• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*!
2     Defines the drawing elements, the high-level drawing unit in Plotters drawing system
3 
4     ## Introduction
5     An element is the drawing unit for Plotter's high-level drawing API.
6     Different from low-level drawing API, an element is a logic unit of component in the image.
7     There are few built-in elements, including `Circle`, `Pixel`, `Rectangle`, `Path`, `Text`, etc.
8 
9     All element can be drawn onto the drawing area using API `DrawingArea::draw(...)`.
10     Plotters use "iterator of elements" as the abstraction of any type of plot.
11 
12     ## Implementing your own element
13     You can also define your own element, `CandleStick` is a good sample of implementing complex
14     element. There are two trait required for an element:
15 
16     - `PointCollection` - the struct should be able to return an iterator of key-points under guest coordinate
17     - `Drawable` - the struct is a pending drawing operation on a drawing backend with pixel-based coordinate
18 
19     An example of element that draws a red "X" in a red rectangle onto the backend:
20 
21     ```rust
22     use std::iter::{Once, once};
23     use plotters::element::{PointCollection, Drawable};
24     use plotters_backend::{BackendCoord, DrawingErrorKind, BackendStyle};
25     use plotters::style::IntoTextStyle;
26     use plotters::prelude::*;
27 
28     // Any example drawing a red X
29     struct RedBoxedX((i32, i32));
30 
31     // For any reference to RedX, we can convert it into an iterator of points
32     impl <'a> PointCollection<'a, (i32, i32)> for &'a RedBoxedX {
33         type Point = &'a (i32, i32);
34         type IntoIter = Once<&'a (i32, i32)>;
35         fn point_iter(self) -> Self::IntoIter {
36             once(&self.0)
37         }
38     }
39 
40     // How to actually draw this element
41     impl <DB:DrawingBackend> Drawable<DB> for RedBoxedX {
42         fn draw<I:Iterator<Item = BackendCoord>>(
43             &self,
44             mut pos: I,
45             backend: &mut DB,
46             _: (u32, u32),
47         ) -> Result<(), DrawingErrorKind<DB::ErrorType>> {
48             let pos = pos.next().unwrap();
49             backend.draw_rect(pos, (pos.0 + 10, pos.1 + 12), &RED, false)?;
50             let text_style = &("sans-serif", 20).into_text_style(&backend.get_size()).color(&RED);
51             backend.draw_text("X", text_style, pos)
52         }
53     }
54 
55     fn main() -> Result<(), Box<dyn std::error::Error>> {
56         let root = BitMapBackend::new(
57             "plotters-doc-data/element-0.png",
58             (640, 480)
59         ).into_drawing_area();
60         root.draw(&RedBoxedX((200, 200)))?;
61         Ok(())
62     }
63     ```
64       ![](https://plotters-rs.github.io/plotters-doc-data/element-0.png)
65 
66       ## Composable Elements
67       You also have an convenient way to build an element that isn't built into the Plotters library by
68       combining existing elements into a logic group. To build an composable element, you need to use an
69       logic empty element that draws nothing to the backend but denotes the relative zero point of the logical
70       group. Any element defined with pixel based offset coordinate can be added into the group later using
71       the `+` operator.
72 
73       For example, the red boxed X element can be implemented with Composable element in the following way:
74     ```rust
75     use plotters::prelude::*;
76     fn main() -> Result<(), Box<dyn std::error::Error>> {
77         let root = BitMapBackend::new(
78             "plotters-doc-data/element-1.png",
79             (640, 480)
80         ).into_drawing_area();
81         let font:FontDesc = ("sans-serif", 20).into();
82         root.draw(&(EmptyElement::at((200, 200))
83                 + Text::new("X", (0, 0), &"sans-serif".into_font().resize(20.0).color(&RED))
84                 + Rectangle::new([(0,0), (10, 12)], &RED)
85         ))?;
86         Ok(())
87     }
88     ```
89     ![](https://plotters-rs.github.io/plotters-doc-data/element-1.png)
90 
91     ## Dynamic Elements
92     By default, Plotters uses static dispatch for all the elements and series. For example,
93     the `ChartContext::draw_series` method accepts an iterator of `T` where type `T` implements
94     all the traits a element should implement. Although, we can use the series of composable element
95     for complex series drawing. But sometimes, we still want to make the series heterogynous, which means
96     the iterator should be able to holds elements in different type.
