• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 1994, 2023, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.lang.invoke.MethodHandles;
29 import java.lang.constant.Constable;
30 import java.lang.constant.ConstantDesc;
31 import java.util.Optional;
32 
33 import jdk.internal.math.FloatConsts;
34 import jdk.internal.math.FloatingDecimal;
35 import jdk.internal.math.FloatToDecimal;
36 import jdk.internal.vm.annotation.IntrinsicCandidate;
37 
38 /**
39  * The {@code Float} class wraps a value of primitive type
40  * {@code float} in an object. An object of type
41  * {@code Float} contains a single field whose type is
42  * {@code float}.
43  *
44  * <p>In addition, this class provides several methods for converting a
45  * {@code float} to a {@code String} and a
46  * {@code String} to a {@code float}, as well as other
47  * constants and methods useful when dealing with a
48  * {@code float}.
49  *
50  * <!-- Android-removed: paragraph on ValueBased
51  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
52  * class; programmers should treat instances that are
53  * {@linkplain #equals(Object) equal} as interchangeable and should not
54  * use instances for synchronization, or unpredictable behavior may
55  * occur. For example, in a future release, synchronization may fail.
56  * -->
57  *
58  * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence,
59  * and Comparison</a></h2>
60  *
61  * The class {@code java.lang.Double} has a <a
62  * href="Double.html#equivalenceRelation">discussion of equality,
63  * equivalence, and comparison of floating-point values</a> that is
64  * equally applicable to {@code float} values.
65  *
66  * @see <a href="https://standards.ieee.org/ieee/754/6210/">
67  *      <cite>IEEE Standard for Floating-Point Arithmetic</cite></a>
68  *
69  * @author  Lee Boynton
70  * @author  Arthur van Hoff
71  * @author  Joseph D. Darcy
72  * @since 1.0
73  */
74 @jdk.internal.ValueBased
75 public final class Float extends Number
76         implements Comparable<Float>, Constable, ConstantDesc {
77     /**
78      * A constant holding the positive infinity of type
79      * {@code float}. It is equal to the value returned by
80      * {@code Float.intBitsToFloat(0x7f800000)}.
81      */
82     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
83 
84     /**
85      * A constant holding the negative infinity of type
86      * {@code float}. It is equal to the value returned by
87      * {@code Float.intBitsToFloat(0xff800000)}.
88      */
89     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
90 
91     /**
92      * A constant holding a Not-a-Number (NaN) value of type
93      * {@code float}.  It is equivalent to the value returned by
94      * {@code Float.intBitsToFloat(0x7fc00000)}.
95      */
96     public static final float NaN = 0.0f / 0.0f;
97 
98     /**
99      * A constant holding the largest positive finite value of type
100      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
101      * It is equal to the hexadecimal floating-point literal
102      * {@code 0x1.fffffeP+127f} and also equal to
103      * {@code Float.intBitsToFloat(0x7f7fffff)}.
104      */
105     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
106 
107     /**
108      * A constant holding the smallest positive normal value of type
109      * {@code float}, 2<sup>-126</sup>.  It is equal to the
110      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
111      * equal to {@code Float.intBitsToFloat(0x00800000)}.
112      *
113      * @since 1.6
114      */
115     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
116 
117     /**
118      * A constant holding the smallest positive nonzero value of type
119      * {@code float}, 2<sup>-149</sup>. It is equal to the
120      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
121      * and also equal to {@code Float.intBitsToFloat(0x1)}.
122      */
123     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
124 
125     /**
126      * The number of bits used to represent a {@code float} value.
127      *
128      * @since 1.5
129      */
130     public static final int SIZE = 32;
131 
132     /**
133      * The number of bits in the significand of a {@code float} value.
134      * This is the parameter N in section {@jls 4.2.3} of
135      * <cite>The Java Language Specification</cite>.
136      *
137      * @since 19
138      */
139     public static final int PRECISION = 24;
140 
141     /**
142      * Maximum exponent a finite {@code float} variable may have.  It
143      * is equal to the value returned by {@code
144      * Math.getExponent(Float.MAX_VALUE)}.
145      *
146      * @since 1.6
147      */
148     public static final int MAX_EXPONENT = (1 << (SIZE - PRECISION - 1)) - 1; // 127
149 
150     /**
151      * Minimum exponent a normalized {@code float} variable may have.
152      * It is equal to the value returned by {@code
153      * Math.getExponent(Float.MIN_NORMAL)}.
154      *
155      * @since 1.6
156      */
157     public static final int MIN_EXPONENT = 1 - MAX_EXPONENT; // -126
158 
159     /**
160      * The number of bytes used to represent a {@code float} value.
161      *
162      * @since 1.8
163      */
164     public static final int BYTES = SIZE / Byte.SIZE;
165 
166     /**
167      * The {@code Class} instance representing the primitive type
168      * {@code float}.
169      *
170      * @since 1.1
171      */
172     @SuppressWarnings("unchecked")
173     public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float");
174 
175     /**
176      * Returns a string representation of the {@code float}
177      * argument. All characters mentioned below are ASCII characters.
178      * <ul>
179      * <li>If the argument is NaN, the result is the string
180      * "{@code NaN}".
181      * <li>Otherwise, the result is a string that represents the sign and
182      *     magnitude (absolute value) of the argument. If the sign is
183      *     negative, the first character of the result is
184      *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
185      *     positive, no sign character appears in the result. As for
186      *     the magnitude <i>m</i>:
187      * <ul>
188      * <li>If <i>m</i> is infinity, it is represented by the characters
189      *     {@code "Infinity"}; thus, positive infinity produces
190      *     the result {@code "Infinity"} and negative infinity
191      *     produces the result {@code "-Infinity"}.
192      * <li>If <i>m</i> is zero, it is represented by the characters
193      *     {@code "0.0"}; thus, negative zero produces the result
194      *     {@code "-0.0"} and positive zero produces the result
195      *     {@code "0.0"}.
196      *
197      * <li> Otherwise <i>m</i> is positive and finite.
198      * It is converted to a string in two stages:
199      * <ul>
200      * <li> <em>Selection of a decimal</em>:
201      * A well-defined decimal <i>d</i><sub><i>m</i></sub>
202      * is selected to represent <i>m</i>.
203      * This decimal is (almost always) the <em>shortest</em> one that
204      * rounds to <i>m</i> according to the round to nearest
205      * rounding policy of IEEE 754 floating-point arithmetic.
