• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.util;
27 
28 import java.io.ObjectInputStream;
29 import java.io.ObjectOutputStream;
30 import java.lang.reflect.Array;
31 import java.util.function.BiConsumer;
32 import java.util.function.BiFunction;
33 import java.util.function.Consumer;
34 import jdk.internal.access.SharedSecrets;
35 
36 /**
37  * This class implements the {@code Map} interface with a hash table, using
38  * reference-equality in place of object-equality when comparing keys (and
39  * values).  In other words, in an {@code IdentityHashMap}, two keys
40  * {@code k1} and {@code k2} are considered equal if and only if
41  * {@code (k1==k2)}.  (In normal {@code Map} implementations (like
42  * {@code HashMap}) two keys {@code k1} and {@code k2} are considered equal
43  * if and only if {@code (k1==null ? k2==null : k1.equals(k2))}.)
44  *
45  * <p><b>This class is <i>not</i> a general-purpose {@code Map}
46  * implementation!  While this class implements the {@code Map} interface, it
47  * intentionally violates {@code Map's} general contract, which mandates the
48  * use of the {@code equals} method when comparing objects.  This class is
49  * designed for use only in the rare cases wherein reference-equality
50  * semantics are required.</b>
51  *
52  * <p>The view collections of this map also have reference-equality semantics
53  * for their elements. See the {@link keySet() keySet}, {@link values() values},
54  * and {@link entrySet() entrySet} methods for further information.
55  *
56  * <p>A typical use of this class is <i>topology-preserving object graph
57  * transformations</i>, such as serialization or deep-copying.  To perform such
58  * a transformation, a program must maintain a "node table" that keeps track
59  * of all the object references that have already been processed.  The node
60  * table must not equate distinct objects even if they happen to be equal.
61  * Another typical use of this class is to maintain <i>proxy objects</i>.  For
62  * example, a debugging facility might wish to maintain a proxy object for
63  * each object in the program being debugged.
64  *
65  * <p>This class provides all of the optional map operations, and permits
66  * {@code null} values and the {@code null} key.  This class makes no
67  * guarantees as to the order of the map; in particular, it does not guarantee
68  * that the order will remain constant over time.
69  *
70  * <p>This class provides constant-time performance for the basic
71  * operations ({@code get} and {@code put}), assuming the system
72  * identity hash function ({@link System#identityHashCode(Object)})
73  * disperses elements properly among the buckets.
74  *
75  * <p>This class has one tuning parameter (which affects performance but not
76  * semantics): <i>expected maximum size</i>.  This parameter is the maximum
77  * number of key-value mappings that the map is expected to hold.  Internally,
78  * this parameter is used to determine the number of buckets initially
79  * comprising the hash table.  The precise relationship between the expected
80  * maximum size and the number of buckets is unspecified.
81  *
82  * <p>If the size of the map (the number of key-value mappings) sufficiently
83  * exceeds the expected maximum size, the number of buckets is increased.
84  * Increasing the number of buckets ("rehashing") may be fairly expensive, so
85  * it pays to create identity hash maps with a sufficiently large expected
86  * maximum size.  On the other hand, iteration over collection views requires
87  * time proportional to the number of buckets in the hash table, so it
88  * pays not to set the expected maximum size too high if you are especially
89  * concerned with iteration performance or memory usage.
90  *
91  * <p><strong>Note that this implementation is not synchronized.</strong>
92  * If multiple threads access an identity hash map concurrently, and at
93  * least one of the threads modifies the map structurally, it <i>must</i>
94  * be synchronized externally.  (A structural modification is any operation
95  * that adds or deletes one or more mappings; merely changing the value
96  * associated with a key that an instance already contains is not a
97  * structural modification.)  This is typically accomplished by
98  * synchronizing on some object that naturally encapsulates the map.
99  *
100  * If no such object exists, the map should be "wrapped" using the
101  * {@link Collections#synchronizedMap Collections.synchronizedMap}
102  * method.  This is best done at creation time, to prevent accidental
103  * unsynchronized access to the map:<pre>
104  *   Map m = Collections.synchronizedMap(new IdentityHashMap(...));</pre>
105  *
106  * <p>The iterators returned by the {@code iterator} method of the
107  * collections returned by all of this class's "collection view
108  * methods" are <i>fail-fast</i>: if the map is structurally modified
109  * at any time after the iterator is created, in any way except
110  * through the iterator's own {@code remove} method, the iterator
111  * will throw a {@link ConcurrentModificationException}.  Thus, in the
112  * face of concurrent modification, the iterator fails quickly and
113  * cleanly, rather than risking arbitrary, non-deterministic behavior
114  * at an undetermined time in the future.
115  *
116  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
117  * as it is, generally speaking, impossible to make any hard guarantees in the
118  * presence of unsynchronized concurrent modification.  Fail-fast iterators
119  * throw {@code ConcurrentModificationException} on a best-effort basis.
120  * Therefore, it would be wrong to write a program that depended on this
121  * exception for its correctness: <i>fail-fast iterators should be used only
122  * to detect bugs.</i>
123  *
124  * <p>This class is a member of the
125  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
126  * Java Collections Framework</a>.
127  *
128  * @implNote
129  * <p>This is a simple <i>linear-probe</i> hash table,
130  * as described for example in texts by Sedgewick and Knuth.  The array
131  * contains alternating keys and values, with keys at even indexes and values
132  * at odd indexes. (This arrangement has better locality for large
133  * tables than does using separate arrays.)  For many Java implementations
134  * and operation mixes, this class will yield better performance than
135  * {@link HashMap}, which uses <i>chaining</i> rather than linear-probing.
136  *
137  * @param <K> the type of keys maintained by this map
138  * @param <V> the type of mapped values
139  *
140  * @see     System#identityHashCode(Object)
141  * @see     Object#hashCode()
142  * @see     Collection
143  * @see     Map
144  * @see     HashMap
145  * @see     TreeMap
146  * @author  Doug Lea and Josh Bloch
147  * @since   1.4
148  */
149 
150 public class IdentityHashMap<K,V>
151     extends AbstractMap<K,V>
152     implements Map<K,V>, java.io.Serializable, Cloneable
153 {
154     /**
155      * The initial capacity used by the no-args constructor.
156      * MUST be a power of two.  The value 32 corresponds to the
157      * (specified) expected maximum size of 21, given a load factor
158      * of 2/3.
159      */
160     private static final int DEFAULT_CAPACITY = 32;
161 
162     /**
163      * The minimum capacity, used if a lower value is implicitly specified
164      * by either of the constructors with arguments.  The value 4 corresponds
165      * to an expected maximum size of 2, given a load factor of 2/3.
166      * MUST be a power of two.
167      */
168     private static final int MINIMUM_CAPACITY = 4;
169 
170     /**
171      * The maximum capacity, used if a higher value is implicitly specified
172      * by either of the constructors with arguments.
173      * MUST be a power of two <= 1<<29.
174      *
175      * In fact, the map can hold no more than MAXIMUM_CAPACITY-1 items
176      * because it has to have at least one slot with the key == null
177      * in order to avoid infinite loops in get(), put(), remove()
178      */
179     private static final int MAXIMUM_CAPACITY = 1 << 29;
180 
181     /**
182      * The table, resized as necessary. Length MUST always be a power of two.
183      */
184     transient Object[] table; // non-private to simplify nested class access
185 
186     /**
187      * The number of key-value mappings contained in this identity hash map.
