• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Generated from vec.rs.tera template. Edit the template, not the generated file.
2 
3 #[cfg(feature = "scalar-math")]
4 use crate::BVec4 as BVec4A;
5 
6 #[cfg(not(feature = "scalar-math"))]
7 use crate::BVec4A;
8 use crate::{f32::math, BVec4, Vec2, Vec3, Vec3A};
9 
10 use core::fmt;
11 use core::iter::{Product, Sum};
12 use core::{f32, ops::*};
13 
14 /// Creates a 4-dimensional vector.
15 #[inline(always)]
16 #[must_use]
vec4(x: f32, y: f32, z: f32, w: f32) -> Vec417 pub const fn vec4(x: f32, y: f32, z: f32, w: f32) -> Vec4 {
18     Vec4::new(x, y, z, w)
19 }
20 
21 /// A 4-dimensional vector.
22 #[derive(Clone, Copy, PartialEq)]
23 #[cfg_attr(
24     any(
25         not(any(feature = "scalar-math", target_arch = "spirv")),
26         feature = "cuda"
27     ),
28     repr(align(16))
29 )]
30 #[cfg_attr(not(target_arch = "spirv"), repr(C))]
31 #[cfg_attr(target_arch = "spirv", repr(simd))]
32 pub struct Vec4 {
33     pub x: f32,
34     pub y: f32,
35     pub z: f32,
36     pub w: f32,
37 }
38 
39 impl Vec4 {
40     /// All zeroes.
41     pub const ZERO: Self = Self::splat(0.0);
42 
43     /// All ones.
44     pub const ONE: Self = Self::splat(1.0);
45 
46     /// All negative ones.
47     pub const NEG_ONE: Self = Self::splat(-1.0);
48 
49     /// All `f32::MIN`.
50     pub const MIN: Self = Self::splat(f32::MIN);
51 
52     /// All `f32::MAX`.
53     pub const MAX: Self = Self::splat(f32::MAX);
54 
55     /// All `f32::NAN`.
56     pub const NAN: Self = Self::splat(f32::NAN);
57 
58     /// All `f32::INFINITY`.
59     pub const INFINITY: Self = Self::splat(f32::INFINITY);
60 
61     /// All `f32::NEG_INFINITY`.
62     pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
63 
64     /// A unit vector pointing along the positive X axis.
65     pub const X: Self = Self::new(1.0, 0.0, 0.0, 0.0);
66 
67     /// A unit vector pointing along the positive Y axis.
68     pub const Y: Self = Self::new(0.0, 1.0, 0.0, 0.0);
69 
70     /// A unit vector pointing along the positive Z axis.
71     pub const Z: Self = Self::new(0.0, 0.0, 1.0, 0.0);
72 
73     /// A unit vector pointing along the positive W axis.
74     pub const W: Self = Self::new(0.0, 0.0, 0.0, 1.0);
75 
76     /// A unit vector pointing along the negative X axis.
77     pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0, 0.0);
78 
79     /// A unit vector pointing along the negative Y axis.
80     pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0, 0.0);
81 
82     /// A unit vector pointing along the negative Z axis.
83     pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0, 0.0);
84 
85     /// A unit vector pointing along the negative W axis.
86     pub const NEG_W: Self = Self::new(0.0, 0.0, 0.0, -1.0);
87 
88     /// The unit axes.
89     pub const AXES: [Self; 4] = [Self::X, Self::Y, Self::Z, Self::W];
90 
91     /// Creates a new vector.
92     #[inline(always)]
93     #[must_use]
new(x: f32, y: f32, z: f32, w: f32) -> Self94     pub const fn new(x: f32, y: f32, z: f32, w: f32) -> Self {
95         Self { x, y, z, w }
96     }
97 
98     /// Creates a vector with all elements set to `v`.
99     #[inline]
100     #[must_use]
splat(v: f32) -> Self101     pub const fn splat(v: f32) -> Self {
102         Self {
103             x: v,
104 
105             y: v,
106 
107             z: v,
108 
109             w: v,
110         }
111     }
112 
113     /// Returns a vector containing each element of `self` modified by a mapping function `f`.
114     #[inline]
115     #[must_use]
map<F>(self, f: F) -> Self where F: Fn(f32) -> f32,116     pub fn map<F>(self, f: F) -> Self
117     where
118         F: Fn(f32) -> f32,
119     {
120         Self::new(f(self.x), f(self.y), f(self.z), f(self.w))
121     }
122 
123     /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
124     /// for each element of `self`.
125     ///
126     /// A true element in the mask uses the corresponding element from `if_true`, and false
127     /// uses the element from `if_false`.
128     #[inline]
129     #[must_use]
select(mask: BVec4A, if_true: Self, if_false: Self) -> Self130     pub fn select(mask: BVec4A, if_true: Self, if_false: Self) -> Self {
131         Self {
132             x: if mask.test(0) { if_true.x } else { if_false.x },
133             y: if mask.test(1) { if_true.y } else { if_false.y },
134             z: if mask.test(2) { if_true.z } else { if_false.z },
135             w: if mask.test(3) { if_true.w } else { if_false.w },
136         }
137     }
138 
139     /// Creates a new vector from an array.
140     #[inline]
141     #[must_use]
from_array(a: [f32; 4]) -> Self142     pub const fn from_array(a: [f32; 4]) -> Self {
143         Self::new(a[0], a[1], a[2], a[3])
144     }
145 
146     /// `[x, y, z, w]`
147     #[inline]
148     #[must_use]
to_array(&self) -> [f32; 4]149     pub const fn to_array(&self) -> [f32; 4] {
150         [self.x, self.y, self.z, self.w]
151     }
152 
153     /// Creates a vector from the first 4 values in `slice`.
154     ///
155     /// # Panics
156     ///
157     /// Panics if `slice` is less than 4 elements long.
158     #[inline]
159     #[must_use]
from_slice(slice: &[f32]) -> Self160     pub const fn from_slice(slice: &[f32]) -> Self {
161         assert!(slice.len() >= 4);
162         Self::new(slice[0], slice[1], slice[2], slice[3])
163     }
164 
165     /// Writes the elements of `self` to the first 4 elements in `slice`.
166     ///
167     /// # Panics
168     ///
169     /// Panics if `slice` is less than 4 elements long.
170     #[inline]
write_to_slice(self, slice: &mut [f32])171     pub fn write_to_slice(self, slice: &mut [f32]) {
172         slice[..4].copy_from_slice(&self.to_array());
173     }
174 
175     /// Creates a 3D vector from the `x`, `y` and `z` elements of `self`, discarding `w`.
176     ///
177     /// Truncation to [`Vec3`] may also be performed by using [`self.xyz()`][crate::swizzles::Vec4Swizzles::xyz()].
178     ///
179     /// To truncate to [`Vec3A`] use [`Vec3A::from_vec4()`].
180     #[inline]
181     #[must_use]
truncate(self) -> Vec3182     pub fn truncate(self) -> Vec3 {
183         use crate::swizzles::Vec4Swizzles;
184         self.xyz()
185     }
186 
187     /// Creates a 4D vector from `self` with the given value of `x`.
188     #[inline]
189     #[must_use]
with_x(mut self, x: f32) -> Self190     pub fn with_x(mut self, x: f32) -> Self {
191         self.x = x;
192         self
193     }
194 
195     /// Creates a 4D vector from `self` with the given value of `y`.
196     #[inline]
197     #[must_use]
with_y(mut self, y: f32) -> Self198     pub fn with_y(mut self, y: f32) -> Self {
199         self.y = y;
200         self
201     }
202 
203     /// Creates a 4D vector from `self` with the given value of `z`.
204     #[inline]
205     #[must_use]
with_z(mut self, z: f32) -> Self206     pub fn with_z(mut self, z: f32) -> Self {
207         self.z = z;
208         self
209     }
210 
211     /// Creates a 4D vector from `self` with the given value of `w`.
212     #[inline]
213     #[must_use]
with_w(mut self, w: f32) -> Self214     pub fn with_w(mut self, w: f32) -> Self {
215         self.w = w;
216         self
217     }
218 
219     /// Computes the dot product of `self` and `rhs`.
220     #[inline]
221     #[must_use]
dot(self, rhs: Self) -> f32222     pub fn dot(self, rhs: Self) -> f32 {
223         (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z) + (self.w * rhs.w)
224     }
225 
226     /// Returns a vector where every component is the dot product of `self` and `rhs`.
227     #[inline]
228     #[must_use]
dot_into_vec(self, rhs: Self) -> Self229     pub fn dot_into_vec(self, rhs: Self) -> Self {
230         Self::splat(self.dot(rhs))
231     }
232 
233     /// Returns a vector containing the minimum values for each element of `self` and `rhs`.
234     ///
235     /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
236     #[inline]
237     #[must_use]
min(self, rhs: Self) -> Self238     pub fn min(self, rhs: Self) -> Self {
239         Self {
240             x: self.x.min(rhs.x),
241             y: self.y.min(rhs.y),
242             z: self.z.min(rhs.z),
243             w: self.w.min(rhs.w),
244         }
245     }
246 
247     /// Returns a vector containing the maximum values for each element of `self` and `rhs`.