206      * <li> <em>Formatting as a string</em>:
207      * The decimal <i>d</i><sub><i>m</i></sub> is formatted as a string,
208      * either in plain or in computerized scientific notation,
209      * depending on its value.
210      * </ul>
211      * </ul>
212      * </ul>
213      *
214      * <p>A <em>decimal</em> is a number of the form
215      * <i>s</i>&times;10<sup><i>i</i></sup>
216      * for some (unique) integers <i>s</i> &gt; 0 and <i>i</i> such that
217      * <i>s</i> is not a multiple of 10.
218      * These integers are the <em>significand</em> and
219      * the <em>exponent</em>, respectively, of the decimal.
220      * The <em>length</em> of the decimal is the (unique)
221      * positive integer <i>n</i> meeting
222      * 10<sup><i>n</i>-1</sup> &le; <i>s</i> &lt; 10<sup><i>n</i></sup>.
223      *
224      * <p>The decimal <i>d</i><sub><i>m</i></sub> for a finite positive <i>m</i>
225      * is defined as follows:
226      * <ul>
227      * <li>Let <i>R</i> be the set of all decimals that round to <i>m</i>
228      * according to the usual <em>round to nearest</em> rounding policy of
229      * IEEE 754 floating-point arithmetic.
230      * <li>Let <i>p</i> be the minimal length over all decimals in <i>R</i>.
231      * <li>When <i>p</i> &ge; 2, let <i>T</i> be the set of all decimals
232      * in <i>R</i> with length <i>p</i>.
233      * Otherwise, let <i>T</i> be the set of all decimals
234      * in <i>R</i> with length 1 or 2.
235      * <li>Define <i>d</i><sub><i>m</i></sub> as the decimal in <i>T</i>
236      * that is closest to <i>m</i>.
237      * Or if there are two such decimals in <i>T</i>,
238      * select the one with the even significand.
239      * </ul>
240      *
241      * <p>The (uniquely) selected decimal <i>d</i><sub><i>m</i></sub>
242      * is then formatted.
243      * Let <i>s</i>, <i>i</i> and <i>n</i> be the significand, exponent and
244      * length of <i>d</i><sub><i>m</i></sub>, respectively.
245      * Further, let <i>e</i> = <i>n</i> + <i>i</i> - 1 and let
246      * <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>
247      * be the usual decimal expansion of <i>s</i>.
248      * Note that <i>s</i><sub>1</sub> &ne; 0
249      * and <i>s</i><sub><i>n</i></sub> &ne; 0.
250      * Below, the decimal point {@code '.'} is {@code '\u005Cu002E'}
251      * and the exponent indicator {@code 'E'} is {@code '\u005Cu0045'}.
252      * <ul>
253      * <li>Case -3 &le; <i>e</i> &lt; 0:
254      * <i>d</i><sub><i>m</i></sub> is formatted as
255      * <code>0.0</code>&hellip;<code>0</code><!--
256      * --><i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub>,
257      * where there are exactly -(<i>n</i> + <i>i</i>) zeroes between
258      * the decimal point and <i>s</i><sub>1</sub>.
259      * For example, 123 &times; 10<sup>-4</sup> is formatted as
260      * {@code 0.0123}.
261      * <li>Case 0 &le; <i>e</i> &lt; 7:
262      * <ul>
263      * <li>Subcase <i>i</i> &ge; 0:
264      * <i>d</i><sub><i>m</i></sub> is formatted as
265      * <i>s</i><sub>1</sub>&hellip;<i>s</i><sub><i>n</i></sub><!--
266      * --><code>0</code>&hellip;<code>0.0</code>,
267      * where there are exactly <i>i</i> zeroes
268      * between <i>s</i><sub><i>n</i></sub> and the decimal point.
269      * For example, 123 &times; 10<sup>2</sup> is formatted as
270      * {@code 12300.0}.
271      * <li>Subcase <i>i</i> &lt; 0:
272      * <i>d</i><sub><i>m</i></sub> is formatted as
273      * <i>s</i><sub>1</sub>&hellip;<!--
274      * --><i>s</i><sub><i>n</i>+<i>i</i></sub><code>.</code><!--
275      * --><i>s</i><sub><i>n</i>+<i>i</i>+1</sub>&hellip;<!--
276      * --><i>s</i><sub><i>n</i></sub>,
277      * where there are exactly -<i>i</i> digits to the right of
278      * the decimal point.
279      * For example, 123 &times; 10<sup>-1</sup> is formatted as
280      * {@code 12.3}.
281      * </ul>
282      * <li>Case <i>e</i> &lt; -3 or <i>e</i> &ge; 7:
283      * computerized scientific notation is used to format
284      * <i>d</i><sub><i>m</i></sub>.
285      * Here <i>e</i> is formatted as by {@link Integer#toString(int)}.
286      * <ul>
287      * <li>Subcase <i>n</i> = 1:
288      * <i>d</i><sub><i>m</i></sub> is formatted as
289      * <i>s</i><sub>1</sub><code>.0E</code><i>e</i>.
290      * For example, 1 &times; 10<sup>23</sup> is formatted as
291      * {@code 1.0E23}.
292      * <li>Subcase <i>n</i> &gt; 1:
293      * <i>d</i><sub><i>m</i></sub> is formatted as
294      * <i>s</i><sub>1</sub><code>.</code><i>s</i><sub>2</sub><!--
295      * -->&hellip;<i>s</i><sub><i>n</i></sub><code>E</code><i>e</i>.
296      * For example, 123 &times; 10<sup>-21</sup> is formatted as
297      * {@code 1.23E-19}.
298      * </ul>
299      * </ul>
300      *
301      * <p>To create localized string representations of a floating-point
302      * value, use subclasses of {@link java.text.NumberFormat}.
303      *
304      * @param   f   the {@code float} to be converted.
305      * @return a string representation of the argument.
306      */
toString(float f)307     public static String toString(float f) {
308         return FloatToDecimal.toString(f);
309     }
310 
311     /**
312      * Returns a hexadecimal string representation of the
313      * {@code float} argument. All characters mentioned below are
314      * ASCII characters.
315      *
316      * <ul>
317      * <li>If the argument is NaN, the result is the string
318      *     "{@code NaN}".
319      * <li>Otherwise, the result is a string that represents the sign and
320      * magnitude (absolute value) of the argument. If the sign is negative,
321      * the first character of the result is '{@code -}'
322      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
323      * appears in the result. As for the magnitude <i>m</i>:
324      *
325      * <ul>
326      * <li>If <i>m</i> is infinity, it is represented by the string
327      * {@code "Infinity"}; thus, positive infinity produces the
328      * result {@code "Infinity"} and negative infinity produces
329      * the result {@code "-Infinity"}.
