• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 The Pigweed Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
4 // use this file except in compliance with the License. You may obtain a copy of
5 // the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
11 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
12 // License for the specific language governing permissions and limitations under
13 // the License.
14 
15 // This span implementation is a stand-in for C++20's std::span. Do NOT include
16 // this header directly; instead, include it as "pw_span/span.h".
17 //
18 // A span is a non-owning array view class. It refers to an external array by
19 // storing a pointer and length. Unlike std::array, the size does not have to be
20 // a template parameter, so this class can be used to without stating its size.
21 //
22 // This file a modified version of base::span from Chromium:
23 //   https://chromium.googlesource.com/chromium/src/+/d93ae920e4309682deb9352a4637cfc2941c1d1f/base/containers/span.h
24 //
25 // In order to minimize changes from the original, this file does NOT fully
26 // adhere to Pigweed's style guide.
27 //
28 // A few changes were made to the Chromium version of span. These include:
29 //   - Use std::data and std::size instead of base::* versions.
30 //   - Rename base namespace to pw.
31 //   - Rename internal namespace to pw_span_internal.
32 //   - Remove uses of checked_iterators.h and CHECK.
33 //   - Replace make_span functions with C++17 class template deduction guides.
34 //   - Use std::byte instead of uint8_t for compatibility with std::span.
35 #pragma once
36 
37 #include <algorithm>
38 #include <array>
39 #include <cstddef>
40 #include <iterator>
41 #include <limits>
42 #include <type_traits>
43 #include <utility>
44 
45 #include "pw_span/internal/config.h"
46 
47 // IWYU pragma: private, include "pw_span/span.h"
48 
49 namespace pw {
50 
51 // [views.constants]
52 inline constexpr size_t dynamic_extent = std::numeric_limits<size_t>::max();
53 
54 template <typename T, size_t Extent = dynamic_extent>
55 class span;
56 
57 namespace pw_span_internal {
58 
59 template <typename T>
60 struct ExtentImpl : std::integral_constant<size_t, dynamic_extent> {};
61 
62 template <typename T, size_t N>
63 struct ExtentImpl<T[N]> : std::integral_constant<size_t, N> {};
64 
65 template <typename T, size_t N>
66 struct ExtentImpl<std::array<T, N>> : std::integral_constant<size_t, N> {};
67 
68 template <typename T, size_t N>
69 struct ExtentImpl<span<T, N>> : std::integral_constant<size_t, N> {};
70 
71 template <typename T>
72 using Extent = ExtentImpl<std::remove_cv_t<std::remove_reference_t<T>>>;
73 
74 template <typename T>
75 struct IsSpanImpl : std::false_type {};
76 
77 template <typename T, size_t Extent>
78 struct IsSpanImpl<span<T, Extent>> : std::true_type {};
79 
80 template <typename T>
81 using IsSpan = IsSpanImpl<std::decay_t<T>>;
82 
83 template <typename T>
84 struct IsStdArrayImpl : std::false_type {};
85 
86 template <typename T, size_t N>
87 struct IsStdArrayImpl<std::array<T, N>> : std::true_type {};
88 
89 template <typename T>
90 using IsStdArray = IsStdArrayImpl<std::decay_t<T>>;
91 
92 template <typename T>
93 using IsCArray = std::is_array<std::remove_reference_t<T>>;
94 
95 template <typename From, typename To>
96 using IsLegalDataConversion = std::is_convertible<From (*)[], To (*)[]>;
97 
98 template <typename Container, typename T>
99 using ContainerHasConvertibleData = IsLegalDataConversion<
100     std::remove_pointer_t<decltype(std::data(std::declval<Container>()))>,
101     T>;
102 
103 template <typename Container>
104 using ContainerHasIntegralSize =
105     std::is_integral<decltype(std::size(std::declval<Container>()))>;
106 
107 template <typename From, size_t FromExtent, typename To, size_t ToExtent>
108 using EnableIfLegalSpanConversion =
109     std::enable_if_t<(ToExtent == dynamic_extent || ToExtent == FromExtent) &&
110                      IsLegalDataConversion<From, To>::value>;
111 
112 // SFINAE check if Array can be converted to a span<T>.
113 template <typename Array, typename T, size_t Extent>
114 using EnableIfSpanCompatibleArray =
115     std::enable_if_t<(Extent == dynamic_extent ||
116                       Extent == pw_span_internal::Extent<Array>::value) &&
117                      ContainerHasConvertibleData<Array, T>::value>;
118 
119 // SFINAE check if Container can be converted to a span<T>.
