• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_
17 #define TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_
18 
19 #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
20 #include "tensorflow/core/framework/types.h"
21 #include "tensorflow/core/util/tensor_format.h"
22 
23 namespace tensorflow {
24 
25 struct DepthwiseArgs {
26   // Input layer dimensions
27   int batch;
28   int in_rows;
29   int in_cols;
30   int in_depth;
31   int filter_rows;
32   int filter_cols;
33   int depth_multiplier;
34   int stride;
35   int pad_rows;  // Amount of padding to the top of the input
36   int pad_cols;  // Amount of padding to the left of the input
37 
38   // Output layer dimensions
39   int out_rows;
40   int out_cols;
41   int out_depth;
42 
DepthwiseArgsDepthwiseArgs43   DepthwiseArgs()
44       : batch(0),
45         in_rows(0),
46         in_cols(0),
47         in_depth(0),
48         filter_rows(0),
49         filter_cols(0),
50         depth_multiplier(0),
51         stride(0),
52         pad_rows(0),
53         pad_cols(0),
54         out_rows(0),
55         out_cols(0),
56         out_depth(0) {}
57 };
58 
59 // Forward declaration.
60 class OpKernelContext;
61 
62 template <typename Device, typename T>
63 struct LaunchDepthwiseConvOp {
64   void operator()(OpKernelContext* ctx, const DepthwiseArgs& args,
65                   const T* input, const T* filter, T* output,
66                   TensorFormat data_format);
67 };
68 
69 template <typename Device, typename T>
70 struct LaunchDepthwiseConvBackpropInputOp {
71   void operator()(OpKernelContext* ctx, const DepthwiseArgs& args,
72                   const T* out_backprop, const T* filter, T* in_backprop,
73                   TensorFormat data_format);
74 };
75 
76 template <typename Device, typename T>
77 struct LaunchDepthwiseConvBackpropFilterOp {
78   void operator()(OpKernelContext* ctx, const DepthwiseArgs& args,
79                   const T* out_backprop, const T* input, T* filter_backprop,
80                   TensorFormat data_format);
81 };
82 
83 #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
84 template <typename T>
85 struct LaunchDepthwiseConvOp<Eigen::GpuDevice, T> {
86   void operator()(OpKernelContext* ctx, const DepthwiseArgs& args,
87                   const T* input, const T* filter, T* output,
88                   TensorFormat data_format);
89 };
90 
91 template <typename T>
92 struct LaunchDepthwiseConvBackpropInputOp<Eigen::GpuDevice, T> {
93   void operator()(class OpKernelContext* ctx, const DepthwiseArgs& args,
94                   const T* out_backprop, const T* filter, T* in_backprop,
95                   TensorFormat data_format);
96 };
97 
98 template <typename T>
99 struct LaunchDepthwiseConvBackpropFilterOp<Eigen::GpuDevice, T> {
100   void operator()(class OpKernelContext* ctx, const DepthwiseArgs& args,
101                   const T* out_backprop, const T* input, T* filter_backprop,
102                   TensorFormat data_format);
103 };
104 #endif  // GOOGLE_CUDA || TENSORFLOW_USE_ROCM
105 
106 }  // namespace tensorflow
107 
108 namespace tensorflow {
109 namespace functor {
110 
111 // Pads 'filter' to vector-register boundary along its inner dimension:
112 //   filter_inner_dim_size = in_depth * depth_multiplier
113 // Requires 'filter' to have the following storage order:
114 //   [filter_rows, filter_cols, in_depth, depth_multiplier]
115 // Returns zero-padded filter in 'padded_filter'.
116 //
117 // EX:
118 //   in_depth = 3, depth_multiplier = 2, filter [2, 2], register_width = 4
119 //   So we have a total of 3 * 2 = 6 filters, each of spatial size 2 x 2.
120 //
121 //   filter [rows, cols, in_depth, depth_multiplier]
122 //     [u0, v0, w0, x0] [y0, z0, u1, v1] [w1, x1, y1, z1]
123 //     [u2, v2, w2, x2] [y2, z2, u3, v3] [w3, x3, y3, z3]
124 //
125 //   padded_filter [rows, cols, in_depth, depth_multiplier]
126 //     [u0, v0, w0, x0] [y0, z0, 0, 0] [u1, v1, w1, x1] [y1, z1, 0, 0]
127 //     [u2, v2, w2, x2] [y2, z2, 0, 0] [u3, v3, w3, x3] [y3, z3, 0, 0]
128 
129 template <typename T>
130 struct DepthwiseFilterPadOp {
131   void operator()(const DepthwiseArgs& args, const T* filter,
132                   T* padded_filter) {
133     typedef typename Eigen::internal::packet_traits<T>::type Packet;
134     static const int64_t kPacketSize = (sizeof(Packet) / sizeof(T));
135 
136     // Calculate vectorized and scalar lengths of filter's inner dimension.