188      *
189      * @serial
190      */
191     int size;
192 
193     /**
194      * The number of modifications, to support fast-fail iterators
195      */
196     transient int modCount;
197 
198     /**
199      * Value representing null keys inside tables.
200      */
201     static final Object NULL_KEY = new Object();
202 
203     /**
204      * Use NULL_KEY for key if it is null.
205      */
maskNull(Object key)206     private static Object maskNull(Object key) {
207         return (key == null ? NULL_KEY : key);
208     }
209 
210     /**
211      * Returns internal representation of null key back to caller as null.
212      */
unmaskNull(Object key)213     static final Object unmaskNull(Object key) {
214         return (key == NULL_KEY ? null : key);
215     }
216 
217     /**
218      * Constructs a new, empty identity hash map with a default expected
219      * maximum size (21).
220      */
IdentityHashMap()221     public IdentityHashMap() {
222         init(DEFAULT_CAPACITY);
223     }
224 
225     /**
226      * Constructs a new, empty map with the specified expected maximum size.
227      * Putting more than the expected number of key-value mappings into
228      * the map may cause the internal data structure to grow, which may be
229      * somewhat time-consuming.
230      *
231      * @param expectedMaxSize the expected maximum size of the map
232      * @throws IllegalArgumentException if {@code expectedMaxSize} is negative
233      */
IdentityHashMap(int expectedMaxSize)234     public IdentityHashMap(int expectedMaxSize) {
235         if (expectedMaxSize < 0)
236             throw new IllegalArgumentException("expectedMaxSize is negative: "
237                                                + expectedMaxSize);
238         init(capacity(expectedMaxSize));
239     }
240 
241     /**
242      * Returns the appropriate capacity for the given expected maximum size.
243      * Returns the smallest power of two between MINIMUM_CAPACITY and
244      * MAXIMUM_CAPACITY, inclusive, that is greater than (3 *
245      * expectedMaxSize)/2, if such a number exists.  Otherwise returns
246      * MAXIMUM_CAPACITY.
247      */
capacity(int expectedMaxSize)248     private static int capacity(int expectedMaxSize) {
249         // assert expectedMaxSize >= 0;
250         return
251             (expectedMaxSize > MAXIMUM_CAPACITY / 3) ? MAXIMUM_CAPACITY :
252             (expectedMaxSize <= 2 * MINIMUM_CAPACITY / 3) ? MINIMUM_CAPACITY :
253             Integer.highestOneBit(expectedMaxSize + (expectedMaxSize << 1));
254     }
255 
256     /**
257      * Initializes object to be an empty map with the specified initial
258      * capacity, which is assumed to be a power of two between
259      * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
260      */
init(int initCapacity)261     private void init(int initCapacity) {
262         // assert (initCapacity & -initCapacity) == initCapacity; // power of 2
263         // assert initCapacity >= MINIMUM_CAPACITY;
264         // assert initCapacity <= MAXIMUM_CAPACITY;
265 
266         table = new Object[2 * initCapacity];
267     }
268 
269     /**
270      * Constructs a new identity hash map containing the keys-value mappings
271      * in the specified map.
272      *
273      * @param m the map whose mappings are to be placed into this map
274      * @throws NullPointerException if the specified map is null
275      */
IdentityHashMap(Map<? extends K, ? extends V> m)276     public IdentityHashMap(Map<? extends K, ? extends V> m) {
277         // Allow for a bit of growth
278         this((int) ((1 + m.size()) * 1.1));
279         putAll(m);
280     }
281 
282     /**
283      * Returns the number of key-value mappings in this identity hash map.
284      *
285      * @return the number of key-value mappings in this map
286      */
size()287     public int size() {
288         return size;
289     }
290 
291     /**
292      * Returns {@code true} if this identity hash map contains no key-value
293      * mappings.
294      *
295      * @return {@code true} if this identity hash map contains no key-value
296      *         mappings
297      */
isEmpty()298     public boolean isEmpty() {
299         return size == 0;
300     }
301 
302     /**
303      * Returns index for Object x.
304      */
hash(Object x, int length)305     private static int hash(Object x, int length) {
306         int h = System.identityHashCode(x);
307         // Multiply by -254 to use the hash LSB and to ensure index is even
308         return ((h << 1) - (h << 8)) & (length - 1);
309     }
310 
311     /**
312      * Circularly traverses table of size len.
313      */
nextKeyIndex(int i, int len)314     private static int nextKeyIndex(int i, int len) {
315         return (i + 2 < len ? i + 2 : 0);
316     }
317 
318     /**
319      * Returns the value to which the specified key is mapped,
320      * or {@code null} if this map contains no mapping for the key.
321      *
322      * <p>More formally, if this map contains a mapping from a key
323      * {@code k} to a value {@code v} such that {@code (key == k)},
324      * then this method returns {@code v}; otherwise it returns
325      * {@code null}.  (There can be at most one such mapping.)
326      *
327      * <p>A return value of {@code null} does not <i>necessarily</i>
328      * indicate that the map contains no mapping for the key; it's also
329      * possible that the map explicitly maps the key to {@code null}.
330      * The {@link #containsKey containsKey} operation may be used to
331      * distinguish these two cases.
332      *
333      * @see #put(Object, Object)
334      */
335     @SuppressWarnings("unchecked")
get(Object key)336     public V get(Object key) {
337         Object k = maskNull(key);
338         Object[] tab = table;
339         int len = tab.length;
340         int i = hash(k, len);
341         while (true) {
342             Object item = tab[i];
343             if (item == k)
344                 return (V) tab[i + 1];
345             if (item == null)
346                 return null;
347             i = nextKeyIndex(i, len);
348         }
349     }
350 
351     /**
352      * Tests whether the specified object reference is a key in this identity
353      * hash map. Returns {@code true} if and only if this map contains a mapping
354      * with key {@code k} such that {@code (key == k)}.
355      *
356      * @param   key   possible key
357      * @return  {@code true} if the specified object reference is a key
358      *          in this map
359      * @see     #containsValue(Object)
360      */
containsKey(Object key)361     public boolean containsKey(Object key) {
362         Object k = maskNull(key);
363         Object[] tab = table;
364         int len = tab.length;
365         int i = hash(k, len);
366         while (true) {
367             Object item = tab[i];
368             if (item == k)
369                 return true;
370             if (item == null)
371                 return false;
372             i = nextKeyIndex(i, len);
373         }
374     }
375 
376     /**
377      * Tests whether the specified object reference is a value in this identity
378      * hash map. Returns {@code true} if and only if this map contains a mapping
379      * with value {@code v} such that {@code (value == v)}.
380      *
381      * @param value value whose presence in this map is to be tested
382      * @return {@code true} if this map maps one or more keys to the
383      *         specified object reference
384      * @see     #containsKey(Object)
385      */
containsValue(Object value)386     public boolean containsValue(Object value) {
387         Object[] tab = table;
388         for (int i = 1; i < tab.length; i += 2)
389             if (tab[i] == value && tab[i - 1] != null)
390                 return true;
391 
392         return false;
393     }
394 
395     /**
396      * Tests if the specified key-value mapping is in the map.
