• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Generated from vec.rs.tera template. Edit the template, not the generated file.
2 
3 use crate::{f32::math, BVec3, BVec3A, FloatExt, Quat, Vec2, Vec4};
4 
5 use core::fmt;
6 use core::iter::{Product, Sum};
7 use core::{f32, ops::*};
8 
9 /// Creates a 3-dimensional vector.
10 #[inline(always)]
11 #[must_use]
vec3(x: f32, y: f32, z: f32) -> Vec312 pub const fn vec3(x: f32, y: f32, z: f32) -> Vec3 {
13     Vec3::new(x, y, z)
14 }
15 
16 /// A 3-dimensional vector.
17 #[derive(Clone, Copy, PartialEq)]
18 #[cfg_attr(not(target_arch = "spirv"), repr(C))]
19 #[cfg_attr(target_arch = "spirv", repr(simd))]
20 pub struct Vec3 {
21     pub x: f32,
22     pub y: f32,
23     pub z: f32,
24 }
25 
26 impl Vec3 {
27     /// All zeroes.
28     pub const ZERO: Self = Self::splat(0.0);
29 
30     /// All ones.
31     pub const ONE: Self = Self::splat(1.0);
32 
33     /// All negative ones.
34     pub const NEG_ONE: Self = Self::splat(-1.0);
35 
36     /// All `f32::MIN`.
37     pub const MIN: Self = Self::splat(f32::MIN);
38 
39     /// All `f32::MAX`.
40     pub const MAX: Self = Self::splat(f32::MAX);
41 
42     /// All `f32::NAN`.
43     pub const NAN: Self = Self::splat(f32::NAN);
44 
45     /// All `f32::INFINITY`.
46     pub const INFINITY: Self = Self::splat(f32::INFINITY);
47 
48     /// All `f32::NEG_INFINITY`.
49     pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
50 
51     /// A unit vector pointing along the positive X axis.
52     pub const X: Self = Self::new(1.0, 0.0, 0.0);
53 
54     /// A unit vector pointing along the positive Y axis.
55     pub const Y: Self = Self::new(0.0, 1.0, 0.0);
56 
57     /// A unit vector pointing along the positive Z axis.
58     pub const Z: Self = Self::new(0.0, 0.0, 1.0);
59 
60     /// A unit vector pointing along the negative X axis.
61     pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0);
62 
63     /// A unit vector pointing along the negative Y axis.
64     pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0);
65 
66     /// A unit vector pointing along the negative Z axis.
67     pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0);
68 
69     /// The unit axes.
70     pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
71 
72     /// Creates a new vector.
73     #[inline(always)]
74     #[must_use]
new(x: f32, y: f32, z: f32) -> Self75     pub const fn new(x: f32, y: f32, z: f32) -> Self {
76         Self { x, y, z }
77     }
78 
79     /// Creates a vector with all elements set to `v`.
80     #[inline]
81     #[must_use]
splat(v: f32) -> Self82     pub const fn splat(v: f32) -> Self {
83         Self { x: v, y: v, z: v }
84     }
85 
86     /// Returns a vector containing each element of `self` modified by a mapping function `f`.
87     #[inline]
88     #[must_use]
map<F>(self, f: F) -> Self where F: Fn(f32) -> f32,89     pub fn map<F>(self, f: F) -> Self
90     where
91         F: Fn(f32) -> f32,
92     {
93         Self::new(f(self.x), f(self.y), f(self.z))
94     }
95 
96     /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
97     /// for each element of `self`.
98     ///
99     /// A true element in the mask uses the corresponding element from `if_true`, and false
100     /// uses the element from `if_false`.
101     #[inline]
102     #[must_use]
select(mask: BVec3, if_true: Self, if_false: Self) -> Self103     pub fn select(mask: BVec3, if_true: Self, if_false: Self) -> Self {
104         Self {
105             x: if mask.test(0) { if_true.x } else { if_false.x },
106             y: if mask.test(1) { if_true.y } else { if_false.y },
107             z: if mask.test(2) { if_true.z } else { if_false.z },
108         }
109     }
110 
111     /// Creates a new vector from an array.
112     #[inline]
113     #[must_use]
from_array(a: [f32; 3]) -> Self114     pub const fn from_array(a: [f32; 3]) -> Self {
115         Self::new(a[0], a[1], a[2])
116     }
117 
118     /// `[x, y, z]`
119     #[inline]
120     #[must_use]
to_array(&self) -> [f32; 3]121     pub const fn to_array(&self) -> [f32; 3] {
122         [self.x, self.y, self.z]
123     }
124 
125     /// Creates a vector from the first 3 values in `slice`.
126     ///
127     /// # Panics
128     ///
129     /// Panics if `slice` is less than 3 elements long.
130     #[inline]
131     #[must_use]
from_slice(slice: &[f32]) -> Self132     pub const fn from_slice(slice: &[f32]) -> Self {
133         assert!(slice.len() >= 3);
134         Self::new(slice[0], slice[1], slice[2])
135     }
136 
137     /// Writes the elements of `self` to the first 3 elements in `slice`.
138     ///
139     /// # Panics
140     ///
141     /// Panics if `slice` is less than 3 elements long.
142     #[inline]
write_to_slice(self, slice: &mut [f32])143     pub fn write_to_slice(self, slice: &mut [f32]) {
144         slice[..3].copy_from_slice(&self.to_array());
145     }
146 
147     /// Internal method for creating a 3D vector from a 4D vector, discarding `w`.
148     #[allow(dead_code)]
149     #[inline]
150     #[must_use]
from_vec4(v: Vec4) -> Self151     pub(crate) fn from_vec4(v: Vec4) -> Self {
152         Self {
153             x: v.x,
154             y: v.y,
155             z: v.z,
156         }
157     }
158 
159     /// Creates a 4D vector from `self` and the given `w` value.
160     #[inline]
161     #[must_use]
extend(self, w: f32) -> Vec4162     pub fn extend(self, w: f32) -> Vec4 {
163         Vec4::new(self.x, self.y, self.z, w)
164     }
165 
166     /// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`.
167     ///
168     /// Truncation may also be performed by using [`self.xy()`][crate::swizzles::Vec3Swizzles::xy()].
169     #[inline]
170     #[must_use]
truncate(self) -> Vec2171     pub fn truncate(self) -> Vec2 {
172         use crate::swizzles::Vec3Swizzles;
173         self.xy()
174     }
175 
176     /// Creates a 3D vector from `self` with the given value of `x`.
177     #[inline]
178     #[must_use]
with_x(mut self, x: f32) -> Self179     pub fn with_x(mut self, x: f32) -> Self {
180         self.x = x;
181         self
182     }
183 
184     /// Creates a 3D vector from `self` with the given value of `y`.
185     #[inline]
186     #[must_use]
with_y(mut self, y: f32) -> Self187     pub fn with_y(mut self, y: f32) -> Self {
188         self.y = y;
189         self
190     }
191 
192     /// Creates a 3D vector from `self` with the given value of `z`.
193     #[inline]
194     #[must_use]
with_z(mut self, z: f32) -> Self195     pub fn with_z(mut self, z: f32) -> Self {
196         self.z = z;
197         self
198     }
199 
200     /// Computes the dot product of `self` and `rhs`.
201     #[inline]
202     #[must_use]
dot(self, rhs: Self) -> f32203     pub fn dot(self, rhs: Self) -> f32 {
204         (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
205     }
206 
207     /// Returns a vector where every component is the dot product of `self` and `rhs`.
208     #[inline]
209     #[must_use]
dot_into_vec(self, rhs: Self) -> Self210     pub fn dot_into_vec(self, rhs: Self) -> Self {
211         Self::splat(self.dot(rhs))
212     }
213 
214     /// Computes the cross product of `self` and `rhs`.
215     #[inline]
216     #[must_use]
cross(self, rhs: Self) -> Self217     pub fn cross(self, rhs: Self) -> Self {
218         Self {
219             x: self.y * rhs.z - rhs.y * self.z,
220             y: self.z * rhs.x - rhs.z * self.x,
221             z: self.x * rhs.y - rhs.x * self.y,
222         }
223     }
224 
225     /// Returns a vector containing the minimum values for each element of `self` and `rhs`.
226     ///
227     /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
228     #[inline]
229     #[must_use]
min(self, rhs: Self) -> Self230     pub fn min(self, rhs: Self) -> Self {
231         Self {
232             x: self.x.min(rhs.x),
233             y: self.y.min(rhs.y),
234             z: self.z.min(rhs.z),
235         }
236     }
237 
238     /// Returns a vector containing the maximum values for each element of `self` and `rhs`.
239     ///
240     /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
241     #[inline]
242     #[must_use]
max(self, rhs: Self) -> Self243     pub fn max(self, rhs: Self) -> Self {
244         Self {
245             x: self.x.max(rhs.x),
246             y: self.y.max(rhs.y),
247             z: self.z.max(rhs.z),
248         }
249     }
250 
251     /// Component-wise clamping of values, similar to [`f32::clamp`].