248     ///
249     /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
250     #[inline]
251     #[must_use]
max(self, rhs: Self) -> Self252     pub fn max(self, rhs: Self) -> Self {
253         Self {
254             x: self.x.max(rhs.x),
255             y: self.y.max(rhs.y),
256             z: self.z.max(rhs.z),
257             w: self.w.max(rhs.w),
258         }
259     }
260 
261     /// Component-wise clamping of values, similar to [`f32::clamp`].
262     ///
263     /// Each element in `min` must be less-or-equal to the corresponding element in `max`.
264     ///
265     /// # Panics
266     ///
267     /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
268     #[inline]
269     #[must_use]
clamp(self, min: Self, max: Self) -> Self270     pub fn clamp(self, min: Self, max: Self) -> Self {
271         glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
272         self.max(min).min(max)
273     }
274 
275     /// Returns the horizontal minimum of `self`.
276     ///
277     /// In other words this computes `min(x, y, ..)`.
278     #[inline]
279     #[must_use]
min_element(self) -> f32280     pub fn min_element(self) -> f32 {
281         self.x.min(self.y.min(self.z.min(self.w)))
282     }
283 
284     /// Returns the horizontal maximum of `self`.
285     ///
286     /// In other words this computes `max(x, y, ..)`.
287     #[inline]
288     #[must_use]
max_element(self) -> f32289     pub fn max_element(self) -> f32 {
290         self.x.max(self.y.max(self.z.max(self.w)))
291     }
292 
293     /// Returns the sum of all elements of `self`.
294     ///
295     /// In other words, this computes `self.x + self.y + ..`.
296     #[inline]
297     #[must_use]
element_sum(self) -> f32298     pub fn element_sum(self) -> f32 {
299         self.x + self.y + self.z + self.w
300     }
301 
302     /// Returns the product of all elements of `self`.
303     ///
304     /// In other words, this computes `self.x * self.y * ..`.
305     #[inline]
306     #[must_use]
element_product(self) -> f32307     pub fn element_product(self) -> f32 {
308         self.x * self.y * self.z * self.w
309     }
310 
311     /// Returns a vector mask containing the result of a `==` comparison for each element of
312     /// `self` and `rhs`.
313     ///
314     /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
315     /// elements.
316     #[inline]
317     #[must_use]
cmpeq(self, rhs: Self) -> BVec4A318     pub fn cmpeq(self, rhs: Self) -> BVec4A {
319         BVec4A::new(
320             self.x.eq(&rhs.x),
321             self.y.eq(&rhs.y),
322             self.z.eq(&rhs.z),
323             self.w.eq(&rhs.w),
324         )
325     }
326 
327     /// Returns a vector mask containing the result of a `!=` comparison for each element of
328     /// `self` and `rhs`.
329     ///
330     /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
331     /// elements.
332     #[inline]
333     #[must_use]
cmpne(self, rhs: Self) -> BVec4A334     pub fn cmpne(self, rhs: Self) -> BVec4A {
335         BVec4A::new(
336             self.x.ne(&rhs.x),
337             self.y.ne(&rhs.y),
338             self.z.ne(&rhs.z),
339             self.w.ne(&rhs.w),
340         )
341     }
342 
343     /// Returns a vector mask containing the result of a `>=` comparison for each element of
344     /// `self` and `rhs`.
345     ///
346     /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
347     /// elements.
348     #[inline]
349     #[must_use]
cmpge(self, rhs: Self) -> BVec4A350     pub fn cmpge(self, rhs: Self) -> BVec4A {
351         BVec4A::new(
352             self.x.ge(&rhs.x),
353             self.y.ge(&rhs.y),
354             self.z.ge(&rhs.z),
355             self.w.ge(&rhs.w),
356         )
357     }
358 
359     /// Returns a vector mask containing the result of a `>` comparison for each element of
360     /// `self` and `rhs`.
361     ///
362     /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
363     /// elements.
364     #[inline]
365     #[must_use]
cmpgt(self, rhs: Self) -> BVec4A366     pub fn cmpgt(self, rhs: Self) -> BVec4A {
367         BVec4A::new(
368             self.x.gt(&rhs.x),
369             self.y.gt(&rhs.y),
370             self.z.gt(&rhs.z),
371             self.w.gt(&rhs.w),
372         )
373     }
374 
375     /// Returns a vector mask containing the result of a `<=` comparison for each element of
376     /// `self` and `rhs`.
377     ///
378     /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
379     /// elements.
380     #[inline]
381     #[must_use]
cmple(self, rhs: Self) -> BVec4A382     pub fn cmple(self, rhs: Self) -> BVec4A {
383         BVec4A::new(
384             self.x.le(&rhs.x),
385             self.y.le(&rhs.y),
386             self.z.le(&rhs.z),
387             self.w.le(&rhs.w),
388         )
389     }
390 
391     /// Returns a vector mask containing the result of a `<` comparison for each element of
392     /// `self` and `rhs`.
393     ///
394     /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
395     /// elements.
396     #[inline]
397     #[must_use]
cmplt(self, rhs: Self) -> BVec4A398     pub fn cmplt(self, rhs: Self) -> BVec4A {
399         BVec4A::new(
400             self.x.lt(&rhs.x),
401             self.y.lt(&rhs.y),
402             self.z.lt(&rhs.z),
403             self.w.lt(&rhs.w),
404         )
405     }
406 
407     /// Returns a vector containing the absolute value of each element of `self`.
408     #[inline]
409     #[must_use]
abs(self) -> Self410     pub fn abs(self) -> Self {
411         Self {
412             x: math::abs(self.x),
413             y: math::abs(self.y),
414             z: math::abs(self.z),
415             w: math::abs(self.w),
416         }
417     }
418 
419     /// Returns a vector with elements representing the sign of `self`.
420     ///
421     /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
422     /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
423     /// - `NAN` if the number is `NAN`
424     #[inline]
425     #[must_use]
signum(self) -> Self426     pub fn signum(self) -> Self {
427         Self {
428             x: math::signum(self.x),
429             y: math::signum(self.y),
430             z: math::signum(self.z),
431             w: math::signum(self.w),
432         }
433     }
434 
435     /// Returns a vector with signs of `rhs` and the magnitudes of `self`.
436     #[inline]
437     #[must_use]
copysign(self, rhs: Self) -> Self438     pub fn copysign(self, rhs: Self) -> Self {
439         Self {
440             x: math::copysign(self.x, rhs.x),
441             y: math::copysign(self.y, rhs.y),
442             z: math::copysign(self.z, rhs.z),
443             w: math::copysign(self.w, rhs.w),
444         }
445     }
446 
447     /// Returns a bitmask with the lowest 4 bits set to the sign bits from the elements of `self`.
448     ///
449     /// A negative element results in a `1` bit and a positive element in a `0` bit.  Element `x` goes
450     /// into the first lowest bit, element `y` into the second, etc.
451     #[inline]
452     #[must_use]
is_negative_bitmask(self) -> u32453     pub fn is_negative_bitmask(self) -> u32 {
454         (self.x.is_sign_negative() as u32)
455             | (self.y.is_sign_negative() as u32) << 1
456             | (self.z.is_sign_negative() as u32) << 2
457             | (self.w.is_sign_negative() as u32) << 3
458     }
459 
460     /// Returns `true` if, and only if, all elements are finite.  If any element is either
461     /// `NaN`, positive or negative infinity, this will return `false`.
462     #[inline]
463     #[must_use]
is_finite(self) -> bool464     pub fn is_finite(self) -> bool {
465         self.x.is_finite() && self.y.is_finite() && self.z.is_finite() && self.w.is_finite()
466     }
467 
468     /// Performs `is_finite` on each element of self, returning a vector mask of the results.
469     ///
470     /// In other words, this computes `[x.is_finite(), y.is_finite(), ...]`.
is_finite_mask(self) -> BVec4A471     pub fn is_finite_mask(self) -> BVec4A {
472         BVec4A::new(
473             self.x.is_finite(),
474             self.y.is_finite(),
475             self.z.is_finite(),
476             self.w.is_finite(),
477         )
478     }
479 
480     /// Returns `true` if any elements are `NaN`.
481     #[inline]
482     #[must_use]
is_nan(self) -> bool483     pub fn is_nan(self) -> bool {
484         self.x.is_nan() || self.y.is_nan() || self.z.is_nan() || self.w.is_nan()
485     }
486 
487     /// Performs `is_nan` on each element of self, returning a vector mask of the results.
488     ///
489     /// In other words, this computes `[x.is_nan(), y.is_nan(), ...]`.
490     #[inline]
491     #[must_use]
is_nan_mask(self) -> BVec4A492     pub fn is_nan_mask(self) -> BVec4A {
493         BVec4A::new(
494             self.x.is_nan(),
495             self.y.is_nan(),
496             self.z.is_nan(),
497             self.w.is_nan(),
498         )
499     }
500 
501     /// Computes the length of `self`.