397      *
398      * @param   key   possible key
399      * @param   value possible value
400      * @return  {@code true} if and only if the specified key-value
401      *          mapping is in the map
402      */
containsMapping(Object key, Object value)403     private boolean containsMapping(Object key, Object value) {
404         Object k = maskNull(key);
405         Object[] tab = table;
406         int len = tab.length;
407         int i = hash(k, len);
408         while (true) {
409             Object item = tab[i];
410             if (item == k)
411                 return tab[i + 1] == value;
412             if (item == null)
413                 return false;
414             i = nextKeyIndex(i, len);
415         }
416     }
417 
418     /**
419      * Associates the specified value with the specified key in this identity
420      * hash map. If this map already {@link containsKey(Object) contains}
421      * a mapping for the key, the old value is replaced, otherwise, a new mapping
422      * is inserted into this map.
423      *
424      * @param key the key with which the specified value is to be associated
425      * @param value the value to be associated with the specified key
426      * @return the previous value associated with {@code key}, or
427      *         {@code null} if there was no mapping for {@code key}.
428      *         (A {@code null} return can also indicate that the map
429      *         previously associated {@code null} with {@code key}.)
430      * @see     Object#equals(Object)
431      * @see     #get(Object)
432      * @see     #containsKey(Object)
433      */
put(K key, V value)434     public V put(K key, V value) {
435         final Object k = maskNull(key);
436 
437         retryAfterResize: for (;;) {
438             final Object[] tab = table;
439             final int len = tab.length;
440             int i = hash(k, len);
441 
442             for (Object item; (item = tab[i]) != null;
443                  i = nextKeyIndex(i, len)) {
444                 if (item == k) {
445                     @SuppressWarnings("unchecked")
446                         V oldValue = (V) tab[i + 1];
447                     tab[i + 1] = value;
448                     return oldValue;
449                 }
450             }
451 
452             final int s = size + 1;
453             // Use optimized form of 3 * s.
454             // Next capacity is len, 2 * current capacity.
455             if (s + (s << 1) > len && resize(len))
456                 continue retryAfterResize;
457 
458             modCount++;
459             tab[i] = k;
460             tab[i + 1] = value;
461             size = s;
462             return null;
463         }
464     }
465 
466     /**
467      * Resizes the table if necessary to hold given capacity.
468      *
469      * @param newCapacity the new capacity, must be a power of two.
470      * @return whether a resize did in fact take place
471      */
resize(int newCapacity)472     private boolean resize(int newCapacity) {
473         // assert (newCapacity & -newCapacity) == newCapacity; // power of 2
474         int newLength = newCapacity * 2;
475 
476         Object[] oldTable = table;
477         int oldLength = oldTable.length;
478         if (oldLength == 2 * MAXIMUM_CAPACITY) { // can't expand any further
479             if (size == MAXIMUM_CAPACITY - 1)
480                 throw new IllegalStateException("Capacity exhausted.");
481             return false;
482         }
483         if (oldLength >= newLength)
484             return false;
485 
486         Object[] newTable = new Object[newLength];
487 
488         for (int j = 0; j < oldLength; j += 2) {
489             Object key = oldTable[j];
490             if (key != null) {
491                 Object value = oldTable[j+1];
492                 oldTable[j] = null;
493                 oldTable[j+1] = null;
494                 int i = hash(key, newLength);
495                 while (newTable[i] != null)
496                     i = nextKeyIndex(i, newLength);
497                 newTable[i] = key;
498                 newTable[i + 1] = value;
499             }
500         }
501         table = newTable;
502         return true;
503     }
504 
505     /**
506      * Copies all of the mappings from the specified map to this map.
507      * For each mapping in the specified map, if this map already
508      * {@link containsKey(Object) contains} a mapping for the key,
509      * its value is replaced with the value from the specified map;
510      * otherwise, a new mapping is inserted into this map.
511      *
512      * @param m mappings to be stored in this map
513      * @throws NullPointerException if the specified map is null
514      */
putAll(Map<? extends K, ? extends V> m)515     public void putAll(Map<? extends K, ? extends V> m) {
516         int n = m.size();
517         if (n == 0)
518             return;
519         if (n > size)
520             resize(capacity(n)); // conservatively pre-expand
521 
522         for (Entry<? extends K, ? extends V> e : m.entrySet())
523             put(e.getKey(), e.getValue());
524     }
525 
526     /**
527      * Removes the mapping for this key from this map if present.
528      * The mapping is removed if and only if the mapping has a key
529      * {@code k} such that (key == k).
530      *
531      * @param key key whose mapping is to be removed from the map
532      * @return the previous value associated with {@code key}, or
533      *         {@code null} if there was no mapping for {@code key}.
534      *         (A {@code null} return can also indicate that the map
535      *         previously associated {@code null} with {@code key}.)
536      */
remove(Object key)537     public V remove(Object key) {
538         Object k = maskNull(key);
539         Object[] tab = table;
540         int len = tab.length;
541         int i = hash(k, len);
542 
543         while (true) {
544             Object item = tab[i];
545             if (item == k) {
546                 modCount++;
547                 size--;
548                 @SuppressWarnings("unchecked")
549                     V oldValue = (V) tab[i + 1];
550                 tab[i + 1] = null;
551                 tab[i] = null;
552                 closeDeletion(i);
553                 return oldValue;
554             }
555             if (item == null)
556                 return null;
557             i = nextKeyIndex(i, len);
558         }
559     }
560 
561     /**
562      * Removes the specified key-value mapping from the map if it is present.
563      *
564      * @param   key   possible key
565      * @param   value possible value
566      * @return  {@code true} if and only if the specified key-value
567      *          mapping was in the map
568      */
removeMapping(Object key, Object value)569     private boolean removeMapping(Object key, Object value) {
570         Object k = maskNull(key);
571         Object[] tab = table;
572         int len = tab.length;
573         int i = hash(k, len);
574 
575         while (true) {
576             Object item = tab[i];
577             if (item == k) {
578                 if (tab[i + 1] != value)
579                     return false;
580                 modCount++;
581                 size--;
582                 tab[i] = null;
583                 tab[i + 1] = null;
584                 closeDeletion(i);
585                 return true;
586             }
587             if (item == null)
588                 return false;
589             i = nextKeyIndex(i, len);
590         }
591     }
592 
593     /**
594      * Rehash all possibly-colliding entries following a
595      * deletion. This preserves the linear-probe
596      * collision properties required by get, put, etc.
597      *
598      * @param d the index of a newly empty deleted slot
599      */
closeDeletion(int d)600     private void closeDeletion(int d) {
601         // Adapted from Knuth Section 6.4 Algorithm R
602         Object[] tab = table;
603         int len = tab.length;
604 
605         // Look for items to swap into newly vacated slot
606         // starting at index immediately following deletion,
607         // and continuing until a null slot is seen, indicating
608         // the end of a run of possibly-colliding keys.
609         Object item;
610         for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
611              i = nextKeyIndex(i, len) ) {
612             // The following test triggers if the item at slot i (which
613             // hashes to be at slot r) should take the spot vacated by d.
614             // If so, we swap it in, and then continue with d now at the
615             // newly vacated i.  This process will terminate when we hit
616             // the null slot at the end of this run.
617             // The test is messy because we are using a circular table.
618             int r = hash(item, len);
619             if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
620                 tab[d] = item;
621                 tab[d + 1] = tab[i + 1];
622                 tab[i] = null;
623                 tab[i + 1] = null;
624                 d = i;
625             }
626         }
627     }
628 
629     /**
630      * Removes all of the mappings from this map.
631      * The map will be empty after this call returns.
