1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/sha.h>
58
59 #include <string.h>
60
61 #include <openssl/mem.h>
62
63 #include "internal.h"
64 #include "../../internal.h"
65
66
67 // The 32-bit hash algorithms share a common byte-order neutral collector and
68 // padding function implementations that operate on unaligned data,
69 // ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
70 // this writing, so there is no need for a common collector/padding
71 // implementation yet.
72
73 static int sha512_final_impl(uint8_t *out, SHA512_CTX *sha);
74
SHA384_Init(SHA512_CTX * sha)75 int SHA384_Init(SHA512_CTX *sha) {
76 sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
77 sha->h[1] = UINT64_C(0x629a292a367cd507);
78 sha->h[2] = UINT64_C(0x9159015a3070dd17);
79 sha->h[3] = UINT64_C(0x152fecd8f70e5939);
80 sha->h[4] = UINT64_C(0x67332667ffc00b31);
81 sha->h[5] = UINT64_C(0x8eb44a8768581511);
82 sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
83 sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
84
85 sha->Nl = 0;
86 sha->Nh = 0;
87 sha->num = 0;
88 sha->md_len = SHA384_DIGEST_LENGTH;
89 return 1;
90 }
91
92
SHA512_Init(SHA512_CTX * sha)93 int SHA512_Init(SHA512_CTX *sha) {
94 sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
95 sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
96 sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
97 sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
98 sha->h[4] = UINT64_C(0x510e527fade682d1);
99 sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
100 sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
101 sha->h[7] = UINT64_C(0x5be0cd19137e2179);
102
103 sha->Nl = 0;
104 sha->Nh = 0;
105 sha->num = 0;
106 sha->md_len = SHA512_DIGEST_LENGTH;
107 return 1;
108 }
109
SHA512_256_Init(SHA512_CTX * sha)110 int SHA512_256_Init(SHA512_CTX *sha) {
111 sha->h[0] = UINT64_C(0x22312194fc2bf72c);
112 sha->h[1] = UINT64_C(0x9f555fa3c84c64c2);
113 sha->h[2] = UINT64_C(0x2393b86b6f53b151);
114 sha->h[3] = UINT64_C(0x963877195940eabd);
115 sha->h[4] = UINT64_C(0x96283ee2a88effe3);
116 sha->h[5] = UINT64_C(0xbe5e1e2553863992);
117 sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa);
118 sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2);
119
120 sha->Nl = 0;
121 sha->Nh = 0;
122 sha->num = 0;
123 sha->md_len = SHA512_256_DIGEST_LENGTH;
124 return 1;
125 }
126
SHA384(const uint8_t * data,size_t len,uint8_t out[SHA384_DIGEST_LENGTH])127 uint8_t *SHA384(const uint8_t *data, size_t len,
128 uint8_t out[SHA384_DIGEST_LENGTH]) {
129 SHA512_CTX ctx;
130 SHA384_Init(&ctx);
131 SHA384_Update(&ctx, data, len);
132 SHA384_Final(out, &ctx);
133 OPENSSL_cleanse(&ctx, sizeof(ctx));
134 return out;
135 }
136
SHA512(const uint8_t * data,size_t len,uint8_t out[SHA512_DIGEST_LENGTH])137 uint8_t *SHA512(const uint8_t *data, size_t len,
138 uint8_t out[SHA512_DIGEST_LENGTH]) {
139 SHA512_CTX ctx;
140 SHA512_Init(&ctx);
141 SHA512_Update(&ctx, data, len);
142 SHA512_Final(out, &ctx);
143 OPENSSL_cleanse(&ctx, sizeof(ctx));
144 return out;
145 }
146
SHA512_256(const uint8_t * data,size_t len,uint8_t out[SHA512_256_DIGEST_LENGTH])147 uint8_t *SHA512_256(const uint8_t *data, size_t len,
148 uint8_t out[SHA512_256_DIGEST_LENGTH]) {
149 SHA512_CTX ctx;
150 SHA512_256_Init(&ctx);
151 SHA512_256_Update(&ctx, data, len);
152 SHA512_256_Final(out, &ctx);
153 OPENSSL_cleanse(&ctx, sizeof(ctx));
154 return out;
155 }
156
157 #if !defined(SHA512_ASM)
158 static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
159 size_t num_blocks);
160 #endif
161
162
SHA384_Final(uint8_t out[SHA384_DIGEST_LENGTH],SHA512_CTX * sha)163 int SHA384_Final(uint8_t out[SHA384_DIGEST_LENGTH], SHA512_CTX *sha) {
164 // |SHA384_Init| sets |sha->md_len| to |SHA384_DIGEST_LENGTH|, so this has a
165 // smaller output.