120 template <typename Container, typename T>
121 using IsSpanCompatibleContainer =
122     std::conditional_t<!IsSpan<Container>::value &&
123                            !IsStdArray<Container>::value &&
124                            !IsCArray<Container>::value &&
125                            ContainerHasConvertibleData<Container, T>::value &&
126                            ContainerHasIntegralSize<Container>::value,
127                        std::true_type,
128                        std::false_type>;
129 
130 template <typename Container, typename T>
131 using EnableIfSpanCompatibleContainer =
132     std::enable_if_t<IsSpanCompatibleContainer<Container, T>::value>;
133 
134 template <typename Container, typename T, size_t Extent>
135 using EnableIfSpanCompatibleContainerAndSpanIsDynamic =
136     std::enable_if_t<IsSpanCompatibleContainer<Container, T>::value &&
137                      Extent == dynamic_extent>;
138 
139 // A helper template for storing the size of a span. Spans with static extents
140 // don't require additional storage, since the extent itself is specified in the
141 // template parameter.
142 template <size_t Extent>
143 class ExtentStorage {
144  public:
145   constexpr explicit ExtentStorage(size_t /* size */) noexcept {}
146   constexpr size_t size() const noexcept { return Extent; }
147 };
148 
149 // Specialization of ExtentStorage for dynamic extents, which do require
150 // explicit storage for the size.
151 template <>
152 struct ExtentStorage<dynamic_extent> {
153   constexpr explicit ExtentStorage(size_t size) noexcept : size_(size) {}
154   constexpr size_t size() const noexcept { return size_; }
155 
156  private:
157   size_t size_;
158 };
159 
160 }  // namespace pw_span_internal
161 
162 // A span is a value type that represents an array of elements of type T. Since
163 // it only consists of a pointer to memory with an associated size, it is very
164 // light-weight. It is cheap to construct, copy, move and use spans, so that
165 // users are encouraged to use it as a pass-by-value parameter. A span does not
166 // own the underlying memory, so care must be taken to ensure that a span does
167 // not outlive the backing store.
168 //
169 // span is somewhat analogous to StringPiece, but with arbitrary element types,
170 // allowing mutation if T is non-const.
171 //
172 // span is implicitly convertible from C++ arrays, as well as most [1]
173 // container-like types that provide a data() and size() method (such as
174 // std::vector<T>). A mutable span<T> can also be implicitly converted to an
175 // immutable span<const T>.
176 //
177 // Consider using a span for functions that take a data pointer and size
178 // parameter: it allows the function to still act on an array-like type, while
179 // allowing the caller code to be a bit more concise.
180 //
181 // For read-only data access pass a span<const T>: the caller can supply either
182 // a span<const T> or a span<T>, while the callee will have a read-only view.
183 // For read-write access a mutable span<T> is required.
184 //
185 // Without span:
186 //   Read-Only:
187 //     // std::string HexEncode(const uint8_t* data, size_t size);
188 //     std::vector<uint8_t> data_buffer = GenerateData();
189 //     std::string r = HexEncode(data_buffer.data(), data_buffer.size());
190 //
191 //  Mutable:
192 //     // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...);
193 //     char str_buffer[100];
194 //     SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);
195 //
196 // With span:
197 //   Read-Only:
198 //     // std::string HexEncode(std::span<const uint8_t> data);
199 //     std::vector<uint8_t> data_buffer = GenerateData();
200 //     std::string r = HexEncode(data_buffer);
201 //
202 //  Mutable:
203 //     // ssize_t SafeSNPrintf(std::span<char>, const char* fmt, Args...);
204 //     char str_buffer[100];
205 //     SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);
206 //
207 // Spans with "const" and pointers
208 // -------------------------------
209 //
210 // Const and pointers can get confusing. Here are vectors of pointers and their
211 // corresponding spans:
212 //
213 //   const std::vector<int*>        =>  std::span<int* const>
214 //   std::vector<const int*>        =>  std::span<const int*>
215 //   const std::vector<const int*>  =>  std::span<const int* const>
216 //
217 // Differences from the C++20 draft
218 // --------------------------------
219 //
220 // http://eel.is/c++draft/views contains the latest C++20 draft of std::span.
221 // Chromium tries to follow the draft as close as possible. Differences between
222 // the draft and the implementation are documented in subsections below.
223 //
224 // Differences from [span.cons]:
225 // - Constructing a static span (i.e. Extent != dynamic_extent) from a dynamic
226 //   sized container (e.g. std::vector) requires an explicit conversion (in the
227 //   C++20 draft this is simply UB)
228 //
229 // Furthermore, all constructors and methods are marked noexcept due to the lack
230 // of exceptions in Chromium.
