUTF16.putCharSB(value, count++, c);
766         }
767         return this;
768     }
769 
770     /**
771      * Appends the string representation of the {@code int}
772      * argument to this sequence.
773      * <p>
774      * The overall effect is exactly as if the argument were converted
775      * to a string by the method {@link String#valueOf(int)},
776      * and the characters of that string were then
777      * {@link #append(String) appended} to this character sequence.
778      *
779      * @param   i   an {@code int}.
780      * @return  a reference to this object.
781      */
append(int i)782     public AbstractStringBuilder append(int i) {
783         int count = this.count;
784         int spaceNeeded = count + Integer.stringSize(i);
785         ensureCapacityInternal(spaceNeeded);
786         if (isLatin1()) {
787             Integer.getChars(i, spaceNeeded, value);
788         } else {
789             StringUTF16.getChars(i, count, spaceNeeded, value);
790         }
791         this.count = spaceNeeded;
792         return this;
793     }
794 
795     /**
796      * Appends the string representation of the {@code long}
797      * argument to this sequence.
798      * <p>
799      * The overall effect is exactly as if the argument were converted
800      * to a string by the method {@link String#valueOf(long)},
801      * and the characters of that string were then
802      * {@link #append(String) appended} to this character sequence.
803      *
804      * @param   l   a {@code long}.
805      * @return  a reference to this object.
806      */
append(long l)807     public AbstractStringBuilder append(long l) {
808         int count = this.count;
809         int spaceNeeded = count + Long.stringSize(l);
810         ensureCapacityInternal(spaceNeeded);
811         if (isLatin1()) {
812             Long.getChars(l, spaceNeeded, value);
813         } else {
814             StringUTF16.getChars(l, count, spaceNeeded, value);
815         }
816         this.count = spaceNeeded;
817         return this;
818     }
819 
820     /**
821      * Appends the string representation of the {@code float}
822      * argument to this sequence.
823      * <p>
824      * The overall effect is exactly as if the argument were converted
825      * to a string by the method {@link String#valueOf(float)},
826      * and the characters of that string were then
827      * {@link #append(String) appended} to this character sequence.
828      *
829      * @param   f   a {@code float}.
830      * @return  a reference to this object.
831      */
append(float f)832     public AbstractStringBuilder append(float f) {
833         // Android-changed: imported from Java 21.
834         // FloatingDecimal.appendTo(f,this);
835         try {
836             FloatToDecimal.appendTo(f, this);
837         } catch (IOException e) {
838             throw new AssertionError(e);
839         }
840         return this;
841     }
842 
843     /**
844      * Appends the string representation of the {@code double}
845      * argument to this sequence.
846      * <p>
847      * The overall effect is exactly as if the argument were converted
848      * to a string by the method {@link String#valueOf(double)},
849      * and the characters of that string were then
850      * {@link #append(String) appended} to this character sequence.
851      *
852      * @param   d   a {@code double}.
853      * @return  a reference to this object.
854      */
append(double d)855     public AbstractStringBuilder append(double d) {
856         // Android-changed: imported from Java 21.
857         // FloatingDecimal.appendTo(d,this);
858         try {
859             DoubleToDecimal.appendTo(d, this);
860         } catch (IOException e) {
861             throw new AssertionError(e);
862         }
863         return this;
864     }
865 
866     /**
867      * Removes the characters in a substring of this sequence.
868      * The substring begins at the specified {@code start} and extends to
869      * the character at index {@code end - 1} or to the end of the
870      * sequence if no such character exists. If
871      * {@code start} is equal to {@code end}, no changes are made.
872      *
873      * @param      start  The beginning index, inclusive.
874      * @param      end    The ending index, exclusive.
875      * @return     This object.
876      * @throws     StringIndexOutOfBoundsException  if {@code start}
877      *             is negative, greater than {@code length()}, or
878      *             greater than {@code end}.
879      */
delete(int start, int end)880     public AbstractStringBuilder delete(int start, int end) {
881         int count = this.count;
882         if (end > count) {
883             end = count;
884         }
885         checkRangeSIOOBE(start, end, count);
886         int len = end - start;
887         if (len > 0) {
888             shift(end, -len);
889             this.count = count - len;
890         }
891         return this;
892     }
893 
894     /**
895      * Appends the string representation of the {@code codePoint}
896      * argument to this sequence.
897      *
898      * <p> The argument is appended to the contents of this sequence.
899      * The length of this sequence increases by
900      * {@link Character#charCount(int) Character.charCount(codePoint)}.
