• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* double log1p(double x)
13  * Return the natural logarithm of 1+x.
14  *
15  * Method :
16  *   1. Argument Reduction: find k and f such that
17  *                      1+x = 2^k * (1+f),
18  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
19  *
20  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
21  *      may not be representable exactly. In that case, a correction
22  *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
23  *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
24  *      and add back the correction term c/u.
25  *      (Note: when x > 2**53, one can simply return log(x))
26  *
27  *   2. Approximation of log(1+f): See log.c
28  *
29  *   3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
30  *
31  * Special cases:
32  *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
33  *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
34  *      log1p(NaN) is that NaN with no signal.
35  *
36  * Accuracy:
37  *      according to an error analysis, the error is always less than
38  *      1 ulp (unit in the last place).
39  *
40  * Constants:
41  * The hexadecimal values are the intended ones for the following
42  * constants. The decimal values may be used, provided that the
43  * compiler will convert from decimal to binary accurately enough
44  * to produce the hexadecimal values shown.
45  *
46  * Note: Assuming log() return accurate answer, the following
47  *       algorithm can be used to compute log1p(x) to within a few ULP:
48  *
49  *              u = 1+x;
50  *              if(u==1.0) return x ; else
51  *                         return log(u)*(x/(u-1.0));
52  *
53  *       See HP-15C Advanced Functions Handbook, p.193.
54  */
55 
56 use core::f64;
57 
58 const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
59 const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
60 const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
61 const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
62 const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
63 const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
64 const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
65 const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
66 const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
67 
68 /// The natural logarithm of 1+`x` (f64).
69 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
log1p(x: f64) -> f6470 pub fn log1p(x: f64) -> f64 {
71     let mut ui: u64 = x.to_bits();
72     let hfsq: f64;
73     let mut f: f64 = 0.;
74     let mut c: f64 = 0.;
75     let s: f64;
76     let z: f64;
77     let r: f64;
78     let w: f64;
79     let t1: f64;
80     let t2: f64;
81     let dk: f64;
82     let hx: u32;
83     let mut hu: u32;
84     let mut k: i32;
85 
86     hx = (ui >> 32) as u32;
87     k = 1;
88     if hx < 0x3fda827a || (hx >> 31) > 0 {
89         /* 1+x < sqrt(2)+ */
90         if hx >= 0xbff00000 {
91             /* x <= -1.0 */
92             if x == -1. {
93                 return x / 0.0; /* log1p(-1) = -inf */
94             }
95             return (x - x) / 0.0; /* log1p(x<-1) = NaN */
96         }
97         if hx << 1 < 0x3ca00000 << 1 {
98             /* |x| < 2**-53 */
99             /* underflow if subnormal */
100             if (hx & 0x7ff00000) == 0 {
101                 force_eval!(x as f32);
102             }
103             return x;
104         }
105         if hx <= 0xbfd2bec4 {
106             /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
107             k = 0;
108             c = 0.;
109             f = x;
110         }
111     } else if hx >= 0x7ff00000 {
112         return x;
113     }
114     if k > 0 {
115         ui = (1. + x).to_bits();
116         hu = (ui >> 32) as u32;
117         hu += 0x3ff00000 - 0x3fe6a09e;
118         k = (hu >> 20) as i32 - 0x3ff;
119         /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
120         if k < 54 {
121             c = if k >= 2 { 1. - (f64::from_bits(ui) - x) } else { x - (f64::from_bits(ui) - 1.) };
122             c /= f64::from_bits(ui);
123         } else {
124             c = 0.;
125         }
126         /* reduce u into [sqrt(2)/2, sqrt(2)] */
127         hu = (hu & 0x000fffff) + 0x3fe6a09e;
128         ui = (hu as u64) << 32 | (ui & 0xffffffff);
129         f = f64::from_bits(ui) - 1.;
130     }
131     hfsq = 0.5 * f * f;
132     s = f / (2.0 + f);
133     z = s * s;
134     w = z * z;
135     t1 = w * (LG2 + w * (LG4 + w * LG6));
136     t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
137     r = t2 + t1;
138     dk = k as f64;
139     s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
140 }
141