231 
232 // [span], class template span
233 template <typename T, size_t Extent>
234 class span : public pw_span_internal::ExtentStorage<Extent> {
235  private:
236   using ExtentStorage = pw_span_internal::ExtentStorage<Extent>;
237 
238  public:
239   using element_type = T;
240   using value_type = std::remove_cv_t<T>;
241   using size_type = size_t;
242   using difference_type = ptrdiff_t;
243   using pointer = T*;
244   using reference = T&;
245   using iterator = T*;
246   using reverse_iterator = std::reverse_iterator<iterator>;
247   static constexpr size_t extent = Extent;
248 
249   // [span.cons], span constructors, copy, assignment, and destructor
250   constexpr span() noexcept : ExtentStorage(0), data_(nullptr) {
251     static_assert(Extent == dynamic_extent || Extent == 0, "Invalid Extent");
252   }
253 
254   constexpr span(T* data, size_t size) noexcept
255       : ExtentStorage(size), data_(data) {
256     _PW_SPAN_ASSERT(Extent == dynamic_extent || Extent == size);
257   }
258 
259   // Prevent construction from nullptr, which is disallowed by C++20's std::span
260   constexpr span(std::nullptr_t data, size_t size) = delete;
261 
262   // Artificially templatized to break ambiguity for span(ptr, 0).
263   template <typename = void>
264   constexpr span(T* begin, T* end) noexcept : span(begin, end - begin) {
265     // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
266     _PW_SPAN_ASSERT(begin <= end);
267   }
268 
269   template <
270       size_t N,
271       typename =
272           pw_span_internal::EnableIfSpanCompatibleArray<T (&)[N], T, Extent>>
273   constexpr span(T (&array)[N]) noexcept : span(std::data(array), N) {}
274 
275   template <typename U,
276             size_t N,
277             typename = pw_span_internal::
278                 EnableIfSpanCompatibleArray<std::array<U, N>&, T, Extent>>
279   constexpr span(std::array<U, N>& array) noexcept
280       : span(std::data(array), N) {}
281 
282   template <typename U,
283             size_t N,
284             typename = pw_span_internal::
285                 EnableIfSpanCompatibleArray<const std::array<U, N>&, T, Extent>>
286   constexpr span(const std::array<U, N>& array) noexcept
287       : span(std::data(array), N) {}
288 
289   // Conversion from a container that has compatible std::data() and integral
290   // std::size().
291   template <typename Container,
292             typename = pw_span_internal::
293                 EnableIfSpanCompatibleContainerAndSpanIsDynamic<Container&,
294                                                                 T,
295                                                                 Extent>>
296   constexpr span(Container& container) noexcept
297       : span(std::data(container), std::size(container)) {}
298 
299   template <
300       typename Container,
301       typename = pw_span_internal::
302           EnableIfSpanCompatibleContainerAndSpanIsDynamic<const Container&,
303                                                           T,
304                                                           Extent>>
305   constexpr span(const Container& container) noexcept
306       : span(std::data(container), std::size(container)) {}
307 
308   constexpr span(const span& other) noexcept = default;
309 
310   // Conversions from spans of compatible types and extents: this allows a
311   // span<T> to be seamlessly used as a span<const T>, but not the other way
312   // around. If extent is not dynamic, OtherExtent has to be equal to Extent.
313   template <typename U,
314             size_t OtherExtent,
315             typename = pw_span_internal::
316                 EnableIfLegalSpanConversion<U, OtherExtent, T, Extent>>
317   constexpr span(const span<U, OtherExtent>& other)
318       : span(other.data(), other.size()) {}
319 
320   constexpr span& operator=(const span& other) noexcept = default;
321   ~span() noexcept = default;
322 
323   // [span.sub], span subviews
324   template <size_t Count>
325   constexpr span<T, Count> first() const noexcept {
326     static_assert(Count <= Extent, "Count must not exceed Extent");
327     _PW_SPAN_ASSERT(Extent != dynamic_extent || Count <= size());
328     return {data(), Count};
329   }
330 
331   template <size_t Count>
332   constexpr span<T, Count> last() const noexcept {
333     static_assert(Count <= Extent, "Count must not exceed Extent");
334     _PW_SPAN_ASSERT(Extent != dynamic_extent || Count <= size());
335     return {data() + (size() - Count), Count};
336   }
337 
338   template <size_t Offset, size_t Count = dynamic_extent>
339   constexpr span<T,
340                  (Count != dynamic_extent
341                       ? Count
342                       : (Extent != dynamic_extent ? Extent - Offset
343                                                   : dynamic_extent))>
344   subspan() const noexcept {
345     static_assert(Offset <= Extent, "Offset must not exceed Extent");
346     static_assert(Count == dynamic_extent || Count <= Extent - Offset,
347                   "Count must not exceed Extent - Offset");
348     _PW_SPAN_ASSERT(Extent != dynamic_extent || Offset <= size());
349     _PW_SPAN_ASSERT(Extent != dynamic_extent || Count == dynamic_extent ||
350                     Count <= size() - Offset);
351     return {data() + Offset, Count != dynamic_extent ? Count : size() - Offset};
352   }
353 
354   constexpr span<T, dynamic_extent> first(size_t count) const noexcept {
355     // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
356     _PW_SPAN_ASSERT(count <= size());
357     return {data(), count};
358   }
359 
360   constexpr span<T, dynamic_extent> last(size_t count) const noexcept {
361     // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
362     _PW_SPAN_ASSERT(count <= size());
363     return {data() + (size() - count), count};
364   }
365 
366   constexpr span<T, dynamic_extent> subspan(
367       size_t offset, size_t count = dynamic_extent) const noexcept {
368     // Note: CHECK_LE is not constexpr, hence regular CHECK must be used.