632      */
clear()633     public void clear() {
634         modCount++;
635         Object[] tab = table;
636         for (int i = 0; i < tab.length; i++)
637             tab[i] = null;
638         size = 0;
639     }
640 
641     /**
642      * Compares the specified object with this map for equality.  Returns
643      * {@code true} if the given object is also a map and the two maps
644      * represent identical object-reference mappings.  More formally, this
645      * map is equal to another map {@code m} if and only if
646      * {@code this.entrySet().equals(m.entrySet())}. See the
647      * {@link entrySet() entrySet} method for the specification of equality
648      * of this map's entries.
649      *
650      * <p><b>Owing to the reference-equality-based semantics of this map it is
651      * possible that the symmetry and transitivity requirements of the
652      * {@code Object.equals} contract may be violated if this map is compared
653      * to a normal map.  However, the {@code Object.equals} contract is
654      * guaranteed to hold among {@code IdentityHashMap} instances.</b>
655      *
656      * @param  o object to be compared for equality with this map
657      * @return {@code true} if the specified object is equal to this map
658      * @see Object#equals(Object)
659      */
equals(Object o)660     public boolean equals(Object o) {
661         if (o == this) {
662             return true;
663         } else if (o instanceof IdentityHashMap<?, ?> m) {
664             if (m.size() != size)
665                 return false;
666 
667             Object[] tab = m.table;
668             for (int i = 0; i < tab.length; i+=2) {
669                 Object k = tab[i];
670                 if (k != null && !containsMapping(k, tab[i + 1]))
671                     return false;
672             }
673             return true;
674         } else if (o instanceof Map<?, ?> m) {
675             return entrySet().equals(m.entrySet());
676         } else {
677             return false;  // o is not a Map
678         }
679     }
680 
681     /**
682      * Returns the hash code value for this map.  The hash code of a map is
683      * defined to be the sum of the hash codes of each entry of this map.
684      * See the {@link entrySet() entrySet} method for a specification of the
685      * hash code of this map's entries.
686      *
687      * <p>This specification ensures that {@code m1.equals(m2)}
688      * implies that {@code m1.hashCode()==m2.hashCode()} for any two
689      * {@code IdentityHashMap} instances {@code m1} and {@code m2}, as
690      * required by the general contract of {@link Object#hashCode}.
691      *
692      * <p><b>Owing to the reference-equality-based semantics of the
693      * {@code Map.Entry} instances in the set returned by this map's
694      * {@code entrySet} method, it is possible that the contractual
695      * requirement of {@code Object.hashCode} mentioned in the previous
696      * paragraph will be violated if one of the two objects being compared is
697      * an {@code IdentityHashMap} instance and the other is a normal map.</b>
698      *
699      * @return the hash code value for this map
700      * @see Object#equals(Object)
701      * @see #equals(Object)
702      */
hashCode()703     public int hashCode() {
704         int result = 0;
705         Object[] tab = table;
706         for (int i = 0; i < tab.length; i +=2) {
707             Object key = tab[i];
708             if (key != null) {
709                 Object k = unmaskNull(key);
710                 result += System.identityHashCode(k) ^
711                           System.identityHashCode(tab[i + 1]);
712             }
713         }
714         return result;
715     }
716 
717     /**
718      * Returns a shallow copy of this identity hash map: the keys and values
719      * themselves are not cloned.
720      *
721      * @return a shallow copy of this map
722      */
clone()723     public Object clone() {
724         try {
725             IdentityHashMap<?,?> m = (IdentityHashMap<?,?>) super.clone();
726             m.entrySet = null;
727             m.table = table.clone();
728             return m;
729         } catch (CloneNotSupportedException e) {
730             throw new InternalError(e);
731         }
732     }
733 
734     private abstract class IdentityHashMapIterator<T> implements Iterator<T> {
735         int index = (size != 0 ? 0 : table.length); // current slot.
736         int expectedModCount = modCount; // to support fast-fail
737         int lastReturnedIndex = -1;      // to allow remove()
738         boolean indexValid; // To avoid unnecessary next computation
739         Object[] traversalTable = table; // reference to main table or copy
740 
hasNext()741         public boolean hasNext() {
742             Object[] tab = traversalTable;
743             for (int i = index; i < tab.length; i+=2) {
744                 Object key = tab[i];
745                 if (key != null) {
746                     index = i;
747                     return indexValid = true;
748                 }
749             }
750             index = tab.length;
751             return false;
752         }
753 
nextIndex()754         protected int nextIndex() {
755             if (modCount != expectedModCount)
756                 throw new ConcurrentModificationException();
757             if (!indexValid && !hasNext())
758                 throw new NoSuchElementException();
759 
760             indexValid = false;
761             lastReturnedIndex = index;
762             index += 2;
763             return lastReturnedIndex;
764         }
765 
remove()766         public void remove() {
767             if (lastReturnedIndex == -1)
768                 throw new IllegalStateException();
769             if (modCount != expectedModCount)
770                 throw new ConcurrentModificationException();
771 
772             expectedModCount = ++modCount;
773             int deletedSlot = lastReturnedIndex;
774             lastReturnedIndex = -1;
775             // back up index to revisit new contents after deletion
776             index = deletedSlot;
777             indexValid = false;
778 
779             // Removal code proceeds as in closeDeletion except that
780             // it must catch the rare case where an element already
781             // seen is swapped into a vacant slot that will be later
782             // traversed by this iterator. We cannot allow future
783             // next() calls to return it again.  The likelihood of
784             // this occurring under 2/3 load factor is very slim, but
785             // when it does happen, we must make a copy of the rest of
786             // the table to use for the rest of the traversal. Since
787             // this can only happen when we are near the end of the table,
788             // even in these rare cases, this is not very expensive in
789             // time or space.
790 
791             Object[] tab = traversalTable;
792             int len = tab.length;
793 
794             int d = deletedSlot;
795             Object key = tab[d];
796             tab[d] = null;        // vacate the slot
797             tab[d + 1] = null;
798 
799             // If traversing a copy, remove in real table.
800             // We can skip gap-closure on copy.
801             if (tab != IdentityHashMap.this.table) {
802                 IdentityHashMap.this.remove(key);
803                 expectedModCount = modCount;
804                 return;
805             }
806 
807             size--;
808 
809             Object item;
810             for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
811                  i = nextKeyIndex(i, len)) {
812                 int r = hash(item, len);
813                 // See closeDeletion for explanation of this conditional
814                 if ((i < r && (r <= d || d <= i)) ||
815                     (r <= d && d <= i)) {
816 
817                     // If we are about to swap an already-seen element
818                     // into a slot that may later be returned by next(),
819                     // then clone the rest of table for use in future
820                     // next() calls. It is OK that our copy will have
821                     // a gap in the "wrong" place, since it will never
822                     // be used for searching anyway.