330      *
331      * <li>If <i>m</i> is zero, it is represented by the string
332      * {@code "0x0.0p0"}; thus, negative zero produces the result
333      * {@code "-0x0.0p0"} and positive zero produces the result
334      * {@code "0x0.0p0"}.
335      *
336      * <li>If <i>m</i> is a {@code float} value with a
337      * normalized representation, substrings are used to represent the
338      * significand and exponent fields.  The significand is
339      * represented by the characters {@code "0x1."}
340      * followed by a lowercase hexadecimal representation of the rest
341      * of the significand as a fraction.  Trailing zeros in the
342      * hexadecimal representation are removed unless all the digits
343      * are zero, in which case a single zero is used. Next, the
344      * exponent is represented by {@code "p"} followed
345      * by a decimal string of the unbiased exponent as if produced by
346      * a call to {@link Integer#toString(int) Integer.toString} on the
347      * exponent value.
348      *
349      * <li>If <i>m</i> is a {@code float} value with a subnormal
350      * representation, the significand is represented by the
351      * characters {@code "0x0."} followed by a
352      * hexadecimal representation of the rest of the significand as a
353      * fraction.  Trailing zeros in the hexadecimal representation are
354      * removed. Next, the exponent is represented by
355      * {@code "p-126"}.  Note that there must be at
356      * least one nonzero digit in a subnormal significand.
357      *
358      * </ul>
359      *
360      * </ul>
361      *
362      * <table class="striped">
363      * <caption>Examples</caption>
364      * <thead>
365      * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
366      * </thead>
367      * <tbody>
368      * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
369      * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
370      * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
371      * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
372      * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
373      * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
374      * <tr><th scope="row">{@code Float.MAX_VALUE}</th>
375      *     <td>{@code 0x1.fffffep127}</td>
376      * <tr><th scope="row">{@code Minimum Normal Value}</th>
377      *     <td>{@code 0x1.0p-126}</td>
378      * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
379      *     <td>{@code 0x0.fffffep-126}</td>
380      * <tr><th scope="row">{@code Float.MIN_VALUE}</th>
381      *     <td>{@code 0x0.000002p-126}</td>
382      * </tbody>
383      * </table>
384      * @param   f   the {@code float} to be converted.
385      * @return a hex string representation of the argument.
386      * @since 1.5
387      * @author Joseph D. Darcy
388      */
toHexString(float f)389     public static String toHexString(float f) {
390         if (Math.abs(f) < Float.MIN_NORMAL
391             &&  f != 0.0f ) {// float subnormal
392             // Adjust exponent to create subnormal double, then
393             // replace subnormal double exponent with subnormal float
394             // exponent
395             String s = Double.toHexString(Math.scalb((double)f,
396                                                      /* -1022+126 */
397                                                      Double.MIN_EXPONENT-
398                                                      Float.MIN_EXPONENT));
399             return s.replaceFirst("p-1022$", "p-126");
400         }
401         else // double string will be the same as float string
402             return Double.toHexString(f);
403     }
404 
405     /**
406      * Returns a {@code Float} object holding the
407      * {@code float} value represented by the argument string
408      * {@code s}.
409      *
410      * <p>If {@code s} is {@code null}, then a
411      * {@code NullPointerException} is thrown.
412      *
413      * <p>Leading and trailing whitespace characters in {@code s}
414      * are ignored.  Whitespace is removed as if by the {@link
415      * String#trim} method; that is, both ASCII space and control
416      * characters are removed. The rest of {@code s} should
417      * constitute a <i>FloatValue</i> as described by the lexical
418      * syntax rules:
419      *
420      * <blockquote>
421      * <dl>
422      * <dt><i>FloatValue:</i>
423      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
424      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
425      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
426      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
427      * <dd><i>SignedInteger</i>
428      * </dl>
429      *
430      * <dl>
431      * <dt><i>HexFloatingPointLiteral</i>:
432      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
433      * </dl>
434      *
435      * <dl>
436      * <dt><i>HexSignificand:</i>
437      * <dd><i>HexNumeral</i>
438      * <dd><i>HexNumeral</i> {@code .}
439      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
440      *     </i>{@code .}<i> HexDigits</i>
441      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
442      *     </i>{@code .} <i>HexDigits</i>
443      * </dl>
444      *
445      * <dl>
446      * <dt><i>BinaryExponent:</i>
447      * <dd><i>BinaryExponentIndicator SignedInteger</i>
448      * </dl>
449      *
450      * <dl>
451      * <dt><i>BinaryExponentIndicator:</i>
452      * <dd>{@code p}
453      * <dd>{@code P}
454      * </dl>
455      *
456      * </blockquote>
457      *
458      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
459      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
460      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
461      * sections of
462      * <cite>The Java Language Specification</cite>,
463      * except that underscores are not accepted between digits.
464      * If {@code s} does not have the form of
465      * a <i>FloatValue</i>, then a {@code NumberFormatException}
466      * is thrown. Otherwise, {@code s} is regarded as
467      * representing an exact decimal value in the usual
468      * "computerized scientific notation" or as an exact
469      * hexadecimal value; this exact numerical value is then
470      * conceptually converted to an "infinitely precise"
471      * binary value that is then rounded to type {@code float}
472      * by the usual round-to-nearest rule of IEEE 754 floating-point
473      * arithmetic, which includes preserving the sign of a zero
474      * value.
475      *
476      * Note that the round-to-nearest rule also implies overflow and
477      * underflow behaviour; if the exact value of {@code s} is large
478      * enough in magnitude (greater than or equal to ({@link
479      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
480      * rounding to {@code float} will result in an infinity and if the
481      * exact value of {@code s} is small enough in magnitude (less
482      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
483      * result in a zero.
484      *
485      * Finally, after rounding a {@code Float} object representing
486      * this {@code float} value is returned.
487      *
488      * <p>To interpret localized string representations of a
489      * floating-point value, use subclasses of {@link
490      * java.text.NumberFormat}.
