1 // Generated from mat.rs.tera template. Edit the template, not the generated file.
2
3 use crate::{
4 euler::{FromEuler, ToEuler},
5 f32::math,
6 swizzles::*,
7 DMat3, EulerRot, Mat2, Mat3A, Mat4, Quat, Vec2, Vec3, Vec3A,
8 };
9 use core::fmt;
10 use core::iter::{Product, Sum};
11 use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
12
13 /// Creates a 3x3 matrix from three column vectors.
14 #[inline(always)]
15 #[must_use]
mat3(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Mat316 pub const fn mat3(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Mat3 {
17 Mat3::from_cols(x_axis, y_axis, z_axis)
18 }
19
20 /// A 3x3 column major matrix.
21 ///
22 /// This 3x3 matrix type features convenience methods for creating and using linear and
23 /// affine transformations. If you are primarily dealing with 2D affine transformations the
24 /// [`Affine2`](crate::Affine2) type is much faster and more space efficient than
25 /// using a 3x3 matrix.
26 ///
27 /// Linear transformations including 3D rotation and scale can be created using methods
28 /// such as [`Self::from_diagonal()`], [`Self::from_quat()`], [`Self::from_axis_angle()`],
29 /// [`Self::from_rotation_x()`], [`Self::from_rotation_y()`], or
30 /// [`Self::from_rotation_z()`].
31 ///
32 /// The resulting matrices can be use to transform 3D vectors using regular vector
33 /// multiplication.
34 ///
35 /// Affine transformations including 2D translation, rotation and scale can be created
36 /// using methods such as [`Self::from_translation()`], [`Self::from_angle()`],
37 /// [`Self::from_scale()`] and [`Self::from_scale_angle_translation()`].
38 ///
39 /// The [`Self::transform_point2()`] and [`Self::transform_vector2()`] convenience methods
40 /// are provided for performing affine transforms on 2D vectors and points. These multiply
41 /// 2D inputs as 3D vectors with an implicit `z` value of `1` for points and `0` for
42 /// vectors respectively. These methods assume that `Self` contains a valid affine
43 /// transform.
44 #[derive(Clone, Copy)]
45 #[repr(C)]
46 pub struct Mat3 {
47 pub x_axis: Vec3,
48 pub y_axis: Vec3,
49 pub z_axis: Vec3,
50 }
51
52 impl Mat3 {
53 /// A 3x3 matrix with all elements set to `0.0`.
54 pub const ZERO: Self = Self::from_cols(Vec3::ZERO, Vec3::ZERO, Vec3::ZERO);
55
56 /// A 3x3 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`.
57 pub const IDENTITY: Self = Self::from_cols(Vec3::X, Vec3::Y, Vec3::Z);
58
59 /// All NAN:s.
60 pub const NAN: Self = Self::from_cols(Vec3::NAN, Vec3::NAN, Vec3::NAN);
61
62 #[allow(clippy::too_many_arguments)]
63 #[inline(always)]
64 #[must_use]
new( m00: f32, m01: f32, m02: f32, m10: f32, m11: f32, m12: f32, m20: f32, m21: f32, m22: f32, ) -> Self65 const fn new(
66 m00: f32,
67 m01: f32,
68 m02: f32,
69 m10: f32,
70 m11: f32,
71 m12: f32,
72 m20: f32,
73 m21: f32,
74 m22: f32,
75 ) -> Self {
76 Self {
77 x_axis: Vec3::new(m00, m01, m02),
78 y_axis: Vec3::new(m10, m11, m12),
79 z_axis: Vec3::new(m20, m21, m22),
80 }
81 }
82
83 /// Creates a 3x3 matrix from three column vectors.
84 #[inline(always)]
85 #[must_use]
from_cols(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Self86 pub const fn from_cols(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Self {
87 Self {
88 x_axis,
89 y_axis,
90 z_axis,
91 }
92 }
93
94 /// Creates a 3x3 matrix from a `[f32; 9]` array stored in column major order.
95 /// If your data is stored in row major you will need to `transpose` the returned
96 /// matrix.
97 #[inline]
98 #[must_use]
from_cols_array(m: &[f32; 9]) -> Self99 pub const fn from_cols_array(m: &[f32; 9]) -> Self {
100 Self::new(m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8])
101 }
102
103 /// Creates a `[f32; 9]` array storing data in column major order.
104 /// If you require data in row major order `transpose` the matrix first.
105 #[inline]
106 #[must_use]
to_cols_array(&self) -> [f32; 9]107 pub const fn to_cols_array(&self) -> [f32; 9] {
108 [
109 self.x_axis.x,
110 self.x_axis.y,
111 self.x_axis.z,
112 self.y_axis.x,
113 self.y_axis.y,
114 self.y_axis.z,
115 self.z_axis.x,
116 self.z_axis.y,
117 self.z_axis.z,
118 ]
119 }
120
121 /// Creates a 3x3 matrix from a `[[f32; 3]; 3]` 3D array stored in column major order.