502     #[doc(alias = "magnitude")]
503     #[inline]
504     #[must_use]
length(self) -> f32505     pub fn length(self) -> f32 {
506         math::sqrt(self.dot(self))
507     }
508 
509     /// Computes the squared length of `self`.
510     ///
511     /// This is faster than `length()` as it avoids a square root operation.
512     #[doc(alias = "magnitude2")]
513     #[inline]
514     #[must_use]
length_squared(self) -> f32515     pub fn length_squared(self) -> f32 {
516         self.dot(self)
517     }
518 
519     /// Computes `1.0 / length()`.
520     ///
521     /// For valid results, `self` must _not_ be of length zero.
522     #[inline]
523     #[must_use]
length_recip(self) -> f32524     pub fn length_recip(self) -> f32 {
525         self.length().recip()
526     }
527 
528     /// Computes the Euclidean distance between two points in space.
529     #[inline]
530     #[must_use]
distance(self, rhs: Self) -> f32531     pub fn distance(self, rhs: Self) -> f32 {
532         (self - rhs).length()
533     }
534 
535     /// Compute the squared euclidean distance between two points in space.
536     #[inline]
537     #[must_use]
distance_squared(self, rhs: Self) -> f32538     pub fn distance_squared(self, rhs: Self) -> f32 {
539         (self - rhs).length_squared()
540     }
541 
542     /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
543     #[inline]
544     #[must_use]
div_euclid(self, rhs: Self) -> Self545     pub fn div_euclid(self, rhs: Self) -> Self {
546         Self::new(
547             math::div_euclid(self.x, rhs.x),
548             math::div_euclid(self.y, rhs.y),
549             math::div_euclid(self.z, rhs.z),
550             math::div_euclid(self.w, rhs.w),
551         )
552     }
553 
554     /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
555     ///
556     /// [Euclidean division]: f32::rem_euclid
557     #[inline]
558     #[must_use]
rem_euclid(self, rhs: Self) -> Self559     pub fn rem_euclid(self, rhs: Self) -> Self {
560         Self::new(
561             math::rem_euclid(self.x, rhs.x),
562             math::rem_euclid(self.y, rhs.y),
563             math::rem_euclid(self.z, rhs.z),
564             math::rem_euclid(self.w, rhs.w),
565         )
566     }
567 
568     /// Returns `self` normalized to length 1.0.
569     ///
570     /// For valid results, `self` must be finite and _not_ of length zero, nor very close to zero.
571     ///
572     /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
573     ///
574     /// Panics
575     ///
576     /// Will panic if the resulting normalized vector is not finite when `glam_assert` is enabled.
577     #[inline]
578     #[must_use]
normalize(self) -> Self579     pub fn normalize(self) -> Self {
580         #[allow(clippy::let_and_return)]
581         let normalized = self.mul(self.length_recip());
582         glam_assert!(normalized.is_finite());
583         normalized
584     }
585 
586     /// Returns `self` normalized to length 1.0 if possible, else returns `None`.
587     ///
588     /// In particular, if the input is zero (or very close to zero), or non-finite,
589     /// the result of this operation will be `None`.
590     ///
591     /// See also [`Self::normalize_or_zero()`].
592     #[inline]
593     #[must_use]
try_normalize(self) -> Option<Self>594     pub fn try_normalize(self) -> Option<Self> {
595         let rcp = self.length_recip();
596         if rcp.is_finite() && rcp > 0.0 {
597             Some(self * rcp)
598         } else {
599             None
600         }
601     }
602 
603     /// Returns `self` normalized to length 1.0 if possible, else returns a
604     /// fallback value.
605     ///
606     /// In particular, if the input is zero (or very close to zero), or non-finite,
607     /// the result of this operation will be the fallback value.
608     ///
609     /// See also [`Self::try_normalize()`].
610     #[inline]
611     #[must_use]
normalize_or(self, fallback: Self) -> Self612     pub fn normalize_or(self, fallback: Self) -> Self {
613         let rcp = self.length_recip();
614         if rcp.is_finite() && rcp > 0.0 {
615             self * rcp
616         } else {
617             fallback
618         }
619     }
620 
621     /// Returns `self` normalized to length 1.0 if possible, else returns zero.
622     ///
623     /// In particular, if the input is zero (or very close to zero), or non-finite,
624     /// the result of this operation will be zero.
625     ///
626     /// See also [`Self::try_normalize()`].
627     #[inline]
628     #[must_use]
normalize_or_zero(self) -> Self629     pub fn normalize_or_zero(self) -> Self {
630         self.normalize_or(Self::ZERO)
631     }
632 
633     /// Returns whether `self` is length `1.0` or not.
634     ///
635     /// Uses a precision threshold of approximately `1e-4`.
636     #[inline]
637     #[must_use]
is_normalized(self) -> bool638     pub fn is_normalized(self) -> bool {
639         math::abs(self.length_squared() - 1.0) <= 2e-4
640     }
641 
642     /// Returns the vector projection of `self` onto `rhs`.
643     ///
644     /// `rhs` must be of non-zero length.
645     ///
646     /// # Panics
647     ///
648     /// Will panic if `rhs` is zero length when `glam_assert` is enabled.
649     #[inline]
650     #[must_use]
project_onto(self, rhs: Self) -> Self651     pub fn project_onto(self, rhs: Self) -> Self {
652         let other_len_sq_rcp = rhs.dot(rhs).recip();
653         glam_assert!(other_len_sq_rcp.is_finite());
654         rhs * self.dot(rhs) * other_len_sq_rcp
655     }
656 
657     /// Returns the vector rejection of `self` from `rhs`.
658     ///
659     /// The vector rejection is the vector perpendicular to the projection of `self` onto
660     /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
661     ///
662     /// `rhs` must be of non-zero length.
663     ///
664     /// # Panics
665     ///
666     /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
667     #[doc(alias("plane"))]
668     #[inline]
669     #[must_use]
reject_from(self, rhs: Self) -> Self670     pub fn reject_from(self, rhs: Self) -> Self {
671         self - self.project_onto(rhs)
672     }
673 
674     /// Returns the vector projection of `self` onto `rhs`.
675     ///
676     /// `rhs` must be normalized.
677     ///
678     /// # Panics
679     ///
680     /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
681     #[inline]
682     #[must_use]
project_onto_normalized(self, rhs: Self) -> Self683     pub fn project_onto_normalized(self, rhs: Self) -> Self {
684         glam_assert!(rhs.is_normalized());
685         rhs * self.dot(rhs)
686     }
687 
688     /// Returns the vector rejection of `self` from `rhs`.
689     ///
690     /// The vector rejection is the vector perpendicular to the projection of `self` onto
691     /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
692     ///
693     /// `rhs` must be normalized.
694     ///
695     /// # Panics
696     ///
697     /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
698     #[doc(alias("plane"))]
699     #[inline]
700     #[must_use]
reject_from_normalized(self, rhs: Self) -> Self701     pub fn reject_from_normalized(self, rhs: Self) -> Self {
702         self - self.project_onto_normalized(rhs)
703     }
704 
705     /// Returns a vector containing the nearest integer to a number for each element of `self`.
706     /// Round half-way cases away from 0.0.
707     #[inline]
708     #[must_use]
round(self) -> Self709     pub fn round(self) -> Self {
710         Self {
711             x: math::round(self.x),
712             y: math::round(self.y),
713             z: math::round(self.z),
714             w: math::round(self.w),
715         }
716     }
717 
718     /// Returns a vector containing the largest integer less than or equal to a number for each
719     /// element of `self`.
720     #[inline]
721     #[must_use]
floor(self) -> Self722     pub fn floor(self) -> Self {
723         Self {
724             x: math::floor(self.x),
725             y: math::floor(self.y),
726             z: math::floor(self.z),
727             w: math::floor(self.w),
728         }
729     }
730 
731     /// Returns a vector containing the smallest integer greater than or equal to a number for
732     /// each element of `self`.
733     #[inline]
734     #[must_use]
ceil(self) -> Self735     pub fn ceil(self) -> Self {
736         Self {
737             x: math::ceil(self.x),
738             y: math::ceil(self.y),
739             z: math::ceil(self.z),
740             w: math::ceil(self.w),
741         }
742     }
743 
744     /// Returns a vector containing the integer part each element of `self`. This means numbers are
745     /// always truncated towards zero.
746     #[inline]
747     #[must_use]
trunc(self) -> Self748     pub fn trunc(self) -> Self {
749         Self {
750             x: math::trunc(self.x),
751             y: math::trunc(self.y),
752             z: math::trunc(self.z),
753             w: math::trunc(self.w),
754         }
755     }
756 
757     /// Returns a vector containing the fractional part of the vector as `self - self.trunc()`.
758     ///
759     /// Note that this differs from the GLSL implementation of `fract` which returns
760     /// `self - self.floor()`.
761     ///
762     /// Note that this is fast but not precise for large numbers.
763     #[inline]
764     #[must_use]
fract(self) -> Self765     pub fn fract(self) -> Self {
766         self - self.trunc()
767     }
768 
769     /// Returns a vector containing the fractional part of the vector as `self - self.floor()`.