97     For example, a point series with cross and circle. This requires the dynamically dispatched elements.
98     In plotters, all the elements can be converted into `DynElement`, the dynamic dispatch container for
99     all elements (include external implemented ones).
100     Plotters automatically implements `IntoDynElement` for all elements, by doing so, any dynamic element should have
101     `into_dyn` function which would wrap the element into a dynamic element wrapper.
102 
103     For example, the following code counts the number of factors of integer and mark all prime numbers in cross.
104     ```rust
105     use plotters::prelude::*;
106     fn num_of_factor(n: i32) -> i32 {
107         let mut ret = 2;
108         for i in 2..n {
109             if i * i > n {
110                 break;
111             }
112 
113             if n % i == 0 {
114                 if i * i != n {
115                     ret += 2;
116                 } else {
117                     ret += 1;
118                 }
119             }
120         }
121         return ret;
122     }
123     fn main() -> Result<(), Box<dyn std::error::Error>> {
124         let root =
125             BitMapBackend::new("plotters-doc-data/element-3.png", (640, 480))
126             .into_drawing_area();
127         root.fill(&WHITE)?;
128         let mut chart = ChartBuilder::on(&root)
129             .x_label_area_size(40)
130             .y_label_area_size(40)
131             .margin(5)
132             .build_cartesian_2d(0..50, 0..10)?;
133 
134         chart
135             .configure_mesh()
136             .disable_x_mesh()
137             .disable_y_mesh()
138             .draw()?;
139 
140         chart.draw_series((0..50).map(|x| {
141             let center = (x, num_of_factor(x));
142             // Although the arms of if statement has different types,
143             // but they can be placed into a dynamic element wrapper,
144             // by doing so, the type is unified.
145             if center.1 == 2 {
146                 Cross::new(center, 4, Into::<ShapeStyle>::into(&RED).filled()).into_dyn()
147             } else {
148                 Circle::new(center, 4, Into::<ShapeStyle>::into(&GREEN).filled()).into_dyn()
149             }
150         }))?;
151 
152         Ok(())
153     }
154     ```
155     ![](https://plotters-rs.github.io/plotters-doc-data/element-3.png)
156 */
157 use plotters_backend::{BackendCoord, DrawingBackend, DrawingErrorKind};
158 use std::borrow::Borrow;
159 
160 mod basic_shapes;
161 pub use basic_shapes::*;
162 
163 mod basic_shapes_3d;
164 pub use basic_shapes_3d::*;
165 
166 mod text;
167 pub use text::*;
168 
169 mod points;
170 pub use points::*;
171 
172 mod composable;
173 pub use composable::{ComposedElement, EmptyElement};
174 
175 #[cfg(feature = "candlestick")]
176 mod candlestick;
177 #[cfg(feature = "candlestick")]
178 #[cfg_attr(doc_cfg, doc(cfg(feature = "candlestick")))]
179 pub use candlestick::CandleStick;
180 
181 #[cfg(feature = "errorbar")]
182 mod errorbar;
183 #[cfg(feature = "errorbar")]
184 #[cfg_attr(doc_cfg, doc(cfg(feature = "errorbar")))]
185 pub use errorbar::{ErrorBar, ErrorBarOrientH, ErrorBarOrientV};
186 
187 #[cfg(feature = "boxplot")]
188 mod boxplot;
189 #[cfg(feature = "boxplot")]
190 #[cfg_attr(doc_cfg, doc(cfg(feature = "boxplot")))]
191 pub use boxplot::Boxplot;
192 
193 #[cfg(feature = "bitmap_backend")]
194 mod image;
195 #[cfg(feature = "bitmap_backend")]
196 #[cfg_attr(doc_cfg, doc(cfg(feature = "bitmap_backend")))]
197 pub use self::image::BitMapElement;
198 
199 mod dynelem;
200 pub use dynelem::{DynElement, IntoDynElement};
201 
202 mod pie;
203 pub use pie::Pie;
204 
205 use crate::coord::CoordTranslate;
206 use crate::drawing::Rect;
207 
208 /// A type which is logically a collection of points, under any given coordinate system.