122 /// If your data is in row major order you will need to `transpose` the returned
123 /// matrix.
124 #[inline]
125 #[must_use]
from_cols_array_2d(m: &[[f32; 3]; 3]) -> Self126 pub const fn from_cols_array_2d(m: &[[f32; 3]; 3]) -> Self {
127 Self::from_cols(
128 Vec3::from_array(m[0]),
129 Vec3::from_array(m[1]),
130 Vec3::from_array(m[2]),
131 )
132 }
133
134 /// Creates a `[[f32; 3]; 3]` 3D array storing data in column major order.
135 /// If you require data in row major order `transpose` the matrix first.
136 #[inline]
137 #[must_use]
to_cols_array_2d(&self) -> [[f32; 3]; 3]138 pub const fn to_cols_array_2d(&self) -> [[f32; 3]; 3] {
139 [
140 self.x_axis.to_array(),
141 self.y_axis.to_array(),
142 self.z_axis.to_array(),
143 ]
144 }
145
146 /// Creates a 3x3 matrix with its diagonal set to `diagonal` and all other entries set to 0.
147 #[doc(alias = "scale")]
148 #[inline]
149 #[must_use]
from_diagonal(diagonal: Vec3) -> Self150 pub const fn from_diagonal(diagonal: Vec3) -> Self {
151 Self::new(
152 diagonal.x, 0.0, 0.0, 0.0, diagonal.y, 0.0, 0.0, 0.0, diagonal.z,
153 )
154 }
155
156 /// Creates a 3x3 matrix from a 4x4 matrix, discarding the 4th row and column.
157 #[inline]
158 #[must_use]
from_mat4(m: Mat4) -> Self159 pub fn from_mat4(m: Mat4) -> Self {
160 Self::from_cols(
161 Vec3::from_vec4(m.x_axis),
162 Vec3::from_vec4(m.y_axis),
163 Vec3::from_vec4(m.z_axis),
164 )
165 }
166
167 /// Creates a 3x3 matrix from the minor of the given 4x4 matrix, discarding the `i`th column
168 /// and `j`th row.
169 ///
170 /// # Panics
171 ///
172 /// Panics if `i` or `j` is greater than 3.
173 #[inline]
174 #[must_use]
from_mat4_minor(m: Mat4, i: usize, j: usize) -> Self175 pub fn from_mat4_minor(m: Mat4, i: usize, j: usize) -> Self {
176 match (i, j) {
177 (0, 0) => Self::from_cols(m.y_axis.yzw(), m.z_axis.yzw(), m.w_axis.yzw()),
178 (0, 1) => Self::from_cols(m.y_axis.xzw(), m.z_axis.xzw(), m.w_axis.xzw()),
179 (0, 2) => Self::from_cols(m.y_axis.xyw(), m.z_axis.xyw(), m.w_axis.xyw()),
180 (0, 3) => Self::from_cols(m.y_axis.xyz(), m.z_axis.xyz(), m.w_axis.xyz()),
181 (1, 0) => Self::from_cols(m.x_axis.yzw(), m.z_axis.yzw(), m.w_axis.yzw()),
182 (1, 1) => Self::from_cols(m.x_axis.xzw(), m.z_axis.xzw(), m.w_axis.xzw()),
183 (1, 2) => Self::from_cols(m.x_axis.xyw(), m.z_axis.xyw(), m.w_axis.xyw()),
184 (1, 3) => Self::from_cols(m.x_axis.xyz(), m.z_axis.xyz(), m.w_axis.xyz()),
185 (2, 0) => Self::from_cols(m.x_axis.yzw(), m.y_axis.yzw(), m.w_axis.yzw()),
186 (2, 1) => Self::from_cols(m.x_axis.xzw(), m.y_axis.xzw(), m.w_axis.xzw()),
187 (2, 2) => Self::from_cols(m.x_axis.xyw(), m.y_axis.xyw(), m.w_axis.xyw()),
188 (2, 3) => Self::from_cols(m.x_axis.xyz(), m.y_axis.xyz(), m.w_axis.xyz()),
189 (3, 0) => Self::from_cols(m.x_axis.yzw(), m.y_axis.yzw(), m.z_axis.yzw()),
190 (3, 1) => Self::from_cols(m.x_axis.xzw(), m.y_axis.xzw(), m.z_axis.xzw()),
191 (3, 2) => Self::from_cols(m.x_axis.xyw(), m.y_axis.xyw(), m.z_axis.xyw()),
192 (3, 3) => Self::from_cols(m.x_axis.xyz(), m.y_axis.xyz(), m.z_axis.xyz()),
193 _ => panic!("index out of bounds"),
194 }
195 }
196
197 /// Creates a 3D rotation matrix from the given quaternion.