901      *
902      * <p> The overall effect is exactly as if the argument were
903      * converted to a {@code char} array by the method
904      * {@link Character#toChars(int)} and the character in that array
905      * were then {@link #append(char[]) appended} to this character
906      * sequence.
907      *
908      * @param   codePoint   a Unicode code point
909      * @return  a reference to this object.
910      * @throws    IllegalArgumentException if the specified
911      * {@code codePoint} isn't a valid Unicode code point
912      */
appendCodePoint(int codePoint)913     public AbstractStringBuilder appendCodePoint(int codePoint) {
914         if (Character.isBmpCodePoint(codePoint)) {
915             return append((char)codePoint);
916         }
917         return append(Character.toChars(codePoint));
918     }
919 
920     /**
921      * Removes the {@code char} at the specified position in this
922      * sequence. This sequence is shortened by one {@code char}.
923      *
924      * <p>Note: If the character at the given index is a supplementary
925      * character, this method does not remove the entire character. If
926      * correct handling of supplementary characters is required,
927      * determine the number of {@code char}s to remove by calling
928      * {@code Character.charCount(thisSequence.codePointAt(index))},
929      * where {@code thisSequence} is this sequence.
930      *
931      * @param       index  Index of {@code char} to remove
932      * @return      This object.
933      * @throws      StringIndexOutOfBoundsException  if the {@code index}
934      *              is negative or greater than or equal to
935      *              {@code length()}.
936      */
deleteCharAt(int index)937     public AbstractStringBuilder deleteCharAt(int index) {
938         checkIndex(index, count);
939         shift(index + 1, -1);
940         count--;
941         return this;
942     }
943 
944     /**
945      * Replaces the characters in a substring of this sequence
946      * with characters in the specified {@code String}. The substring
947      * begins at the specified {@code start} and extends to the character
948      * at index {@code end - 1} or to the end of the
949      * sequence if no such character exists. First the
950      * characters in the substring are removed and then the specified
951      * {@code String} is inserted at {@code start}. (This
952      * sequence will be lengthened to accommodate the
953      * specified String if necessary.)
954      *
955      * @param      start    The beginning index, inclusive.
956      * @param      end      The ending index, exclusive.
957      * @param      str   String that will replace previous contents.
958      * @return     This object.
959      * @throws     StringIndexOutOfBoundsException  if {@code start}
960      *             is negative, greater than {@code length()}, or
961      *             greater than {@code end}.
962      */
replace(int start, int end, String str)963     public AbstractStringBuilder replace(int start, int end, String str) {
964         int count = this.count;
965         if (end > count) {
966             end = count;
967         }
968         checkRangeSIOOBE(start, end, count);
969         int len = str.length();
970         int newCount = count + len - (end - start);
971         ensureCapacityInternal(newCount);
972         shift(end, newCount - count);
973         this.count = newCount;
974         putStringAt(start, str);
975         return this;
976     }
977 
978     /**
979      * Returns a new {@code String} that contains a subsequence of
980      * characters currently contained in this character sequence. The
981      * substring begins at the specified index and extends to the end of
982      * this sequence.
983      *
984      * @param      start    The beginning index, inclusive.
985      * @return     The new string.
986      * @throws     StringIndexOutOfBoundsException  if {@code start} is
987      *             less than zero, or greater than the length of this object.
988      */
substring(int start)989     public String substring(int start) {
990         return substring(start, count);
991     }
992 
993     /**
994      * Returns a new character sequence that is a subsequence of this sequence.
995      *
996      * <p> An invocation of this method of the form
997      *
998      * <pre>{@code
999      * sb.subSequence(begin,&nbsp;end)}</pre>
1000      *
1001      * behaves in exactly the same way as the invocation
1002      *
1003      * <pre>{@code
1004      * sb.substring(begin,&nbsp;end)}</pre>
1005      *
1006      * This method is provided so that this class can
1007      * implement the {@link CharSequence} interface.
1008      *
1009      * @param      start   the start index, inclusive.
1010      * @param      end     the end index, exclusive.
1011      * @return     the specified subsequence.
1012      *
1013      * @throws  IndexOutOfBoundsException
1014      *          if {@code start} or {@code end} are negative,
1015      *          if {@code end} is greater than {@code length()},
1016      *          or if {@code start} is greater than {@code end}
1017      * @spec JSR-51
1018      */
1019     @Override
subSequence(int start, int end)1020     public CharSequence subSequence(int start, int end) {
1021         return substring(start, end);
1022     }
1023 
1024     /**
1025      * Returns a new {@code String} that contains a subsequence of
1026      * characters currently contained in this sequence. The
1027      * substring begins at the specified {@code start} and
1028      * extends to the character at index {@code end - 1}.