491      *
492      * <p>Note that trailing format specifiers, specifiers that
493      * determine the type of a floating-point literal
494      * ({@code 1.0f} is a {@code float} value;
495      * {@code 1.0d} is a {@code double} value), do
496      * <em>not</em> influence the results of this method.  In other
497      * words, the numerical value of the input string is converted
498      * directly to the target floating-point type.  In general, the
499      * two-step sequence of conversions, string to {@code double}
500      * followed by {@code double} to {@code float}, is
501      * <em>not</em> equivalent to converting a string directly to
502      * {@code float}.  For example, if first converted to an
503      * intermediate {@code double} and then to
504      * {@code float}, the string<br>
505      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
506      * results in the {@code float} value
507      * {@code 1.0000002f}; if the string is converted directly to
508      * {@code float}, <code>1.000000<b>1</b>f</code> results.
509      *
510      * <p>To avoid calling this method on an invalid string and having
511      * a {@code NumberFormatException} be thrown, the documentation
512      * for {@link Double#valueOf Double.valueOf} lists a regular
513      * expression which can be used to screen the input.
514      *
515      * @param   s   the string to be parsed.
516      * @return  a {@code Float} object holding the value
517      *          represented by the {@code String} argument.
518      * @throws  NumberFormatException  if the string does not contain a
519      *          parsable number.
520      */
valueOf(String s)521     public static Float valueOf(String s) throws NumberFormatException {
522         return new Float(parseFloat(s));
523     }
524 
525     /**
526      * Returns a {@code Float} instance representing the specified
527      * {@code float} value.
528      * If a new {@code Float} instance is not required, this method
529      * should generally be used in preference to the constructor
530      * {@link #Float(float)}, as this method is likely to yield
531      * significantly better space and time performance by caching
532      * frequently requested values.
533      *
534      * @param  f a float value.
535      * @return a {@code Float} instance representing {@code f}.
536      * @since  1.5
537      */
538     @IntrinsicCandidate
valueOf(float f)539     public static Float valueOf(float f) {
540         return new Float(f);
541     }
542 
543     /**
544      * Returns a new {@code float} initialized to the value
545      * represented by the specified {@code String}, as performed
546      * by the {@code valueOf} method of class {@code Float}.
547      *
548      * @param  s the string to be parsed.
549      * @return the {@code float} value represented by the string
550      *         argument.
551      * @throws NullPointerException  if the string is null
552      * @throws NumberFormatException if the string does not contain a
553      *               parsable {@code float}.
554      * @see    java.lang.Float#valueOf(String)
555      * @since 1.2
556      */
parseFloat(String s)557     public static float parseFloat(String s) throws NumberFormatException {
558         return FloatingDecimal.parseFloat(s);
559     }
560 
561     /**
562      * Returns {@code true} if the specified number is a
563      * Not-a-Number (NaN) value, {@code false} otherwise.
564      *
565      * @apiNote
566      * This method corresponds to the isNaN operation defined in IEEE
567      * 754.
568      *
569      * @param   v   the value to be tested.
570      * @return  {@code true} if the argument is NaN;
571      *          {@code false} otherwise.
572      */
isNaN(float v)573     public static boolean isNaN(float v) {
574         return (v != v);
575     }
576 
577     /**
578      * Returns {@code true} if the specified number is infinitely
579      * large in magnitude, {@code false} otherwise.
580      *
581      * @apiNote
582      * This method corresponds to the isInfinite operation defined in
583      * IEEE 754.
584      *
585      * @param   v   the value to be tested.
586      * @return  {@code true} if the argument is positive infinity or
587      *          negative infinity; {@code false} otherwise.
588      */
589     @IntrinsicCandidate
isInfinite(float v)590     public static boolean isInfinite(float v) {
591         return Math.abs(v) > MAX_VALUE;
592     }
593 
594 
595     /**
596      * Returns {@code true} if the argument is a finite floating-point
597      * value; returns {@code false} otherwise (for NaN and infinity
598      * arguments).
599      *
600      * @apiNote
601      * This method corresponds to the isFinite operation defined in
602      * IEEE 754.
603      *
604      * @param f the {@code float} value to be tested
605      * @return {@code true} if the argument is a finite
606      * floating-point value, {@code false} otherwise.
607      * @since 1.8
608      */
609      @IntrinsicCandidate
isFinite(float f)610      public static boolean isFinite(float f) {
611         return Math.abs(f) <= Float.MAX_VALUE;
612     }
613 
614     /**
615      * The value of the Float.
616      *
617      * @serial
618      */
619     private final float value;
620 
621     /**
622      * Constructs a newly allocated {@code Float} object that
623      * represents the primitive {@code float} argument.
624      *
625      * @param   value   the value to be represented by the {@code Float}.
626      *
627      * @deprecated
628      * It is rarely appropriate to use this constructor. The static factory
629      * {@link #valueOf(float)} is generally a better choice, as it is
630      * likely to yield significantly better space and time performance.
631      */
632     // Android-changed: not yet forRemoval on Android.
633     @Deprecated(since="9"/*, forRemoval = true*/)
Float(float value)634     public Float(float value) {
635         this.value = value;
636     }
637 
638     /**
639      * Constructs a newly allocated {@code Float} object that
640      * represents the argument converted to type {@code float}.
641      *
642      * @param   value   the value to be represented by the {@code Float}.
643      *
644      * @deprecated
645      * It is rarely appropriate to use this constructor. Instead, use the
646      * static factory method {@link #valueOf(float)} method as follows:
647      * {@code Float.valueOf((float)value)}.
648      */
649     // Android-changed: not yet forRemoval on Android.
650     @Deprecated(since="9"/*, forRemoval = true*/)
Float(double value)651     public Float(double value) {
652         this.value = (float)value;
653     }
654 
655     /**
656      * Constructs a newly allocated {@code Float} object that
657      * represents the floating-point value of type {@code float}
658      * represented by the string. The string is converted to a
659      * {@code float} value as if by the {@code valueOf} method.
660      *
661      * @param   s   a string to be converted to a {@code Float}.
662      * @throws      NumberFormatException if the string does not contain a
663      *              parsable number.
664      *
665      * @deprecated
666      * It is rarely appropriate to use this constructor.
667      * Use {@link #parseFloat(String)} to convert a string to a
668      * {@code float} primitive, or use {@link #valueOf(String)}
669      * to convert a string to a {@code Float} object.
670      */
671     // Android-changed: not yet forRemoval on Android.
672     @Deprecated(since="9"/*, forRemoval = true*/)
Float(String s)673     public Float(String s) throws NumberFormatException {
674         value = parseFloat(s);
675     }
676 
677     /**
678      * Returns {@code true} if this {@code Float} value is a
679      * Not-a-Number (NaN), {@code false} otherwise.
