• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use core::mem::{self, MaybeUninit};
2 
3 /// An array of at most `N` elements.
4 struct ArrayBuilder<T, const N: usize> {
5     /// The (possibly uninitialized) elements of the `ArrayBuilder`.
6     ///
7     /// # Safety
8     ///
9     /// The elements of `arr[..len]` are valid `T`s.
10     arr: [MaybeUninit<T>; N],
11 
12     /// The number of leading elements of `arr` that are valid `T`s, len <= N.
13     len: usize,
14 }
15 
16 impl<T, const N: usize> ArrayBuilder<T, N> {
17     /// Initializes a new, empty `ArrayBuilder`.
new() -> Self18     pub fn new() -> Self {
19         // SAFETY: The safety invariant of `arr` trivially holds for `len = 0`.
20         Self {
21             arr: [(); N].map(|_| MaybeUninit::uninit()),
22             len: 0,
23         }
24     }
25 
26     /// Pushes `value` onto the end of the array.
27     ///
28     /// # Panics
29     ///
30     /// This panics if `self.len >= N`.
31     #[inline(always)]
push(&mut self, value: T)32     pub fn push(&mut self, value: T) {
33         // PANICS: This will panic if `self.len >= N`.
34         let place = &mut self.arr[self.len];
35         // SAFETY: The safety invariant of `self.arr` applies to elements at
36         // indices `0..self.len` — not to the element at `self.len`. Writing to
37         // the element at index `self.len` therefore does not violate the safety
38         // invariant of `self.arr`. Even if this line panics, we have not
39         // created any intermediate invalid state.
40         *place = MaybeUninit::new(value);
41         // Lemma: `self.len < N`. By invariant, `self.len <= N`. Above, we index
42         // into `self.arr`, which has size `N`, at index `self.len`. If `self.len == N`
43         // at that point, that index would be out-of-bounds, and the index
44         // operation would panic. Thus, `self.len != N`, and since `self.len <= N`,
45         // that means that `self.len < N`.
46         //
47         // PANICS: Since `self.len < N`, and since `N <= usize::MAX`,
48         // `self.len + 1 <= usize::MAX`, and so `self.len += 1` will not
49         // overflow. Overflow is the only panic condition of `+=`.
50         //
51         // SAFETY:
52         // - We are required to uphold the invariant that `self.len <= N`.
53         //   Since, by the preceding lemma, `self.len < N` at this point in the
54         //   code, `self.len += 1` results in `self.len <= N`.
55         // - We are required to uphold the invariant that `self.arr[..self.len]`
56         //   are valid instances of `T`. Since this invariant already held when
57         //   this method was called, and since we only increment `self.len`
58         //   by 1 here, we only need to prove that the element at
59         //   `self.arr[self.len]` (using the value of `self.len` before incrementing)
60         //   is valid. Above, we construct `place` to point to `self.arr[self.len]`,
61         //   and then initialize `*place` to `MaybeUninit::new(value)`, which is
62         //   a valid `T` by construction.
63         self.len += 1;
64     }
65 
66     /// Consumes the elements in the `ArrayBuilder` and returns them as an array
67     /// `[T; N]`.
68     ///
69     /// If `self.len() < N`, this returns `None`.
take(&mut self) -> Option<[T; N]>70     pub fn take(&mut self) -> Option<[T; N]> {
71         if self.len == N {
72             // SAFETY: Decreasing the value of `self.len` cannot violate the
73             // safety invariant on `self.arr`.
74             self.len = 0;
75 
76             // SAFETY: Since `self.len` is 0, `self.arr` may safely contain
77             // uninitialized elements.
78             let arr = mem::replace(&mut self.arr, [(); N].map(|_| MaybeUninit::uninit()));
79 
80             Some(arr.map(|v| {
81                 // SAFETY: We know that all elements of `arr` are valid because
82                 // we checked that `len == N`.
83                 unsafe { v.assume_init() }
84             }))
85         } else {
86             None
87         }
88     }
89 }
90 
91 impl<T, const N: usize> AsMut<[T]> for ArrayBuilder<T, N> {
as_mut(&mut self) -> &mut [T]92     fn as_mut(&mut self) -> &mut [T] {
93         let valid = &mut self.arr[..self.len];
94         // SAFETY: By invariant on `self.arr`, the elements of `self.arr` at
95         // indices `0..self.len` are in a valid state. Since `valid` references
96         // only these elements, the safety precondition of
97         // `slice_assume_init_mut` is satisfied.
98         unsafe { slice_assume_init_mut(valid) }
99     }
100 }
101 
102 impl<T, const N: usize> Drop for ArrayBuilder<T, N> {
103     // We provide a non-trivial `Drop` impl, because the trivial impl would be a
104     // no-op; `MaybeUninit<T>` has no innate awareness of its own validity, and
105     // so it can only forget its contents. By leveraging the safety invariant of
106     // `self.arr`, we do know which elements of `self.arr` are valid, and can
107     // selectively run their destructors.
drop(&mut self)108     fn drop(&mut self) {
109         // SAFETY:
110         // - by invariant on `&mut [T]`, `self.as_mut()` is:
111         //   - valid for reads and writes
112         //   - properly aligned
113         //   - non-null
114         // - the dropped `T` are valid for dropping; they do not have any
115         //   additional library invariants that we've violated
116         // - no other pointers to `valid` exist (since we're in the context of
117         //   `drop`)
118         unsafe { core::ptr::drop_in_place(self.as_mut()) }
119     }
120 }
121 
122 /// Assuming all the elements are initialized, get a mutable slice to them.