770     ///
771     /// Note that this differs from the Rust implementation of `fract` which returns
772     /// `self - self.trunc()`.
773     ///
774     /// Note that this is fast but not precise for large numbers.
775     #[inline]
776     #[must_use]
fract_gl(self) -> Self777     pub fn fract_gl(self) -> Self {
778         self - self.floor()
779     }
780 
781     /// Returns a vector containing `e^self` (the exponential function) for each element of
782     /// `self`.
783     #[inline]
784     #[must_use]
exp(self) -> Self785     pub fn exp(self) -> Self {
786         Self::new(
787             math::exp(self.x),
788             math::exp(self.y),
789             math::exp(self.z),
790             math::exp(self.w),
791         )
792     }
793 
794     /// Returns a vector containing each element of `self` raised to the power of `n`.
795     #[inline]
796     #[must_use]
powf(self, n: f32) -> Self797     pub fn powf(self, n: f32) -> Self {
798         Self::new(
799             math::powf(self.x, n),
800             math::powf(self.y, n),
801             math::powf(self.z, n),
802             math::powf(self.w, n),
803         )
804     }
805 
806     /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
807     #[inline]
808     #[must_use]
recip(self) -> Self809     pub fn recip(self) -> Self {
810         Self {
811             x: 1.0 / self.x,
812             y: 1.0 / self.y,
813             z: 1.0 / self.z,
814             w: 1.0 / self.w,
815         }
816     }
817 
818     /// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
819     ///
820     /// When `s` is `0.0`, the result will be equal to `self`.  When `s` is `1.0`, the result
821     /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
822     /// extrapolated.
823     #[doc(alias = "mix")]
824     #[inline]
825     #[must_use]
lerp(self, rhs: Self, s: f32) -> Self826     pub fn lerp(self, rhs: Self, s: f32) -> Self {
827         self * (1.0 - s) + rhs * s
828     }
829 
830     /// Moves towards `rhs` based on the value `d`.
831     ///
832     /// When `d` is `0.0`, the result will be equal to `self`. When `d` is equal to
833     /// `self.distance(rhs)`, the result will be equal to `rhs`. Will not go past `rhs`.
834     #[inline]
835     #[must_use]
move_towards(&self, rhs: Self, d: f32) -> Self836     pub fn move_towards(&self, rhs: Self, d: f32) -> Self {
837         let a = rhs - *self;
838         let len = a.length();
839         if len <= d || len <= 1e-4 {
840             return rhs;
841         }
842         *self + a / len * d
843     }
844 
845     /// Calculates the midpoint between `self` and `rhs`.
846     ///
847     /// The midpoint is the average of, or halfway point between, two vectors.
848     /// `a.midpoint(b)` should yield the same result as `a.lerp(b, 0.5)`
849     /// while being slightly cheaper to compute.
850     #[inline]
midpoint(self, rhs: Self) -> Self851     pub fn midpoint(self, rhs: Self) -> Self {
852         (self + rhs) * 0.5
853     }
854 
855     /// Returns true if the absolute difference of all elements between `self` and `rhs` is
856     /// less than or equal to `max_abs_diff`.
857     ///
858     /// This can be used to compare if two vectors contain similar elements. It works best when
859     /// comparing with a known value. The `max_abs_diff` that should be used used depends on
860     /// the values being compared against.
861     ///
862     /// For more see
863     /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
864     #[inline]
865     #[must_use]
abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool866     pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
867         self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
868     }
869 
870     /// Returns a vector with a length no less than `min` and no more than `max`.
871     ///
872     /// # Panics
873     ///
874     /// Will panic if `min` is greater than `max`, or if either `min` or `max` is negative, when `glam_assert` is enabled.
875     #[inline]
876     #[must_use]
clamp_length(self, min: f32, max: f32) -> Self877     pub fn clamp_length(self, min: f32, max: f32) -> Self {
878         glam_assert!(0.0 <= min);
879         glam_assert!(min <= max);
880         let length_sq = self.length_squared();
881         if length_sq < min * min {
882             min * (self / math::sqrt(length_sq))
883         } else if length_sq > max * max {
884             max * (self / math::sqrt(length_sq))
885         } else {
886             self
887         }
888     }
889 
890     /// Returns a vector with a length no more than `max`.
891     ///
892     /// # Panics
893     ///
894     /// Will panic if `max` is negative when `glam_assert` is enabled.
895     #[inline]
896     #[must_use]
clamp_length_max(self, max: f32) -> Self897     pub fn clamp_length_max(self, max: f32) -> Self {
898         glam_assert!(0.0 <= max);
899         let length_sq = self.length_squared();
900         if length_sq > max * max {
901             max * (self / math::sqrt(length_sq))
902         } else {
903             self
904         }
905     }
906 
907     /// Returns a vector with a length no less than `min`.
908     ///
909     /// # Panics
910     ///
911     /// Will panic if `min` is negative when `glam_assert` is enabled.
912     #[inline]
913     #[must_use]
clamp_length_min(self, min: f32) -> Self914     pub fn clamp_length_min(self, min: f32) -> Self {
915         glam_assert!(0.0 <= min);
916         let length_sq = self.length_squared();
917         if length_sq < min * min {
918             min * (self / math::sqrt(length_sq))
919         } else {
920             self
921         }
922     }
923 
924     /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
925     /// error, yielding a more accurate result than an unfused multiply-add.
926     ///
927     /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
928     /// architecture has a dedicated fma CPU instruction. However, this is not always true,
929     /// and will be heavily dependant on designing algorithms with specific target hardware in
930     /// mind.
931     #[inline]
932     #[must_use]
mul_add(self, a: Self, b: Self) -> Self933     pub fn mul_add(self, a: Self, b: Self) -> Self {
934         Self::new(
935             math::mul_add(self.x, a.x, b.x),
936             math::mul_add(self.y, a.y, b.y),
937             math::mul_add(self.z, a.z, b.z),
938             math::mul_add(self.w, a.w, b.w),
939         )
940     }
941 
942     /// Returns the reflection vector for a given incident vector `self` and surface normal
943     /// `normal`.
944     ///
945     /// `normal` must be normalized.
946     ///
947     /// # Panics
948     ///
949     /// Will panic if `normal` is not normalized when `glam_assert` is enabled.
950     #[inline]
951     #[must_use]
reflect(self, normal: Self) -> Self952     pub fn reflect(self, normal: Self) -> Self {
953         glam_assert!(normal.is_normalized());
954         self - 2.0 * self.dot(normal) * normal
955     }
956 
957     /// Returns the refraction direction for a given incident vector `self`, surface normal
958     /// `normal` and ratio of indices of refraction, `eta`. When total internal reflection occurs,
959     /// a zero vector will be returned.
960     ///
961     /// `self` and `normal` must be normalized.
962     ///
963     /// # Panics
964     ///
965     /// Will panic if `self` or `normal` is not normalized when `glam_assert` is enabled.
966     #[inline]
967     #[must_use]
refract(self, normal: Self, eta: f32) -> Self968     pub fn refract(self, normal: Self, eta: f32) -> Self {
969         glam_assert!(self.is_normalized());
970         glam_assert!(normal.is_normalized());
971         let n_dot_i = normal.dot(self);
972         let k = 1.0 - eta * eta * (1.0 - n_dot_i * n_dot_i);
973         if k >= 0.0 {
974             eta * self - (eta * n_dot_i + math::sqrt(k)) * normal
975         } else {
976             Self::ZERO
977         }
978     }
979 
980     /// Casts all elements of `self` to `f64`.
981     #[inline]
982     #[must_use]
as_dvec4(&self) -> crate::DVec4983     pub fn as_dvec4(&self) -> crate::DVec4 {
984         crate::DVec4::new(self.x as f64, self.y as f64, self.z as f64, self.w as f64)
985     }
986 
987     /// Casts all elements of `self` to `i8`.
988     #[inline]
989     #[must_use]
as_i8vec4(&self) -> crate::I8Vec4990     pub fn as_i8vec4(&self) -> crate::I8Vec4 {
991         crate::I8Vec4::new(self.x as i8, self.y as i8, self.z as i8, self.w as i8)
992     }
993 
994     /// Casts all elements of `self` to `u8`.
995     #[inline]
996     #[must_use]
as_u8vec4(&self) -> crate::U8Vec4997     pub fn as_u8vec4(&self) -> crate::U8Vec4 {
998         crate::U8Vec4::new(self.x as u8, self.y as u8, self.z as u8, self.w as u8)
999     }
1000 
1001     /// Casts all elements of `self` to `i16`.
1002     #[inline]
1003     #[must_use]
as_i16vec4(&self) -> crate::I16Vec41004     pub fn as_i16vec4(&self) -> crate::I16Vec4 {
1005         crate::I16Vec4::new(self.x as i16, self.y as i16, self.z as i16, self.w as i16)
1006     }
1007 
1008     /// Casts all elements of `self` to `u16`.
