• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/compiler/xla/service/gpu/reduction_degenerate_dim_remover.h"
17 
18 #include <optional>
19 #include <utility>
20 
21 #include "tensorflow/compiler/xla/service/hlo_instruction.h"
22 #include "tensorflow/compiler/xla/service/hlo_module_config.h"
23 #include "tensorflow/compiler/xla/service/hlo_parser.h"
24 #include "tensorflow/compiler/xla/statusor.h"
25 #include "tensorflow/compiler/xla/tests/filecheck.h"
26 #include "tensorflow/compiler/xla/tests/hlo_test_base.h"
27 #include "tensorflow/core/lib/core/status_test_util.h"
28 #include "tensorflow/core/platform/test.h"
29 #include "tensorflow/stream_executor/lib/statusor.h"
30 
31 namespace xla {
32 
33 namespace {
34 
35 class ReductionDegenerateDimRemoverTest : public HloTestBase {
36  public:
CheckDegenerateDimRemover(absl::string_view hlo,std::optional<absl::string_view> expected)37   void CheckDegenerateDimRemover(absl::string_view hlo,
38                                  std::optional<absl::string_view> expected) {
39     RunAndFilecheckHloRewrite(hlo, gpu::ReductionDegenerateDimRemover{},
40                               expected);
41   }
42 };
43 
TEST_F(ReductionDegenerateDimRemoverTest,ReductionWithDegenerateDimensions)44 TEST_F(ReductionDegenerateDimRemoverTest, ReductionWithDegenerateDimensions) {
45   const char* hlo = R"(
46 HloModule ReduceWithDegenerateDimensions
47 
48 add {
49   accum = f32[] parameter(0)
50   op = f32[] parameter(1)
51   ROOT out = f32[] add(accum, op)
52 }
53 
54 ENTRY main {
55   input = f32[1,3,1,4,1,5,1] parameter(0)
56   zero = f32[] constant(0)
57 
58   ROOT out = f32[1,1,1,1] reduce(input, zero), dimensions={1,3,5}, to_apply=add
59 }
60 
61 )";
62 
63   CheckDegenerateDimRemover(hlo, R"(
64 // CHECK: [[bitcast_0:%[^ ]+]] = f32[3,4,5]{2,1,0} bitcast([[input_1:%[^ ]+]])
65 // CHECK: [[reduce_2:%[^ ]+]] = f32[] reduce([[bitcast_0]], [[zero_3:%[^ ]+]]), dimensions={0,1,2}, to_apply=[[add_4:%[^ ]+]]
66 // CHECK: ROOT [[bitcast_1_5:%[^ ]+]] = f32[1,1,1,1]{3,2,1,0} bitcast([[reduce_2]])
67   )");
68 }
69 
TEST_F(ReductionDegenerateDimRemoverTest,ReductionWithDegenerateDimensionsVariadic)70 TEST_F(ReductionDegenerateDimRemoverTest,
71        ReductionWithDegenerateDimensionsVariadic) {
72   const char* hlo = R"(
73 HloModule ReduceWithDegenerateDimensions
74 
75 argmax {
76   running_max = f32[] parameter(0)
77   running_max_idx = u32[] parameter(1)
78   current_value = f32[] parameter(2)
79   current_value_idx = u32[] parameter(3)
80 
81   current = (f32[], u32[]) tuple(running_max, running_max_idx)
82   potential = (f32[], u32[]) tuple(current_value, current_value_idx)
83 
84   cmp_code = pred[] compare(current_value, running_max), direction=GT
85 
86   new_max = f32[] select(cmp_code, current_value, running_max)
87   new_idx = u32[] select(cmp_code, current_value_idx, running_max_idx)
88 
89   ROOT out = (f32[], u32[]) tuple(new_max, new_idx)
90 }
91 
92 ENTRY main {
93   input = f32[1,3,1,4,1,5,1] parameter(0)
94   idxs = u32[1,3,1,4,1,5,1] parameter(1)
95   zero = f32[] constant(0)
96   zero_idx = u32[] constant(0)
97 
98   ROOT out = (f32[1,1,1,1], u32[1,1,1,1]) reduce(input, idxs, zero, zero_idx), dimensions={1,3,5}, to_apply=argmax
99 }
100 
101 )";
102 
103   CheckDegenerateDimRemover(hlo, R"(
104 // CHECK:  [[bitcast_0:%[^ ]+]] = f32[3,4,5]{2,1,0} bitcast([[input_1:%[^ ]+]])
105 // CHECK:  [[bitcast_1_2:%[^ ]+]] = u32[3,4,5]{2,1,0} bitcast([[idxs_3:%[^ ]+]])
106 // CHECK:  [[reduce_4:%[^ ]+]] = (f32[], u32[]) reduce([[bitcast_0]], [[bitcast_1_2]], [[zero_5:%[^ ]+]], [[zero_idx_6:%[^ ]+]]), dimensions={0,1,2}, to_apply=[[argmax_7:%[^ ]+]]
107 // CHECK-NEXT:  [[get_tuple_element_8:%[^ ]+]] = f32[] get-tuple-element([[reduce_4]]), index=0
108 // CHECK-NEXT:  [[bitcast_2_9:%[^ ]+]] = f32[1,1,1,1]{3,2,1,0} bitcast([[get_tuple_element_8]])
109 // CHECK-NEXT:  [[get_tuple_element_1_10:%[^ ]+]] = u32[] get-tuple-element([[reduce_4]]), index=1
110 // CHECK-NEXT:  [[bitcast_3_11:%[^ ]+]] = u32[1,1,1,1]{3,2,1,0} bitcast([[get_tuple_element_1_10]])
111 // CHECK-NEXT:  ROOT [[tuple_12:%[^ ]+]] = (f32[1,1,1,1]{3,2,1,0}, u32[1,1,1,1]{3,2,1,0}) tuple([[bitcast_2_9]], [[bitcast_3_11]])
112 )");
113 }
114 
TEST_F(ReductionDegenerateDimRemoverTest,DegenerateWithEmptyDimension)115 TEST_F(ReductionDegenerateDimRemoverTest, DegenerateWithEmptyDimension) {
116   const char* hlo = R"(
117 HloModule ReduceWithDegenerateDimensions
118 
119 add {
120   accum = f32[] parameter(0)
121   op = f32[] parameter(1)
122   ROOT out = f32[] add(accum, op)
123 }
124 
125 ENTRY main {
126   input = f32[1,3,1,4,1,5,1] parameter(0)
127   zero = f32[] constant(0)
128 
129   ROOT out = f32[3,4,5,1] reduce(input, zero), dimensions={0,2,4}, to_apply=add
130 }
131 )";
132 
133   CheckDegenerateDimRemover(hlo,
134                             R"(
135 // CHECK: ROOT [[bitcast_0:%[^ ]+]] = f32[3,4,5,1]{3,2,1,0} bitcast([[input_1:%[^ ]+]])
136       )");
137 }
138 
139 }  // namespace
140 }  // namespace xla
141