823 
824                     if (i < deletedSlot && d >= deletedSlot &&
825                         traversalTable == IdentityHashMap.this.table) {
826                         int remaining = len - deletedSlot;
827                         Object[] newTable = new Object[remaining];
828                         System.arraycopy(tab, deletedSlot,
829                                          newTable, 0, remaining);
830                         traversalTable = newTable;
831                         index = 0;
832                     }
833 
834                     tab[d] = item;
835                     tab[d + 1] = tab[i + 1];
836                     tab[i] = null;
837                     tab[i + 1] = null;
838                     d = i;
839                 }
840             }
841         }
842     }
843 
844     private class KeyIterator extends IdentityHashMapIterator<K> {
845         @SuppressWarnings("unchecked")
next()846         public K next() {
847             return (K) unmaskNull(traversalTable[nextIndex()]);
848         }
849     }
850 
851     private class ValueIterator extends IdentityHashMapIterator<V> {
852         @SuppressWarnings("unchecked")
next()853         public V next() {
854             return (V) traversalTable[nextIndex() + 1];
855         }
856     }
857 
858     private class EntryIterator
859         extends IdentityHashMapIterator<Map.Entry<K,V>>
860     {
861         private Entry lastReturnedEntry;
862 
next()863         public Map.Entry<K,V> next() {
864             lastReturnedEntry = new Entry(nextIndex());
865             return lastReturnedEntry;
866         }
867 
remove()868         public void remove() {
869             lastReturnedIndex =
870                 ((null == lastReturnedEntry) ? -1 : lastReturnedEntry.index);
871             super.remove();
872             lastReturnedEntry.index = lastReturnedIndex;
873             lastReturnedEntry = null;
874         }
875 
876         private class Entry implements Map.Entry<K,V> {
877             private int index;
878 
Entry(int index)879             private Entry(int index) {
880                 this.index = index;
881             }
882 
883             @SuppressWarnings("unchecked")
getKey()884             public K getKey() {
885                 checkIndexForEntryUse();
886                 return (K) unmaskNull(traversalTable[index]);
887             }
888 
889             @SuppressWarnings("unchecked")
getValue()890             public V getValue() {
891                 checkIndexForEntryUse();
892                 return (V) traversalTable[index+1];
893             }
894 
895             @SuppressWarnings("unchecked")
setValue(V value)896             public V setValue(V value) {
897                 checkIndexForEntryUse();
898                 V oldValue = (V) traversalTable[index+1];
899                 traversalTable[index+1] = value;
900                 // if shadowing, force into main table
901                 if (traversalTable != IdentityHashMap.this.table)
902                     put((K) traversalTable[index], value);
903                 return oldValue;
904             }
905 
equals(Object o)906             public boolean equals(Object o) {
907                 if (index < 0)
908                     return super.equals(o);
909 
910                 return o instanceof Map.Entry<?, ?> e
911                         && e.getKey() == unmaskNull(traversalTable[index])
912                         && e.getValue() == traversalTable[index+1];
913             }
914 
hashCode()915             public int hashCode() {
916                 if (lastReturnedIndex < 0)
917                     return super.hashCode();
918 
919                 return (System.identityHashCode(unmaskNull(traversalTable[index])) ^
920                        System.identityHashCode(traversalTable[index+1]));
921             }
922 
toString()923             public String toString() {
924                 if (index < 0)
925                     return super.toString();
926 
927                 return (unmaskNull(traversalTable[index]) + "="
928                         + traversalTable[index+1]);
929             }
930 
checkIndexForEntryUse()931             private void checkIndexForEntryUse() {
932                 if (index < 0)
933                     throw new IllegalStateException("Entry was removed");
934             }
935         }
936     }
937 
938     // Views
939 
940     /**
941      * This field is initialized to contain an instance of the entry set
942      * view the first time this view is requested.  The view is stateless,
943      * so there's no reason to create more than one.
944      */
945     private transient Set<Map.Entry<K,V>> entrySet;
946 
947     /**
948      * Returns an identity-based set view of the keys contained in this map.
949      * The set is backed by the map, so changes to the map are reflected in
950      * the set, and vice-versa.  If the map is modified while an iteration
951      * over the set is in progress, the results of the iteration are
952      * undefined.  The set supports element removal, which removes the
953      * corresponding mapping from the map, via the {@code Iterator.remove},
954      * {@code Set.remove}, {@code removeAll}, {@code retainAll}, and
955      * {@code clear} methods.  It does not support the {@code add} or
956      * {@code addAll} methods.
957      *
958      * <p><b>While the object returned by this method implements the
959      * {@code Set} interface, it does <i>not</i> obey {@code Set's} general
960      * contract.  Like its backing map, the set returned by this method
961      * defines element equality as reference-equality rather than
962      * object-equality.  This affects the behavior of its {@code contains},
963      * {@code remove}, {@code containsAll}, {@code equals}, and
964      * {@code hashCode} methods.</b>
965      *
966      * <p><b>The {@code equals} method of the returned set returns {@code true}
967      * only if the specified object is a set containing exactly the same
968      * object references as the returned set.  The symmetry and transitivity
969      * requirements of the {@code Object.equals} contract may be violated if
970      * the set returned by this method is compared to a normal set.  However,
971      * the {@code Object.equals} contract is guaranteed to hold among sets
972      * returned by this method.</b>
973      *
974      * <p>The {@code hashCode} method of the returned set returns the sum of
975      * the <i>identity hashcodes</i> of the elements in the set, rather than
976      * the sum of their hashcodes.  This is mandated by the change in the
977      * semantics of the {@code equals} method, in order to enforce the
978      * general contract of the {@code Object.hashCode} method among sets
979      * returned by this method.
980      *
981      * @return an identity-based set view of the keys contained in this map
982      * @see Object#equals(Object)
983      * @see System#identityHashCode(Object)
984      */
keySet()985     public Set<K> keySet() {
986         Set<K> ks = keySet;
987         if (ks == null) {
988             ks = new KeySet();
989             keySet = ks;
990         }
991         return ks;
992     }
993 
994     private class KeySet extends AbstractSet<K> {
iterator()995         public Iterator<K> iterator() {
996             return new KeyIterator();
997         }
size()998         public int size() {
999             return size;
1000         }
contains(Object o)1001         public boolean contains(Object o) {
1002             return containsKey(o);
1003         }
remove(Object o)1004         public boolean remove(Object o) {
1005             int oldSize = size;
1006             IdentityHashMap.this.remove(o);
1007             return size != oldSize;
1008         }
1009         /*
1010          * Must revert from AbstractSet's impl to AbstractCollection's, as
1011          * the former contains an optimization that results in incorrect
1012          * behavior when c is a smaller "normal" (non-identity-based) Set.
1013          */
removeAll(Collection<?> c)1014         public boolean removeAll(Collection<?> c) {
1015             Objects.requireNonNull(c);
1016             boolean modified = false;
1017             for (Iterator<K> i = iterator(); i.hasNext(); ) {
1018                 if (c.contains(i.next())) {
1019                     i.remove();
1020                     modified = true;
1021                 }
1022             }
1023             return modified;
1024         }
clear()1025         public void clear() {
1026             IdentityHashMap.this.clear();
1027         }
hashCode()1028         public int hashCode() {
1029             int result = 0;
1030             for (K key : this)
1031                 result += System.identityHashCode(key);
1032             return result;
1033         }
toArray()1034         public Object[] toArray() {
1035             return toArray(new Object[0]);
1036         }
1037         @SuppressWarnings("unchecked")
toArray(T[] a)1038         public <T> T[] toArray(T[] a) {
1039             int expectedModCount = modCount;
1040             int size = size();
1041             if (a.length < size)
1042                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1043             Object[] tab = table;
1044             int ti = 0;
1045             for (int si = 0; si < tab.length; si += 2) {
1046                 Object key;
1047                 if ((key = tab[si]) != null) { // key present ?