137     const int64_t filter_inner_dim_size = args.out_depth;
138     const int64_t vectorized_size =
139         (filter_inner_dim_size / kPacketSize) * kPacketSize;
140     const int64_t scalar_size = filter_inner_dim_size - vectorized_size;
141     // Calculate required padding and padded output buffer stride.
142     const int64_t pad_size = scalar_size > 0 ? kPacketSize - scalar_size : 0;
143     const int64_t padded_filter_stride = vectorized_size + kPacketSize;
144 
145     const int64_t filter_spatial_size = args.filter_rows * args.filter_cols;
146     for (int64_t i = 0; i < filter_spatial_size; ++i) {
147       const int64_t input_base = i * filter_inner_dim_size;
148       const int64_t output_base = i * padded_filter_stride;
149       // Write vectorized length of filter's inner dimension to output.
150       for (int64_t j = 0; j < vectorized_size; j += kPacketSize) {
151         const auto v = Eigen::internal::ploadu<Packet>(filter + input_base + j);
152         Eigen::internal::pstoreu<T>(padded_filter + output_base + j, v);
153       }
154       // Write scalar length of filter's inner dimension to output.
155       for (int64_t j = 0; j < scalar_size; ++j) {
156         padded_filter[output_base + vectorized_size + j] =
157             filter[input_base + vectorized_size + j];
158       }
159       // Pad the remainder of output to vector-register boundary.
160       for (int64_t j = 0; j < pad_size; ++j) {
161         padded_filter[output_base + vectorized_size + scalar_size + j] =
162             static_cast<T>(0);
163       }
164     }
165   }
166 };
167 
168 // Copies data from local region in 'input' specified by 'out_r' and 'out_'c'
169 // to 'input_buffer'. The copied data is replicated by factor
170 // 'args.depth_multiplier', and padded to vector register-width boundaries so
171 // that it is aligned for efficient traversal and vector multiply-add by the
172 // depthwise kernel.
173 //
174 // EX:
175 //   in_depth = 3, depth_multiplier = 2, filter [2, 2], register_width = 4
176 //
177 //   input: [batch, in_rows, in_cols, in_depth]
178 //
179 //     [a0, a1, a2, b0, b1, b2, ..., e0, e1, e2, f0, f1, f2, ...]
180 //
181 //   input_buffer (register boundaries shown):
182 //     [a0, a0, a1, a1] [a2, a2, 0, 0]   in_row = 0, in_col = 0
183 //     [b0, b0, b1, b1] [b2, b2, 0, 0]   in_row = 0, in_col = 1
184 //     [e0, e0, e1, e1] [e2, e2, 0, 0]   in_row = 1, in_col = 0
185 //     [f0, f0, f1, f1] [f2, f2, 0, 0]   in_row = 1, in_col = 1
186 //
187 // Returns replicated and padded data from specified input region in
188 // 'input_buffer'.
189 
190 template <typename T>
191 struct DepthwiseInputCopyOp {
192   void operator()(const DepthwiseArgs& args,
193                   const int64_t padded_filter_inner_dim_size,
194                   const int64_t out_r, const int64_t out_c, const T* input,
195                   T* input_buffer) {
196     typedef typename Eigen::internal::packet_traits<T>::type Packet;
197     static const int64_t kPacketSize = Eigen::internal::packet_traits<T>::size;
198 
199     const int64_t kDepth = args.depth_multiplier;
200     // Calculate vectorized and scalar (residual) lengths for 'in_depth'.
201     const int64_t input_vectorized_size =
202         (args.in_depth / kPacketSize) * kPacketSize;
203     const int64_t input_scalar_size = args.in_depth - input_vectorized_size;
204 
205     // Calculate output padding length.
206     const int64_t output_scalar_size = args.out_depth % kPacketSize;
207     const int64_t output_pad_size =
208         output_scalar_size > 0 ? kPacketSize - output_scalar_size : 0;
209 
210     // Iterate through all rows x cols reading 'in_depth' from 'input' and
211     // replicating by 'depth_multiplier' into 'input_buffer' (otherwise
212     // zero-padding input buffer as needed).
213     auto* in_buf = input_buffer;
214     const int64_t in_r_start = out_r * args.stride - args.pad_rows;
215     const int64_t in_c_start = out_c * args.stride - args.pad_cols;
216 
217     // TODO: add a ploaddup variant for depth == 2 if needed.
218     if (kDepth > 1 && kDepth <= kPacketSize) {
219       for (int64_t f_r = 0; f_r < args.filter_rows; ++f_r) {
220         const int64_t in_r = in_r_start + f_r;
221 
222         for (int64_t f_c = 0; f_c < args.filter_cols; ++f_c) {
223           const int64_t in_c = in_c_start + f_c;
224 
225           if (in_r >= 0 && in_r < args.in_rows && in_c >= 0 &&
226               in_c < args.in_cols) {
227             const auto* in =
228                 input + (in_r * args.in_cols + in_c) * args.in_depth;
229             int64_t limit = args.in_depth;
230             // This will overwrite up to kPacketSize next elements,
231             // this is ok on all iterations except the last one, since
232             // we will write correct values on a next iteration.