252     ///
253     /// Each element in `min` must be less-or-equal to the corresponding element in `max`.
254     ///
255     /// # Panics
256     ///
257     /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
258     #[inline]
259     #[must_use]
clamp(self, min: Self, max: Self) -> Self260     pub fn clamp(self, min: Self, max: Self) -> Self {
261         glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
262         self.max(min).min(max)
263     }
264 
265     /// Returns the horizontal minimum of `self`.
266     ///
267     /// In other words this computes `min(x, y, ..)`.
268     #[inline]
269     #[must_use]
min_element(self) -> f32270     pub fn min_element(self) -> f32 {
271         self.x.min(self.y.min(self.z))
272     }
273 
274     /// Returns the horizontal maximum of `self`.
275     ///
276     /// In other words this computes `max(x, y, ..)`.
277     #[inline]
278     #[must_use]
max_element(self) -> f32279     pub fn max_element(self) -> f32 {
280         self.x.max(self.y.max(self.z))
281     }
282 
283     /// Returns the sum of all elements of `self`.
284     ///
285     /// In other words, this computes `self.x + self.y + ..`.
286     #[inline]
287     #[must_use]
element_sum(self) -> f32288     pub fn element_sum(self) -> f32 {
289         self.x + self.y + self.z
290     }
291 
292     /// Returns the product of all elements of `self`.
293     ///
294     /// In other words, this computes `self.x * self.y * ..`.
295     #[inline]
296     #[must_use]
element_product(self) -> f32297     pub fn element_product(self) -> f32 {
298         self.x * self.y * self.z
299     }
300 
301     /// Returns a vector mask containing the result of a `==` comparison for each element of
302     /// `self` and `rhs`.
303     ///
304     /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
305     /// elements.
306     #[inline]
307     #[must_use]
cmpeq(self, rhs: Self) -> BVec3308     pub fn cmpeq(self, rhs: Self) -> BVec3 {
309         BVec3::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z))
310     }
311 
312     /// Returns a vector mask containing the result of a `!=` comparison for each element of
313     /// `self` and `rhs`.
314     ///
315     /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
316     /// elements.
317     #[inline]
318     #[must_use]
cmpne(self, rhs: Self) -> BVec3319     pub fn cmpne(self, rhs: Self) -> BVec3 {
320         BVec3::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z))
321     }
322 
323     /// Returns a vector mask containing the result of a `>=` comparison for each element of
324     /// `self` and `rhs`.
325     ///
326     /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
327     /// elements.
328     #[inline]
329     #[must_use]
cmpge(self, rhs: Self) -> BVec3330     pub fn cmpge(self, rhs: Self) -> BVec3 {
331         BVec3::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z))
332     }
333 
334     /// Returns a vector mask containing the result of a `>` comparison for each element of
335     /// `self` and `rhs`.
336     ///
337     /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
338     /// elements.
339     #[inline]
340     #[must_use]
cmpgt(self, rhs: Self) -> BVec3341     pub fn cmpgt(self, rhs: Self) -> BVec3 {
342         BVec3::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z))
343     }
344 
345     /// Returns a vector mask containing the result of a `<=` comparison for each element of
346     /// `self` and `rhs`.
347     ///
348     /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
349     /// elements.
350     #[inline]
351     #[must_use]
cmple(self, rhs: Self) -> BVec3352     pub fn cmple(self, rhs: Self) -> BVec3 {
353         BVec3::new(self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z))
354     }
355 
356     /// Returns a vector mask containing the result of a `<` comparison for each element of
357     /// `self` and `rhs`.
358     ///
359     /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
360     /// elements.
361     #[inline]
362     #[must_use]
cmplt(self, rhs: Self) -> BVec3363     pub fn cmplt(self, rhs: Self) -> BVec3 {
364         BVec3::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z))
365     }
366 
367     /// Returns a vector containing the absolute value of each element of `self`.
368     #[inline]
369     #[must_use]
abs(self) -> Self370     pub fn abs(self) -> Self {
371         Self {
372             x: math::abs(self.x),
373             y: math::abs(self.y),
374             z: math::abs(self.z),
375         }
376     }
377 
378     /// Returns a vector with elements representing the sign of `self`.
379     ///
380     /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
381     /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
382     /// - `NAN` if the number is `NAN`
383     #[inline]
384     #[must_use]
signum(self) -> Self385     pub fn signum(self) -> Self {
386         Self {
387             x: math::signum(self.x),
388             y: math::signum(self.y),
389             z: math::signum(self.z),
390         }
391     }
392 
393     /// Returns a vector with signs of `rhs` and the magnitudes of `self`.
394     #[inline]
395     #[must_use]
copysign(self, rhs: Self) -> Self396     pub fn copysign(self, rhs: Self) -> Self {
397         Self {
398             x: math::copysign(self.x, rhs.x),
399             y: math::copysign(self.y, rhs.y),
400             z: math::copysign(self.z, rhs.z),
401         }
402     }
403 
404     /// Returns a bitmask with the lowest 3 bits set to the sign bits from the elements of `self`.
405     ///
406     /// A negative element results in a `1` bit and a positive element in a `0` bit.  Element `x` goes
407     /// into the first lowest bit, element `y` into the second, etc.
408     #[inline]
409     #[must_use]
is_negative_bitmask(self) -> u32410     pub fn is_negative_bitmask(self) -> u32 {
411         (self.x.is_sign_negative() as u32)
412             | (self.y.is_sign_negative() as u32) << 1
413             | (self.z.is_sign_negative() as u32) << 2
414     }
415 
416     /// Returns `true` if, and only if, all elements are finite.  If any element is either
417     /// `NaN`, positive or negative infinity, this will return `false`.
418     #[inline]
419     #[must_use]
is_finite(self) -> bool420     pub fn is_finite(self) -> bool {
421         self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
422     }
423 
424     /// Performs `is_finite` on each element of self, returning a vector mask of the results.
425     ///
426     /// In other words, this computes `[x.is_finite(), y.is_finite(), ...]`.
is_finite_mask(self) -> BVec3427     pub fn is_finite_mask(self) -> BVec3 {
428         BVec3::new(self.x.is_finite(), self.y.is_finite(), self.z.is_finite())
429     }
430 
431     /// Returns `true` if any elements are `NaN`.
432     #[inline]
433     #[must_use]
is_nan(self) -> bool434     pub fn is_nan(self) -> bool {
435         self.x.is_nan() || self.y.is_nan() || self.z.is_nan()
436     }
437 
438     /// Performs `is_nan` on each element of self, returning a vector mask of the results.
439     ///
440     /// In other words, this computes `[x.is_nan(), y.is_nan(), ...]`.
441     #[inline]
442     #[must_use]
is_nan_mask(self) -> BVec3443     pub fn is_nan_mask(self) -> BVec3 {
444         BVec3::new(self.x.is_nan(), self.y.is_nan(), self.z.is_nan())
445     }
446 
447     /// Computes the length of `self`.
448     #[doc(alias = "magnitude")]
449     #[inline]
450     #[must_use]
length(self) -> f32451     pub fn length(self) -> f32 {
452         math::sqrt(self.dot(self))
453     }
454 
455     /// Computes the squared length of `self`.
456     ///
457     /// This is faster than `length()` as it avoids a square root operation.
458     #[doc(alias = "magnitude2")]
459     #[inline]
460     #[must_use]
length_squared(self) -> f32461     pub fn length_squared(self) -> f32 {
462         self.dot(self)
463     }
464 
465     /// Computes `1.0 / length()`.
466     ///
467     /// For valid results, `self` must _not_ be of length zero.
468     #[inline]
469     #[must_use]
length_recip(self) -> f32470     pub fn length_recip(self) -> f32 {
471         self.length().recip()
472     }
473 
474     /// Computes the Euclidean distance between two points in space.
475     #[inline]
476     #[must_use]
distance(self, rhs: Self) -> f32477     pub fn distance(self, rhs: Self) -> f32 {
478         (self - rhs).length()
479     }
480 
481     /// Compute the squared euclidean distance between two points in space.
482     #[inline]
483     #[must_use]
distance_squared(self, rhs: Self) -> f32484     pub fn distance_squared(self, rhs: Self) -> f32 {
485         (self - rhs).length_squared()
486     }
487 
488     /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
489     #[inline]
490     #[must_use]
div_euclid(self, rhs: Self) -> Self491     pub fn div_euclid(self, rhs: Self) -> Self {
492         Self::new(
493             math::div_euclid(self.x, rhs.x),
494             math::div_euclid(self.y, rhs.y),
495             math::div_euclid(self.z, rhs.z),
496         )
497     }
498 
499     /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
500     ///
501     /// [Euclidean division]: f32::rem_euclid
502     #[inline]
503     #[must_use]
rem_euclid(self, rhs: Self) -> Self504     pub fn rem_euclid(self, rhs: Self) -> Self {
505         Self::new(
506             math::rem_euclid(self.x, rhs.x),
507             math::rem_euclid(self.y, rhs.y),
508             math::rem_euclid(self.z, rhs.z),
509         )
510     }
511 
512     /// Returns `self` normalized to length 1.0.