166 assert(sha->md_len == SHA384_DIGEST_LENGTH);
167 return sha512_final_impl(out, sha);
168 }
169
SHA384_Update(SHA512_CTX * sha,const void * data,size_t len)170 int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
171 return SHA512_Update(sha, data, len);
172 }
173
SHA512_256_Update(SHA512_CTX * sha,const void * data,size_t len)174 int SHA512_256_Update(SHA512_CTX *sha, const void *data, size_t len) {
175 return SHA512_Update(sha, data, len);
176 }
177
SHA512_256_Final(uint8_t out[SHA512_256_DIGEST_LENGTH],SHA512_CTX * sha)178 int SHA512_256_Final(uint8_t out[SHA512_256_DIGEST_LENGTH], SHA512_CTX *sha) {
179 // |SHA512_256_Init| sets |sha->md_len| to |SHA512_256_DIGEST_LENGTH|, so this
180 // has a |smaller output.
181 assert(sha->md_len == SHA512_256_DIGEST_LENGTH);
182 return sha512_final_impl(out, sha);
183 }
184
SHA512_Transform(SHA512_CTX * c,const uint8_t block[SHA512_CBLOCK])185 void SHA512_Transform(SHA512_CTX *c, const uint8_t block[SHA512_CBLOCK]) {
186 sha512_block_data_order(c->h, block, 1);
187 }
188
SHA512_Update(SHA512_CTX * c,const void * in_data,size_t len)189 int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
190 uint64_t l;
191 uint8_t *p = c->p;
192 const uint8_t *data = in_data;
193
194 if (len == 0) {
195 return 1;
196 }
197
198 l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
199 if (l < c->Nl) {
200 c->Nh++;
201 }
202 if (sizeof(len) >= 8) {
203 c->Nh += (((uint64_t)len) >> 61);
204 }
205 c->Nl = l;
206
207 if (c->num != 0) {
208 size_t n = sizeof(c->p) - c->num;
209
210 if (len < n) {
211 OPENSSL_memcpy(p + c->num, data, len);
212 c->num += (unsigned int)len;
213 return 1;
214 } else {
215 OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
216 len -= n;
217 data += n;
218 sha512_block_data_order(c->h, p, 1);
219 }
220 }
221
222 if (len >= sizeof(c->p)) {
223 sha512_block_data_order(c->h, data, len / sizeof(c->p));
224 data += len;
225 len %= sizeof(c->p);
226 data -= len;
227 }
228
229 if (len != 0) {
230 OPENSSL_memcpy(p, data, len);
231 c->num = (int)len;
232 }
233
234 return 1;
235 }
236
SHA512_Final(uint8_t out[SHA512_DIGEST_LENGTH],SHA512_CTX * sha)237 int SHA512_Final(uint8_t out[SHA512_DIGEST_LENGTH], SHA512_CTX *sha) {
238 // Ideally we would assert |sha->md_len| is |SHA512_DIGEST_LENGTH| to match
239 // the size hint, but calling code often pairs |SHA384_Init| with
240 // |SHA512_Final| and expects |sha->md_len| to carry the size over.