680      *
681      * @return  {@code true} if the value represented by this object is
682      *          NaN; {@code false} otherwise.
683      */
isNaN()684     public boolean isNaN() {
685         return isNaN(value);
686     }
687 
688     /**
689      * Returns {@code true} if this {@code Float} value is
690      * infinitely large in magnitude, {@code false} otherwise.
691      *
692      * @return  {@code true} if the value represented by this object is
693      *          positive infinity or negative infinity;
694      *          {@code false} otherwise.
695      */
isInfinite()696     public boolean isInfinite() {
697         return isInfinite(value);
698     }
699 
700     /**
701      * Returns a string representation of this {@code Float} object.
702      * The primitive {@code float} value represented by this object
703      * is converted to a {@code String} exactly as if by the method
704      * {@code toString} of one argument.
705      *
706      * @return  a {@code String} representation of this object.
707      * @see java.lang.Float#toString(float)
708      */
toString()709     public String toString() {
710         return Float.toString(value);
711     }
712 
713     /**
714      * Returns the value of this {@code Float} as a {@code byte} after
715      * a narrowing primitive conversion.
716      *
717      * @return  the {@code float} value represented by this object
718      *          converted to type {@code byte}
719      * @jls 5.1.3 Narrowing Primitive Conversion
720      */
byteValue()721     public byte byteValue() {
722         return (byte)value;
723     }
724 
725     /**
726      * Returns the value of this {@code Float} as a {@code short}
727      * after a narrowing primitive conversion.
728      *
729      * @return  the {@code float} value represented by this object
730      *          converted to type {@code short}
731      * @jls 5.1.3 Narrowing Primitive Conversion
732      * @since 1.1
733      */
shortValue()734     public short shortValue() {
735         return (short)value;
736     }
737 
738     /**
739      * Returns the value of this {@code Float} as an {@code int} after
740      * a narrowing primitive conversion.
741      *
742      * @return  the {@code float} value represented by this object
743      *          converted to type {@code int}
744      * @jls 5.1.3 Narrowing Primitive Conversion
745      */
intValue()746     public int intValue() {
747         return (int)value;
748     }
749 
750     /**
751      * Returns value of this {@code Float} as a {@code long} after a
752      * narrowing primitive conversion.
753      *
754      * @return  the {@code float} value represented by this object
755      *          converted to type {@code long}
756      * @jls 5.1.3 Narrowing Primitive Conversion
757      */
longValue()758     public long longValue() {
759         return (long)value;
760     }
761 
762     /**
763      * Returns the {@code float} value of this {@code Float} object.
764      *
765      * @return the {@code float} value represented by this object
766      */
767     @IntrinsicCandidate
floatValue()768     public float floatValue() {
769         return value;
770     }
771 
772     /**
773      * Returns the value of this {@code Float} as a {@code double}
774      * after a widening primitive conversion.
775      *
776      * @apiNote
777      * This method corresponds to the convertFormat operation defined
778      * in IEEE 754.
779      *
780      * @return the {@code float} value represented by this
781      *         object converted to type {@code double}
782      * @jls 5.1.2 Widening Primitive Conversion
783      */
doubleValue()784     public double doubleValue() {
785         return (double)value;
786     }
787 
788     /**
789      * Returns a hash code for this {@code Float} object. The
790      * result is the integer bit representation, exactly as produced
791      * by the method {@link #floatToIntBits(float)}, of the primitive
792      * {@code float} value represented by this {@code Float}
793      * object.
794      *
795      * @return a hash code value for this object.
796      */
797     @Override
hashCode()798     public int hashCode() {
799         return Float.hashCode(value);
800     }
801 
802     /**
803      * Returns a hash code for a {@code float} value; compatible with
804      * {@code Float.hashCode()}.
805      *
806      * @param value the value to hash
807      * @return a hash code value for a {@code float} value.
808      * @since 1.8
809      */
hashCode(float value)810     public static int hashCode(float value) {
811         return floatToIntBits(value);
812     }
813 
814     /**
815      * Compares this object against the specified object.  The result
816      * is {@code true} if and only if the argument is not
817      * {@code null} and is a {@code Float} object that
818      * represents a {@code float} with the same value as the
819      * {@code float} represented by this object. For this
820      * purpose, two {@code float} values are considered to be the
821      * same if and only if the method {@link #floatToIntBits(float)}
822      * returns the identical {@code int} value when applied to
823      * each.
824      *
825      * @apiNote
826      * This method is defined in terms of {@link
827      * #floatToIntBits(float)} rather than the {@code ==} operator on
828      * {@code float} values since the {@code ==} operator does
829      * <em>not</em> define an equivalence relation and to satisfy the
830      * {@linkplain Object#equals equals contract} an equivalence
831      * relation must be implemented; see <a
832      * href="Double.html#equivalenceRelation">this discussion</a> for
833      * details of floating-point equality and equivalence.
834      *
835      * @param obj the object to be compared
836      * @return  {@code true} if the objects are the same;
837      *          {@code false} otherwise.
838      * @see java.lang.Float#floatToIntBits(float)
839      * @jls 15.21.1 Numerical Equality Operators == and !=
840      */
equals(Object obj)841     public boolean equals(Object obj) {
842         return (obj instanceof Float)
843                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
844     }
845 
846     /**
847      * Returns a representation of the specified floating-point value
848      * according to the IEEE 754 floating-point "single format" bit
849      * layout.
850      *
851      * <p>Bit 31 (the bit that is selected by the mask
852      * {@code 0x80000000}) represents the sign of the floating-point
853      * number.
854      * Bits 30-23 (the bits that are selected by the mask
855      * {@code 0x7f800000}) represent the exponent.
856      * Bits 22-0 (the bits that are selected by the mask
857      * {@code 0x007fffff}) represent the significand (sometimes called
858      * the mantissa) of the floating-point number.
859      *
860      * <p>If the argument is positive infinity, the result is
861      * {@code 0x7f800000}.
862      *
863      * <p>If the argument is negative infinity, the result is
864      * {@code 0xff800000}.
865      *
866      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
867      *
868      * <p>In all cases, the result is an integer that, when given to the
869      * {@link #intBitsToFloat(int)} method, will produce a floating-point
870      * value the same as the argument to {@code floatToIntBits}
871      * (except all NaN values are collapsed to a single
872      * "canonical" NaN value).
873      *
874      * @param   value   a floating-point number.
875      * @return the bits that represent the floating-point number.