513     ///
514     /// For valid results, `self` must be finite and _not_ of length zero, nor very close to zero.
515     ///
516     /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
517     ///
518     /// Panics
519     ///
520     /// Will panic if the resulting normalized vector is not finite when `glam_assert` is enabled.
521     #[inline]
522     #[must_use]
normalize(self) -> Self523     pub fn normalize(self) -> Self {
524         #[allow(clippy::let_and_return)]
525         let normalized = self.mul(self.length_recip());
526         glam_assert!(normalized.is_finite());
527         normalized
528     }
529 
530     /// Returns `self` normalized to length 1.0 if possible, else returns `None`.
531     ///
532     /// In particular, if the input is zero (or very close to zero), or non-finite,
533     /// the result of this operation will be `None`.
534     ///
535     /// See also [`Self::normalize_or_zero()`].
536     #[inline]
537     #[must_use]
try_normalize(self) -> Option<Self>538     pub fn try_normalize(self) -> Option<Self> {
539         let rcp = self.length_recip();
540         if rcp.is_finite() && rcp > 0.0 {
541             Some(self * rcp)
542         } else {
543             None
544         }
545     }
546 
547     /// Returns `self` normalized to length 1.0 if possible, else returns a
548     /// fallback value.
549     ///
550     /// In particular, if the input is zero (or very close to zero), or non-finite,
551     /// the result of this operation will be the fallback value.
552     ///
553     /// See also [`Self::try_normalize()`].
554     #[inline]
555     #[must_use]
normalize_or(self, fallback: Self) -> Self556     pub fn normalize_or(self, fallback: Self) -> Self {
557         let rcp = self.length_recip();
558         if rcp.is_finite() && rcp > 0.0 {
559             self * rcp
560         } else {
561             fallback
562         }
563     }
564 
565     /// Returns `self` normalized to length 1.0 if possible, else returns zero.
566     ///
567     /// In particular, if the input is zero (or very close to zero), or non-finite,
568     /// the result of this operation will be zero.
569     ///
570     /// See also [`Self::try_normalize()`].
571     #[inline]
572     #[must_use]
normalize_or_zero(self) -> Self573     pub fn normalize_or_zero(self) -> Self {
574         self.normalize_or(Self::ZERO)
575     }
576 
577     /// Returns whether `self` is length `1.0` or not.
578     ///
579     /// Uses a precision threshold of approximately `1e-4`.
580     #[inline]
581     #[must_use]
is_normalized(self) -> bool582     pub fn is_normalized(self) -> bool {
583         math::abs(self.length_squared() - 1.0) <= 2e-4
584     }
585 
586     /// Returns the vector projection of `self` onto `rhs`.
587     ///
588     /// `rhs` must be of non-zero length.
589     ///
590     /// # Panics
591     ///
592     /// Will panic if `rhs` is zero length when `glam_assert` is enabled.
593     #[inline]
594     #[must_use]
project_onto(self, rhs: Self) -> Self595     pub fn project_onto(self, rhs: Self) -> Self {
596         let other_len_sq_rcp = rhs.dot(rhs).recip();
597         glam_assert!(other_len_sq_rcp.is_finite());
598         rhs * self.dot(rhs) * other_len_sq_rcp
599     }
600 
601     /// Returns the vector rejection of `self` from `rhs`.
602     ///
603     /// The vector rejection is the vector perpendicular to the projection of `self` onto
604     /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
605     ///
606     /// `rhs` must be of non-zero length.
607     ///
608     /// # Panics
609     ///
610     /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
611     #[doc(alias("plane"))]
612     #[inline]
613     #[must_use]
reject_from(self, rhs: Self) -> Self614     pub fn reject_from(self, rhs: Self) -> Self {
615         self - self.project_onto(rhs)
616     }
617 
618     /// Returns the vector projection of `self` onto `rhs`.
619     ///
620     /// `rhs` must be normalized.
621     ///
622     /// # Panics
623     ///
624     /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
625     #[inline]
626     #[must_use]
project_onto_normalized(self, rhs: Self) -> Self627     pub fn project_onto_normalized(self, rhs: Self) -> Self {
628         glam_assert!(rhs.is_normalized());
629         rhs * self.dot(rhs)
630     }
631 
632     /// Returns the vector rejection of `self` from `rhs`.
633     ///
634     /// The vector rejection is the vector perpendicular to the projection of `self` onto
635     /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
636     ///
637     /// `rhs` must be normalized.
638     ///
639     /// # Panics
640     ///
641     /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
642     #[doc(alias("plane"))]
643     #[inline]
644     #[must_use]
reject_from_normalized(self, rhs: Self) -> Self645     pub fn reject_from_normalized(self, rhs: Self) -> Self {
646         self - self.project_onto_normalized(rhs)
647     }
648 
649     /// Returns a vector containing the nearest integer to a number for each element of `self`.
650     /// Round half-way cases away from 0.0.
651     #[inline]
652     #[must_use]
round(self) -> Self653     pub fn round(self) -> Self {
654         Self {
655             x: math::round(self.x),
656             y: math::round(self.y),
657             z: math::round(self.z),
658         }
659     }
660 
661     /// Returns a vector containing the largest integer less than or equal to a number for each
662     /// element of `self`.
663     #[inline]
664     #[must_use]
floor(self) -> Self665     pub fn floor(self) -> Self {
666         Self {
667             x: math::floor(self.x),
668             y: math::floor(self.y),
669             z: math::floor(self.z),
670         }
671     }
672 
673     /// Returns a vector containing the smallest integer greater than or equal to a number for
674     /// each element of `self`.
675     #[inline]
676     #[must_use]
ceil(self) -> Self677     pub fn ceil(self) -> Self {
678         Self {
679             x: math::ceil(self.x),
680             y: math::ceil(self.y),
681             z: math::ceil(self.z),
682         }
683     }
684 
685     /// Returns a vector containing the integer part each element of `self`. This means numbers are
686     /// always truncated towards zero.
687     #[inline]
688     #[must_use]
trunc(self) -> Self689     pub fn trunc(self) -> Self {
690         Self {
691             x: math::trunc(self.x),
692             y: math::trunc(self.y),
693             z: math::trunc(self.z),
694         }
695     }
696 
697     /// Returns a vector containing the fractional part of the vector as `self - self.trunc()`.
698     ///
699     /// Note that this differs from the GLSL implementation of `fract` which returns
700     /// `self - self.floor()`.
701     ///
702     /// Note that this is fast but not precise for large numbers.
703     #[inline]
704     #[must_use]
fract(self) -> Self705     pub fn fract(self) -> Self {
706         self - self.trunc()
707     }
708 
709     /// Returns a vector containing the fractional part of the vector as `self - self.floor()`.
710     ///
711     /// Note that this differs from the Rust implementation of `fract` which returns
712     /// `self - self.trunc()`.
713     ///
714     /// Note that this is fast but not precise for large numbers.
715     #[inline]
716     #[must_use]
fract_gl(self) -> Self717     pub fn fract_gl(self) -> Self {
718         self - self.floor()
719     }
720 
721     /// Returns a vector containing `e^self` (the exponential function) for each element of
722     /// `self`.
723     #[inline]
724     #[must_use]
exp(self) -> Self725     pub fn exp(self) -> Self {
726         Self::new(math::exp(self.x), math::exp(self.y), math::exp(self.z))
727     }
728 
729     /// Returns a vector containing each element of `self` raised to the power of `n`.
730     #[inline]
731     #[must_use]
powf(self, n: f32) -> Self732     pub fn powf(self, n: f32) -> Self {
733         Self::new(
734             math::powf(self.x, n),
735             math::powf(self.y, n),
736             math::powf(self.z, n),
737         )
738     }
739 
740     /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
741     #[inline]
742     #[must_use]
recip(self) -> Self743     pub fn recip(self) -> Self {
744         Self {
745             x: 1.0 / self.x,
746             y: 1.0 / self.y,
747             z: 1.0 / self.z,
748         }
749     }
750 
751     /// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
752     ///
753     /// When `s` is `0.0`, the result will be equal to `self`.  When `s` is `1.0`, the result
754     /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
755     /// extrapolated.
756     #[doc(alias = "mix")]
757     #[inline]
758     #[must_use]
lerp(self, rhs: Self, s: f32) -> Self759     pub fn lerp(self, rhs: Self, s: f32) -> Self {
760         self * (1.0 - s) + rhs * s
761     }
762 
763     /// Moves towards `rhs` based on the value `d`.
764     ///
765     /// When `d` is `0.0`, the result will be equal to `self`. When `d` is equal to
766     /// `self.distance(rhs)`, the result will be equal to `rhs`. Will not go past `rhs`.
