• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
2 /*
3  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4  */
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 use super::{fabsf, j0f, j1f, logf, y0f, y1f};
17 
18 /// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
jnf(n: i32, mut x: f32) -> f3219 pub fn jnf(n: i32, mut x: f32) -> f32 {
20     let mut ix: u32;
21     let mut nm1: i32;
22     let mut sign: bool;
23     let mut i: i32;
24     let mut a: f32;
25     let mut b: f32;
26     let mut temp: f32;
27 
28     ix = x.to_bits();
29     sign = (ix >> 31) != 0;
30     ix &= 0x7fffffff;
31     if ix > 0x7f800000 {
32         /* nan */
33         return x;
34     }
35 
36     /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
37     if n == 0 {
38         return j0f(x);
39     }
40     if n < 0 {
41         nm1 = -(n + 1);
42         x = -x;
43         sign = !sign;
44     } else {
45         nm1 = n - 1;
46     }
47     if nm1 == 0 {
48         return j1f(x);
49     }
50 
51     sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
52     x = fabsf(x);
53     if ix == 0 || ix == 0x7f800000 {
54         /* if x is 0 or inf */
55         b = 0.0;
56     } else if (nm1 as f32) < x {
57         /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
58         a = j0f(x);
59         b = j1f(x);
60         i = 0;
61         while i < nm1 {
62             i += 1;
63             temp = b;
64             b = b * (2.0 * (i as f32) / x) - a;
65             a = temp;
66         }
67     } else {
68         if ix < 0x35800000 {
69             /* x < 2**-20 */
70             /* x is tiny, return the first Taylor expansion of J(n,x)
71              * J(n,x) = 1/n!*(x/2)^n  - ...
72              */
73             if nm1 > 8 {
74                 /* underflow */
75                 nm1 = 8;
76             }
77             temp = 0.5 * x;
78             b = temp;
79             a = 1.0;
80             i = 2;
81             while i <= nm1 + 1 {
82                 a *= i as f32; /* a = n! */
83                 b *= temp; /* b = (x/2)^n */
84                 i += 1;
85             }
86             b = b / a;
87         } else {
88             /* use backward recurrence */
89             /*                      x      x^2      x^2
90              *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
91              *                      2n  - 2(n+1) - 2(n+2)
92              *
93              *                      1      1        1
94              *  (for large x)   =  ----  ------   ------   .....
95              *                      2n   2(n+1)   2(n+2)
96              *                      -- - ------ - ------ -
97              *                       x     x         x
98              *
99              * Let w = 2n/x and h=2/x, then the above quotient
100              * is equal to the continued fraction:
101              *                  1
102              *      = -----------------------
103              *                     1
104              *         w - -----------------
105              *                        1
106              *              w+h - ---------
107              *                     w+2h - ...
108              *
109              * To determine how many terms needed, let
110              * Q(0) = w, Q(1) = w(w+h) - 1,
111              * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
112              * When Q(k) > 1e4      good for single
113              * When Q(k) > 1e9      good for double
114              * When Q(k) > 1e17     good for quadruple
115              */
116             /* determine k */
117             let mut t: f32;
118             let mut q0: f32;
119             let mut q1: f32;
120             let mut w: f32;
121             let h: f32;
122             let mut z: f32;
123             let mut tmp: f32;
124             let nf: f32;
125             let mut k: i32;
126 
127             nf = (nm1 as f32) + 1.0;
128             w = 2.0 * (nf as f32) / x;
129             h = 2.0 / x;
130             z = w + h;
131             q0 = w;
132             q1 = w * z - 1.0;
133             k = 1;
134             while q1 < 1.0e4 {
135                 k += 1;
136                 z += h;
137                 tmp = z * q1 - q0;
138                 q0 = q1;
139                 q1 = tmp;
140             }
141             t = 0.0;
142             i = k;
143             while i >= 0 {
144                 t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
145                 i -= 1;
146             }
147             a = t;
148             b = 1.0;
149             /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
150              *  Hence, if n*(log(2n/x)) > ...
151              *  single 8.8722839355e+01
152              *  double 7.09782712893383973096e+02
153              *  long double 1.1356523406294143949491931077970765006170e+04
154              *  then recurrent value may overflow and the result is
155              *  likely underflow to zero
156              */
157             tmp = nf * logf(fabsf(w));
158             if tmp < 88.721679688 {
159                 i = nm1;
160                 while i > 0 {
161                     temp = b;
162                     b = 2.0 * (i as f32) * b / x - a;
163                     a = temp;
164                     i -= 1;
165                 }
166             } else {
167                 i = nm1;
168                 while i > 0 {
169                     temp = b;
170                     b = 2.0 * (i as f32) * b / x - a;
171                     a = temp;
172                     /* scale b to avoid spurious overflow */
173                     let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
174                     if b > x1p60 {
175                         a /= b;
176                         t /= b;
177                         b = 1.0;
178                     }
179                     i -= 1;
180                 }
181             }
182             z = j0f(x);
183             w = j1f(x);
184             if fabsf(z) >= fabsf(w) {
185                 b = t * z / b;
186             } else {
187                 b = t * w / a;
188             }
189         }
190     }
191 
192     if sign { -b } else { b }
193 }
194 
195 /// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
ynf(n: i32, x: f32) -> f32196 pub fn ynf(n: i32, x: f32) -> f32 {
197     let mut ix: u32;
198     let mut ib: u32;
199     let nm1: i32;
200     let mut sign: bool;
201     let mut i: i32;
202     let mut a: f32;
203     let mut b: f32;
204     let mut temp: f32;
205 
206     ix = x.to_bits();
207     sign = (ix >> 31) != 0;
208     ix &= 0x7fffffff;
209     if ix > 0x7f800000 {
210         /* nan */
211         return x;
212     }
213     if sign && ix != 0 {
214         /* x < 0 */
215         return 0.0 / 0.0;
216     }
217     if ix == 0x7f800000 {
218         return 0.0;
219     }
220 
221     if n == 0 {
222         return y0f(x);
223     }
224     if n < 0 {
225         nm1 = -(n + 1);
226         sign = (n & 1) != 0;
227     } else {
228         nm1 = n - 1;
229         sign = false;
230     }
231     if nm1 == 0 {
232         if sign {
233             return -y1f(x);
234         } else {
235             return y1f(x);
236         }
237     }
238 
239     a = y0f(x);
240     b = y1f(x);
241     /* quit if b is -inf */
242     ib = b.to_bits();
243     i = 0;
244     while i < nm1 && ib != 0xff800000 {
245         i += 1;
246         temp = b;
247         b = (2.0 * (i as f32) / x) * b - a;
248         ib = b.to_bits();
249         a = temp;
250     }
251 
252     if sign { -b } else { b }
253 }
254