876      */
877     @IntrinsicCandidate
floatToIntBits(float value)878     public static int floatToIntBits(float value) {
879         if (!isNaN(value)) {
880             return floatToRawIntBits(value);
881         }
882         return 0x7fc00000;
883     }
884 
885     /**
886      * Returns a representation of the specified floating-point value
887      * according to the IEEE 754 floating-point "single format" bit
888      * layout, preserving Not-a-Number (NaN) values.
889      *
890      * <p>Bit 31 (the bit that is selected by the mask
891      * {@code 0x80000000}) represents the sign of the floating-point
892      * number.
893      * Bits 30-23 (the bits that are selected by the mask
894      * {@code 0x7f800000}) represent the exponent.
895      * Bits 22-0 (the bits that are selected by the mask
896      * {@code 0x007fffff}) represent the significand (sometimes called
897      * the mantissa) of the floating-point number.
898      *
899      * <p>If the argument is positive infinity, the result is
900      * {@code 0x7f800000}.
901      *
902      * <p>If the argument is negative infinity, the result is
903      * {@code 0xff800000}.
904      *
905      * <p>If the argument is NaN, the result is the integer representing
906      * the actual NaN value.  Unlike the {@code floatToIntBits}
907      * method, {@code floatToRawIntBits} does not collapse all the
908      * bit patterns encoding a NaN to a single "canonical"
909      * NaN value.
910      *
911      * <p>In all cases, the result is an integer that, when given to the
912      * {@link #intBitsToFloat(int)} method, will produce a
913      * floating-point value the same as the argument to
914      * {@code floatToRawIntBits}.
915      *
916      * @param   value   a floating-point number.
917      * @return the bits that represent the floating-point number.
918      * @since 1.3
919      */
920     @IntrinsicCandidate
floatToRawIntBits(float value)921     public static native int floatToRawIntBits(float value);
922 
923     /**
924      * Returns the {@code float} value corresponding to a given
925      * bit representation.
926      * The argument is considered to be a representation of a
927      * floating-point value according to the IEEE 754 floating-point
928      * "single format" bit layout.
929      *
930      * <p>If the argument is {@code 0x7f800000}, the result is positive
931      * infinity.
932      *
933      * <p>If the argument is {@code 0xff800000}, the result is negative
934      * infinity.
935      *
936      * <p>If the argument is any value in the range
937      * {@code 0x7f800001} through {@code 0x7fffffff} or in
938      * the range {@code 0xff800001} through
939      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
940      * floating-point operation provided by Java can distinguish
941      * between two NaN values of the same type with different bit
942      * patterns.  Distinct values of NaN are only distinguishable by
943      * use of the {@code Float.floatToRawIntBits} method.
944      *
945      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
946      * values that can be computed from the argument:
947      *
948      * {@snippet lang="java" :
949      * int s = ((bits >> 31) == 0) ? 1 : -1;
950      * int e = ((bits >> 23) & 0xff);
951      * int m = (e == 0) ?
952      *                 (bits & 0x7fffff) << 1 :
953      *                 (bits & 0x7fffff) | 0x800000;
954      * }
955      *
956      * Then the floating-point result equals the value of the mathematical
957      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
958      *
959      * <p>Note that this method may not be able to return a
960      * {@code float} NaN with exactly same bit pattern as the
961      * {@code int} argument.  IEEE 754 distinguishes between two
962      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
963      * differences between the two kinds of NaN are generally not
964      * visible in Java.  Arithmetic operations on signaling NaNs turn
965      * them into quiet NaNs with a different, but often similar, bit
966      * pattern.  However, on some processors merely copying a
967      * signaling NaN also performs that conversion.  In particular,
968      * copying a signaling NaN to return it to the calling method may
969      * perform this conversion.  So {@code intBitsToFloat} may
970      * not be able to return a {@code float} with a signaling NaN
971      * bit pattern.  Consequently, for some {@code int} values,
972      * {@code floatToRawIntBits(intBitsToFloat(start))} may
973      * <i>not</i> equal {@code start}.  Moreover, which
974      * particular bit patterns represent signaling NaNs is platform
975      * dependent; although all NaN bit patterns, quiet or signaling,
976      * must be in the NaN range identified above.
977      *
978      * @param   bits   an integer.
979      * @return  the {@code float} floating-point value with the same bit
980      *          pattern.
981      */
982     @IntrinsicCandidate
intBitsToFloat(int bits)983     public static native float intBitsToFloat(int bits);
984 
985     // Android-changed: marked as hide while a compiler plugin issue is not resolved.
986     /**
987      * {@return the {@code float} value closest to the numerical value
988      * of the argument, a floating-point binary16 value encoded in a
989      * {@code short}} The conversion is exact; all binary16 values can
990      * be exactly represented in {@code float}.
991      *
992      * Special cases:
993      * <ul>
994      * <li> If the argument is zero, the result is a zero with the
995      * same sign as the argument.
996      * <li> If the argument is infinite, the result is an infinity
997      * with the same sign as the argument.
998      * <li> If the argument is a NaN, the result is a NaN.
999      * </ul>
1000      *
1001      * <h4><a id=binary16Format>IEEE 754 binary16 format</a></h4>
1002      * The IEEE 754 standard defines binary16 as a 16-bit format, along
1003      * with the 32-bit binary32 format (corresponding to the {@code
1004      * float} type) and the 64-bit binary64 format (corresponding to
1005      * the {@code double} type). The binary16 format is similar to the
1006      * other IEEE 754 formats, except smaller, having all the usual
1007      * IEEE 754 values such as NaN, signed infinities, signed zeros,
1008      * and subnormals. The parameters (JLS {@jls 4.2.3}) for the
1009      * binary16 format are N = 11 precision bits, K = 5 exponent bits,
1010      * <i>E</i><sub><i>max</i></sub> = 15, and
1011      * <i>E</i><sub><i>min</i></sub> = -14.
1012      *
1013      * @apiNote
1014      * This method corresponds to the convertFormat operation defined
1015      * in IEEE 754 from the binary16 format to the binary32 format.
1016      * The operation of this method is analogous to a primitive
1017      * widening conversion (JLS {@jls 5.1.2}).
1018      *
1019      * @param floatBinary16 the binary16 value to convert to {@code float}
1020      * @since 20
1021      */
1022     @IntrinsicCandidate
float16ToFloat(short floatBinary16)1023     public static float float16ToFloat(short floatBinary16) {
1024         /*
1025          * The binary16 format has 1 sign bit, 5 exponent bits, and 10
1026          * significand bits. The exponent bias is 15.