767     #[inline]
768     #[must_use]
move_towards(&self, rhs: Self, d: f32) -> Self769     pub fn move_towards(&self, rhs: Self, d: f32) -> Self {
770         let a = rhs - *self;
771         let len = a.length();
772         if len <= d || len <= 1e-4 {
773             return rhs;
774         }
775         *self + a / len * d
776     }
777 
778     /// Calculates the midpoint between `self` and `rhs`.
779     ///
780     /// The midpoint is the average of, or halfway point between, two vectors.
781     /// `a.midpoint(b)` should yield the same result as `a.lerp(b, 0.5)`
782     /// while being slightly cheaper to compute.
783     #[inline]
midpoint(self, rhs: Self) -> Self784     pub fn midpoint(self, rhs: Self) -> Self {
785         (self + rhs) * 0.5
786     }
787 
788     /// Returns true if the absolute difference of all elements between `self` and `rhs` is
789     /// less than or equal to `max_abs_diff`.
790     ///
791     /// This can be used to compare if two vectors contain similar elements. It works best when
792     /// comparing with a known value. The `max_abs_diff` that should be used used depends on
793     /// the values being compared against.
794     ///
795     /// For more see
796     /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
797     #[inline]
798     #[must_use]
abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool799     pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
800         self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
801     }
802 
803     /// Returns a vector with a length no less than `min` and no more than `max`.
804     ///
805     /// # Panics
806     ///
807     /// Will panic if `min` is greater than `max`, or if either `min` or `max` is negative, when `glam_assert` is enabled.
808     #[inline]
809     #[must_use]
clamp_length(self, min: f32, max: f32) -> Self810     pub fn clamp_length(self, min: f32, max: f32) -> Self {
811         glam_assert!(0.0 <= min);
812         glam_assert!(min <= max);
813         let length_sq = self.length_squared();
814         if length_sq < min * min {
815             min * (self / math::sqrt(length_sq))
816         } else if length_sq > max * max {
817             max * (self / math::sqrt(length_sq))
818         } else {
819             self
820         }
821     }
822 
823     /// Returns a vector with a length no more than `max`.
824     ///
825     /// # Panics
826     ///
827     /// Will panic if `max` is negative when `glam_assert` is enabled.
828     #[inline]
829     #[must_use]
clamp_length_max(self, max: f32) -> Self830     pub fn clamp_length_max(self, max: f32) -> Self {
831         glam_assert!(0.0 <= max);
832         let length_sq = self.length_squared();
833         if length_sq > max * max {
834             max * (self / math::sqrt(length_sq))
835         } else {
836             self
837         }
838     }
839 
840     /// Returns a vector with a length no less than `min`.
841     ///
842     /// # Panics
843     ///
844     /// Will panic if `min` is negative when `glam_assert` is enabled.
845     #[inline]
846     #[must_use]
clamp_length_min(self, min: f32) -> Self847     pub fn clamp_length_min(self, min: f32) -> Self {
848         glam_assert!(0.0 <= min);
849         let length_sq = self.length_squared();
850         if length_sq < min * min {
851             min * (self / math::sqrt(length_sq))
852         } else {
853             self
854         }
855     }
856 
857     /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
858     /// error, yielding a more accurate result than an unfused multiply-add.
859     ///
860     /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
861     /// architecture has a dedicated fma CPU instruction. However, this is not always true,
862     /// and will be heavily dependant on designing algorithms with specific target hardware in
863     /// mind.
864     #[inline]
865     #[must_use]
mul_add(self, a: Self, b: Self) -> Self866     pub fn mul_add(self, a: Self, b: Self) -> Self {
867         Self::new(
868             math::mul_add(self.x, a.x, b.x),
869             math::mul_add(self.y, a.y, b.y),
870             math::mul_add(self.z, a.z, b.z),
871         )
872     }
873 
874     /// Returns the reflection vector for a given incident vector `self` and surface normal
875     /// `normal`.
876     ///
877     /// `normal` must be normalized.
878     ///
879     /// # Panics
880     ///
881     /// Will panic if `normal` is not normalized when `glam_assert` is enabled.
882     #[inline]
883     #[must_use]
reflect(self, normal: Self) -> Self884     pub fn reflect(self, normal: Self) -> Self {
885         glam_assert!(normal.is_normalized());
886         self - 2.0 * self.dot(normal) * normal
887     }
888 
889     /// Returns the refraction direction for a given incident vector `self`, surface normal
890     /// `normal` and ratio of indices of refraction, `eta`. When total internal reflection occurs,
891     /// a zero vector will be returned.
892     ///
893     /// `self` and `normal` must be normalized.
894     ///
895     /// # Panics
896     ///
897     /// Will panic if `self` or `normal` is not normalized when `glam_assert` is enabled.
898     #[inline]
899     #[must_use]
refract(self, normal: Self, eta: f32) -> Self900     pub fn refract(self, normal: Self, eta: f32) -> Self {
901         glam_assert!(self.is_normalized());
902         glam_assert!(normal.is_normalized());
903         let n_dot_i = normal.dot(self);
904         let k = 1.0 - eta * eta * (1.0 - n_dot_i * n_dot_i);
905         if k >= 0.0 {
906             eta * self - (eta * n_dot_i + math::sqrt(k)) * normal
907         } else {
908             Self::ZERO
909         }
910     }
911 
912     /// Returns the angle (in radians) between two vectors in the range `[0, +π]`.
913     ///
914     /// The inputs do not need to be unit vectors however they must be non-zero.
915     #[inline]
916     #[must_use]
angle_between(self, rhs: Self) -> f32917     pub fn angle_between(self, rhs: Self) -> f32 {
918         math::acos_approx(
919             self.dot(rhs)
920                 .div(math::sqrt(self.length_squared().mul(rhs.length_squared()))),
921         )
922     }
923 
924     /// Returns some vector that is orthogonal to the given one.
925     ///
926     /// The input vector must be finite and non-zero.
927     ///
928     /// The output vector is not necessarily unit length. For that use
929     /// [`Self::any_orthonormal_vector()`] instead.
930     #[inline]
931     #[must_use]
any_orthogonal_vector(&self) -> Self932     pub fn any_orthogonal_vector(&self) -> Self {
933         // This can probably be optimized
934         if math::abs(self.x) > math::abs(self.y) {
935             Self::new(-self.z, 0.0, self.x) // self.cross(Self::Y)
936         } else {
937             Self::new(0.0, self.z, -self.y) // self.cross(Self::X)
938         }
939     }
940 
941     /// Returns any unit vector that is orthogonal to the given one.
942     ///
943     /// The input vector must be unit length.
944     ///
945     /// # Panics
946     ///
947     /// Will panic if `self` is not normalized when `glam_assert` is enabled.
948     #[inline]
949     #[must_use]
any_orthonormal_vector(&self) -> Self950     pub fn any_orthonormal_vector(&self) -> Self {
951         glam_assert!(self.is_normalized());
952         // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
953         let sign = math::signum(self.z);
954         let a = -1.0 / (sign + self.z);
955         let b = self.x * self.y * a;
956         Self::new(b, sign + self.y * self.y * a, -self.y)
957     }
958 
959     /// Given a unit vector return two other vectors that together form an orthonormal
960     /// basis. That is, all three vectors are orthogonal to each other and are normalized.
961     ///
962     /// # Panics
963     ///
964     /// Will panic if `self` is not normalized when `glam_assert` is enabled.
965     #[inline]
966     #[must_use]
any_orthonormal_pair(&self) -> (Self, Self)967     pub fn any_orthonormal_pair(&self) -> (Self, Self) {
968         glam_assert!(self.is_normalized());
969         // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
970         let sign = math::signum(self.z);
971         let a = -1.0 / (sign + self.z);
972         let b = self.x * self.y * a;
973         (
974             Self::new(1.0 + sign * self.x * self.x * a, sign * b, -sign * self.x),
975             Self::new(b, sign + self.y * self.y * a, -self.y),
976         )
977     }
978 
979     /// Performs a spherical linear interpolation between `self` and `rhs` based on the value `s`.
980     ///
981     /// When `s` is `0.0`, the result will be equal to `self`.  When `s` is `1.0`, the result
982     /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
983     /// extrapolated.