1009     #[inline]
1010     #[must_use]
as_u16vec4(&self) -> crate::U16Vec41011     pub fn as_u16vec4(&self) -> crate::U16Vec4 {
1012         crate::U16Vec4::new(self.x as u16, self.y as u16, self.z as u16, self.w as u16)
1013     }
1014 
1015     /// Casts all elements of `self` to `i32`.
1016     #[inline]
1017     #[must_use]
as_ivec4(&self) -> crate::IVec41018     pub fn as_ivec4(&self) -> crate::IVec4 {
1019         crate::IVec4::new(self.x as i32, self.y as i32, self.z as i32, self.w as i32)
1020     }
1021 
1022     /// Casts all elements of `self` to `u32`.
1023     #[inline]
1024     #[must_use]
as_uvec4(&self) -> crate::UVec41025     pub fn as_uvec4(&self) -> crate::UVec4 {
1026         crate::UVec4::new(self.x as u32, self.y as u32, self.z as u32, self.w as u32)
1027     }
1028 
1029     /// Casts all elements of `self` to `i64`.
1030     #[inline]
1031     #[must_use]
as_i64vec4(&self) -> crate::I64Vec41032     pub fn as_i64vec4(&self) -> crate::I64Vec4 {
1033         crate::I64Vec4::new(self.x as i64, self.y as i64, self.z as i64, self.w as i64)
1034     }
1035 
1036     /// Casts all elements of `self` to `u64`.
1037     #[inline]
1038     #[must_use]
as_u64vec4(&self) -> crate::U64Vec41039     pub fn as_u64vec4(&self) -> crate::U64Vec4 {
1040         crate::U64Vec4::new(self.x as u64, self.y as u64, self.z as u64, self.w as u64)
1041     }
1042 }
1043 
1044 impl Default for Vec4 {
1045     #[inline(always)]
default() -> Self1046     fn default() -> Self {
1047         Self::ZERO
1048     }
1049 }
1050 
1051 impl Div<Vec4> for Vec4 {
1052     type Output = Self;
1053     #[inline]
div(self, rhs: Self) -> Self1054     fn div(self, rhs: Self) -> Self {
1055         Self {
1056             x: self.x.div(rhs.x),
1057             y: self.y.div(rhs.y),
1058             z: self.z.div(rhs.z),
1059             w: self.w.div(rhs.w),
1060         }
1061     }
1062 }
1063 
1064 impl Div<&Vec4> for Vec4 {
1065     type Output = Vec4;
1066     #[inline]
div(self, rhs: &Vec4) -> Vec41067     fn div(self, rhs: &Vec4) -> Vec4 {
1068         self.div(*rhs)
1069     }
1070 }
1071 
1072 impl Div<&Vec4> for &Vec4 {
1073     type Output = Vec4;
1074     #[inline]
div(self, rhs: &Vec4) -> Vec41075     fn div(self, rhs: &Vec4) -> Vec4 {
1076         (*self).div(*rhs)
1077     }
1078 }
1079 
1080 impl Div<Vec4> for &Vec4 {
1081     type Output = Vec4;
1082     #[inline]
div(self, rhs: Vec4) -> Vec41083     fn div(self, rhs: Vec4) -> Vec4 {
1084         (*self).div(rhs)
1085     }
1086 }
1087 
1088 impl DivAssign<Vec4> for Vec4 {
1089     #[inline]
div_assign(&mut self, rhs: Self)1090     fn div_assign(&mut self, rhs: Self) {
1091         self.x.div_assign(rhs.x);
1092         self.y.div_assign(rhs.y);
1093         self.z.div_assign(rhs.z);
1094         self.w.div_assign(rhs.w);
1095     }
1096 }
1097 
1098 impl DivAssign<&Vec4> for Vec4 {
1099     #[inline]
div_assign(&mut self, rhs: &Vec4)1100     fn div_assign(&mut self, rhs: &Vec4) {
1101         self.div_assign(*rhs)
1102     }
1103 }
1104 
1105 impl Div<f32> for Vec4 {
1106     type Output = Self;
1107     #[inline]
div(self, rhs: f32) -> Self1108     fn div(self, rhs: f32) -> Self {
1109         Self {
1110             x: self.x.div(rhs),
1111             y: self.y.div(rhs),
1112             z: self.z.div(rhs),
1113             w: self.w.div(rhs),
1114         }
1115     }
1116 }
1117 
1118 impl Div<&f32> for Vec4 {
1119     type Output = Vec4;
1120     #[inline]
div(self, rhs: &f32) -> Vec41121     fn div(self, rhs: &f32) -> Vec4 {
1122         self.div(*rhs)
1123     }
1124 }
1125 
1126 impl Div<&f32> for &Vec4 {
1127     type Output = Vec4;
1128     #[inline]
div(self, rhs: &f32) -> Vec41129     fn div(self, rhs: &f32) -> Vec4 {
1130         (*self).div(*rhs)
1131     }
1132 }
1133 
1134 impl Div<f32> for &Vec4 {
1135     type Output = Vec4;
1136     #[inline]
div(self, rhs: f32) -> Vec41137     fn div(self, rhs: f32) -> Vec4 {
1138         (*self).div(rhs)
1139     }
1140 }
1141 
1142 impl DivAssign<f32> for Vec4 {
1143     #[inline]
div_assign(&mut self, rhs: f32)1144     fn div_assign(&mut self, rhs: f32) {
1145         self.x.div_assign(rhs);
1146         self.y.div_assign(rhs);
1147         self.z.div_assign(rhs);
1148         self.w.div_assign(rhs);
1149     }
1150 }
1151 
1152 impl DivAssign<&f32> for Vec4 {
1153     #[inline]
div_assign(&mut self, rhs: &f32)1154     fn div_assign(&mut self, rhs: &f32) {
1155         self.div_assign(*rhs)
1156     }
1157 }
1158 
1159 impl Div<Vec4> for f32 {
1160     type Output = Vec4;
1161     #[inline]
div(self, rhs: Vec4) -> Vec41162     fn div(self, rhs: Vec4) -> Vec4 {
1163         Vec4 {
1164             x: self.div(rhs.x),
1165             y: self.div(rhs.y),
1166             z: self.div(rhs.z),
1167             w: self.div(rhs.w),
1168         }
1169     }
1170 }
1171 
1172 impl Div<&Vec4> for f32 {
1173     type Output = Vec4;
1174     #[inline]
div(self, rhs: &Vec4) -> Vec41175     fn div(self, rhs: &Vec4) -> Vec4 {
1176         self.div(*rhs)
1177     }
1178 }
1179 
1180 impl Div<&Vec4> for &f32 {
1181     type Output = Vec4;
1182     #[inline]
div(self, rhs: &Vec4) -> Vec41183     fn div(self, rhs: &Vec4) -> Vec4 {
1184         (*self).div(*rhs)
1185     }
1186 }
1187 
1188 impl Div<Vec4> for &f32 {
1189     type Output = Vec4;
1190     #[inline]
div(self, rhs: Vec4) -> Vec41191     fn div(self, rhs: Vec4) -> Vec4 {
1192         (*self).div(rhs)
1193     }
1194 }
1195 
1196 impl Mul<Vec4> for Vec4 {
1197     type Output = Self;
1198     #[inline]
mul(self, rhs: Self) -> Self1199     fn mul(self, rhs: Self) -> Self {
1200         Self {
1201             x: self.x.mul(rhs.x),
1202             y: self.y.mul(rhs.y),
1203             z: self.z.mul(rhs.z),
1204             w: self.w.mul(rhs.w),
1205         }
1206     }
1207 }
1208 
1209 impl Mul<&Vec4> for Vec4 {
1210     type Output = Vec4;
1211     #[inline]
mul(self, rhs: &Vec4) -> Vec41212     fn mul(self, rhs: &Vec4) -> Vec4 {
1213         self.mul(*rhs)
1214     }
1215 }
1216 
1217 impl Mul<&Vec4> for &Vec4 {
1218     type Output = Vec4;
1219     #[inline]
mul(self, rhs: &Vec4) -> Vec41220     fn mul(self, rhs: &Vec4) -> Vec4 {
1221         (*self).mul(*rhs)
1222     }
1223 }
1224 
1225 impl Mul<Vec4> for &Vec4 {
1226     type Output = Vec4;
1227     #[inline]
mul(self, rhs: Vec4) -> Vec41228     fn mul(self, rhs: Vec4) -> Vec4 {
1229         (*self).mul(rhs)
1230     }
1231 }
1232 
1233 impl MulAssign<Vec4> for Vec4 {
1234     #[inline]
mul_assign(&mut self, rhs: Self)1235     fn mul_assign(&mut self, rhs: Self) {
1236         self.x.mul_assign(rhs.x);
1237         self.y.mul_assign(rhs.y);
1238         self.z.mul_assign(rhs.z);
1239         self.w.mul_assign(rhs.w);
1240     }
1241 }
1242 
1243 impl MulAssign<&Vec4> for Vec4 {
1244     #[inline]
mul_assign(&mut self, rhs: &Vec4)1245     fn mul_assign(&mut self, rhs: &Vec4) {
1246         self.mul_assign(*rhs)
1247     }
1248 }
1249 