1027          */
1028         int bin16arg = (int)floatBinary16;
1029         int bin16SignBit     = 0x8000 & bin16arg;
1030         int bin16ExpBits     = 0x7c00 & bin16arg;
1031         int bin16SignifBits  = 0x03FF & bin16arg;
1032 
1033         // Shift left difference in the number of significand bits in
1034         // the float and binary16 formats
1035         final int SIGNIF_SHIFT = (FloatConsts.SIGNIFICAND_WIDTH - 11);
1036 
1037         float sign = (bin16SignBit != 0) ? -1.0f : 1.0f;
1038 
1039         // Extract binary16 exponent, remove its bias, add in the bias
1040         // of a float exponent and shift to correct bit location
1041         // (significand width includes the implicit bit so shift one
1042         // less).
1043         int bin16Exp = (bin16ExpBits >> 10) - 15;
1044         if (bin16Exp == -15) {
1045             // For subnormal binary16 values and 0, the numerical
1046             // value is 2^24 * the significand as an integer (no
1047             // implicit bit).
1048             return sign * (0x1p-24f * bin16SignifBits);
1049         } else if (bin16Exp == 16) {
1050             return (bin16SignifBits == 0) ?
1051                 sign * Float.POSITIVE_INFINITY :
1052                 Float.intBitsToFloat((bin16SignBit << 16) |
1053                                      0x7f80_0000 |
1054                                      // Preserve NaN signif bits
1055                                      ( bin16SignifBits << SIGNIF_SHIFT ));
1056         }
1057 
1058         assert -15 < bin16Exp  && bin16Exp < 16;
1059 
1060         int floatExpBits = (bin16Exp + FloatConsts.EXP_BIAS)
1061             << (FloatConsts.SIGNIFICAND_WIDTH - 1);
1062 
1063         // Compute and combine result sign, exponent, and significand bits.
1064         return Float.intBitsToFloat((bin16SignBit << 16) |
1065                                     floatExpBits |
1066                                     (bin16SignifBits << SIGNIF_SHIFT));
1067     }
1068 
1069     // Android-changed: marked as hide while a compiler plugin issue is not resolved.
1070     /**
1071      * {@return the floating-point binary16 value, encoded in a {@code
1072      * short}, closest in value to the argument}
1073      * The conversion is computed under the {@linkplain
1074      * java.math.RoundingMode#HALF_EVEN round to nearest even rounding
1075      * mode}.
1076      *
1077      * Special cases:
1078      * <ul>
1079      * <li> If the argument is zero, the result is a zero with the
1080      * same sign as the argument.
1081      * <li> If the argument is infinite, the result is an infinity
1082      * with the same sign as the argument.
1083      * <li> If the argument is a NaN, the result is a NaN.
1084      * </ul>
1085      *
1086      * The <a href="#binary16Format">binary16 format</a> is discussed in
1087      * more detail in the {@link #float16ToFloat} method.
1088      *
1089      * @apiNote
1090      * This method corresponds to the convertFormat operation defined
1091      * in IEEE 754 from the binary32 format to the binary16 format.
1092      * The operation of this method is analogous to a primitive
1093      * narrowing conversion (JLS {@jls 5.1.3}).
1094      *
1095      * @param f the {@code float} value to convert to binary16
1096      * @since 20
1097      */
1098     @IntrinsicCandidate
1099     public static short floatToFloat16(float f) {
1100         int doppel = Float.floatToRawIntBits(f);
1101         short sign_bit = (short)((doppel & 0x8000_0000) >> 16);
1102 
1103         if (Float.isNaN(f)) {
1104             // Preserve sign and attempt to preserve significand bits
1105             return (short)(sign_bit
1106                     | 0x7c00 // max exponent + 1
1107                     // Preserve high order bit of float NaN in the
1108                     // binary16 result NaN (tenth bit); OR in remaining
1109                     // bits into lower 9 bits of binary 16 significand.
1110                     | (doppel & 0x007f_e000) >> 13 // 10 bits
1111                     | (doppel & 0x0000_1ff0) >> 4  //  9 bits
1112                     | (doppel & 0x0000_000f));     //  4 bits
1113         }
1114 
1115         float abs_f = Math.abs(f);
1116 
1117         // The overflow threshold is binary16 MAX_VALUE + 1/2 ulp
1118         if (abs_f >= (0x1.ffcp15f + 0x0.002p15f) ) {
1119             return (short)(sign_bit | 0x7c00); // Positive or negative infinity
1120         }
1121 
1122         // Smallest magnitude nonzero representable binary16 value
1123         // is equal to 0x1.0p-24; half-way and smaller rounds to zero.
1124         if (abs_f <= 0x1.0p-24f * 0.5f) { // Covers float zeros and subnormals.
1125             return sign_bit; // Positive or negative zero
1126         }
1127 
1128         // Dealing with finite values in exponent range of binary16
1129         // (when rounding is done, could still round up)
1130         int exp = Math.getExponent(f);
1131         assert -25 <= exp && exp <= 15;
1132 
1133         // For binary16 subnormals, beside forcing exp to -15, retain
1134         // the difference expdelta = E_min - exp.  This is the excess
1135         // shift value, in addition to 13, to be used in the
1136         // computations below.  Further the (hidden) msb with value 1
1137         // in f must be involved as well.
1138         int expdelta = 0;
1139         int msb = 0x0000_0000;
1140         if (exp < -14) {
1141             expdelta = -14 - exp;
1142             exp = -15;
1143             msb = 0x0080_0000;
1144         }
1145         int f_signif_bits = doppel & 0x007f_ffff | msb;
1146 
1147         // Significand bits as if using rounding to zero (truncation).
1148         short signif_bits = (short)(f_signif_bits >> (13 + expdelta));
1149 
1150         // For round to nearest even, determining whether or not to
1151         // round up (in magnitude) is a function of the least
1152         // significant bit (LSB), the next bit position (the round
1153         // position), and the sticky bit (whether there are any
1154         // nonzero bits in the exact result to the right of the round
1155         // digit). An increment occurs in three cases:
1156         //
1157         // LSB  Round Sticky
1158         // 0    1     1
1159         // 1    1     0
1160         // 1    1     1
1161         // See "Computer Arithmetic Algorithms," Koren, Table 4.9
1162 
1163         int lsb    = f_signif_bits & (1 << 13 + expdelta);
1164         int round  = f_signif_bits & (1 << 12 + expdelta);
1165         int sticky = f_signif_bits & ((1 << 12 + expdelta) - 1);
1166 
1167         if (round != 0 && ((lsb | sticky) != 0 )) {
1168             signif_bits++;
1169         }
1170 
1171         // No bits set in significand beyond the *first* exponent bit,
1172         // not just the significand; quantity is added to the exponent
1173         // to implement a carry out from rounding the significand.