984     #[inline]
985     #[must_use]
slerp(self, rhs: Self, s: f32) -> Self986     pub fn slerp(self, rhs: Self, s: f32) -> Self {
987         let self_length = self.length();
988         let rhs_length = rhs.length();
989         // Cosine of the angle between the vectors [-1, 1], or NaN if either vector has a zero length
990         let dot = self.dot(rhs) / (self_length * rhs_length);
991         // If dot is close to 1 or -1, or is NaN the calculations for t1 and t2 break down
992         if math::abs(dot) < 1.0 - 3e-7 {
993             // Angle between the vectors [0, +π]
994             let theta = math::acos_approx(dot);
995             // Sine of the angle between vectors [0, 1]
996             let sin_theta = math::sin(theta);
997             let t1 = math::sin(theta * (1. - s));
998             let t2 = math::sin(theta * s);
999 
1000             // Interpolate vector lengths
1001             let result_length = self_length.lerp(rhs_length, s);
1002             // Scale the vectors to the target length and interpolate them
1003             return (self * (result_length / self_length) * t1
1004                 + rhs * (result_length / rhs_length) * t2)
1005                 * sin_theta.recip();
1006         }
1007         if dot < 0.0 {
1008             // Vectors are almost parallel in opposing directions
1009 
1010             // Create a rotation from self to rhs along some axis
1011             let axis = self.any_orthogonal_vector().normalize();
1012             let rotation = Quat::from_axis_angle(axis, core::f32::consts::PI * s);
1013             // Interpolate vector lengths
1014             let result_length = self_length.lerp(rhs_length, s);
1015             rotation * self * (result_length / self_length)
1016         } else {
1017             // Vectors are almost parallel in the same direction, or dot was NaN
1018             self.lerp(rhs, s)
1019         }
1020     }
1021 
1022     /// Casts all elements of `self` to `f64`.
1023     #[inline]
1024     #[must_use]
as_dvec3(&self) -> crate::DVec31025     pub fn as_dvec3(&self) -> crate::DVec3 {
1026         crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64)
1027     }
1028 
1029     /// Casts all elements of `self` to `i8`.
1030     #[inline]
1031     #[must_use]
as_i8vec3(&self) -> crate::I8Vec31032     pub fn as_i8vec3(&self) -> crate::I8Vec3 {
1033         crate::I8Vec3::new(self.x as i8, self.y as i8, self.z as i8)
1034     }
1035 
1036     /// Casts all elements of `self` to `u8`.
1037     #[inline]
1038     #[must_use]
as_u8vec3(&self) -> crate::U8Vec31039     pub fn as_u8vec3(&self) -> crate::U8Vec3 {
1040         crate::U8Vec3::new(self.x as u8, self.y as u8, self.z as u8)
1041     }
1042 
1043     /// Casts all elements of `self` to `i16`.
1044     #[inline]
1045     #[must_use]
as_i16vec3(&self) -> crate::I16Vec31046     pub fn as_i16vec3(&self) -> crate::I16Vec3 {
1047         crate::I16Vec3::new(self.x as i16, self.y as i16, self.z as i16)
1048     }
1049 
1050     /// Casts all elements of `self` to `u16`.
1051     #[inline]
1052     #[must_use]
as_u16vec3(&self) -> crate::U16Vec31053     pub fn as_u16vec3(&self) -> crate::U16Vec3 {
1054         crate::U16Vec3::new(self.x as u16, self.y as u16, self.z as u16)
1055     }
1056 
1057     /// Casts all elements of `self` to `i32`.
1058     #[inline]
1059     #[must_use]
as_ivec3(&self) -> crate::IVec31060     pub fn as_ivec3(&self) -> crate::IVec3 {
1061         crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
1062     }
1063 
1064     /// Casts all elements of `self` to `u32`.
1065     #[inline]
1066     #[must_use]
as_uvec3(&self) -> crate::UVec31067     pub fn as_uvec3(&self) -> crate::UVec3 {
1068         crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32)
1069     }
1070 
1071     /// Casts all elements of `self` to `i64`.
1072     #[inline]
1073     #[must_use]
as_i64vec3(&self) -> crate::I64Vec31074     pub fn as_i64vec3(&self) -> crate::I64Vec3 {
1075         crate::I64Vec3::new(self.x as i64, self.y as i64, self.z as i64)
1076     }
1077 
1078     /// Casts all elements of `self` to `u64`.
1079     #[inline]
1080     #[must_use]
as_u64vec3(&self) -> crate::U64Vec31081     pub fn as_u64vec3(&self) -> crate::U64Vec3 {
1082         crate::U64Vec3::new(self.x as u64, self.y as u64, self.z as u64)
1083     }
1084 }
1085 
1086 impl Default for Vec3 {
1087     #[inline(always)]
default() -> Self1088     fn default() -> Self {
1089         Self::ZERO
1090     }
1091 }
1092 
1093 impl Div<Vec3> for Vec3 {
1094     type Output = Self;
1095     #[inline]
div(self, rhs: Self) -> Self1096     fn div(self, rhs: Self) -> Self {
1097         Self {
1098             x: self.x.div(rhs.x),
1099             y: self.y.div(rhs.y),
1100             z: self.z.div(rhs.z),
1101         }
1102     }
1103 }
1104 
1105 impl Div<&Vec3> for Vec3 {
1106     type Output = Vec3;
1107     #[inline]
div(self, rhs: &Vec3) -> Vec31108     fn div(self, rhs: &Vec3) -> Vec3 {
1109         self.div(*rhs)
1110     }
1111 }
1112 
1113 impl Div<&Vec3> for &Vec3 {
1114     type Output = Vec3;
1115     #[inline]
div(self, rhs: &Vec3) -> Vec31116     fn div(self, rhs: &Vec3) -> Vec3 {
1117         (*self).div(*rhs)
1118     }
1119 }
1120 
1121 impl Div<Vec3> for &Vec3 {
1122     type Output = Vec3;
1123     #[inline]
div(self, rhs: Vec3) -> Vec31124     fn div(self, rhs: Vec3) -> Vec3 {
1125         (*self).div(rhs)
1126     }
1127 }
1128 
1129 impl DivAssign<Vec3> for Vec3 {
1130     #[inline]
div_assign(&mut self, rhs: Self)1131     fn div_assign(&mut self, rhs: Self) {
1132         self.x.div_assign(rhs.x);
1133         self.y.div_assign(rhs.y);
1134         self.z.div_assign(rhs.z);
1135     }
1136 }
1137 
1138 impl DivAssign<&Vec3> for Vec3 {
1139     #[inline]
div_assign(&mut self, rhs: &Vec3)1140     fn div_assign(&mut self, rhs: &Vec3) {
1141         self.div_assign(*rhs)
1142     }
1143 }
1144 
1145 impl Div<f32> for Vec3 {
1146     type Output = Self;
1147     #[inline]
div(self, rhs: f32) -> Self1148     fn div(self, rhs: f32) -> Self {
1149         Self {
1150             x: self.x.div(rhs),
1151             y: self.y.div(rhs),
1152             z: self.z.div(rhs),
1153         }
1154     }
1155 }
1156 
1157 impl Div<&f32> for Vec3 {
1158     type Output = Vec3;
1159     #[inline]
div(self, rhs: &f32) -> Vec31160     fn div(self, rhs: &f32) -> Vec3 {
1161         self.div(*rhs)
1162     }
1163 }
1164 
1165 impl Div<&f32> for &Vec3 {
1166     type Output = Vec3;
1167     #[inline]
div(self, rhs: &f32) -> Vec31168     fn div(self, rhs: &f32) -> Vec3 {
1169         (*self).div(*rhs)
1170     }
1171 }
1172 
1173 impl Div<f32> for &Vec3 {
1174     type Output = Vec3;
1175     #[inline]
div(self, rhs: f32) -> Vec31176     fn div(self, rhs: f32) -> Vec3 {
1177         (*self).div(rhs)
1178     }
1179 }
1180 
1181 impl DivAssign<f32> for Vec3 {
1182     #[inline]
div_assign(&mut self, rhs: f32)1183     fn div_assign(&mut self, rhs: f32) {
1184         self.x.div_assign(rhs);
1185         self.y.div_assign(rhs);
1186         self.z.div_assign(rhs);
1187     }