123 ///
124 /// # Safety
125 ///
126 /// The caller guarantees that the elements `T` referenced by `slice` are in a
127 /// valid state.
slice_assume_init_mut<T>(slice: &mut [MaybeUninit<T>]) -> &mut [T]128 unsafe fn slice_assume_init_mut<T>(slice: &mut [MaybeUninit<T>]) -> &mut [T] {
129     // SAFETY: Casting `&mut [MaybeUninit<T>]` to `&mut [T]` is sound, because
130     // `MaybeUninit<T>` is guaranteed to have the same size, alignment and ABI
131     // as `T`, and because the caller has guaranteed that `slice` is in the
132     // valid state.
133     unsafe { &mut *(slice as *mut [MaybeUninit<T>] as *mut [T]) }
134 }
135 
136 /// Equivalent to `it.next_array()`.
next_array<I, const N: usize>(it: &mut I) -> Option<[I::Item; N]> where I: Iterator,137 pub(crate) fn next_array<I, const N: usize>(it: &mut I) -> Option<[I::Item; N]>
138 where
139     I: Iterator,
140 {
141     let mut builder = ArrayBuilder::new();
142     for _ in 0..N {
143         builder.push(it.next()?);
144     }
145     builder.take()
146 }
147 
148 #[cfg(test)]
149 mod test {
150     use super::ArrayBuilder;
151 
152     #[test]
zero_len_take()153     fn zero_len_take() {
154         let mut builder = ArrayBuilder::<(), 0>::new();
155         let taken = builder.take();
156         assert_eq!(taken, Some([(); 0]));
157     }
158 
159     #[test]
160     #[should_panic]
zero_len_push()161     fn zero_len_push() {
162         let mut builder = ArrayBuilder::<(), 0>::new();
163         builder.push(());
164     }
165 
166     #[test]
push_4()167     fn push_4() {
168         let mut builder = ArrayBuilder::<(), 4>::new();
169         assert_eq!(builder.take(), None);
170 
171         builder.push(());
172         assert_eq!(builder.take(), None);
173 
174         builder.push(());
175         assert_eq!(builder.take(), None);
176 
177         builder.push(());
178         assert_eq!(builder.take(), None);
179 
180         builder.push(());
181         assert_eq!(builder.take(), Some([(); 4]));
182     }
183 
184     #[test]
tracked_drop()185     fn tracked_drop() {
186         use std::panic::{catch_unwind, AssertUnwindSafe};
187         use std::sync::atomic::{AtomicU16, Ordering};
188 
189         static DROPPED: AtomicU16 = AtomicU16::new(0);
190 
191         #[derive(Debug, PartialEq)]
192         struct TrackedDrop;
193 
194         impl Drop for TrackedDrop {
195             fn drop(&mut self) {
196                 DROPPED.fetch_add(1, Ordering::Relaxed);
197             }
198         }
199 
200         {
201             let builder = ArrayBuilder::<TrackedDrop, 0>::new();
202             assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
203             drop(builder);
204             assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
205         }
206 
207         {
208             let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
209             builder.push(TrackedDrop);
210             assert_eq!(builder.take(), None);
211             assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
212             drop(builder);
213             assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 1);
214         }
215 
216         {
217             let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
218             builder.push(TrackedDrop);
219             builder.push(TrackedDrop);
220             assert!(matches!(builder.take(), Some(_)));
221             assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 2);
222             drop(builder);
223             assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
224         }
225 
226         {
227             let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
228 
229             builder.push(TrackedDrop);
230             builder.push(TrackedDrop);
231 
232             assert!(catch_unwind(AssertUnwindSafe(|| {
233                 builder.push(TrackedDrop);
234             }))
235             .is_err());
236 
237             assert_eq!(DROPPED.load(Ordering::Relaxed), 1);
238 
239             drop(builder);
240 
241             assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 3);
242         }
243 
244         {
245             let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
246 
247             builder.push(TrackedDrop);
248             builder.push(TrackedDrop);
249 
250             assert!(catch_unwind(AssertUnwindSafe(|| {
251                 builder.push(TrackedDrop);
252             }))
253             .is_err());
254 
255             assert_eq!(DROPPED.load(Ordering::Relaxed), 1);
256 
257             assert!(matches!(builder.take(), Some(_)));
258 
259             assert_eq!(DROPPED.load(Ordering::Relaxed), 3);
260 
261             builder.push(TrackedDrop);
262             builder.push(TrackedDrop);
263 
264             assert!(matches!(builder.take(), Some(_)));
265 
266             assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 5);
267         }
268     }
269 }
270