1048                     // more elements than expected -> concurrent modification from other thread
1049                     if (ti >= size) {
1050                         throw new ConcurrentModificationException();
1051                     }
1052                     a[ti++] = (T) unmaskNull(key); // unmask key
1053                 }
1054             }
1055             // fewer elements than expected or concurrent modification from other thread detected
1056             if (ti < size || expectedModCount != modCount) {
1057                 throw new ConcurrentModificationException();
1058             }
1059             // final null marker as per spec
1060             if (ti < a.length) {
1061                 a[ti] = null;
1062             }
1063             return a;
1064         }
1065 
spliterator()1066         public Spliterator<K> spliterator() {
1067             return new KeySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1068         }
1069     }
1070 
1071     /**
1072      * Returns a {@link Collection} view of the values contained in this map.
1073      * The collection is backed by the map, so changes to the map are
1074      * reflected in the collection, and vice-versa.  If the map is
1075      * modified while an iteration over the collection is in progress,
1076      * the results of the iteration are undefined.  The collection
1077      * supports element removal, which removes the corresponding
1078      * mapping from the map, via the {@code Iterator.remove},
1079      * {@code Collection.remove}, {@code removeAll},
1080      * {@code retainAll} and {@code clear} methods.  It does not
1081      * support the {@code add} or {@code addAll} methods.
1082      *
1083      * <p><b>While the object returned by this method implements the
1084      * {@code Collection} interface, it does <i>not</i> obey
1085      * {@code Collection's} general contract.  Like its backing map,
1086      * the collection returned by this method defines element equality as
1087      * reference-equality rather than object-equality.  This affects the
1088      * behavior of its {@code contains}, {@code remove} and
1089      * {@code containsAll} methods.</b>
1090      */
values()1091     public Collection<V> values() {
1092         Collection<V> vs = values;
1093         if (vs == null) {
1094             vs = new Values();
1095             values = vs;
1096         }
1097         return vs;
1098     }
1099 
1100     private class Values extends AbstractCollection<V> {
iterator()1101         public Iterator<V> iterator() {
1102             return new ValueIterator();
1103         }
size()1104         public int size() {
1105             return size;
1106         }
contains(Object o)1107         public boolean contains(Object o) {
1108             return containsValue(o);
1109         }
remove(Object o)1110         public boolean remove(Object o) {
1111             for (Iterator<V> i = iterator(); i.hasNext(); ) {
1112                 if (i.next() == o) {
1113                     i.remove();
1114                     return true;
1115                 }
1116             }
1117             return false;
1118         }
clear()1119         public void clear() {
1120             IdentityHashMap.this.clear();
1121         }
toArray()1122         public Object[] toArray() {
1123             return toArray(new Object[0]);
1124         }
1125         @SuppressWarnings("unchecked")
toArray(T[] a)1126         public <T> T[] toArray(T[] a) {
1127             int expectedModCount = modCount;
1128             int size = size();
1129             if (a.length < size)
1130                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1131             Object[] tab = table;
1132             int ti = 0;
1133             for (int si = 0; si < tab.length; si += 2) {
1134                 if (tab[si] != null) { // key present ?
1135                     // more elements than expected -> concurrent modification from other thread
1136                     if (ti >= size) {
1137                         throw new ConcurrentModificationException();
1138                     }
1139                     a[ti++] = (T) tab[si+1]; // copy value
1140                 }
1141             }
1142             // fewer elements than expected or concurrent modification from other thread detected
1143             if (ti < size || expectedModCount != modCount) {
1144                 throw new ConcurrentModificationException();
1145             }
1146             // final null marker as per spec
1147             if (ti < a.length) {
1148                 a[ti] = null;
1149             }
1150             return a;
1151         }
1152 
spliterator()1153         public Spliterator<V> spliterator() {
1154             return new ValueSpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1155         }
1156     }
1157 
1158     /**
1159      * Returns a {@link Set} view of the mappings contained in this map.
1160      * Each element in the returned set is a reference-equality-based
1161      * {@code Map.Entry}.  The set is backed by the map, so changes
1162      * to the map are reflected in the set, and vice-versa.  If the
1163      * map is modified while an iteration over the set is in progress,
1164      * the results of the iteration are undefined.  The set supports
1165      * element removal, which removes the corresponding mapping from
1166      * the map, via the {@code Iterator.remove}, {@code Set.remove},
1167      * {@code removeAll}, {@code retainAll} and {@code clear}
1168      * methods.  It does not support the {@code add} or
1169      * {@code addAll} methods.
1170      *
1171      * <p>Like the backing map, the {@code Map.Entry} objects in the set
1172      * returned by this method define key and value equality as
1173      * reference-equality rather than object-equality.  This affects the
1174      * behavior of the {@code equals} and {@code hashCode} methods of these
1175      * {@code Map.Entry} objects.  A reference-equality based {@code Map.Entry
1176      * e} is equal to an object {@code o} if and only if {@code o} is a
1177      * {@code Map.Entry} and {@code e.getKey()==o.getKey() &&
1178      * e.getValue()==o.getValue()}.  To accommodate these equals
1179      * semantics, the {@code hashCode} method returns
1180      * {@code System.identityHashCode(e.getKey()) ^
1181      * System.identityHashCode(e.getValue())}. (While the keys and values
1182      * are compared using reference equality, the {@code Map.Entry}
1183      * objects themselves are not.)
1184      *
1185      * <p><b>Owing to the reference-equality-based semantics of the
1186      * {@code Map.Entry} instances in the set returned by this method,
1187      * it is possible that the symmetry and transitivity requirements of
1188      * the {@link Object#equals(Object)} contract may be violated if any of
1189      * the entries in the set is compared to a normal map entry, or if
1190      * the set returned by this method is compared to a set of normal map
1191      * entries (such as would be returned by a call to this method on a normal
1192      * map).  However, the {@code Object.equals} contract is guaranteed to
1193      * hold among identity-based map entries, and among sets of such entries.
1194      * </b>
1195      *
1196      * @return a set view of the identity-mappings contained in this map
1197      */
entrySet()1198     public Set<Map.Entry<K,V>> entrySet() {
1199         Set<Map.Entry<K,V>> es = entrySet;
1200         if (es != null)
1201             return es;
1202         else
1203             return entrySet = new EntrySet();
1204     }
1205 
1206     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
iterator()1207         public Iterator<Map.Entry<K,V>> iterator() {
1208             return new EntryIterator();
1209         }
contains(Object o)1210         public boolean contains(Object o) {
1211             return o instanceof Entry<?, ?> entry
1212                     && containsMapping(entry.getKey(), entry.getValue());
1213         }
remove(Object o)1214         public boolean remove(Object o) {
1215             return o instanceof Entry<?, ?> entry
1216                     && removeMapping(entry.getKey(), entry.getValue());
1217         }
size()1218         public int size() {
1219             return size;
1220         }
clear()1221         public void clear() {
1222             IdentityHashMap.this.clear();
1223         }
1224         /*
1225          * Must revert from AbstractSet's impl to AbstractCollection's, as
1226          * the former contains an optimization that results in incorrect
1227          * behavior when c is a smaller "normal" (non-identity-based) Set.