1188 }
1189 
1190 impl DivAssign<&f32> for Vec3 {
1191     #[inline]
div_assign(&mut self, rhs: &f32)1192     fn div_assign(&mut self, rhs: &f32) {
1193         self.div_assign(*rhs)
1194     }
1195 }
1196 
1197 impl Div<Vec3> for f32 {
1198     type Output = Vec3;
1199     #[inline]
div(self, rhs: Vec3) -> Vec31200     fn div(self, rhs: Vec3) -> Vec3 {
1201         Vec3 {
1202             x: self.div(rhs.x),
1203             y: self.div(rhs.y),
1204             z: self.div(rhs.z),
1205         }
1206     }
1207 }
1208 
1209 impl Div<&Vec3> for f32 {
1210     type Output = Vec3;
1211     #[inline]
div(self, rhs: &Vec3) -> Vec31212     fn div(self, rhs: &Vec3) -> Vec3 {
1213         self.div(*rhs)
1214     }
1215 }
1216 
1217 impl Div<&Vec3> for &f32 {
1218     type Output = Vec3;
1219     #[inline]
div(self, rhs: &Vec3) -> Vec31220     fn div(self, rhs: &Vec3) -> Vec3 {
1221         (*self).div(*rhs)
1222     }
1223 }
1224 
1225 impl Div<Vec3> for &f32 {
1226     type Output = Vec3;
1227     #[inline]
div(self, rhs: Vec3) -> Vec31228     fn div(self, rhs: Vec3) -> Vec3 {
1229         (*self).div(rhs)
1230     }
1231 }
1232 
1233 impl Mul<Vec3> for Vec3 {
1234     type Output = Self;
1235     #[inline]
mul(self, rhs: Self) -> Self1236     fn mul(self, rhs: Self) -> Self {
1237         Self {
1238             x: self.x.mul(rhs.x),
1239             y: self.y.mul(rhs.y),
1240             z: self.z.mul(rhs.z),
1241         }
1242     }
1243 }
1244 
1245 impl Mul<&Vec3> for Vec3 {
1246     type Output = Vec3;
1247     #[inline]
mul(self, rhs: &Vec3) -> Vec31248     fn mul(self, rhs: &Vec3) -> Vec3 {
1249         self.mul(*rhs)
1250     }
1251 }
1252 
1253 impl Mul<&Vec3> for &Vec3 {
1254     type Output = Vec3;
1255     #[inline]
mul(self, rhs: &Vec3) -> Vec31256     fn mul(self, rhs: &Vec3) -> Vec3 {
1257         (*self).mul(*rhs)
1258     }
1259 }
1260 
1261 impl Mul<Vec3> for &Vec3 {
1262     type Output = Vec3;
1263     #[inline]
mul(self, rhs: Vec3) -> Vec31264     fn mul(self, rhs: Vec3) -> Vec3 {
1265         (*self).mul(rhs)
1266     }
1267 }
1268 
1269 impl MulAssign<Vec3> for Vec3 {
1270     #[inline]
mul_assign(&mut self, rhs: Self)1271     fn mul_assign(&mut self, rhs: Self) {
1272         self.x.mul_assign(rhs.x);
1273         self.y.mul_assign(rhs.y);
1274         self.z.mul_assign(rhs.z);
1275     }
1276 }
1277 
1278 impl MulAssign<&Vec3> for Vec3 {
1279     #[inline]
mul_assign(&mut self, rhs: &Vec3)1280     fn mul_assign(&mut self, rhs: &Vec3) {
1281         self.mul_assign(*rhs)
1282     }
1283 }
1284 
1285 impl Mul<f32> for Vec3 {
1286     type Output = Self;
1287     #[inline]
mul(self, rhs: f32) -> Self1288     fn mul(self, rhs: f32) -> Self {
1289         Self {
1290             x: self.x.mul(rhs),
1291             y: self.y.mul(rhs),
1292             z: self.z.mul(rhs),
1293         }
1294     }
1295 }
1296 
1297 impl Mul<&f32> for Vec3 {
1298     type Output = Vec3;
1299     #[inline]
mul(self, rhs: &f32) -> Vec31300     fn mul(self, rhs: &f32) -> Vec3 {
1301         self.mul(*rhs)
1302     }
1303 }
1304 
1305 impl Mul<&f32> for &Vec3 {
1306     type Output = Vec3;
1307     #[inline]
mul(self, rhs: &f32) -> Vec31308     fn mul(self, rhs: &f32) -> Vec3 {
1309         (*self).mul(*rhs)
1310     }
1311 }
1312 
1313 impl Mul<f32> for &Vec3 {
1314     type Output = Vec3;
1315     #[inline]
mul(self, rhs: f32) -> Vec31316     fn mul(self, rhs: f32) -> Vec3 {
1317         (*self).mul(rhs)
1318     }
1319 }
1320 
1321 impl MulAssign<f32> for Vec3 {
1322     #[inline]
mul_assign(&mut self, rhs: f32)1323     fn mul_assign(&mut self, rhs: f32) {
1324         self.x.mul_assign(rhs);
1325         self.y.mul_assign(rhs);
1326         self.z.mul_assign(rhs);
1327     }
1328 }
1329 
1330 impl MulAssign<&f32> for Vec3 {
1331     #[inline]
mul_assign(&mut self, rhs: &f32)1332     fn mul_assign(&mut self, rhs: &f32) {
1333         self.mul_assign(*rhs)
1334     }
1335 }
1336 
1337 impl Mul<Vec3> for f32 {
1338     type Output = Vec3;
1339     #[inline]
mul(self, rhs: Vec3) -> Vec31340     fn mul(self, rhs: Vec3) -> Vec3 {
1341         Vec3 {
1342             x: self.mul(rhs.x),
1343             y: self.mul(rhs.y),
1344             z: self.mul(rhs.z),
1345         }
1346     }
1347 }
1348 
1349 impl Mul<&Vec3> for f32 {
1350     type Output = Vec3;
1351     #[inline]
mul(self, rhs: &Vec3) -> Vec31352     fn mul(self, rhs: &Vec3) -> Vec3 {
1353         self.mul(*rhs)
1354     }
1355 }
1356 
1357 impl Mul<&Vec3> for &f32 {
1358     type Output = Vec3;
1359     #[inline]
mul(self, rhs: &Vec3) -> Vec31360     fn mul(self, rhs: &Vec3) -> Vec3 {
1361         (*self).mul(*rhs)
1362     }
1363 }
1364 
1365 impl Mul<Vec3> for &f32 {
1366     type Output = Vec3;
1367     #[inline]
mul(self, rhs: Vec3) -> Vec31368     fn mul(self, rhs: Vec3) -> Vec3 {
1369         (*self).mul(rhs)
1370     }
1371 }
1372 
1373 impl Add<Vec3> for Vec3 {
1374     type Output = Self;
1375     #[inline]
add(self, rhs: Self) -> Self1376     fn add(self, rhs: Self) -> Self {
1377         Self {
1378             x: self.x.add(rhs.x),
1379             y: self.y.add(rhs.y),
1380             z: self.z.add(rhs.z),
1381         }
1382     }
1383 }
1384 
1385 impl Add<&Vec3> for Vec3 {
1386     type Output = Vec3;
1387     #[inline]
add(self, rhs: &Vec3) -> Vec31388     fn add(self, rhs: &Vec3) -> Vec3 {
1389         self.add(*rhs)
1390     }
1391 }
1392 
1393 impl Add<&Vec3> for &Vec3 {
1394     type Output = Vec3;
1395     #[inline]
add(self, rhs: &Vec3) -> Vec31396     fn add(self, rhs: &Vec3) -> Vec3 {
1397         (*self).add(*rhs)
1398     }
1399 }
1400 
1401 impl Add<Vec3> for &Vec3 {
1402     type Output = Vec3;
1403     #[inline]
add(self, rhs: Vec3) -> Vec31404     fn add(self, rhs: Vec3) -> Vec3 {
1405         (*self).add(rhs)
1406     }
1407 }
1408 
1409 impl AddAssign<Vec3> for Vec3 {
1410     #[inline]
add_assign(&mut self, rhs: Self)1411     fn add_assign(&mut self, rhs: Self) {
1412         self.x.add_assign(rhs.x);
1413         self.y.add_assign(rhs.y);
1414         self.z.add_assign(rhs.z);
1415     }
1416 }
1417 
1418 impl AddAssign<&Vec3> for Vec3 {
1419     #[inline]
add_assign(&mut self, rhs: &Vec3)1420     fn add_assign(&mut self, rhs: &Vec3) {
1421         self.add_assign(*rhs)
1422     }
1423 }
1424 
1425 impl Add<f32> for Vec3 {
1426     type Output = Self;
1427     #[inline]
add(self, rhs: f32) -> Self1428     fn add(self, rhs: f32) -> Self {
1429         Self {
1430             x: self.x.add(rhs),
1431             y: self.y.add(rhs),
1432             z: self.z.add(rhs),
1433         }
1434     }
1435 }
1436 
1437 impl Add<&f32> for Vec3 {
1438     type Output = Vec3;
1439     #[inline]
add(self, rhs: &f32) -> Vec31440     fn add(self, rhs: &f32) -> Vec3 {
1441         self.add(*rhs)
1442     }
1443 }
1444 
1445 impl Add<&f32> for &Vec3 {
1446     type Output = Vec3;
1447     #[inline]
add(self, rhs: &f32) -> Vec31448     fn add(self, rhs: &f32) -> Vec3 {
1449         (*self).add(*rhs)
1450     }
1451 }
1452 
1453 impl Add<f32> for &Vec3 {
1454     type Output = Vec3;
1455     #[inline]