198 ///
199 /// # Panics
200 ///
201 /// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
202 #[inline]
203 #[must_use]
from_quat(rotation: Quat) -> Self204 pub fn from_quat(rotation: Quat) -> Self {
205 glam_assert!(rotation.is_normalized());
206
207 let x2 = rotation.x + rotation.x;
208 let y2 = rotation.y + rotation.y;
209 let z2 = rotation.z + rotation.z;
210 let xx = rotation.x * x2;
211 let xy = rotation.x * y2;
212 let xz = rotation.x * z2;
213 let yy = rotation.y * y2;
214 let yz = rotation.y * z2;
215 let zz = rotation.z * z2;
216 let wx = rotation.w * x2;
217 let wy = rotation.w * y2;
218 let wz = rotation.w * z2;
219
220 Self::from_cols(
221 Vec3::new(1.0 - (yy + zz), xy + wz, xz - wy),
222 Vec3::new(xy - wz, 1.0 - (xx + zz), yz + wx),
223 Vec3::new(xz + wy, yz - wx, 1.0 - (xx + yy)),
224 )
225 }
226
227 /// Creates a 3D rotation matrix from a normalized rotation `axis` and `angle` (in
228 /// radians).
229 ///
230 /// # Panics
231 ///
232 /// Will panic if `axis` is not normalized when `glam_assert` is enabled.
233 #[inline]
234 #[must_use]
from_axis_angle(axis: Vec3, angle: f32) -> Self235 pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self {
236 glam_assert!(axis.is_normalized());
237
238 let (sin, cos) = math::sin_cos(angle);
239 let (xsin, ysin, zsin) = axis.mul(sin).into();
240 let (x, y, z) = axis.into();
241 let (x2, y2, z2) = axis.mul(axis).into();
242 let omc = 1.0 - cos;
243 let xyomc = x * y * omc;
244 let xzomc = x * z * omc;
245 let yzomc = y * z * omc;
246 Self::from_cols(
247 Vec3::new(x2 * omc + cos, xyomc + zsin, xzomc - ysin),
248 Vec3::new(xyomc - zsin, y2 * omc + cos, yzomc + xsin),
249 Vec3::new(xzomc + ysin, yzomc - xsin, z2 * omc + cos),
250 )
251 }
252
253 /// Creates a 3D rotation matrix from the given euler rotation sequence and the angles (in
254 /// radians).
255 #[inline]
256 #[must_use]
from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Self257 pub fn from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Self {
258 Self::from_euler_angles(order, a, b, c)
259 }
260
261 /// Extract Euler angles with the given Euler rotation order.
262 ///
263 /// Note if the input matrix contains scales, shears, or other non-rotation transformations then
264 /// the resulting Euler angles will be ill-defined.
265 ///
266 /// # Panics
267 ///
268 /// Will panic if any input matrix column is not normalized when `glam_assert` is enabled.
269 #[inline]
270 #[must_use]
to_euler(&self, order: EulerRot) -> (f32, f32, f32)271 pub fn to_euler(&self, order: EulerRot) -> (f32, f32, f32) {
272 glam_assert!(
273 self.x_axis.is_normalized()
274 && self.y_axis.is_normalized()
275 && self.z_axis.is_normalized()
276 );
277 self.to_euler_angles(order)
278 }
279
280 /// Creates a 3D rotation matrix from `angle` (in radians) around the x axis.
281 #[inline]
282 #[must_use]
from_rotation_x(angle: f32) -> Self283 pub fn from_rotation_x(angle: f32) -> Self {
284 let (sina, cosa) = math::sin_cos(angle);
285 Self::from_cols(
286 Vec3::X,
287 Vec3::new(0.0, cosa, sina),
288 Vec3::new(0.0, -sina, cosa),
289 )
290 }
291
292 /// Creates a 3D rotation matrix from `angle` (in radians) around the y axis.
293 #[inline]
294 #[must_use]
from_rotation_y(angle: f32) -> Self295 pub fn from_rotation_y(angle: f32) -> Self {
296 let (sina, cosa) = math::sin_cos(angle);
297 Self::from_cols(
298 Vec3::new(cosa, 0.0, -sina),
299 Vec3::Y,
300 Vec3::new(sina, 0.0, cosa),
301 )
302 }
303
304 /// Creates a 3D rotation matrix from `angle` (in radians) around the z axis.