1029      *
1030      * @param      start    The beginning index, inclusive.
1031      * @param      end      The ending index, exclusive.
1032      * @return     The new string.
1033      * @throws     StringIndexOutOfBoundsException  if {@code start}
1034      *             or {@code end} are negative or greater than
1035      *             {@code length()}, or {@code start} is
1036      *             greater than {@code end}.
1037      */
substring(int start, int end)1038     public String substring(int start, int end) {
1039         checkRangeSIOOBE(start, end, count);
1040         if (isLatin1()) {
1041             return StringLatin1.newString(value, start, end - start);
1042         }
1043         return StringUTF16.newString(value, start, end - start);
1044     }
1045 
shift(int offset, int n)1046     private void shift(int offset, int n) {
1047         System.arraycopy(value, offset << coder,
1048                          value, (offset + n) << coder, (count - offset) << coder);
1049     }
1050 
1051     /**
1052      * Inserts the string representation of a subarray of the {@code str}
1053      * array argument into this sequence. The subarray begins at the
1054      * specified {@code offset} and extends {@code len} {@code char}s.
1055      * The characters of the subarray are inserted into this sequence at
1056      * the position indicated by {@code index}. The length of this
1057      * sequence increases by {@code len} {@code char}s.
1058      *
1059      * @param      index    position at which to insert subarray.
1060      * @param      str       A {@code char} array.
1061      * @param      offset   the index of the first {@code char} in subarray to
1062      *             be inserted.
1063      * @param      len      the number of {@code char}s in the subarray to
1064      *             be inserted.
1065      * @return     This object
1066      * @throws     StringIndexOutOfBoundsException  if {@code index}
1067      *             is negative or greater than {@code length()}, or
1068      *             {@code offset} or {@code len} are negative, or
1069      *             {@code (offset+len)} is greater than
1070      *             {@code str.length}.
1071      */
insert(int index, char[] str, int offset, int len)1072     public AbstractStringBuilder insert(int index, char[] str, int offset,
1073                                         int len)
1074     {
1075         checkOffset(index, count);
1076         checkRangeSIOOBE(offset, offset + len, str.length);
1077         ensureCapacityInternal(count + len);
1078         shift(index, len);
1079         count += len;
1080         putCharsAt(index, str, offset, offset + len);
1081         return this;
1082     }
1083 
1084     /**
1085      * Inserts the string representation of the {@code Object}
1086      * argument into this character sequence.
1087      * <p>
1088      * The overall effect is exactly as if the second argument were
1089      * converted to a string by the method {@link String#valueOf(Object)},
1090      * and the characters of that string were then
1091      * {@link #insert(int,String) inserted} into this character
1092      * sequence at the indicated offset.
1093      * <p>
1094      * The {@code offset} argument must be greater than or equal to
1095      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1096      * of this sequence.
1097      *
1098      * @param      offset   the offset.
1099      * @param      obj      an {@code Object}.
1100      * @return     a reference to this object.
1101      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1102      */
insert(int offset, Object obj)1103     public AbstractStringBuilder insert(int offset, Object obj) {
1104         return insert(offset, String.valueOf(obj));
1105     }
1106 
1107     /**
1108      * Inserts the string into this character sequence.
1109      * <p>
1110      * The characters of the {@code String} argument are inserted, in
1111      * order, into this sequence at the indicated offset, moving up any
1112      * characters originally above that position and increasing the length
1113      * of this sequence by the length of the argument. If
1114      * {@code str} is {@code null}, then the four characters
1115      * {@code "null"} are inserted into this sequence.
1116      * <p>
1117      * The character at index <i>k</i> in the new character sequence is
1118      * equal to:
1119      * <ul>
1120      * <li>the character at index <i>k</i> in the old character sequence, if
1121      * <i>k</i> is less than {@code offset}
1122      * <li>the character at index <i>k</i>{@code -offset} in the
1123      * argument {@code str}, if <i>k</i> is not less than
1124      * {@code offset} but is less than {@code offset+str.length()}
1125      * <li>the character at index <i>k</i>{@code -str.length()} in the
1126      * old character sequence, if <i>k</i> is not less than
1127      * {@code offset+str.length()}
1128      * </ul><p>
1129      * The {@code offset} argument must be greater than or equal to
1130      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1131      * of this sequence.
1132      *
1133      * @param      offset   the offset.
1134      * @param      str      a string.
1135      * @return     a reference to this object.