241 //
242 // TODO(davidben): Add an assert and fix code to match them up.
243 return sha512_final_impl(out, sha);
244 }
245
sha512_final_impl(uint8_t * out,SHA512_CTX * sha)246 static int sha512_final_impl(uint8_t *out, SHA512_CTX *sha) {
247 uint8_t *p = sha->p;
248 size_t n = sha->num;
249
250 p[n] = 0x80; // There always is a room for one
251 n++;
252 if (n > (sizeof(sha->p) - 16)) {
253 OPENSSL_memset(p + n, 0, sizeof(sha->p) - n);
254 n = 0;
255 sha512_block_data_order(sha->h, p, 1);
256 }
257
258 OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n);
259 CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, sha->Nh);
260 CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, sha->Nl);
261
262 sha512_block_data_order(sha->h, p, 1);
263
264 if (out == NULL) {
265 // TODO(davidben): This NULL check is absent in other low-level hash 'final'
266 // functions and is one of the few places one can fail.
267 return 0;
268 }
269
270 assert(sha->md_len % 8 == 0);
271 const size_t out_words = sha->md_len / 8;
272 for (size_t i = 0; i < out_words; i++) {
273 CRYPTO_store_u64_be(out, sha->h[i]);
274 out += 8;
275 }
276
277 return 1;
278 }
279
280 #ifndef SHA512_ASM
281 static const uint64_t K512[80] = {
282 UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
283 UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
284 UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
285 UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
286 UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
287 UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
288 UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
289 UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
290 UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
291 UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
292 UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
293 UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
294 UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
295 UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
296 UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
297 UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
298 UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
299 UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
300 UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
301 UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
302 UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
303 UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
304 UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
305 UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
306 UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
307 UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
308 UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
309 UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
310 UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
311 UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
312 UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
313 UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
314 UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
315 UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
316 UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
317 UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
318 UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
319 UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
320 UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
321 UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
322 };
323
324 #if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
325 #if defined(__x86_64) || defined(__x86_64__)
326 #define ROTR(a, n) \
327 ({ \
328 uint64_t ret; \
329 __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
330 ret; \
331 })
332 #elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
333 #define ROTR(a, n) \
334 ({ \
335 uint64_t ret; \
336 __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \
337 ret; \
338 })
339 #elif defined(__aarch64__)
340 #define ROTR(a, n) \
341 ({ \
342 uint64_t ret; \
343 __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \
344 ret; \
345 })
346 #endif
347 #elif defined(_MSC_VER) && defined(_WIN64)
348 #pragma intrinsic(_rotr64)
349 #define ROTR(a, n) _rotr64((a), n)
350 #endif
351
352 #ifndef ROTR
353 #define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
354 #endif
355
356 #define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
357 #define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
358 #define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
359 #define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
360
361 #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
362 #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
363
364
365 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
366 // This code should give better results on 32-bit CPU with less than
367 // ~24 registers, both size and performance wise...