305 #[inline]
306 #[must_use]
from_rotation_z(angle: f32) -> Self307 pub fn from_rotation_z(angle: f32) -> Self {
308 let (sina, cosa) = math::sin_cos(angle);
309 Self::from_cols(
310 Vec3::new(cosa, sina, 0.0),
311 Vec3::new(-sina, cosa, 0.0),
312 Vec3::Z,
313 )
314 }
315
316 /// Creates an affine transformation matrix from the given 2D `translation`.
317 ///
318 /// The resulting matrix can be used to transform 2D points and vectors. See
319 /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
320 #[inline]
321 #[must_use]
from_translation(translation: Vec2) -> Self322 pub fn from_translation(translation: Vec2) -> Self {
323 Self::from_cols(
324 Vec3::X,
325 Vec3::Y,
326 Vec3::new(translation.x, translation.y, 1.0),
327 )
328 }
329
330 /// Creates an affine transformation matrix from the given 2D rotation `angle` (in
331 /// radians).
332 ///
333 /// The resulting matrix can be used to transform 2D points and vectors. See
334 /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
335 #[inline]
336 #[must_use]
from_angle(angle: f32) -> Self337 pub fn from_angle(angle: f32) -> Self {
338 let (sin, cos) = math::sin_cos(angle);
339 Self::from_cols(Vec3::new(cos, sin, 0.0), Vec3::new(-sin, cos, 0.0), Vec3::Z)
340 }
341
342 /// Creates an affine transformation matrix from the given 2D `scale`, rotation `angle` (in
343 /// radians) and `translation`.
344 ///
345 /// The resulting matrix can be used to transform 2D points and vectors. See
346 /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
347 #[inline]
348 #[must_use]
from_scale_angle_translation(scale: Vec2, angle: f32, translation: Vec2) -> Self349 pub fn from_scale_angle_translation(scale: Vec2, angle: f32, translation: Vec2) -> Self {
350 let (sin, cos) = math::sin_cos(angle);
351 Self::from_cols(
352 Vec3::new(cos * scale.x, sin * scale.x, 0.0),
353 Vec3::new(-sin * scale.y, cos * scale.y, 0.0),
354 Vec3::new(translation.x, translation.y, 1.0),
355 )
356 }
357
358 /// Creates an affine transformation matrix from the given non-uniform 2D `scale`.
359 ///
360 /// The resulting matrix can be used to transform 2D points and vectors. See
361 /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
362 ///
363 /// # Panics
364 ///
365 /// Will panic if all elements of `scale` are zero when `glam_assert` is enabled.
366 #[inline]
367 #[must_use]
from_scale(scale: Vec2) -> Self368 pub fn from_scale(scale: Vec2) -> Self {
369 // Do not panic as long as any component is non-zero
370 glam_assert!(scale.cmpne(Vec2::ZERO).any());
371
372 Self::from_cols(
373 Vec3::new(scale.x, 0.0, 0.0),
374 Vec3::new(0.0, scale.y, 0.0),
375 Vec3::Z,
376 )
377 }
378
379 /// Creates an affine transformation matrix from the given 2x2 matrix.
380 ///
381 /// The resulting matrix can be used to transform 2D points and vectors. See
382 /// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
383 #[inline]
from_mat2(m: Mat2) -> Self384 pub fn from_mat2(m: Mat2) -> Self {
385 Self::from_cols((m.x_axis, 0.0).into(), (m.y_axis, 0.0).into(), Vec3::Z)
386 }
387
388 /// Creates a 3x3 matrix from the first 9 values in `slice`.
389 ///
390 /// # Panics
391 ///
392 /// Panics if `slice` is less than 9 elements long.
393 #[inline]
394 #[must_use]
from_cols_slice(slice: &[f32]) -> Self395 pub const fn from_cols_slice(slice: &[f32]) -> Self {
396 Self::new(
397 slice[0], slice[1], slice[2], slice[3], slice[4], slice[5], slice[6], slice[7],
398 slice[8],
399 )
400 }
401
402 /// Writes the columns of `self` to the first 9 elements in `slice`.
403 ///
404 /// # Panics
405 ///
406 /// Panics if `slice` is less than 9 elements long.
407 #[inline]
write_cols_to_slice(self, slice: &mut [f32])408 pub fn write_cols_to_slice(self, slice: &mut [f32]) {
409 slice[0] = self.x_axis.x;
410 slice[1] = self.x_axis.y;
411 slice[2] = self.x_axis.z;
412 slice[3] = self.y_axis.x;
413 slice[4] = self.y_axis.y;
414 slice[5] = self.y_axis.z;
415 slice[6] = self.z_axis.x;
416 slice[7] = self.z_axis.y;
417 slice[8] = self.z_axis.z;
418 }
419
420 /// Returns the matrix column for the given `index`.
421 ///
422 /// # Panics
423 ///
424 /// Panics if `index` is greater than 2.