1136      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1137      */
insert(int offset, String str)1138     public AbstractStringBuilder insert(int offset, String str) {
1139         checkOffset(offset, count);
1140         if (str == null) {
1141             str = "null";
1142         }
1143         int len = str.length();
1144         ensureCapacityInternal(count + len);
1145         shift(offset, len);
1146         count += len;
1147         putStringAt(offset, str);
1148         return this;
1149     }
1150 
1151     /**
1152      * Inserts the string representation of the {@code char} array
1153      * argument into this sequence.
1154      * <p>
1155      * The characters of the array argument are inserted into the
1156      * contents of this sequence at the position indicated by
1157      * {@code offset}. The length of this sequence increases by
1158      * the length of the argument.
1159      * <p>
1160      * The overall effect is exactly as if the second argument were
1161      * converted to a string by the method {@link String#valueOf(char[])},
1162      * and the characters of that string were then
1163      * {@link #insert(int,String) inserted} into this character
1164      * sequence at the indicated offset.
1165      * <p>
1166      * The {@code offset} argument must be greater than or equal to
1167      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1168      * of this sequence.
1169      *
1170      * @param      offset   the offset.
1171      * @param      str      a character array.
1172      * @return     a reference to this object.
1173      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1174      */
insert(int offset, char[] str)1175     public AbstractStringBuilder insert(int offset, char[] str) {
1176         checkOffset(offset, count);
1177         int len = str.length;
1178         ensureCapacityInternal(count + len);
1179         shift(offset, len);
1180         count += len;
1181         putCharsAt(offset, str, 0, len);
1182         return this;
1183     }
1184 
1185     /**
1186      * Inserts the specified {@code CharSequence} into this sequence.
1187      * <p>
1188      * The characters of the {@code CharSequence} argument are inserted,
1189      * in order, into this sequence at the indicated offset, moving up
1190      * any characters originally above that position and increasing the length
1191      * of this sequence by the length of the argument s.
1192      * <p>
1193      * The result of this method is exactly the same as if it were an
1194      * invocation of this object's
1195      * {@link #insert(int,CharSequence,int,int) insert}(dstOffset, s, 0, s.length())
1196      * method.
1197      *
1198      * <p>If {@code s} is {@code null}, then the four characters
1199      * {@code "null"} are inserted into this sequence.
1200      *
1201      * @param      dstOffset   the offset.
1202      * @param      s the sequence to be inserted
1203      * @return     a reference to this object.
1204      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1205      */
insert(int dstOffset, CharSequence s)1206     public AbstractStringBuilder insert(int dstOffset, CharSequence s) {
1207         if (s == null) {
1208             s = "null";
1209         }
1210         if (s instanceof String) {
1211             return this.insert(dstOffset, (String)s);
1212         }
1213         return this.insert(dstOffset, s, 0, s.length());
1214     }
1215 
1216     /**
1217      * Inserts a subsequence of the specified {@code CharSequence} into
1218      * this sequence.
1219      * <p>
1220      * The subsequence of the argument {@code s} specified by
1221      * {@code start} and {@code end} are inserted,
1222      * in order, into this sequence at the specified destination offset, moving
1223      * up any characters originally above that position. The length of this
1224      * sequence is increased by {@code end - start}.
1225      * <p>
1226      * The character at index <i>k</i> in this sequence becomes equal to:
1227      * <ul>
1228      * <li>the character at index <i>k</i> in this sequence, if
1229      * <i>k</i> is less than {@code dstOffset}
1230      * <li>the character at index <i>k</i>{@code +start-dstOffset} in
1231      * the argument {@code s}, if <i>k</i> is greater than or equal to
1232      * {@code dstOffset} but is less than {@code dstOffset+end-start}
1233      * <li>the character at index <i>k</i>{@code -(end-start)} in this
1234      * sequence, if <i>k</i> is greater than or equal to
1235      * {@code dstOffset+end-start}
1236      * </ul><p>
1237      * The {@code dstOffset} argument must be greater than or equal to
1238      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1239      * of this sequence.
1240      * <p>The start argument must be nonnegative, and not greater than
1241      * {@code end}.
1242      * <p>The end argument must be greater than or equal to
1243      * {@code start}, and less than or equal to the length of s.
1244      *
1245      * <p>If {@code s} is {@code null}, then this method inserts
1246      * characters as if the s parameter was a sequence containing the four
1247      * characters {@code "null"}.
1248      *
1249      * @param      dstOffset   the offset in this sequence.
1250      * @param      s       the sequence to be inserted.
1251      * @param      start   the starting index of the subsequence to be inserted.