209 /// Note: Ideally, a point collection trait should be any type of which coordinate elements can be
210 /// iterated. This is similar to `iter` method of many collection types in std.
211 ///
212 /// ```ignore
213 /// trait PointCollection<Coord> {
214 ///     type PointIter<'a> : Iterator<Item = &'a Coord>;
215 ///     fn iter(&self) -> PointIter<'a>;
216 /// }
217 /// ```
218 ///
219 /// However,
220 /// [Generic Associated Types](https://github.com/rust-lang/rfcs/blob/master/text/1598-generic_associated_types.md)
221 /// is far away from stabilize.
222 /// So currently we have the following workaround:
223 ///
224 /// Instead of implement the PointCollection trait on the element type itself, it implements on the
225 /// reference to the element. By doing so, we now have a well-defined lifetime for the iterator.
226 ///
227 /// In addition, for some element, the coordinate is computed on the fly, thus we can't hard-code
228 /// the iterator's return type is `&'a Coord`.
229 /// `Borrow` trait seems to strict in this case, since we don't need the order and hash
230 /// preservation properties at this point. However, `AsRef` doesn't work with `Coord`
231 ///
232 /// This workaround also leads overly strict lifetime bound on `ChartContext::draw_series`.
233 ///
234 /// TODO: Once GAT is ready on stable Rust, we should simplify the design.
235 ///
236 pub trait PointCollection<'a, Coord, CM = BackendCoordOnly> {
237     /// The item in point iterator
238     type Point: Borrow<Coord> + 'a;
239 
240     /// The point iterator
241     type IntoIter: IntoIterator<Item = Self::Point>;
242 
243     /// framework to do the coordinate mapping
point_iter(self) -> Self::IntoIter244     fn point_iter(self) -> Self::IntoIter;
245 }
246 /// The trait indicates we are able to draw it on a drawing area
247 pub trait Drawable<DB: DrawingBackend, CM: CoordMapper = BackendCoordOnly> {
248     /// Actually draws the element. The key points is already translated into the
249     /// image coordinate and can be used by DC directly
draw<I: Iterator<Item = CM::Output>>( &self, pos: I, backend: &mut DB, parent_dim: (u32, u32), ) -> Result<(), DrawingErrorKind<DB::ErrorType>>250     fn draw<I: Iterator<Item = CM::Output>>(
251         &self,
252         pos: I,
253         backend: &mut DB,
254         parent_dim: (u32, u32),
255     ) -> Result<(), DrawingErrorKind<DB::ErrorType>>;
256 }
257 
258 /// Useful to translate from guest coordinates to backend coordinates
259 pub trait CoordMapper {
260     /// Specifies the output data from the translation
261     type Output;
262     /// Performs the translation from guest coordinates to backend coordinates
map<CT: CoordTranslate>(coord_trans: &CT, from: &CT::From, rect: &Rect) -> Self::Output263     fn map<CT: CoordTranslate>(coord_trans: &CT, from: &CT::From, rect: &Rect) -> Self::Output;
264 }
265 
266 /// Used for 2d coordinate transformations.
267 pub struct BackendCoordOnly;
268 
269 impl CoordMapper for BackendCoordOnly {
270     type Output = BackendCoord;
map<CT: CoordTranslate>(coord_trans: &CT, from: &CT::From, rect: &Rect) -> BackendCoord271     fn map<CT: CoordTranslate>(coord_trans: &CT, from: &CT::From, rect: &Rect) -> BackendCoord {
272         rect.truncate(coord_trans.translate(from))
273     }
274 }
275 
276 /**
277 Used for 3d coordinate transformations.
278 
279 See [`Cubiod`] for more information and an example.
280 */
281 pub struct BackendCoordAndZ;
282 
283 impl CoordMapper for BackendCoordAndZ {
284     type Output = (BackendCoord, i32);
map<CT: CoordTranslate>( coord_trans: &CT, from: &CT::From, rect: &Rect, ) -> (BackendCoord, i32)285     fn map<CT: CoordTranslate>(
286         coord_trans: &CT,
287         from: &CT::From,
288         rect: &Rect,
289     ) -> (BackendCoord, i32) {
290         let coord = rect.truncate(coord_trans.translate(from));
291         let z = coord_trans.depth(from);
292         (coord, z)
293     }
294 }
295