425 #[inline]
426 #[must_use]
col(&self, index: usize) -> Vec3427 pub fn col(&self, index: usize) -> Vec3 {
428 match index {
429 0 => self.x_axis,
430 1 => self.y_axis,
431 2 => self.z_axis,
432 _ => panic!("index out of bounds"),
433 }
434 }
435
436 /// Returns a mutable reference to the matrix column for the given `index`.
437 ///
438 /// # Panics
439 ///
440 /// Panics if `index` is greater than 2.
441 #[inline]
col_mut(&mut self, index: usize) -> &mut Vec3442 pub fn col_mut(&mut self, index: usize) -> &mut Vec3 {
443 match index {
444 0 => &mut self.x_axis,
445 1 => &mut self.y_axis,
446 2 => &mut self.z_axis,
447 _ => panic!("index out of bounds"),
448 }
449 }
450
451 /// Returns the matrix row for the given `index`.
452 ///
453 /// # Panics
454 ///
455 /// Panics if `index` is greater than 2.
456 #[inline]
457 #[must_use]
row(&self, index: usize) -> Vec3458 pub fn row(&self, index: usize) -> Vec3 {
459 match index {
460 0 => Vec3::new(self.x_axis.x, self.y_axis.x, self.z_axis.x),
461 1 => Vec3::new(self.x_axis.y, self.y_axis.y, self.z_axis.y),
462 2 => Vec3::new(self.x_axis.z, self.y_axis.z, self.z_axis.z),
463 _ => panic!("index out of bounds"),
464 }
465 }
466
467 /// Returns `true` if, and only if, all elements are finite.
468 /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
469 #[inline]
470 #[must_use]
is_finite(&self) -> bool471 pub fn is_finite(&self) -> bool {
472 self.x_axis.is_finite() && self.y_axis.is_finite() && self.z_axis.is_finite()
473 }
474
475 /// Returns `true` if any elements are `NaN`.
476 #[inline]
477 #[must_use]
is_nan(&self) -> bool478 pub fn is_nan(&self) -> bool {
479 self.x_axis.is_nan() || self.y_axis.is_nan() || self.z_axis.is_nan()
480 }
481
482 /// Returns the transpose of `self`.
483 #[inline]
484 #[must_use]
transpose(&self) -> Self485 pub fn transpose(&self) -> Self {
486 Self {
487 x_axis: Vec3::new(self.x_axis.x, self.y_axis.x, self.z_axis.x),
488 y_axis: Vec3::new(self.x_axis.y, self.y_axis.y, self.z_axis.y),
489 z_axis: Vec3::new(self.x_axis.z, self.y_axis.z, self.z_axis.z),
490 }
491 }
492
493 /// Returns the determinant of `self`.
494 #[inline]
495 #[must_use]
determinant(&self) -> f32496 pub fn determinant(&self) -> f32 {
497 self.z_axis.dot(self.x_axis.cross(self.y_axis))
498 }
499
500 /// Returns the inverse of `self`.
501 ///
502 /// If the matrix is not invertible the returned matrix will be invalid.
503 ///
504 /// # Panics
505 ///
506 /// Will panic if the determinant of `self` is zero when `glam_assert` is enabled.
507 #[inline]
508 #[must_use]
inverse(&self) -> Self509 pub fn inverse(&self) -> Self {
510 let tmp0 = self.y_axis.cross(self.z_axis);
511 let tmp1 = self.z_axis.cross(self.x_axis);
512 let tmp2 = self.x_axis.cross(self.y_axis);
513 let det = self.z_axis.dot(tmp2);
514 glam_assert!(det != 0.0);
515 let inv_det = Vec3::splat(det.recip());
516 Self::from_cols(tmp0.mul(inv_det), tmp1.mul(inv_det), tmp2.mul(inv_det)).transpose()
517 }
518
519 /// Transforms the given 2D vector as a point.
520 ///
521 /// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `1`.
522 ///
523 /// This method assumes that `self` contains a valid affine transform.
524 ///
525 /// # Panics
526 ///
527 /// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled.
528 #[inline]
529 #[must_use]
transform_point2(&self, rhs: Vec2) -> Vec2530 pub fn transform_point2(&self, rhs: Vec2) -> Vec2 {
531 glam_assert!(self.row(2).abs_diff_eq(Vec3::Z, 1e-6));
532 Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs + self.z_axis.xy()
533 }
534
535 /// Rotates the given 2D vector.
536 ///
537 /// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `0`.
538 ///
539 /// This method assumes that `self` contains a valid affine transform.
540 ///
541 /// # Panics
542 ///
543 /// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled.