sha512_block_data_order(uint64_t * state,const uint8_t * in,size_t num)368 static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
369 size_t num) {
370 uint64_t A, E, T;
371 uint64_t X[9 + 80], *F;
372 int i;
373
374 while (num--) {
375 F = X + 80;
376 A = state[0];
377 F[1] = state[1];
378 F[2] = state[2];
379 F[3] = state[3];
380 E = state[4];
381 F[5] = state[5];
382 F[6] = state[6];
383 F[7] = state[7];
384
385 for (i = 0; i < 16; i++, F--) {
386 T = CRYPTO_load_u64_be(in + i * 8);
387 F[0] = A;
388 F[4] = E;
389 F[8] = T;
390 T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
391 E = F[3] + T;
392 A = T + Sigma0(A) + Maj(A, F[1], F[2]);
393 }
394
395 for (; i < 80; i++, F--) {
396 T = sigma0(F[8 + 16 - 1]);
397 T += sigma1(F[8 + 16 - 14]);
398 T += F[8 + 16] + F[8 + 16 - 9];
399
400 F[0] = A;
401 F[4] = E;
402 F[8] = T;
403 T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
404 E = F[3] + T;
405 A = T + Sigma0(A) + Maj(A, F[1], F[2]);
406 }
407
408 state[0] += A;
409 state[1] += F[1];
410 state[2] += F[2];
411 state[3] += F[3];
412 state[4] += E;
413 state[5] += F[5];
414 state[6] += F[6];
415 state[7] += F[7];
416
417 in += 16 * 8;
418 }
419 }
420
421 #else
422
423 #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
424 do { \
425 T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
426 h = Sigma0(a) + Maj(a, b, c); \
427 d += T1; \
428 h += T1; \
429 } while (0)
430
431 #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
432 do { \
433 s0 = X[(j + 1) & 0x0f]; \
434 s0 = sigma0(s0); \
435 s1 = X[(j + 14) & 0x0f]; \
436 s1 = sigma1(s1); \
437 T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
438 ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
439 } while (0)
440
sha512_block_data_order(uint64_t * state,const uint8_t * in,size_t num)441 static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
442 size_t num) {
443 uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
444 uint64_t X[16];
445 int i;
446
447 while (num--) {
448
449 a = state[0];
450 b = state[1];
451 c = state[2];
452 d = state[3];
453 e = state[4];
454 f = state[5];
455 g = state[6];
456 h = state[7];
457
458 T1 = X[0] = CRYPTO_load_u64_be(in);
459 ROUND_00_15(0, a, b, c, d, e, f, g, h);
460 T1 = X[1] = CRYPTO_load_u64_be(in + 8);
461 ROUND_00_15(1, h, a, b, c, d, e, f, g);
462 T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8);
463 ROUND_00_15(2, g, h, a, b, c, d, e, f);
464 T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8);
465 ROUND_00_15(3, f, g, h, a, b, c, d, e);
466 T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8);
467 ROUND_00_15(4, e, f, g, h, a, b, c, d);
468 T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8);
469 ROUND_00_15(5, d, e, f, g, h, a, b, c);
470 T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8);
471 ROUND_00_15(6, c, d, e, f, g, h, a, b);
472 T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8);
473 ROUND_00_15(7, b, c, d, e, f, g, h, a);
474 T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8);
475 ROUND_00_15(8, a, b, c, d, e, f, g, h);
476 T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8);
477 ROUND_00_15(9, h, a, b, c, d, e, f, g);
478 T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8);
479 ROUND_00_15(10, g, h, a, b, c, d, e, f);
480 T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8);
481 ROUND_00_15(11, f, g, h, a, b, c, d, e);
482 T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8);
483 ROUND_00_15(12, e, f, g, h, a, b, c, d);
484 T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8);
485 ROUND_00_15(13, d, e, f, g, h, a, b, c);
486 T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8);
487 ROUND_00_15(14, c, d, e, f, g, h, a, b);
488 T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8);
489 ROUND_00_15(15, b, c, d, e, f, g, h, a);
490
491 for (i = 16; i < 80; i += 16) {
492 ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
493 ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
494 ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
495 ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
496 ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
497 ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
498 ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
499 ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
500 ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
501 ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
502 ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
503 ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
504 ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
505 ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
506 ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
507 ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
508 }
509
510 state[0] += a;
511 state[1] += b;
512 state[2] += c;
513 state[3] += d;
514 state[4] += e;
515 state[5] += f;
516 state[6] += g;
517 state[7] += h;
518
519 in += 16 * 8;
520 }
521 }
522
523 #endif
524
525 #endif // !SHA512_ASM
526
527 #undef ROTR
528 #undef Sigma0
529 #undef Sigma1
530 #undef sigma0
531 #undef sigma1
532 #undef Ch
533 #undef Maj
534 #undef ROUND_00_15
535 #undef ROUND_16_80
536