1252      * @param      end     the end index of the subsequence to be inserted.
1253      * @return     a reference to this object.
1254      * @throws     IndexOutOfBoundsException  if {@code dstOffset}
1255      *             is negative or greater than {@code this.length()}, or
1256      *              {@code start} or {@code end} are negative, or
1257      *              {@code start} is greater than {@code end} or
1258      *              {@code end} is greater than {@code s.length()}
1259      */
insert(int dstOffset, CharSequence s, int start, int end)1260     public AbstractStringBuilder insert(int dstOffset, CharSequence s,
1261                                         int start, int end)
1262     {
1263         if (s == null) {
1264             s = "null";
1265         }
1266         checkOffset(dstOffset, count);
1267         checkRange(start, end, s.length());
1268         int len = end - start;
1269         ensureCapacityInternal(count + len);
1270         shift(dstOffset, len);
1271         count += len;
1272         putCharsAt(dstOffset, s, start, end);
1273         return this;
1274     }
1275 
1276     /**
1277      * Inserts the string representation of the {@code boolean}
1278      * argument into this sequence.
1279      * <p>
1280      * The overall effect is exactly as if the second argument were
1281      * converted to a string by the method {@link String#valueOf(boolean)},
1282      * and the characters of that string were then
1283      * {@link #insert(int,String) inserted} into this character
1284      * sequence at the indicated offset.
1285      * <p>
1286      * The {@code offset} argument must be greater than or equal to
1287      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1288      * of this sequence.
1289      *
1290      * @param      offset   the offset.
1291      * @param      b        a {@code boolean}.
1292      * @return     a reference to this object.
1293      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1294      */
insert(int offset, boolean b)1295     public AbstractStringBuilder insert(int offset, boolean b) {
1296         return insert(offset, String.valueOf(b));
1297     }
1298 
1299     /**
1300      * Inserts the string representation of the {@code char}
1301      * argument into this sequence.
1302      * <p>
1303      * The overall effect is exactly as if the second argument were
1304      * converted to a string by the method {@link String#valueOf(char)},
1305      * and the character in that string were then
1306      * {@link #insert(int,String) inserted} into this character
1307      * sequence at the indicated offset.
1308      * <p>
1309      * The {@code offset} argument must be greater than or equal to
1310      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1311      * of this sequence.
1312      *
1313      * @param      offset   the offset.
1314      * @param      c        a {@code char}.
1315      * @return     a reference to this object.
1316      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1317      */
insert(int offset, char c)1318     public AbstractStringBuilder insert(int offset, char c) {
1319         checkOffset(offset, count);
1320         ensureCapacityInternal(count + 1);
1321         shift(offset, 1);
1322         count += 1;
1323         if (isLatin1() && StringLatin1.canEncode(c)) {
1324             value[offset] = (byte)c;
1325         } else {
1326             if (isLatin1()) {
1327                 inflate();
1328             }
1329             StringUTF16.putCharSB(value, offset, c);
1330         }
1331         return this;
1332     }
1333 
1334     /**
1335      * Inserts the string representation of the second {@code int}
1336      * argument into this sequence.
1337      * <p>
1338      * The overall effect is exactly as if the second argument were
1339      * converted to a string by the method {@link String#valueOf(int)},
1340      * and the characters of that string were then
1341      * {@link #insert(int,String) inserted} into this character
1342      * sequence at the indicated offset.
1343      * <p>
1344      * The {@code offset} argument must be greater than or equal to
1345      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1346      * of this sequence.
1347      *
1348      * @param      offset   the offset.
1349      * @param      i        an {@code int}.
1350      * @return     a reference to this object.
1351      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1352      */
insert(int offset, int i)1353     public AbstractStringBuilder insert(int offset, int i) {
1354         return insert(offset, String.valueOf(i));
1355     }
1356 
1357     /**
1358      * Inserts the string representation of the {@code long}
1359      * argument into this sequence.
1360      * <p>
1361      * The overall effect is exactly as if the second argument were
1362      * converted to a string by the method {@link String#valueOf(long)},
1363      * and the characters of that string were then
1364      * {@link #insert(int,String) inserted} into this character
1365      * sequence at the indicated offset.
1366      * <p>
1367      * The {@code offset} argument must be greater than or equal to
1368      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1369      * of this sequence.
1370      *
1371      * @param      offset   the offset.
1372      * @param      l        a {@code long}.
1373      * @return     a reference to this object.