544 #[inline]
545 #[must_use]
transform_vector2(&self, rhs: Vec2) -> Vec2546 pub fn transform_vector2(&self, rhs: Vec2) -> Vec2 {
547 glam_assert!(self.row(2).abs_diff_eq(Vec3::Z, 1e-6));
548 Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs
549 }
550
551 /// Creates a left-handed view matrix using a facing direction and an up direction.
552 ///
553 /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`.
554 ///
555 /// # Panics
556 ///
557 /// Will panic if `dir` or `up` are not normalized when `glam_assert` is enabled.
558 #[inline]
559 #[must_use]
look_to_lh(dir: Vec3, up: Vec3) -> Self560 pub fn look_to_lh(dir: Vec3, up: Vec3) -> Self {
561 Self::look_to_rh(-dir, up)
562 }
563
564 /// Creates a right-handed view matrix using a facing direction and an up direction.
565 ///
566 /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`.
567 ///
568 /// # Panics
569 ///
570 /// Will panic if `dir` or `up` are not normalized when `glam_assert` is enabled.
571 #[inline]
572 #[must_use]
look_to_rh(dir: Vec3, up: Vec3) -> Self573 pub fn look_to_rh(dir: Vec3, up: Vec3) -> Self {
574 glam_assert!(dir.is_normalized());
575 glam_assert!(up.is_normalized());
576 let f = dir;
577 let s = f.cross(up).normalize();
578 let u = s.cross(f);
579
580 Self::from_cols(
581 Vec3::new(s.x, u.x, -f.x),
582 Vec3::new(s.y, u.y, -f.y),
583 Vec3::new(s.z, u.z, -f.z),
584 )
585 }
586
587 /// Creates a left-handed view matrix using a camera position, a focal point and an up
588 /// direction.
589 ///
590 /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`.
591 ///
592 /// # Panics
593 ///
594 /// Will panic if `up` is not normalized when `glam_assert` is enabled.
595 #[inline]
596 #[must_use]
look_at_lh(eye: Vec3, center: Vec3, up: Vec3) -> Self597 pub fn look_at_lh(eye: Vec3, center: Vec3, up: Vec3) -> Self {
598 Self::look_to_lh(center.sub(eye).normalize(), up)
599 }
600
601 /// Creates a right-handed view matrix using a camera position, a focal point and an up
602 /// direction.
603 ///
604 /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`.
605 ///
606 /// # Panics
607 ///
608 /// Will panic if `up` is not normalized when `glam_assert` is enabled.
609 #[inline]
look_at_rh(eye: Vec3, center: Vec3, up: Vec3) -> Self610 pub fn look_at_rh(eye: Vec3, center: Vec3, up: Vec3) -> Self {
611 Self::look_to_rh(center.sub(eye).normalize(), up)
612 }
613
614 /// Transforms a 3D vector.
615 #[inline]
616 #[must_use]
mul_vec3(&self, rhs: Vec3) -> Vec3617 pub fn mul_vec3(&self, rhs: Vec3) -> Vec3 {
618 let mut res = self.x_axis.mul(rhs.x);
619 res = res.add(self.y_axis.mul(rhs.y));
620 res = res.add(self.z_axis.mul(rhs.z));
621 res
622 }
623
624 /// Transforms a [`Vec3A`].
625 #[inline]
626 #[must_use]
mul_vec3a(&self, rhs: Vec3A) -> Vec3A627 pub fn mul_vec3a(&self, rhs: Vec3A) -> Vec3A {
628 self.mul_vec3(rhs.into()).into()
629 }
630
631 /// Multiplies two 3x3 matrices.
632 #[inline]
633 #[must_use]
mul_mat3(&self, rhs: &Self) -> Self634 pub fn mul_mat3(&self, rhs: &Self) -> Self {
635 Self::from_cols(
636 self.mul(rhs.x_axis),
637 self.mul(rhs.y_axis),
638 self.mul(rhs.z_axis),
639 )
640 }
641
642 /// Adds two 3x3 matrices.
643 #[inline]
644 #[must_use]
add_mat3(&self, rhs: &Self) -> Self645 pub fn add_mat3(&self, rhs: &Self) -> Self {
646 Self::from_cols(
647 self.x_axis.add(rhs.x_axis),
648 self.y_axis.add(rhs.y_axis),
649 self.z_axis.add(rhs.z_axis),
650 )
651 }
652
653 /// Subtracts two 3x3 matrices.
654 #[inline]
655 #[must_use]
sub_mat3(&self, rhs: &Self) -> Self656 pub fn sub_mat3(&self, rhs: &Self) -> Self {
657 Self::from_cols(
658 self.x_axis.sub(rhs.x_axis),
659 self.y_axis.sub(rhs.y_axis),
660 self.z_axis.sub(rhs.z_axis),
661 )
662 }
663
664 /// Multiplies a 3x3 matrix by a scalar.