1250 impl Mul<f32> for Vec4 {
1251     type Output = Self;
1252     #[inline]
mul(self, rhs: f32) -> Self1253     fn mul(self, rhs: f32) -> Self {
1254         Self {
1255             x: self.x.mul(rhs),
1256             y: self.y.mul(rhs),
1257             z: self.z.mul(rhs),
1258             w: self.w.mul(rhs),
1259         }
1260     }
1261 }
1262 
1263 impl Mul<&f32> for Vec4 {
1264     type Output = Vec4;
1265     #[inline]
mul(self, rhs: &f32) -> Vec41266     fn mul(self, rhs: &f32) -> Vec4 {
1267         self.mul(*rhs)
1268     }
1269 }
1270 
1271 impl Mul<&f32> for &Vec4 {
1272     type Output = Vec4;
1273     #[inline]
mul(self, rhs: &f32) -> Vec41274     fn mul(self, rhs: &f32) -> Vec4 {
1275         (*self).mul(*rhs)
1276     }
1277 }
1278 
1279 impl Mul<f32> for &Vec4 {
1280     type Output = Vec4;
1281     #[inline]
mul(self, rhs: f32) -> Vec41282     fn mul(self, rhs: f32) -> Vec4 {
1283         (*self).mul(rhs)
1284     }
1285 }
1286 
1287 impl MulAssign<f32> for Vec4 {
1288     #[inline]
mul_assign(&mut self, rhs: f32)1289     fn mul_assign(&mut self, rhs: f32) {
1290         self.x.mul_assign(rhs);
1291         self.y.mul_assign(rhs);
1292         self.z.mul_assign(rhs);
1293         self.w.mul_assign(rhs);
1294     }
1295 }
1296 
1297 impl MulAssign<&f32> for Vec4 {
1298     #[inline]
mul_assign(&mut self, rhs: &f32)1299     fn mul_assign(&mut self, rhs: &f32) {
1300         self.mul_assign(*rhs)
1301     }
1302 }
1303 
1304 impl Mul<Vec4> for f32 {
1305     type Output = Vec4;
1306     #[inline]
mul(self, rhs: Vec4) -> Vec41307     fn mul(self, rhs: Vec4) -> Vec4 {
1308         Vec4 {
1309             x: self.mul(rhs.x),
1310             y: self.mul(rhs.y),
1311             z: self.mul(rhs.z),
1312             w: self.mul(rhs.w),
1313         }
1314     }
1315 }
1316 
1317 impl Mul<&Vec4> for f32 {
1318     type Output = Vec4;
1319     #[inline]
mul(self, rhs: &Vec4) -> Vec41320     fn mul(self, rhs: &Vec4) -> Vec4 {
1321         self.mul(*rhs)
1322     }
1323 }
1324 
1325 impl Mul<&Vec4> for &f32 {
1326     type Output = Vec4;
1327     #[inline]
mul(self, rhs: &Vec4) -> Vec41328     fn mul(self, rhs: &Vec4) -> Vec4 {
1329         (*self).mul(*rhs)
1330     }
1331 }
1332 
1333 impl Mul<Vec4> for &f32 {
1334     type Output = Vec4;
1335     #[inline]
mul(self, rhs: Vec4) -> Vec41336     fn mul(self, rhs: Vec4) -> Vec4 {
1337         (*self).mul(rhs)
1338     }
1339 }
1340 
1341 impl Add<Vec4> for Vec4 {
1342     type Output = Self;
1343     #[inline]
add(self, rhs: Self) -> Self1344     fn add(self, rhs: Self) -> Self {
1345         Self {
1346             x: self.x.add(rhs.x),
1347             y: self.y.add(rhs.y),
1348             z: self.z.add(rhs.z),
1349             w: self.w.add(rhs.w),
1350         }
1351     }
1352 }
1353 
1354 impl Add<&Vec4> for Vec4 {
1355     type Output = Vec4;
1356     #[inline]
add(self, rhs: &Vec4) -> Vec41357     fn add(self, rhs: &Vec4) -> Vec4 {
1358         self.add(*rhs)
1359     }
1360 }
1361 
1362 impl Add<&Vec4> for &Vec4 {
1363     type Output = Vec4;
1364     #[inline]
add(self, rhs: &Vec4) -> Vec41365     fn add(self, rhs: &Vec4) -> Vec4 {
1366         (*self).add(*rhs)
1367     }
1368 }
1369 
1370 impl Add<Vec4> for &Vec4 {
1371     type Output = Vec4;
1372     #[inline]
add(self, rhs: Vec4) -> Vec41373     fn add(self, rhs: Vec4) -> Vec4 {
1374         (*self).add(rhs)
1375     }
1376 }
1377 
1378 impl AddAssign<Vec4> for Vec4 {
1379     #[inline]
add_assign(&mut self, rhs: Self)1380     fn add_assign(&mut self, rhs: Self) {
1381         self.x.add_assign(rhs.x);
1382         self.y.add_assign(rhs.y);
1383         self.z.add_assign(rhs.z);
1384         self.w.add_assign(rhs.w);
1385     }
1386 }
1387 
1388 impl AddAssign<&Vec4> for Vec4 {
1389     #[inline]
add_assign(&mut self, rhs: &Vec4)1390     fn add_assign(&mut self, rhs: &Vec4) {
1391         self.add_assign(*rhs)
1392     }
1393 }
1394 
1395 impl Add<f32> for Vec4 {
1396     type Output = Self;
1397     #[inline]
add(self, rhs: f32) -> Self1398     fn add(self, rhs: f32) -> Self {
1399         Self {
1400             x: self.x.add(rhs),
1401             y: self.y.add(rhs),
1402             z: self.z.add(rhs),
1403             w: self.w.add(rhs),
1404         }
1405     }
1406 }
1407 
1408 impl Add<&f32> for Vec4 {
1409     type Output = Vec4;
1410     #[inline]
add(self, rhs: &f32) -> Vec41411     fn add(self, rhs: &f32) -> Vec4 {
1412         self.add(*rhs)
1413     }
1414 }
1415 
1416 impl Add<&f32> for &Vec4 {
1417     type Output = Vec4;
1418     #[inline]
add(self, rhs: &f32) -> Vec41419     fn add(self, rhs: &f32) -> Vec4 {
1420         (*self).add(*rhs)
1421     }
1422 }
1423 
1424 impl Add<f32> for &Vec4 {
1425     type Output = Vec4;
1426     #[inline]
add(self, rhs: f32) -> Vec41427     fn add(self, rhs: f32) -> Vec4 {
1428         (*self).add(rhs)
1429     }
1430 }
1431 
1432 impl AddAssign<f32> for Vec4 {
1433     #[inline]
add_assign(&mut self, rhs: f32)1434     fn add_assign(&mut self, rhs: f32) {
1435         self.x.add_assign(rhs);
1436         self.y.add_assign(rhs);
1437         self.z.add_assign(rhs);
1438         self.w.add_assign(rhs);
1439     }
1440 }
1441 
1442 impl AddAssign<&f32> for Vec4 {
1443     #[inline]
add_assign(&mut self, rhs: &f32)1444     fn add_assign(&mut self, rhs: &f32) {
1445         self.add_assign(*rhs)
1446     }
1447 }
1448 
1449 impl Add<Vec4> for f32 {
1450     type Output = Vec4;
1451     #[inline]
add(self, rhs: Vec4) -> Vec41452     fn add(self, rhs: Vec4) -> Vec4 {
1453         Vec4 {
1454             x: self.add(rhs.x),
1455             y: self.add(rhs.y),
1456             z: self.add(rhs.z),
1457             w: self.add(rhs.w),
1458         }
1459     }
1460 }
1461 
1462 impl Add<&Vec4> for f32 {
1463     type Output = Vec4;
1464     #[inline]
add(self, rhs: &Vec4) -> Vec41465     fn add(self, rhs: &Vec4) -> Vec4 {
1466         self.add(*rhs)
1467     }
1468 }
1469 
1470 impl Add<&Vec4> for &f32 {
1471     type Output = Vec4;
1472     #[inline]
add(self, rhs: &Vec4) -> Vec41473     fn add(self, rhs: &Vec4) -> Vec4 {
1474         (*self).add(*rhs)
1475     }
1476 }
1477 
1478 impl Add<Vec4> for &f32 {
1479     type Output = Vec4;
1480     #[inline]
add(self, rhs: Vec4) -> Vec41481     fn add(self, rhs: Vec4) -> Vec4 {
1482         (*self).add(rhs)
1483     }
1484 }
1485 
1486 impl Sub<Vec4> for Vec4 {
1487     type Output = Self;
1488     #[inline]
sub(self, rhs: Self) -> Self1489     fn sub(self, rhs: Self) -> Self {
1490         Self {
1491             x: self.x.sub(rhs.x),
1492             y: self.y.sub(rhs.y),
1493             z: self.z.sub(rhs.z),
1494             w: self.w.sub(rhs.w),
1495         }
1496     }
1497 }
1498 
1499 impl Sub<&Vec4> for Vec4 {
1500     type Output = Vec4;
1501     #[inline]
sub(self, rhs: &Vec4) -> Vec41502     fn sub(self, rhs: &Vec4) -> Vec4 {
1503         self.sub(*rhs)
1504     }
1505 }
1506 
1507 impl Sub<&Vec4> for &Vec4 {
1508     type Output = Vec4;