1374      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1375      */
insert(int offset, long l)1376     public AbstractStringBuilder insert(int offset, long l) {
1377         return insert(offset, String.valueOf(l));
1378     }
1379 
1380     /**
1381      * Inserts the string representation of the {@code float}
1382      * argument into this sequence.
1383      * <p>
1384      * The overall effect is exactly as if the second argument were
1385      * converted to a string by the method {@link String#valueOf(float)},
1386      * and the characters of that string were then
1387      * {@link #insert(int,String) inserted} into this character
1388      * sequence at the indicated offset.
1389      * <p>
1390      * The {@code offset} argument must be greater than or equal to
1391      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1392      * of this sequence.
1393      *
1394      * @param      offset   the offset.
1395      * @param      f        a {@code float}.
1396      * @return     a reference to this object.
1397      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1398      */
insert(int offset, float f)1399     public AbstractStringBuilder insert(int offset, float f) {
1400         return insert(offset, String.valueOf(f));
1401     }
1402 
1403     /**
1404      * Inserts the string representation of the {@code double}
1405      * argument into this sequence.
1406      * <p>
1407      * The overall effect is exactly as if the second argument were
1408      * converted to a string by the method {@link String#valueOf(double)},
1409      * and the characters of that string were then
1410      * {@link #insert(int,String) inserted} into this character
1411      * sequence at the indicated offset.
1412      * <p>
1413      * The {@code offset} argument must be greater than or equal to
1414      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1415      * of this sequence.
1416      *
1417      * @param      offset   the offset.
1418      * @param      d        a {@code double}.
1419      * @return     a reference to this object.
1420      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1421      */
insert(int offset, double d)1422     public AbstractStringBuilder insert(int offset, double d) {
1423         return insert(offset, String.valueOf(d));
1424     }
1425 
1426     /**
1427      * Returns the index within this string of the first occurrence of the
1428      * specified substring.
1429      *
1430      * <p>The returned index is the smallest value {@code k} for which:
1431      * <pre>{@code
1432      * this.toString().startsWith(str, k)
1433      * }</pre>
1434      * If no such value of {@code k} exists, then {@code -1} is returned.
1435      *
1436      * @param   str   the substring to search for.
1437      * @return  the index of the first occurrence of the specified substring,
1438      *          or {@code -1} if there is no such occurrence.
1439      */
indexOf(String str)1440     public int indexOf(String str) {
1441         return indexOf(str, 0);
1442     }
1443 
1444     /**
1445      * Returns the index within this string of the first occurrence of the
1446      * specified substring, starting at the specified index.
1447      *
1448      * <p>The returned index is the smallest value {@code k} for which:
1449      * <pre>{@code
1450      *     k >= Math.min(fromIndex, this.length()) &&
1451      *                   this.toString().startsWith(str, k)
1452      * }</pre>
1453      * If no such value of {@code k} exists, then {@code -1} is returned.
1454      *
1455      * @param   str         the substring to search for.
1456      * @param   fromIndex   the index from which to start the search.
1457      * @return  the index of the first occurrence of the specified substring,
1458      *          starting at the specified index,
1459      *          or {@code -1} if there is no such occurrence.
1460      */
indexOf(String str, int fromIndex)1461     public int indexOf(String str, int fromIndex) {
1462         return String.indexOf(value, coder, count, str, fromIndex);
1463     }
1464 
1465     /**
1466      * Returns the index within this string of the last occurrence of the
1467      * specified substring.  The last occurrence of the empty string "" is
1468      * considered to occur at the index value {@code this.length()}.
1469      *
1470      * <p>The returned index is the largest value {@code k} for which:
1471      * <pre>{@code
1472      * this.toString().startsWith(str, k)
1473      * }</pre>
1474      * If no such value of {@code k} exists, then {@code -1} is returned.
1475      *
1476      * @param   str   the substring to search for.
1477      * @return  the index of the last occurrence of the specified substring,
1478      *          or {@code -1} if there is no such occurrence.
1479      */
lastIndexOf(String str)1480     public int lastIndexOf(String str) {
1481         return lastIndexOf(str, count);
1482     }
1483 
1484     /**
1485      * Returns the index within this string of the last occurrence of the
1486      * specified substring, searching backward starting at the specified index.
1487      *
1488      * <p>The returned index is the largest value {@code k} for which:
1489      * <pre>{@code
1490      *     k <= Math.min(fromIndex, this.length()) &&
1491      *                   this.toString().startsWith(str, k)
1492      * }</pre>
1493      * If no such value of {@code k} exists, then {@code -1} is returned.
1494      *
1495      * @param   str         the substring to search for.