665 #[inline]
666 #[must_use]
mul_scalar(&self, rhs: f32) -> Self667 pub fn mul_scalar(&self, rhs: f32) -> Self {
668 Self::from_cols(
669 self.x_axis.mul(rhs),
670 self.y_axis.mul(rhs),
671 self.z_axis.mul(rhs),
672 )
673 }
674
675 /// Divides a 3x3 matrix by a scalar.
676 #[inline]
677 #[must_use]
div_scalar(&self, rhs: f32) -> Self678 pub fn div_scalar(&self, rhs: f32) -> Self {
679 let rhs = Vec3::splat(rhs);
680 Self::from_cols(
681 self.x_axis.div(rhs),
682 self.y_axis.div(rhs),
683 self.z_axis.div(rhs),
684 )
685 }
686
687 /// Returns true if the absolute difference of all elements between `self` and `rhs`
688 /// is less than or equal to `max_abs_diff`.
689 ///
690 /// This can be used to compare if two matrices contain similar elements. It works best
691 /// when comparing with a known value. The `max_abs_diff` that should be used used
692 /// depends on the values being compared against.
693 ///
694 /// For more see
695 /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
696 #[inline]
697 #[must_use]
abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool698 pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool {
699 self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff)
700 && self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff)
701 && self.z_axis.abs_diff_eq(rhs.z_axis, max_abs_diff)
702 }
703
704 /// Takes the absolute value of each element in `self`
705 #[inline]
706 #[must_use]
abs(&self) -> Self707 pub fn abs(&self) -> Self {
708 Self::from_cols(self.x_axis.abs(), self.y_axis.abs(), self.z_axis.abs())
709 }
710
711 #[inline]
as_dmat3(&self) -> DMat3712 pub fn as_dmat3(&self) -> DMat3 {
713 DMat3::from_cols(
714 self.x_axis.as_dvec3(),
715 self.y_axis.as_dvec3(),
716 self.z_axis.as_dvec3(),
717 )
718 }
719 }
720
721 impl Default for Mat3 {
722 #[inline]
default() -> Self723 fn default() -> Self {
724 Self::IDENTITY
725 }
726 }
727
728 impl Add<Mat3> for Mat3 {
729 type Output = Self;
730 #[inline]
add(self, rhs: Self) -> Self::Output731 fn add(self, rhs: Self) -> Self::Output {
732 self.add_mat3(&rhs)
733 }
734 }
735
736 impl AddAssign<Mat3> for Mat3 {
737 #[inline]
add_assign(&mut self, rhs: Self)738 fn add_assign(&mut self, rhs: Self) {
739 *self = self.add_mat3(&rhs);
740 }
741 }
742
743 impl Sub<Mat3> for Mat3 {
744 type Output = Self;
745 #[inline]
sub(self, rhs: Self) -> Self::Output746 fn sub(self, rhs: Self) -> Self::Output {
747 self.sub_mat3(&rhs)
748 }
749 }
750
751 impl SubAssign<Mat3> for Mat3 {
752 #[inline]
sub_assign(&mut self, rhs: Self)753 fn sub_assign(&mut self, rhs: Self) {
754 *self = self.sub_mat3(&rhs);
755 }
756 }
757
758 impl Neg for Mat3 {
759 type Output = Self;
760 #[inline]
neg(self) -> Self::Output761 fn neg(self) -> Self::Output {
762 Self::from_cols(self.x_axis.neg(), self.y_axis.neg(), self.z_axis.neg())
763 }
764 }
765
766 impl Mul<Mat3> for Mat3 {
767 type Output = Self;
768 #[inline]
mul(self, rhs: Self) -> Self::Output769 fn mul(self, rhs: Self) -> Self::Output {
770 self.mul_mat3(&rhs)
771 }
772 }
773
774 impl MulAssign<Mat3> for Mat3 {
775 #[inline]
mul_assign(&mut self, rhs: Self)776 fn mul_assign(&mut self, rhs: Self) {
777 *self = self.mul_mat3(&rhs);
778 }
779 }
780
781 impl Mul<Vec3> for Mat3 {
782 type Output = Vec3;
783 #[inline]
mul(self, rhs: Vec3) -> Self::Output784 fn mul(self, rhs: Vec3) -> Self::Output {
785 self.mul_vec3(rhs)
786 }
787 }
788
789 impl Mul<Mat3> for f32 {
790 type Output = Mat3;
791 #[inline]
mul(self, rhs: Mat3) -> Self::Output792 fn mul(self, rhs: Mat3) -> Self::Output {
793 rhs.mul_scalar(self)
794 }
795 }
796
797 impl Mul<f32> for Mat3 {