1509     #[inline]
sub(self, rhs: &Vec4) -> Vec41510     fn sub(self, rhs: &Vec4) -> Vec4 {
1511         (*self).sub(*rhs)
1512     }
1513 }
1514 
1515 impl Sub<Vec4> for &Vec4 {
1516     type Output = Vec4;
1517     #[inline]
sub(self, rhs: Vec4) -> Vec41518     fn sub(self, rhs: Vec4) -> Vec4 {
1519         (*self).sub(rhs)
1520     }
1521 }
1522 
1523 impl SubAssign<Vec4> for Vec4 {
1524     #[inline]
sub_assign(&mut self, rhs: Vec4)1525     fn sub_assign(&mut self, rhs: Vec4) {
1526         self.x.sub_assign(rhs.x);
1527         self.y.sub_assign(rhs.y);
1528         self.z.sub_assign(rhs.z);
1529         self.w.sub_assign(rhs.w);
1530     }
1531 }
1532 
1533 impl SubAssign<&Vec4> for Vec4 {
1534     #[inline]
sub_assign(&mut self, rhs: &Vec4)1535     fn sub_assign(&mut self, rhs: &Vec4) {
1536         self.sub_assign(*rhs)
1537     }
1538 }
1539 
1540 impl Sub<f32> for Vec4 {
1541     type Output = Self;
1542     #[inline]
sub(self, rhs: f32) -> Self1543     fn sub(self, rhs: f32) -> Self {
1544         Self {
1545             x: self.x.sub(rhs),
1546             y: self.y.sub(rhs),
1547             z: self.z.sub(rhs),
1548             w: self.w.sub(rhs),
1549         }
1550     }
1551 }
1552 
1553 impl Sub<&f32> for Vec4 {
1554     type Output = Vec4;
1555     #[inline]
sub(self, rhs: &f32) -> Vec41556     fn sub(self, rhs: &f32) -> Vec4 {
1557         self.sub(*rhs)
1558     }
1559 }
1560 
1561 impl Sub<&f32> for &Vec4 {
1562     type Output = Vec4;
1563     #[inline]
sub(self, rhs: &f32) -> Vec41564     fn sub(self, rhs: &f32) -> Vec4 {
1565         (*self).sub(*rhs)
1566     }
1567 }
1568 
1569 impl Sub<f32> for &Vec4 {
1570     type Output = Vec4;
1571     #[inline]
sub(self, rhs: f32) -> Vec41572     fn sub(self, rhs: f32) -> Vec4 {
1573         (*self).sub(rhs)
1574     }
1575 }
1576 
1577 impl SubAssign<f32> for Vec4 {
1578     #[inline]
sub_assign(&mut self, rhs: f32)1579     fn sub_assign(&mut self, rhs: f32) {
1580         self.x.sub_assign(rhs);
1581         self.y.sub_assign(rhs);
1582         self.z.sub_assign(rhs);
1583         self.w.sub_assign(rhs);
1584     }
1585 }
1586 
1587 impl SubAssign<&f32> for Vec4 {
1588     #[inline]
sub_assign(&mut self, rhs: &f32)1589     fn sub_assign(&mut self, rhs: &f32) {
1590         self.sub_assign(*rhs)
1591     }
1592 }
1593 
1594 impl Sub<Vec4> for f32 {
1595     type Output = Vec4;
1596     #[inline]
sub(self, rhs: Vec4) -> Vec41597     fn sub(self, rhs: Vec4) -> Vec4 {
1598         Vec4 {
1599             x: self.sub(rhs.x),
1600             y: self.sub(rhs.y),
1601             z: self.sub(rhs.z),
1602             w: self.sub(rhs.w),
1603         }
1604     }
1605 }
1606 
1607 impl Sub<&Vec4> for f32 {
1608     type Output = Vec4;
1609     #[inline]
sub(self, rhs: &Vec4) -> Vec41610     fn sub(self, rhs: &Vec4) -> Vec4 {
1611         self.sub(*rhs)
1612     }
1613 }
1614 
1615 impl Sub<&Vec4> for &f32 {
1616     type Output = Vec4;
1617     #[inline]
sub(self, rhs: &Vec4) -> Vec41618     fn sub(self, rhs: &Vec4) -> Vec4 {
1619         (*self).sub(*rhs)
1620     }
1621 }
1622 
1623 impl Sub<Vec4> for &f32 {
1624     type Output = Vec4;
1625     #[inline]
sub(self, rhs: Vec4) -> Vec41626     fn sub(self, rhs: Vec4) -> Vec4 {
1627         (*self).sub(rhs)
1628     }
1629 }
1630 
1631 impl Rem<Vec4> for Vec4 {
1632     type Output = Self;
1633     #[inline]
rem(self, rhs: Self) -> Self1634     fn rem(self, rhs: Self) -> Self {
1635         Self {
1636             x: self.x.rem(rhs.x),
1637             y: self.y.rem(rhs.y),
1638             z: self.z.rem(rhs.z),
1639             w: self.w.rem(rhs.w),
1640         }
1641     }
1642 }
1643 
1644 impl Rem<&Vec4> for Vec4 {
1645     type Output = Vec4;
1646     #[inline]
rem(self, rhs: &Vec4) -> Vec41647     fn rem(self, rhs: &Vec4) -> Vec4 {
1648         self.rem(*rhs)
1649     }
1650 }
1651 
1652 impl Rem<&Vec4> for &Vec4 {
1653     type Output = Vec4;
1654     #[inline]
rem(self, rhs: &Vec4) -> Vec41655     fn rem(self, rhs: &Vec4) -> Vec4 {
1656         (*self).rem(*rhs)
1657     }
1658 }
1659 
1660 impl Rem<Vec4> for &Vec4 {
1661     type Output = Vec4;
1662     #[inline]
rem(self, rhs: Vec4) -> Vec41663     fn rem(self, rhs: Vec4) -> Vec4 {
1664         (*self).rem(rhs)
1665     }
1666 }
1667 
1668 impl RemAssign<Vec4> for Vec4 {
1669     #[inline]
rem_assign(&mut self, rhs: Self)1670     fn rem_assign(&mut self, rhs: Self) {
1671         self.x.rem_assign(rhs.x);
1672         self.y.rem_assign(rhs.y);
1673         self.z.rem_assign(rhs.z);
1674         self.w.rem_assign(rhs.w);
1675     }
1676 }
1677 
1678 impl RemAssign<&Vec4> for Vec4 {
1679     #[inline]
rem_assign(&mut self, rhs: &Vec4)1680     fn rem_assign(&mut self, rhs: &Vec4) {
1681         self.rem_assign(*rhs)
1682     }
1683 }
1684 
1685 impl Rem<f32> for Vec4 {
1686     type Output = Self;
1687     #[inline]
rem(self, rhs: f32) -> Self1688     fn rem(self, rhs: f32) -> Self {
1689         Self {
1690             x: self.x.rem(rhs),
1691             y: self.y.rem(rhs),
1692             z: self.z.rem(rhs),
1693             w: self.w.rem(rhs),
1694         }
1695     }
1696 }
1697 
1698 impl Rem<&f32> for Vec4 {
1699     type Output = Vec4;
1700     #[inline]
rem(self, rhs: &f32) -> Vec41701     fn rem(self, rhs: &f32) -> Vec4 {
1702         self.rem(*rhs)
1703     }
1704 }
1705 
1706 impl Rem<&f32> for &Vec4 {
1707     type Output = Vec4;
1708     #[inline]
rem(self, rhs: &f32) -> Vec41709     fn rem(self, rhs: &f32) -> Vec4 {
1710         (*self).rem(*rhs)
1711     }
1712 }
1713 
1714 impl Rem<f32> for &Vec4 {
1715     type Output = Vec4;
1716     #[inline]
rem(self, rhs: f32) -> Vec41717     fn rem(self, rhs: f32) -> Vec4 {
1718         (*self).rem(rhs)
1719     }
1720 }
1721 
1722 impl RemAssign<f32> for Vec4 {
1723     #[inline]
rem_assign(&mut self, rhs: f32)1724     fn rem_assign(&mut self, rhs: f32) {
1725         self.x.rem_assign(rhs);
1726         self.y.rem_assign(rhs);
1727         self.z.rem_assign(rhs);
1728         self.w.rem_assign(rhs);
1729     }
1730 }
1731 
1732 impl RemAssign<&f32> for Vec4 {
1733     #[inline]
rem_assign(&mut self, rhs: &f32)1734     fn rem_assign(&mut self, rhs: &f32) {
1735         self.rem_assign(*rhs)
1736     }
1737 }
1738 
1739 impl Rem<Vec4> for f32 {
1740     type Output = Vec4;
1741     #[inline]
rem(self, rhs: Vec4) -> Vec41742     fn rem(self, rhs: Vec4) -> Vec4 {
1743         Vec4 {
1744             x: self.rem(rhs.x),
1745             y: self.rem(rhs.y),
1746             z: self.rem(rhs.z),
1747             w: self.rem(rhs.w),
1748         }
1749     }
1750 }
1751 
1752 impl Rem<&Vec4> for f32 {
1753     type Output = Vec4;
1754     #[inline]
rem(self, rhs: &Vec4) -> Vec41755     fn rem(self, rhs: &Vec4) -> Vec4 {
1756         self.rem(*rhs)
1757     }
1758 }
1759 
1760 impl Rem<&Vec4> for &f32 {
1761     type Output = Vec4;
1762     #[inline]
rem(self, rhs: &Vec4) -> Vec41763     fn rem(self, rhs: &Vec4) -> Vec4 {