1228          */
removeAll(Collection<?> c)1229         public boolean removeAll(Collection<?> c) {
1230             Objects.requireNonNull(c);
1231             boolean modified = false;
1232             for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); ) {
1233                 if (c.contains(i.next())) {
1234                     i.remove();
1235                     modified = true;
1236                 }
1237             }
1238             return modified;
1239         }
1240 
toArray()1241         public Object[] toArray() {
1242             return toArray(new Object[0]);
1243         }
1244 
1245         @SuppressWarnings("unchecked")
toArray(T[] a)1246         public <T> T[] toArray(T[] a) {
1247             int expectedModCount = modCount;
1248             int size = size();
1249             if (a.length < size)
1250                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1251             Object[] tab = table;
1252             int ti = 0;
1253             for (int si = 0; si < tab.length; si += 2) {
1254                 Object key;
1255                 if ((key = tab[si]) != null) { // key present ?
1256                     // more elements than expected -> concurrent modification from other thread
1257                     if (ti >= size) {
1258                         throw new ConcurrentModificationException();
1259                     }
1260                     a[ti++] = (T) new AbstractMap.SimpleEntry<>(unmaskNull(key), tab[si + 1]);
1261                 }
1262             }
1263             // fewer elements than expected or concurrent modification from other thread detected
1264             if (ti < size || expectedModCount != modCount) {
1265                 throw new ConcurrentModificationException();
1266             }
1267             // final null marker as per spec
1268             if (ti < a.length) {
1269                 a[ti] = null;
1270             }
1271             return a;
1272         }
1273 
spliterator()1274         public Spliterator<Map.Entry<K,V>> spliterator() {
1275             return new EntrySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1276         }
1277     }
1278 
1279     @java.io.Serial
1280     private static final long serialVersionUID = 8188218128353913216L;
1281 
1282     /**
1283      * Saves the state of the {@code IdentityHashMap} instance to a stream
1284      * (i.e., serializes it).
1285      *
1286      * @serialData The <i>size</i> of the HashMap (the number of key-value
1287      *          mappings) ({@code int}), followed by the key (Object) and
1288      *          value (Object) for each key-value mapping represented by the
1289      *          IdentityHashMap.  The key-value mappings are emitted in no
1290      *          particular order.
1291      */
1292     @java.io.Serial
writeObject(ObjectOutputStream s)1293     private void writeObject(ObjectOutputStream s)
1294         throws java.io.IOException  {
1295         // Write out size (number of mappings) and any hidden stuff
1296         s.defaultWriteObject();
1297 
1298         // Write out size again (maintained for backward compatibility)
1299         s.writeInt(size);
1300 
1301         // Write out keys and values (alternating)
1302         Object[] tab = table;
1303         for (int i = 0; i < tab.length; i += 2) {
1304             Object key = tab[i];
1305             if (key != null) {
1306                 s.writeObject(unmaskNull(key));
1307                 s.writeObject(tab[i + 1]);
1308             }
1309         }
1310     }
1311 
1312     /**
1313      * Reconstitutes the {@code IdentityHashMap} instance from a stream (i.e.,
1314      * deserializes it).
1315      */
1316     @java.io.Serial
readObject(ObjectInputStream s)1317     private void readObject(ObjectInputStream s)
1318         throws java.io.IOException, ClassNotFoundException  {
1319         // Size (number of mappings) is written to the stream twice
1320         // Read first size value and ignore it
1321         s.readFields();
1322 
1323         // Read second size value, validate and assign to size field
1324         int size = s.readInt();
1325         if (size < 0)
1326             throw new java.io.StreamCorruptedException
1327                 ("Illegal mappings count: " + size);
1328         int cap = capacity(size);
1329         SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, cap*2);
1330         this.size = size;
1331         init(cap);
1332 
1333         // Read the keys and values, and put the mappings in the table
1334         for (int i=0; i<size; i++) {
1335             @SuppressWarnings("unchecked")
1336                 K key = (K) s.readObject();
1337             @SuppressWarnings("unchecked")
1338                 V value = (V) s.readObject();
1339             putForCreate(key, value);
1340         }
1341     }
1342 
1343     /**
1344      * The put method for readObject.  It does not resize the table,
1345      * update modCount, etc.
1346      */
putForCreate(K key, V value)1347     private void putForCreate(K key, V value)
1348         throws java.io.StreamCorruptedException
1349     {
1350         Object k = maskNull(key);
1351         Object[] tab = table;
1352         int len = tab.length;
1353         int i = hash(k, len);
1354 
1355         Object item;
1356         while ( (item = tab[i]) != null) {
1357             if (item == k)
1358                 throw new java.io.StreamCorruptedException();
1359             i = nextKeyIndex(i, len);
1360         }
1361         tab[i] = k;
1362         tab[i + 1] = value;
1363     }
1364 
1365     @SuppressWarnings("unchecked")
1366     @Override
forEach(BiConsumer<? super K, ? super V> action)1367     public void forEach(BiConsumer<? super K, ? super V> action) {
1368         Objects.requireNonNull(action);
1369         int expectedModCount = modCount;
1370 
1371         Object[] t = table;
1372         for (int index = 0; index < t.length; index += 2) {
1373             Object k = t[index];
1374             if (k != null) {
1375                 action.accept((K) unmaskNull(k), (V) t[index + 1]);
1376             }
1377 
1378             if (modCount != expectedModCount) {
1379                 throw new ConcurrentModificationException();
1380             }
1381         }
1382     }
1383 
1384     @SuppressWarnings("unchecked")
1385     @Override
replaceAll(BiFunction<? super K, ? super V, ? extends V> function)1386     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1387         Objects.requireNonNull(function);
1388         int expectedModCount = modCount;
1389 
1390         Object[] t = table;
1391         for (int index = 0; index < t.length; index += 2) {
1392             Object k = t[index];
1393             if (k != null) {
1394                 t[index + 1] = function.apply((K) unmaskNull(k), (V) t[index + 1]);
1395             }
1396 
1397             if (modCount != expectedModCount) {
1398                 throw new ConcurrentModificationException();
1399             }
1400         }
1401     }
1402 
1403     /**
1404      * {@inheritDoc}
1405      *
1406      * <p>More formally, if this map contains a mapping from a key
1407      * {@code k} to a value {@code v} such that {@code (key == k)}
1408      * and {@code (value == v)}, then this method removes the mapping
1409      * for this key and returns {@code true}; otherwise it returns
1410      * {@code false}.
1411      */
1412     @Override
remove(Object key, Object value)1413     public boolean remove(Object key, Object value) {
1414         return removeMapping(key, value);
1415     }
1416 
1417     /**
1418      * {@inheritDoc}
1419      *
1420      * <p>More formally, if this map contains a mapping from a key
1421      * {@code k} to a value {@code v} such that {@code (key == k)}
1422      * and {@code (oldValue == v)}, then this method associates
1423      * {@code k} with {@code newValue} and returns {@code true};
1424      * otherwise it returns {@code false}.
1425      */
1426     @Override
replace(K key, V oldValue, V newValue)1427     public boolean replace(K key, V oldValue, V newValue) {
1428         Object k = maskNull(key);
1429         Object[] tab = table;
1430         int len = tab.length;
1431         int i = hash(k, len);
1432 
1433         while (true) {
1434             Object item = tab[i];
1435             if (item == k) {
1436                 if (tab[i + 1] != oldValue)
1437                     return false;
1438                 tab[i + 1] = newValue;
1439                 return true;
1440             }
1441             if (item == null)
1442                 return false;
1443             i = nextKeyIndex(i, len);
1444         }
1445     }
1446 
1447     /**
1448      * Similar form as array-based Spliterators, but skips blank elements,
1449      * and guestimates size as decreasing by half per split.