798 type Output = Self;
799 #[inline]
mul(self, rhs: f32) -> Self::Output800 fn mul(self, rhs: f32) -> Self::Output {
801 self.mul_scalar(rhs)
802 }
803 }
804
805 impl MulAssign<f32> for Mat3 {
806 #[inline]
mul_assign(&mut self, rhs: f32)807 fn mul_assign(&mut self, rhs: f32) {
808 *self = self.mul_scalar(rhs);
809 }
810 }
811
812 impl Div<Mat3> for f32 {
813 type Output = Mat3;
814 #[inline]
div(self, rhs: Mat3) -> Self::Output815 fn div(self, rhs: Mat3) -> Self::Output {
816 rhs.div_scalar(self)
817 }
818 }
819
820 impl Div<f32> for Mat3 {
821 type Output = Self;
822 #[inline]
div(self, rhs: f32) -> Self::Output823 fn div(self, rhs: f32) -> Self::Output {
824 self.div_scalar(rhs)
825 }
826 }
827
828 impl DivAssign<f32> for Mat3 {
829 #[inline]
div_assign(&mut self, rhs: f32)830 fn div_assign(&mut self, rhs: f32) {
831 *self = self.div_scalar(rhs);
832 }
833 }
834
835 impl Mul<Vec3A> for Mat3 {
836 type Output = Vec3A;
837 #[inline]
mul(self, rhs: Vec3A) -> Vec3A838 fn mul(self, rhs: Vec3A) -> Vec3A {
839 self.mul_vec3a(rhs)
840 }
841 }
842
843 impl From<Mat3A> for Mat3 {
844 #[inline]
from(m: Mat3A) -> Self845 fn from(m: Mat3A) -> Self {
846 Self {
847 x_axis: m.x_axis.into(),
848 y_axis: m.y_axis.into(),
849 z_axis: m.z_axis.into(),
850 }
851 }
852 }
853
854 impl Sum<Self> for Mat3 {
sum<I>(iter: I) -> Self where I: Iterator<Item = Self>,855 fn sum<I>(iter: I) -> Self
856 where
857 I: Iterator<Item = Self>,
858 {
859 iter.fold(Self::ZERO, Self::add)
860 }
861 }
862
863 impl<'a> Sum<&'a Self> for Mat3 {
sum<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,864 fn sum<I>(iter: I) -> Self
865 where
866 I: Iterator<Item = &'a Self>,
867 {
868 iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
869 }
870 }
871
872 impl Product for Mat3 {
product<I>(iter: I) -> Self where I: Iterator<Item = Self>,873 fn product<I>(iter: I) -> Self
874 where
875 I: Iterator<Item = Self>,
876 {
877 iter.fold(Self::IDENTITY, Self::mul)
878 }
879 }
880
881 impl<'a> Product<&'a Self> for Mat3 {
product<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,882 fn product<I>(iter: I) -> Self
883 where
884 I: Iterator<Item = &'a Self>,
885 {
886 iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
887 }
888 }
889
890 impl PartialEq for Mat3 {
891 #[inline]
eq(&self, rhs: &Self) -> bool892 fn eq(&self, rhs: &Self) -> bool {
893 self.x_axis.eq(&rhs.x_axis) && self.y_axis.eq(&rhs.y_axis) && self.z_axis.eq(&rhs.z_axis)
894 }
895 }
896
897 #[cfg(not(target_arch = "spirv"))]
898 impl AsRef<[f32; 9]> for Mat3 {
899 #[inline]
as_ref(&self) -> &[f32; 9]900 fn as_ref(&self) -> &[f32; 9] {
901 unsafe { &*(self as *const Self as *const [f32; 9]) }
902 }
903 }
904
905 #[cfg(not(target_arch = "spirv"))]
906 impl AsMut<[f32; 9]> for Mat3 {
907 #[inline]
as_mut(&mut self) -> &mut [f32; 9]908 fn as_mut(&mut self) -> &mut [f32; 9] {
909 unsafe { &mut *(self as *mut Self as *mut [f32; 9]) }
910 }
911 }
912
913 impl fmt::Debug for Mat3 {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result914 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
915 fmt.debug_struct(stringify!(Mat3))
916 .field("x_axis", &self.x_axis)
917 .field("y_axis", &self.y_axis)
918 .field("z_axis", &self.z_axis)
919 .finish()
920 }
921 }
922
923 impl fmt::Display for Mat3 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result924 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
925 if let Some(p) = f.precision() {
926 write!(
927 f,
928 "[{:.*}, {:.*}, {:.*}]",
929 p, self.x_axis, p, self.y_axis, p, self.z_axis
930 )
931 } else {
932 write!(f, "[{}, {}, {}]", self.x_axis, self.y_axis, self.z_axis)
933 }
934 }
935 }
936