1496      * @param   fromIndex   the index to start the search from.
1497      * @return  the index of the last occurrence of the specified substring,
1498      *          searching backward from the specified index,
1499      *          or {@code -1} if there is no such occurrence.
1500      */
lastIndexOf(String str, int fromIndex)1501     public int lastIndexOf(String str, int fromIndex) {
1502         return String.lastIndexOf(value, coder, count, str, fromIndex);
1503     }
1504 
1505     /**
1506      * Causes this character sequence to be replaced by the reverse of
1507      * the sequence. If there are any surrogate pairs included in the
1508      * sequence, these are treated as single characters for the
1509      * reverse operation. Thus, the order of the high-low surrogates
1510      * is never reversed.
1511      *
1512      * Let <i>n</i> be the character length of this character sequence
1513      * (not the length in {@code char} values) just prior to
1514      * execution of the {@code reverse} method. Then the
1515      * character at index <i>k</i> in the new character sequence is
1516      * equal to the character at index <i>n-k-1</i> in the old
1517      * character sequence.
1518      *
1519      * <p>Note that the reverse operation may result in producing
1520      * surrogate pairs that were unpaired low-surrogates and
1521      * high-surrogates before the operation. For example, reversing
1522      * "\u005CuDC00\u005CuD800" produces "\u005CuD800\u005CuDC00" which is
1523      * a valid surrogate pair.
1524      *
1525      * @return  a reference to this object.
1526      */
reverse()1527     public AbstractStringBuilder reverse() {
1528         byte[] val = this.value;
1529         int count = this.count;
1530         int coder = this.coder;
1531         int n = count - 1;
1532         if (COMPACT_STRINGS && coder == CODER_LATIN1) {
1533             for (int j = (n-1) >> 1; j >= 0; j--) {
1534                 int k = n - j;
1535                 byte cj = val[j];
1536                 val[j] = val[k];
1537                 val[k] = cj;
1538             }
1539         } else {
1540             StringUTF16.reverse(val, count);
1541         }
1542         return this;
1543     }
1544 
1545     /**
1546      * Returns a string representing the data in this sequence.
1547      * A new {@code String} object is allocated and initialized to
1548      * contain the character sequence currently represented by this
1549      * object. This {@code String} is then returned. Subsequent
1550      * changes to this sequence do not affect the contents of the
1551      * {@code String}.
1552      *
1553      * @return  a string representation of this sequence of characters.
1554      */
1555     @Override
toString()1556     public abstract String toString();
1557 
1558     /**
1559      * {@inheritDoc}
1560      * @since 9
1561      */
1562     @Override
chars()1563     public IntStream chars() {
1564         // Reuse String-based spliterator. This requires a supplier to
1565         // capture the value and count when the terminal operation is executed
1566         return StreamSupport.intStream(
1567                 () -> {
1568                     // The combined set of field reads are not atomic and thread
1569                     // safe but bounds checks will ensure no unsafe reads from
1570                     // the byte array
1571                     byte[] val = this.value;
1572                     int count = this.count;
1573                     byte coder = this.coder;
1574                     return coder == CODER_LATIN1
1575                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1576                            : new StringUTF16.CharsSpliterator(val, 0, count, 0);
1577                 },
1578                 Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED,
1579                 false);
1580     }
1581 
1582     /**
1583      * {@inheritDoc}
1584      * @since 9
1585      */
1586     @Override
codePoints()1587     public IntStream codePoints() {
1588         // Reuse String-based spliterator. This requires a supplier to
1589         // capture the value and count when the terminal operation is executed
1590         return StreamSupport.intStream(
1591                 () -> {
1592                     // The combined set of field reads are not atomic and thread
1593                     // safe but bounds checks will ensure no unsafe reads from
1594                     // the byte array
1595                     byte[] val = this.value;
1596                     int count = this.count;
1597                     byte coder = this.coder;
1598                     return coder == CODER_LATIN1
1599                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1600                            : new StringUTF16.CodePointsSpliterator(val, 0, count, 0);
1601                 },
1602                 Spliterator.ORDERED,
1603                 false);
1604     }
1605 
1606     /**
1607      * Needed by {@code String} for the contentEquals method.