1174         assert (0xf800 & signif_bits) == 0x0;
1175 
1176         return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) );
1177     }
1178 
1179     /**
1180      * Compares two {@code Float} objects numerically.
1181      *
1182      * This method imposes a total order on {@code Float} objects
1183      * with two differences compared to the incomplete order defined by
1184      * the Java language numerical comparison operators ({@code <, <=,
1185      * ==, >=, >}) on {@code float} values.
1186      *
1187      * <ul><li> A NaN is <em>unordered</em> with respect to other
1188      *          values and unequal to itself under the comparison
1189      *          operators.  This method chooses to define {@code
1190      *          Float.NaN} to be equal to itself and greater than all
1191      *          other {@code double} values (including {@code
1192      *          Float.POSITIVE_INFINITY}).
1193      *
1194      *      <li> Positive zero and negative zero compare equal
1195      *      numerically, but are distinct and distinguishable values.
1196      *      This method chooses to define positive zero ({@code +0.0f}),
1197      *      to be greater than negative zero ({@code -0.0f}).
1198      * </ul>
1199      *
1200      * This ensures that the <i>natural ordering</i> of {@code Float}
1201      * objects imposed by this method is <i>consistent with
1202      * equals</i>; see <a href="Double.html#equivalenceRelation">this
1203      * discussion</a> for details of floating-point comparison and
1204      * ordering.
1205      *
1206      *
1207      * @param   anotherFloat   the {@code Float} to be compared.
1208      * @return  the value {@code 0} if {@code anotherFloat} is
1209      *          numerically equal to this {@code Float}; a value
1210      *          less than {@code 0} if this {@code Float}
1211      *          is numerically less than {@code anotherFloat};
1212      *          and a value greater than {@code 0} if this
1213      *          {@code Float} is numerically greater than
1214      *          {@code anotherFloat}.
1215      *
1216      * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=}
1217      * @since   1.2
1218      */
1219     public int compareTo(Float anotherFloat) {
1220         return Float.compare(value, anotherFloat.value);
1221     }
1222 
1223     /**
1224      * Compares the two specified {@code float} values. The sign
1225      * of the integer value returned is the same as that of the
1226      * integer that would be returned by the call:
1227      * <pre>
1228      *    Float.valueOf(f1).compareTo(Float.valueOf(f2))
1229      * </pre>
1230      *
1231      * @param   f1        the first {@code float} to compare.
1232      * @param   f2        the second {@code float} to compare.
1233      * @return  the value {@code 0} if {@code f1} is
1234      *          numerically equal to {@code f2}; a value less than
1235      *          {@code 0} if {@code f1} is numerically less than
1236      *          {@code f2}; and a value greater than {@code 0}
1237      *          if {@code f1} is numerically greater than
1238      *          {@code f2}.
1239      * @since 1.4
1240      */
1241     public static int compare(float f1, float f2) {
1242         if (f1 < f2)
1243             return -1;           // Neither val is NaN, thisVal is smaller
1244         if (f1 > f2)
1245             return 1;            // Neither val is NaN, thisVal is larger
1246 
1247         // Cannot use floatToRawIntBits because of possibility of NaNs.
1248         int thisBits    = Float.floatToIntBits(f1);
1249         int anotherBits = Float.floatToIntBits(f2);
1250 
1251         return (thisBits == anotherBits ?  0 : // Values are equal
1252                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1253                  1));                          // (0.0, -0.0) or (NaN, !NaN)
1254     }
1255 
1256     /**
1257      * Adds two {@code float} values together as per the + operator.
1258      *
1259      * @apiNote This method corresponds to the addition operation
1260      * defined in IEEE 754.
1261      *
1262      * @param a the first operand
1263      * @param b the second operand
1264      * @return the sum of {@code a} and {@code b}
1265      * @jls 4.2.4 Floating-Point Operations
1266      * @see java.util.function.BinaryOperator
1267      * @since 1.8
1268      */
1269     public static float sum(float a, float b) {
1270         return a + b;
1271     }
1272 
1273     /**
1274      * Returns the greater of two {@code float} values
1275      * as if by calling {@link Math#max(float, float) Math.max}.
1276      *
1277      * @apiNote
1278      * This method corresponds to the maximum operation defined in
1279      * IEEE 754.
1280      *
1281      * @param a the first operand
1282      * @param b the second operand
1283      * @return the greater of {@code a} and {@code b}
1284      * @see java.util.function.BinaryOperator
1285      * @since 1.8
1286      */
1287     public static float max(float a, float b) {
1288         return Math.max(a, b);
1289     }
1290 
1291     /**
1292      * Returns the smaller of two {@code float} values
1293      * as if by calling {@link Math#min(float, float) Math.min}.
1294      *
1295      * @apiNote
1296      * This method corresponds to the minimum operation defined in
1297      * IEEE 754.
1298      *
1299      * @param a the first operand
1300      * @param b the second operand
1301      * @return the smaller of {@code a} and {@code b}
1302      * @see java.util.function.BinaryOperator
1303      * @since 1.8
1304      */
1305     public static float min(float a, float b) {
1306         return Math.min(a, b);
1307     }
1308 
1309     /**
1310      * Returns an {@link Optional} containing the nominal descriptor for this
1311      * instance, which is the instance itself.
1312      *
1313      * @return an {@link Optional} describing the {@linkplain Float} instance
1314      * @since 12
1315      * @hide
1316      */
1317     @Override
1318     public Optional<Float> describeConstable() {
1319         return Optional.of(this);
1320     }
1321 
1322     /**
1323      * Resolves this instance as a {@link ConstantDesc}, the result of which is
1324      * the instance itself.
1325      *
1326      * @param lookup ignored
1327      * @return the {@linkplain Float} instance
1328      * @since 12
1329      * @hide
1330      */
1331     @Override
1332     public Float resolveConstantDesc(MethodHandles.Lookup lookup) {
1333         return this;
1334     }
1335 
1336     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1337     @java.io.Serial
1338     private static final long serialVersionUID = -2671257302660747028L;
1339 }
1340