add(self, rhs: f32) -> Vec31456     fn add(self, rhs: f32) -> Vec3 {
1457         (*self).add(rhs)
1458     }
1459 }
1460 
1461 impl AddAssign<f32> for Vec3 {
1462     #[inline]
add_assign(&mut self, rhs: f32)1463     fn add_assign(&mut self, rhs: f32) {
1464         self.x.add_assign(rhs);
1465         self.y.add_assign(rhs);
1466         self.z.add_assign(rhs);
1467     }
1468 }
1469 
1470 impl AddAssign<&f32> for Vec3 {
1471     #[inline]
add_assign(&mut self, rhs: &f32)1472     fn add_assign(&mut self, rhs: &f32) {
1473         self.add_assign(*rhs)
1474     }
1475 }
1476 
1477 impl Add<Vec3> for f32 {
1478     type Output = Vec3;
1479     #[inline]
add(self, rhs: Vec3) -> Vec31480     fn add(self, rhs: Vec3) -> Vec3 {
1481         Vec3 {
1482             x: self.add(rhs.x),
1483             y: self.add(rhs.y),
1484             z: self.add(rhs.z),
1485         }
1486     }
1487 }
1488 
1489 impl Add<&Vec3> for f32 {
1490     type Output = Vec3;
1491     #[inline]
add(self, rhs: &Vec3) -> Vec31492     fn add(self, rhs: &Vec3) -> Vec3 {
1493         self.add(*rhs)
1494     }
1495 }
1496 
1497 impl Add<&Vec3> for &f32 {
1498     type Output = Vec3;
1499     #[inline]
add(self, rhs: &Vec3) -> Vec31500     fn add(self, rhs: &Vec3) -> Vec3 {
1501         (*self).add(*rhs)
1502     }
1503 }
1504 
1505 impl Add<Vec3> for &f32 {
1506     type Output = Vec3;
1507     #[inline]
add(self, rhs: Vec3) -> Vec31508     fn add(self, rhs: Vec3) -> Vec3 {
1509         (*self).add(rhs)
1510     }
1511 }
1512 
1513 impl Sub<Vec3> for Vec3 {
1514     type Output = Self;
1515     #[inline]
sub(self, rhs: Self) -> Self1516     fn sub(self, rhs: Self) -> Self {
1517         Self {
1518             x: self.x.sub(rhs.x),
1519             y: self.y.sub(rhs.y),
1520             z: self.z.sub(rhs.z),
1521         }
1522     }
1523 }
1524 
1525 impl Sub<&Vec3> for Vec3 {
1526     type Output = Vec3;
1527     #[inline]
sub(self, rhs: &Vec3) -> Vec31528     fn sub(self, rhs: &Vec3) -> Vec3 {
1529         self.sub(*rhs)
1530     }
1531 }
1532 
1533 impl Sub<&Vec3> for &Vec3 {
1534     type Output = Vec3;
1535     #[inline]
sub(self, rhs: &Vec3) -> Vec31536     fn sub(self, rhs: &Vec3) -> Vec3 {
1537         (*self).sub(*rhs)
1538     }
1539 }
1540 
1541 impl Sub<Vec3> for &Vec3 {
1542     type Output = Vec3;
1543     #[inline]
sub(self, rhs: Vec3) -> Vec31544     fn sub(self, rhs: Vec3) -> Vec3 {
1545         (*self).sub(rhs)
1546     }
1547 }
1548 
1549 impl SubAssign<Vec3> for Vec3 {
1550     #[inline]
sub_assign(&mut self, rhs: Vec3)1551     fn sub_assign(&mut self, rhs: Vec3) {
1552         self.x.sub_assign(rhs.x);
1553         self.y.sub_assign(rhs.y);
1554         self.z.sub_assign(rhs.z);
1555     }
1556 }
1557 
1558 impl SubAssign<&Vec3> for Vec3 {
1559     #[inline]
sub_assign(&mut self, rhs: &Vec3)1560     fn sub_assign(&mut self, rhs: &Vec3) {
1561         self.sub_assign(*rhs)
1562     }
1563 }
1564 
1565 impl Sub<f32> for Vec3 {
1566     type Output = Self;
1567     #[inline]
sub(self, rhs: f32) -> Self1568     fn sub(self, rhs: f32) -> Self {
1569         Self {
1570             x: self.x.sub(rhs),
1571             y: self.y.sub(rhs),
1572             z: self.z.sub(rhs),
1573         }
1574     }
1575 }
1576 
1577 impl Sub<&f32> for Vec3 {
1578     type Output = Vec3;
1579     #[inline]
sub(self, rhs: &f32) -> Vec31580     fn sub(self, rhs: &f32) -> Vec3 {
1581         self.sub(*rhs)
1582     }
1583 }
1584 
1585 impl Sub<&f32> for &Vec3 {
1586     type Output = Vec3;
1587     #[inline]
sub(self, rhs: &f32) -> Vec31588     fn sub(self, rhs: &f32) -> Vec3 {
1589         (*self).sub(*rhs)
1590     }
1591 }
1592 
1593 impl Sub<f32> for &Vec3 {
1594     type Output = Vec3;
1595     #[inline]
sub(self, rhs: f32) -> Vec31596     fn sub(self, rhs: f32) -> Vec3 {
1597         (*self).sub(rhs)
1598     }
1599 }
1600 
1601 impl SubAssign<f32> for Vec3 {
1602     #[inline]
sub_assign(&mut self, rhs: f32)1603     fn sub_assign(&mut self, rhs: f32) {
1604         self.x.sub_assign(rhs);
1605         self.y.sub_assign(rhs);
1606         self.z.sub_assign(rhs);
1607     }
1608 }
1609 
1610 impl SubAssign<&f32> for Vec3 {
1611     #[inline]
sub_assign(&mut self, rhs: &f32)1612     fn sub_assign(&mut self, rhs: &f32) {
1613         self.sub_assign(*rhs)
1614     }
1615 }
1616 
1617 impl Sub<Vec3> for f32 {
1618     type Output = Vec3;
1619     #[inline]
sub(self, rhs: Vec3) -> Vec31620     fn sub(self, rhs: Vec3) -> Vec3 {
1621         Vec3 {
1622             x: self.sub(rhs.x),
1623             y: self.sub(rhs.y),
1624             z: self.sub(rhs.z),
1625         }
1626     }
1627 }
1628 
1629 impl Sub<&Vec3> for f32 {
1630     type Output = Vec3;
1631     #[inline]
sub(self, rhs: &Vec3) -> Vec31632     fn sub(self, rhs: &Vec3) -> Vec3 {
1633         self.sub(*rhs)
1634     }
1635 }
1636 
1637 impl Sub<&Vec3> for &f32 {
1638     type Output = Vec3;
1639     #[inline]
sub(self, rhs: &Vec3) -> Vec31640     fn sub(self, rhs: &Vec3) -> Vec3 {
1641         (*self).sub(*rhs)
1642     }
1643 }
1644 
1645 impl Sub<Vec3> for &f32 {
1646     type Output = Vec3;
1647     #[inline]
sub(self, rhs: Vec3) -> Vec31648     fn sub(self, rhs: Vec3) -> Vec3 {
1649         (*self).sub(rhs)
1650     }
1651 }
1652 
1653 impl Rem<Vec3> for Vec3 {
1654     type Output = Self;
1655     #[inline]
rem(self, rhs: Self) -> Self1656     fn rem(self, rhs: Self) -> Self {
1657         Self {
1658             x: self.x.rem(rhs.x),
1659             y: self.y.rem(rhs.y),
1660             z: self.z.rem(rhs.z),
1661         }
1662     }
1663 }
1664 
1665 impl Rem<&Vec3> for Vec3 {
1666     type Output = Vec3;
1667     #[inline]
rem(self, rhs: &Vec3) -> Vec31668     fn rem(self, rhs: &Vec3) -> Vec3 {
1669         self.rem(*rhs)
1670     }
1671 }
1672 
1673 impl Rem<&Vec3> for &Vec3 {
1674     type Output = Vec3;
1675     #[inline]
rem(self, rhs: &Vec3) -> Vec31676     fn rem(self, rhs: &Vec3) -> Vec3 {
1677         (*self).rem(*rhs)
1678     }
1679 }
1680 
1681 impl Rem<Vec3> for &Vec3 {
1682     type Output = Vec3;
1683     #[inline]
rem(self, rhs: Vec3) -> Vec31684     fn rem(self, rhs: Vec3) -> Vec3 {
1685         (*self).rem(rhs)
1686     }
1687 }
1688 
1689 impl RemAssign<Vec3> for Vec3 {
1690     #[inline]
rem_assign(&mut self, rhs: Self)1691     fn rem_assign(&mut self, rhs: Self) {
1692         self.x.rem_assign(rhs.x);
1693         self.y.rem_assign(rhs.y);
1694         self.z.rem_assign(rhs.z);
1695     }
1696 }
1697 
1698 impl RemAssign<&Vec3> for Vec3 {
1699     #[inline]
rem_assign(&mut self, rhs: &Vec3)1700     fn rem_assign(&mut self, rhs: &Vec3) {
1701         self.rem_assign(*rhs)
1702     }
1703 }
1704 
1705 impl Rem<f32> for Vec3 {
1706     type Output = Self;
1707     #[inline]
rem(self, rhs: f32) -> Self1708     fn rem(self, rhs: f32) -> Self {
1709         Self {
1710             x: self.x.rem(rhs),
1711             y: self.y.rem(rhs),
1712             z: self.z.rem(rhs),
1713         }
1714     }
1715 }
1716 
1717 impl Rem<&f32> for Vec3 {
1718     type Output = Vec3;
1719     #[inline]