369     _PW_SPAN_ASSERT(offset <= size());
370     _PW_SPAN_ASSERT(count == dynamic_extent || count <= size() - offset);
371     return {data() + offset, count != dynamic_extent ? count : size() - offset};
372   }
373 
374   // [span.obs], span observers
375   constexpr size_t size() const noexcept { return ExtentStorage::size(); }
376   constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }
377   [[nodiscard]] constexpr bool empty() const noexcept { return size() == 0; }
378 
379   // [span.elem], span element access
380   constexpr T& operator[](size_t idx) const noexcept {
381     // Note: CHECK_LT is not constexpr, hence regular CHECK must be used.
382     _PW_SPAN_ASSERT(idx < size());
383     return *(data() + idx);
384   }
385 
386   constexpr T& front() const noexcept {
387     static_assert(Extent == dynamic_extent || Extent > 0,
388                   "Extent must not be 0");
389     _PW_SPAN_ASSERT(Extent != dynamic_extent || !empty());
390     return *data();
391   }
392 
393   constexpr T& back() const noexcept {
394     static_assert(Extent == dynamic_extent || Extent > 0,
395                   "Extent must not be 0");
396     _PW_SPAN_ASSERT(Extent != dynamic_extent || !empty());
397     return *(data() + size() - 1);
398   }
399 
400   constexpr T* data() const noexcept { return data_; }
401 
402   // [span.iter], span iterator support
403   constexpr iterator begin() const noexcept { return data_; }
404   constexpr iterator end() const noexcept { return data_ + size(); }
405 
406   constexpr reverse_iterator rbegin() const noexcept {
407     return reverse_iterator(end());
408   }
409   constexpr reverse_iterator rend() const noexcept {
410     return reverse_iterator(begin());
411   }
412 
413  private:
414   T* data_;
415 };
416 
417 // span<T, Extent>::extent can not be declared inline prior to C++17, hence this
418 // definition is required.
419 // template <class T, size_t Extent>
420 // constexpr size_t span<T, Extent>::extent;
421 
422 // [span.objectrep], views of object representation
423 template <typename T, size_t X>
424 span<const std::byte, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>
425 as_bytes(span<T, X> s) noexcept {
426   return {reinterpret_cast<const std::byte*>(s.data()), s.size_bytes()};
427 }
428 
429 template <typename T,
430           size_t X,
431           typename = std::enable_if_t<!std::is_const<T>::value>>
432 span<std::byte, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)>
433 as_writable_bytes(span<T, X> s) noexcept {
434   return {reinterpret_cast<std::byte*>(s.data()), s.size_bytes()};
435 }
436 
437 // Type-deducing helpers for constructing a span.
438 // Pigweed: Instead of a make_span function, provide the deduction guides
439 //     specified in the C++20 standard.
440 #ifdef __cpp_deduction_guides
441 
442 template <class T, std::size_t N>
443 span(T (&)[N]) -> span<T, N>;
444 
445 template <class T, std::size_t N>
446 span(std::array<T, N>&) -> span<T, N>;
447 
448 template <class T, std::size_t N>
449 span(const std::array<T, N>&) -> span<const T, N>;
450 
451 namespace pw_span_internal {
452 
453 // Containers can be mutable or const and have mutable or const members. Check
454 // the type of the accessed elements to determine which type of span should be
455 // created (e.g. span<char> or span<const char>).
456 template <typename T>
457 using ValueType = std::remove_reference_t<decltype(std::declval<T>()[0])>;
458 
459 }  // namespace pw_span_internal
460 
461 // This diverges a little from the standard, which uses std::ranges.
462 template <class Container>
463 span(Container&) -> span<pw_span_internal::ValueType<Container>>;
464 
465 template <class Container>
466 span(const Container&) -> span<pw_span_internal::ValueType<const Container>>;
467 
468 #endif  // __cpp_deduction_guides
469 
470 }  // namespace pw
471