1764         (*self).rem(*rhs)
1765     }
1766 }
1767 
1768 impl Rem<Vec4> for &f32 {
1769     type Output = Vec4;
1770     #[inline]
rem(self, rhs: Vec4) -> Vec41771     fn rem(self, rhs: Vec4) -> Vec4 {
1772         (*self).rem(rhs)
1773     }
1774 }
1775 
1776 #[cfg(not(target_arch = "spirv"))]
1777 impl AsRef<[f32; 4]> for Vec4 {
1778     #[inline]
as_ref(&self) -> &[f32; 4]1779     fn as_ref(&self) -> &[f32; 4] {
1780         unsafe { &*(self as *const Vec4 as *const [f32; 4]) }
1781     }
1782 }
1783 
1784 #[cfg(not(target_arch = "spirv"))]
1785 impl AsMut<[f32; 4]> for Vec4 {
1786     #[inline]
as_mut(&mut self) -> &mut [f32; 4]1787     fn as_mut(&mut self) -> &mut [f32; 4] {
1788         unsafe { &mut *(self as *mut Vec4 as *mut [f32; 4]) }
1789     }
1790 }
1791 
1792 impl Sum for Vec4 {
1793     #[inline]
sum<I>(iter: I) -> Self where I: Iterator<Item = Self>,1794     fn sum<I>(iter: I) -> Self
1795     where
1796         I: Iterator<Item = Self>,
1797     {
1798         iter.fold(Self::ZERO, Self::add)
1799     }
1800 }
1801 
1802 impl<'a> Sum<&'a Self> for Vec4 {
1803     #[inline]
sum<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,1804     fn sum<I>(iter: I) -> Self
1805     where
1806         I: Iterator<Item = &'a Self>,
1807     {
1808         iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
1809     }
1810 }
1811 
1812 impl Product for Vec4 {
1813     #[inline]
product<I>(iter: I) -> Self where I: Iterator<Item = Self>,1814     fn product<I>(iter: I) -> Self
1815     where
1816         I: Iterator<Item = Self>,
1817     {
1818         iter.fold(Self::ONE, Self::mul)
1819     }
1820 }
1821 
1822 impl<'a> Product<&'a Self> for Vec4 {
1823     #[inline]
product<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,1824     fn product<I>(iter: I) -> Self
1825     where
1826         I: Iterator<Item = &'a Self>,
1827     {
1828         iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
1829     }
1830 }
1831 
1832 impl Neg for Vec4 {
1833     type Output = Self;
1834     #[inline]
neg(self) -> Self1835     fn neg(self) -> Self {
1836         Self {
1837             x: self.x.neg(),
1838             y: self.y.neg(),
1839             z: self.z.neg(),
1840             w: self.w.neg(),
1841         }
1842     }
1843 }
1844 
1845 impl Neg for &Vec4 {
1846     type Output = Vec4;
1847     #[inline]
neg(self) -> Vec41848     fn neg(self) -> Vec4 {
1849         (*self).neg()
1850     }
1851 }
1852 
1853 impl Index<usize> for Vec4 {
1854     type Output = f32;
1855     #[inline]
index(&self, index: usize) -> &Self::Output1856     fn index(&self, index: usize) -> &Self::Output {
1857         match index {
1858             0 => &self.x,
1859             1 => &self.y,
1860             2 => &self.z,
1861             3 => &self.w,
1862             _ => panic!("index out of bounds"),
1863         }
1864     }
1865 }
1866 
1867 impl IndexMut<usize> for Vec4 {
1868     #[inline]
index_mut(&mut self, index: usize) -> &mut Self::Output1869     fn index_mut(&mut self, index: usize) -> &mut Self::Output {
1870         match index {
1871             0 => &mut self.x,
1872             1 => &mut self.y,
1873             2 => &mut self.z,
1874             3 => &mut self.w,
1875             _ => panic!("index out of bounds"),
1876         }
1877     }
1878 }
1879 
1880 impl fmt::Display for Vec4 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1881     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1882         if let Some(p) = f.precision() {
1883             write!(
1884                 f,
1885                 "[{:.*}, {:.*}, {:.*}, {:.*}]",
1886                 p, self.x, p, self.y, p, self.z, p, self.w
1887             )
1888         } else {
1889             write!(f, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w)
1890         }
1891     }
1892 }
1893 
1894 impl fmt::Debug for Vec4 {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result1895     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1896         fmt.debug_tuple(stringify!(Vec4))
1897             .field(&self.x)
1898             .field(&self.y)
1899             .field(&self.z)
1900             .field(&self.w)
1901             .finish()
1902     }
1903 }
1904 
1905 impl From<[f32; 4]> for Vec4 {
1906     #[inline]
from(a: [f32; 4]) -> Self1907     fn from(a: [f32; 4]) -> Self {
1908         Self::new(a[0], a[1], a[2], a[3])
1909     }
1910 }
1911 
1912 impl From<Vec4> for [f32; 4] {
1913     #[inline]
from(v: Vec4) -> Self1914     fn from(v: Vec4) -> Self {
1915         [v.x, v.y, v.z, v.w]
1916     }
1917 }
1918 
1919 impl From<(f32, f32, f32, f32)> for Vec4 {
1920     #[inline]
from(t: (f32, f32, f32, f32)) -> Self1921     fn from(t: (f32, f32, f32, f32)) -> Self {
1922         Self::new(t.0, t.1, t.2, t.3)
1923     }
1924 }
1925 
1926 impl From<Vec4> for (f32, f32, f32, f32) {
1927     #[inline]
from(v: Vec4) -> Self1928     fn from(v: Vec4) -> Self {
1929         (v.x, v.y, v.z, v.w)
1930     }
1931 }
1932 
1933 impl From<(Vec3A, f32)> for Vec4 {
1934     #[inline]
from((v, w): (Vec3A, f32)) -> Self1935     fn from((v, w): (Vec3A, f32)) -> Self {
1936         v.extend(w)
1937     }
1938 }
1939 
1940 impl From<(f32, Vec3A)> for Vec4 {
1941     #[inline]
from((x, v): (f32, Vec3A)) -> Self1942     fn from((x, v): (f32, Vec3A)) -> Self {
1943         Self::new(x, v.x, v.y, v.z)
1944     }
1945 }
1946 
1947 impl From<(Vec3, f32)> for Vec4 {
1948     #[inline]
from((v, w): (Vec3, f32)) -> Self1949     fn from((v, w): (Vec3, f32)) -> Self {
1950         Self::new(v.x, v.y, v.z, w)
1951     }
1952 }
1953 
1954 impl From<(f32, Vec3)> for Vec4 {
1955     #[inline]
from((x, v): (f32, Vec3)) -> Self1956     fn from((x, v): (f32, Vec3)) -> Self {
1957         Self::new(x, v.x, v.y, v.z)
1958     }
1959 }
1960 
1961 impl From<(Vec2, f32, f32)> for Vec4 {
1962     #[inline]
from((v, z, w): (Vec2, f32, f32)) -> Self1963     fn from((v, z, w): (Vec2, f32, f32)) -> Self {
1964         Self::new(v.x, v.y, z, w)
1965     }
1966 }
1967 
1968 impl From<(Vec2, Vec2)> for Vec4 {
1969     #[inline]
from((v, u): (Vec2, Vec2)) -> Self1970     fn from((v, u): (Vec2, Vec2)) -> Self {
1971         Self::new(v.x, v.y, u.x, u.y)
1972     }
1973 }
1974 
1975 impl From<BVec4> for Vec4 {
1976     #[inline]
from(v: BVec4) -> Self1977     fn from(v: BVec4) -> Self {
1978         Self::new(
1979             f32::from(v.x),
1980             f32::from(v.y),
1981             f32::from(v.z),
1982             f32::from(v.w),
1983         )
1984     }
1985 }
1986 
1987 #[cfg(not(feature = "scalar-math"))]
1988 impl From<BVec4A> for Vec4 {
1989     #[inline]
from(v: BVec4A) -> Self1990     fn from(v: BVec4A) -> Self {
1991         let bool_array: [bool; 4] = v.into();
1992         Self::new(
1993             f32::from(bool_array[0]),
1994             f32::from(bool_array[1]),
1995             f32::from(bool_array[2]),
1996             f32::from(bool_array[3]),
1997         )
1998     }
1999 }
2000