rem(self, rhs: &f32) -> Vec31720     fn rem(self, rhs: &f32) -> Vec3 {
1721         self.rem(*rhs)
1722     }
1723 }
1724 
1725 impl Rem<&f32> for &Vec3 {
1726     type Output = Vec3;
1727     #[inline]
rem(self, rhs: &f32) -> Vec31728     fn rem(self, rhs: &f32) -> Vec3 {
1729         (*self).rem(*rhs)
1730     }
1731 }
1732 
1733 impl Rem<f32> for &Vec3 {
1734     type Output = Vec3;
1735     #[inline]
rem(self, rhs: f32) -> Vec31736     fn rem(self, rhs: f32) -> Vec3 {
1737         (*self).rem(rhs)
1738     }
1739 }
1740 
1741 impl RemAssign<f32> for Vec3 {
1742     #[inline]
rem_assign(&mut self, rhs: f32)1743     fn rem_assign(&mut self, rhs: f32) {
1744         self.x.rem_assign(rhs);
1745         self.y.rem_assign(rhs);
1746         self.z.rem_assign(rhs);
1747     }
1748 }
1749 
1750 impl RemAssign<&f32> for Vec3 {
1751     #[inline]
rem_assign(&mut self, rhs: &f32)1752     fn rem_assign(&mut self, rhs: &f32) {
1753         self.rem_assign(*rhs)
1754     }
1755 }
1756 
1757 impl Rem<Vec3> for f32 {
1758     type Output = Vec3;
1759     #[inline]
rem(self, rhs: Vec3) -> Vec31760     fn rem(self, rhs: Vec3) -> Vec3 {
1761         Vec3 {
1762             x: self.rem(rhs.x),
1763             y: self.rem(rhs.y),
1764             z: self.rem(rhs.z),
1765         }
1766     }
1767 }
1768 
1769 impl Rem<&Vec3> for f32 {
1770     type Output = Vec3;
1771     #[inline]
rem(self, rhs: &Vec3) -> Vec31772     fn rem(self, rhs: &Vec3) -> Vec3 {
1773         self.rem(*rhs)
1774     }
1775 }
1776 
1777 impl Rem<&Vec3> for &f32 {
1778     type Output = Vec3;
1779     #[inline]
rem(self, rhs: &Vec3) -> Vec31780     fn rem(self, rhs: &Vec3) -> Vec3 {
1781         (*self).rem(*rhs)
1782     }
1783 }
1784 
1785 impl Rem<Vec3> for &f32 {
1786     type Output = Vec3;
1787     #[inline]
rem(self, rhs: Vec3) -> Vec31788     fn rem(self, rhs: Vec3) -> Vec3 {
1789         (*self).rem(rhs)
1790     }
1791 }
1792 
1793 #[cfg(not(target_arch = "spirv"))]
1794 impl AsRef<[f32; 3]> for Vec3 {
1795     #[inline]
as_ref(&self) -> &[f32; 3]1796     fn as_ref(&self) -> &[f32; 3] {
1797         unsafe { &*(self as *const Vec3 as *const [f32; 3]) }
1798     }
1799 }
1800 
1801 #[cfg(not(target_arch = "spirv"))]
1802 impl AsMut<[f32; 3]> for Vec3 {
1803     #[inline]
as_mut(&mut self) -> &mut [f32; 3]1804     fn as_mut(&mut self) -> &mut [f32; 3] {
1805         unsafe { &mut *(self as *mut Vec3 as *mut [f32; 3]) }
1806     }
1807 }
1808 
1809 impl Sum for Vec3 {
1810     #[inline]
sum<I>(iter: I) -> Self where I: Iterator<Item = Self>,1811     fn sum<I>(iter: I) -> Self
1812     where
1813         I: Iterator<Item = Self>,
1814     {
1815         iter.fold(Self::ZERO, Self::add)
1816     }
1817 }
1818 
1819 impl<'a> Sum<&'a Self> for Vec3 {
1820     #[inline]
sum<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,1821     fn sum<I>(iter: I) -> Self
1822     where
1823         I: Iterator<Item = &'a Self>,
1824     {
1825         iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
1826     }
1827 }
1828 
1829 impl Product for Vec3 {
1830     #[inline]
product<I>(iter: I) -> Self where I: Iterator<Item = Self>,1831     fn product<I>(iter: I) -> Self
1832     where
1833         I: Iterator<Item = Self>,
1834     {
1835         iter.fold(Self::ONE, Self::mul)
1836     }
1837 }
1838 
1839 impl<'a> Product<&'a Self> for Vec3 {
1840     #[inline]
product<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,1841     fn product<I>(iter: I) -> Self
1842     where
1843         I: Iterator<Item = &'a Self>,
1844     {
1845         iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
1846     }
1847 }
1848 
1849 impl Neg for Vec3 {
1850     type Output = Self;
1851     #[inline]
neg(self) -> Self1852     fn neg(self) -> Self {
1853         Self {
1854             x: self.x.neg(),
1855             y: self.y.neg(),
1856             z: self.z.neg(),
1857         }
1858     }
1859 }
1860 
1861 impl Neg for &Vec3 {
1862     type Output = Vec3;
1863     #[inline]
neg(self) -> Vec31864     fn neg(self) -> Vec3 {
1865         (*self).neg()
1866     }
1867 }
1868 
1869 impl Index<usize> for Vec3 {
1870     type Output = f32;
1871     #[inline]
index(&self, index: usize) -> &Self::Output1872     fn index(&self, index: usize) -> &Self::Output {
1873         match index {
1874             0 => &self.x,
1875             1 => &self.y,
1876             2 => &self.z,
1877             _ => panic!("index out of bounds"),
1878         }
1879     }
1880 }
1881 
1882 impl IndexMut<usize> for Vec3 {
1883     #[inline]
index_mut(&mut self, index: usize) -> &mut Self::Output1884     fn index_mut(&mut self, index: usize) -> &mut Self::Output {
1885         match index {
1886             0 => &mut self.x,
1887             1 => &mut self.y,
1888             2 => &mut self.z,
1889             _ => panic!("index out of bounds"),
1890         }
1891     }
1892 }
1893 
1894 impl fmt::Display for Vec3 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1895     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1896         if let Some(p) = f.precision() {
1897             write!(f, "[{:.*}, {:.*}, {:.*}]", p, self.x, p, self.y, p, self.z)
1898         } else {
1899             write!(f, "[{}, {}, {}]", self.x, self.y, self.z)
1900         }
1901     }
1902 }
1903 
1904 impl fmt::Debug for Vec3 {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result1905     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1906         fmt.debug_tuple(stringify!(Vec3))
1907             .field(&self.x)
1908             .field(&self.y)
1909             .field(&self.z)
1910             .finish()
1911     }
1912 }
1913 
1914 impl From<[f32; 3]> for Vec3 {
1915     #[inline]
from(a: [f32; 3]) -> Self1916     fn from(a: [f32; 3]) -> Self {
1917         Self::new(a[0], a[1], a[2])
1918     }
1919 }
1920 
1921 impl From<Vec3> for [f32; 3] {
1922     #[inline]
from(v: Vec3) -> Self1923     fn from(v: Vec3) -> Self {
1924         [v.x, v.y, v.z]
1925     }
1926 }
1927 
1928 impl From<(f32, f32, f32)> for Vec3 {
1929     #[inline]
from(t: (f32, f32, f32)) -> Self1930     fn from(t: (f32, f32, f32)) -> Self {
1931         Self::new(t.0, t.1, t.2)
1932     }
1933 }
1934 
1935 impl From<Vec3> for (f32, f32, f32) {
1936     #[inline]
from(v: Vec3) -> Self1937     fn from(v: Vec3) -> Self {
1938         (v.x, v.y, v.z)
1939     }
1940 }
1941 
1942 impl From<(Vec2, f32)> for Vec3 {
1943     #[inline]
from((v, z): (Vec2, f32)) -> Self1944     fn from((v, z): (Vec2, f32)) -> Self {
1945         Self::new(v.x, v.y, z)
1946     }
1947 }
1948 
1949 impl From<BVec3> for Vec3 {
1950     #[inline]
from(v: BVec3) -> Self1951     fn from(v: BVec3) -> Self {
1952         Self::new(f32::from(v.x), f32::from(v.y), f32::from(v.z))
1953     }
1954 }
1955 
1956 impl From<BVec3A> for Vec3 {
1957     #[inline]
from(v: BVec3A) -> Self1958     fn from(v: BVec3A) -> Self {
1959         let bool_array: [bool; 3] = v.into();
1960         Self::new(
1961             f32::from(bool_array[0]),
1962             f32::from(bool_array[1]),
1963             f32::from(bool_array[2]),
1964         )
1965     }
1966 }
1967