1450      */
1451     static class IdentityHashMapSpliterator<K,V> {
1452         final IdentityHashMap<K,V> map;
1453         int index;             // current index, modified on advance/split
1454         int fence;             // -1 until first use; then one past last index
1455         int est;               // size estimate
1456         int expectedModCount;  // initialized when fence set
1457 
IdentityHashMapSpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est, int expectedModCount)1458         IdentityHashMapSpliterator(IdentityHashMap<K,V> map, int origin,
1459                                    int fence, int est, int expectedModCount) {
1460             this.map = map;
1461             this.index = origin;
1462             this.fence = fence;
1463             this.est = est;
1464             this.expectedModCount = expectedModCount;
1465         }
1466 
getFence()1467         final int getFence() { // initialize fence and size on first use
1468             int hi;
1469             if ((hi = fence) < 0) {
1470                 est = map.size;
1471                 expectedModCount = map.modCount;
1472                 hi = fence = map.table.length;
1473             }
1474             return hi;
1475         }
1476 
estimateSize()1477         public final long estimateSize() {
1478             getFence(); // force init
1479             return (long) est;
1480         }
1481     }
1482 
1483     static final class KeySpliterator<K,V>
1484         extends IdentityHashMapSpliterator<K,V>
1485         implements Spliterator<K> {
KeySpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est, int expectedModCount)1486         KeySpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est,
1487                        int expectedModCount) {
1488             super(map, origin, fence, est, expectedModCount);
1489         }
1490 
trySplit()1491         public KeySpliterator<K,V> trySplit() {
1492             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1493             return (lo >= mid) ? null :
1494                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1495                                      expectedModCount);
1496         }
1497 
1498         @SuppressWarnings("unchecked")
forEachRemaining(Consumer<? super K> action)1499         public void forEachRemaining(Consumer<? super K> action) {
1500             if (action == null)
1501                 throw new NullPointerException();
1502             int i, hi, mc; Object key;
1503             IdentityHashMap<K,V> m; Object[] a;
1504             if ((m = map) != null && (a = m.table) != null &&
1505                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1506                 for (; i < hi; i += 2) {
1507                     if ((key = a[i]) != null)
1508                         action.accept((K)unmaskNull(key));
1509                 }
1510                 if (m.modCount == expectedModCount)
1511                     return;
1512             }
1513             throw new ConcurrentModificationException();
1514         }
1515 
1516         @SuppressWarnings("unchecked")
tryAdvance(Consumer<? super K> action)1517         public boolean tryAdvance(Consumer<? super K> action) {
1518             if (action == null)
1519                 throw new NullPointerException();
1520             Object[] a = map.table;
1521             int hi = getFence();
1522             while (index < hi) {
1523                 Object key = a[index];
1524                 index += 2;
1525                 if (key != null) {
1526                     action.accept((K)unmaskNull(key));
1527                     if (map.modCount != expectedModCount)
1528                         throw new ConcurrentModificationException();
1529                     return true;
1530                 }
1531             }
1532             return false;
1533         }
1534 
characteristics()1535         public int characteristics() {
1536             return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
1537         }
1538     }
1539 
1540     static final class ValueSpliterator<K,V>
1541         extends IdentityHashMapSpliterator<K,V>
1542         implements Spliterator<V> {
ValueSpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est, int expectedModCount)1543         ValueSpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
1544                          int expectedModCount) {
1545             super(m, origin, fence, est, expectedModCount);
1546         }
1547 
trySplit()1548         public ValueSpliterator<K,V> trySplit() {
1549             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1550             return (lo >= mid) ? null :
1551                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1552                                        expectedModCount);
1553         }
1554 
forEachRemaining(Consumer<? super V> action)1555         public void forEachRemaining(Consumer<? super V> action) {
1556             if (action == null)
1557                 throw new NullPointerException();
1558             int i, hi, mc;
1559             IdentityHashMap<K,V> m; Object[] a;
1560             if ((m = map) != null && (a = m.table) != null &&
1561                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1562                 for (; i < hi; i += 2) {
1563                     if (a[i] != null) {
1564                         @SuppressWarnings("unchecked") V v = (V)a[i+1];
1565                         action.accept(v);
1566                     }
1567                 }
1568                 if (m.modCount == expectedModCount)
1569                     return;
1570             }
1571             throw new ConcurrentModificationException();
1572         }
1573 
tryAdvance(Consumer<? super V> action)1574         public boolean tryAdvance(Consumer<? super V> action) {
1575             if (action == null)
1576                 throw new NullPointerException();
1577             Object[] a = map.table;
1578             int hi = getFence();
1579             while (index < hi) {
1580                 Object key = a[index];
1581                 @SuppressWarnings("unchecked") V v = (V)a[index+1];
1582                 index += 2;
1583                 if (key != null) {
1584                     action.accept(v);
1585                     if (map.modCount != expectedModCount)
1586                         throw new ConcurrentModificationException();
1587                     return true;
1588                 }
1589             }
1590             return false;
1591         }
1592 
characteristics()1593         public int characteristics() {
1594             return (fence < 0 || est == map.size ? SIZED : 0);
1595         }
1596 
1597     }
1598 
1599     static final class EntrySpliterator<K,V>
1600         extends IdentityHashMapSpliterator<K,V>
1601         implements Spliterator<Map.Entry<K,V>> {
EntrySpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est, int expectedModCount)1602         EntrySpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
1603                          int expectedModCount) {
1604             super(m, origin, fence, est, expectedModCount);
1605         }
1606 
trySplit()1607         public EntrySpliterator<K,V> trySplit() {
1608             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1609             return (lo >= mid) ? null :
1610                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1611                                        expectedModCount);
1612         }
1613 
forEachRemaining(Consumer<? super Map.Entry<K, V>> action)1614         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1615             if (action == null)
1616                 throw new NullPointerException();
1617             int i, hi, mc;
1618             IdentityHashMap<K,V> m; Object[] a;
1619             if ((m = map) != null && (a = m.table) != null &&
1620                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1621                 for (; i < hi; i += 2) {
1622                     Object key = a[i];
1623                     if (key != null) {
1624                         @SuppressWarnings("unchecked") K k =
1625                             (K)unmaskNull(key);
1626                         @SuppressWarnings("unchecked") V v = (V)a[i+1];
1627                         action.accept
1628                             (new AbstractMap.SimpleImmutableEntry<>(k, v));
1629 
1630                     }
1631                 }
1632                 if (m.modCount == expectedModCount)
1633                     return;
1634             }
1635             throw new ConcurrentModificationException();
1636         }
1637 
tryAdvance(Consumer<? super Map.Entry<K,V>> action)1638         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1639             if (action == null)
1640                 throw new NullPointerException();
1641             Object[] a = map.table;
1642             int hi = getFence();
1643             while (index < hi) {
1644                 Object key = a[index];
1645                 @SuppressWarnings("unchecked") V v = (V)a[index+1];
1646                 index += 2;
1647                 if (key != null) {
1648                     @SuppressWarnings("unchecked") K k =
1649                         (K)unmaskNull(key);
1650                     action.accept
1651                         (new AbstractMap.SimpleImmutableEntry<>(k, v));
1652                     if (map.modCount != expectedModCount)
1653                         throw new ConcurrentModificationException();
1654                     return true;
1655                 }
1656             }
1657             return false;
1658         }
1659 
characteristics()1660         public int characteristics() {
1661             return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
1662         }
1663     }
1664 
1665 }
1666