1608      */
1609     final byte[] getValue() {
1610         return value;
1611     }
1612 
1613     /*
1614      * Invoker guarantees it is in UTF16 (inflate itself for asb), if two
1615      * coders are different and the dstBegin has enough space
1616      *
1617      * @param dstBegin  the char index, not offset of byte[]
1618      * @param coder     the coder of dst[]
1619      */
1620     void getBytes(byte dst[], int dstBegin, byte coder) {
1621         if (this.coder == coder) {
1622             System.arraycopy(value, 0, dst, dstBegin << coder, count << coder);
1623         } else {        // this.coder == LATIN && coder == UTF16
1624             StringLatin1.inflate(value, 0, dst, dstBegin, count);
1625         }
1626     }
1627 
1628     /* for readObject() */
1629     void initBytes(char[] value, int off, int len) {
1630         if (String.COMPACT_STRINGS) {
1631             this.value = StringUTF16.compress(value, off, len);
1632             if (this.value != null) {
1633                 this.coder = CODER_LATIN1;
1634                 return;
1635             }
1636         }
1637         this.coder = CODER_UTF16;
1638         this.value = StringUTF16.toBytes(value, off, len);
1639     }
1640 
1641     /**
1642      * Be careful the behavior difference from {@link String#coder()}. See
1643      * {@link String#CODER_LATIN1} for details.
1644      */
1645     final byte getCoder() {
1646         return COMPACT_STRINGS ? coder : CODER_UTF16;
1647     }
1648 
1649     final boolean isLatin1() {
1650         return COMPACT_STRINGS && coder == CODER_LATIN1;
1651     }
1652 
1653     private final void putCharsAt(int index, char[] s, int off, int end) {
1654         if (isLatin1()) {
1655             byte[] val = this.value;
1656             for (int i = off, j = index; i < end; i++) {
1657                 char c = s[i];
1658                 if (StringLatin1.canEncode(c)) {
1659                     val[j++] = (byte)c;
1660                 } else {
1661                     inflate();
1662                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1663                     return;
1664                 }
1665             }
1666         } else {
1667             StringUTF16.putCharsSB(this.value, index, s, off, end);
1668         }
1669     }
1670 
1671     private final void putCharsAt(int index, CharSequence s, int off, int end) {
1672         if (isLatin1()) {
1673             byte[] val = this.value;
1674             for (int i = off, j = index; i < end; i++) {
1675                 char c = s.charAt(i);
1676                 if (StringLatin1.canEncode(c)) {
1677                     val[j++] = (byte)c;
1678                 } else {
1679                     inflate();
1680                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1681                     return;
1682                 }
1683             }
1684         } else {
1685             StringUTF16.putCharsSB(this.value, index, s, off, end);
1686         }
1687     }
1688 
1689     private final void putStringAt(int index, String str) {
1690         if (getCoder() != str.coder()) {
1691             inflate();
1692         }
1693         str.fillBytes(value, index, coder);
1694     }
1695 
1696     private final void appendChars(char[] s, int off, int end) {
1697         int count = this.count;
1698         if (isLatin1()) {
1699             byte[] val = this.value;
1700             for (int i = off, j = count; i < end; i++) {
1701                 char c = s[i];
1702                 if (StringLatin1.canEncode(c)) {
1703                     val[j++] = (byte)c;
1704                 } else {
1705                     this.count = count = j;
1706                     inflate();
1707                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1708                     this.count = count + end - i;
1709                     return;
1710                 }
1711             }
1712         } else {
1713             StringUTF16.putCharsSB(this.value, count, s, off, end);
1714         }
1715         this.count = count + end - off;
1716     }
1717 
1718     private final void appendChars(CharSequence s, int off, int end) {
1719         if (isLatin1()) {
1720             byte[] val = this.value;
1721             for (int i = off, j = count; i < end; i++) {
1722                 char c = s.charAt(i);
1723                 if (StringLatin1.canEncode(c)) {
1724                     val[j++] = (byte)c;
1725                 } else {
1726                     count = j;
1727                     inflate();
1728                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1729                     count += end - i;
1730                     return;
1731                 }
1732             }
1733         } else {
1734             StringUTF16.putCharsSB(this.value, count, s, off, end);
1735         }
1736         count += end - off;
1737     }
1738 
1739     /* IndexOutOfBoundsException, if out of bounds */
1740     private static void checkRange(int start, int end, int len) {
1741         if (start < 0 || start > end || end > len) {
1742             throw new IndexOutOfBoundsException(
1743                 "start " + start + ", end " + end + ", length " + len);
1744         }
1745     }
1746 
1747     /* StringIndexOutOfBoundsException, if out of bounds */
1748     private static void checkRangeSIOOBE(int start, int end, int len) {
1749         if (start < 0 || start > end || end > len) {
1750             throw new StringIndexOutOfBoundsException(
1751                 "start " + start + ", end " + end + ", length " + len);
1752         }
1753     }
1754 }
1755