233             if (f_c == args.filter_cols - 1) {
234               limit -= (kPacketSize - kDepth) / kDepth + 1;
235               if (limit < 0) {
236                 limit = 0;
237               }
238             }
239             // Copy vectorized portion of inner dimension.
240             for (int64_t d = 0; d < limit; d++) {
241               const auto p = Eigen::internal::pset1<Packet>(in[d]);
242               Eigen::internal::pstoreu<T>(in_buf, p);
243               in_buf += kDepth;
244             }
245 
246             // Copy the scalar portion.
247             for (int64_t d = limit; d < args.in_depth; d++) {
248               const auto value = in[d];
249               for (int64_t dm = 0; dm < kDepth; dm++) {
250                 in_buf[dm] = value;
251               }
252               in_buf += kDepth;
253             }
254 
255             // Pad the remainder of the output to vector register boundary.
256             for (int64_t d = 0; d < output_pad_size; ++d) {
257               in_buf[d] = static_cast<T>(0);
258             }
259             in_buf += output_pad_size;
260           } else {
261             // Zero pad.
262             memset(in_buf, 0, sizeof(T) * padded_filter_inner_dim_size);
263             in_buf += padded_filter_inner_dim_size;
264           }
265         }
266       }
267     } else if (kDepth > kPacketSize) {
268       // Calculate vectorized and scalar (residual) lengths for
269       // 'depth_multiplier'. This is used to efficiently replicate data for
270       // when 'depth_multiplier' > kPacketSize.
271       const int64_t dm_vectorized_size = (kDepth / kPacketSize) * kPacketSize;
272 
273       for (int64_t f_r = 0; f_r < args.filter_rows; ++f_r) {
274         const int64_t in_r = in_r_start + f_r;
275 
276         for (int64_t f_c = 0; f_c < args.filter_cols; ++f_c) {
277           const int64_t in_c = in_c_start + f_c;
278 
279           if (in_r >= 0 && in_r < args.in_rows && in_c >= 0 &&
280               in_c < args.in_cols) {
281             const auto* in =
282                 input + (in_r * args.in_cols + in_c) * args.in_depth;
283             // Copy vectorized portion of inner dimension.
284             for (int64_t d = 0; d < args.in_depth; d++) {
285               const auto p = Eigen::internal::pset1<Packet>(in[d]);
286               for (int64_t dm = 0; dm < dm_vectorized_size; dm += kPacketSize) {
287                 Eigen::internal::pstoreu<T>(in_buf + dm, p);
288               }
289               // Overlapping store for the remainder.
290               Eigen::internal::pstoreu<T>(in_buf + kDepth - kPacketSize, p);
291               in_buf += kDepth;
292             }
293             // Pad the remainder of the output to vector register boundary.
294             for (int64_t d = 0; d < output_pad_size; ++d) {
295               in_buf[d] = static_cast<T>(0);
296             }
297             in_buf += output_pad_size;
298           } else {
299             // Zero pad.
300             memset(in_buf, 0, sizeof(T) * padded_filter_inner_dim_size);
301             in_buf += padded_filter_inner_dim_size;
302           }
303         }
304       }
305     } else if (kDepth == 1) {
306       for (int64_t f_r = 0; f_r < args.filter_rows; ++f_r) {
307         const int64_t in_r = in_r_start + f_r;
308 
309         for (int64_t f_c = 0; f_c < args.filter_cols; ++f_c) {
310           const int64_t in_c = in_c_start + f_c;
311 
312           if (in_r >= 0 && in_r < args.in_rows && in_c >= 0 &&
313               in_c < args.in_cols) {
314             const auto* in =
315                 input + (in_r * args.in_cols + in_c) * args.in_depth;
316             for (int64_t d = 0; d < input_vectorized_size; d += kPacketSize) {
317               const auto p = Eigen::internal::ploadu<Packet>(in + d);
318               Eigen::internal::pstoreu<T>(in_buf, p);
319               in_buf += kPacketSize;
320             }
321             for (int64_t d = 0; d < input_scalar_size; ++d) {
322               T v = in[input_vectorized_size + d];
323               in_buf[d] = v;
324             }
325             in_buf += input_scalar_size;
326 
327             // Pad the remainder of the output to vector register boundary.
328             for (int64_t d = 0; d < output_pad_size; ++d) {
329               in_buf[d] = static_cast<T>(0);
330             }
331             in_buf += output_pad_size;
332           } else {
333             // Zero pad.
334             memset(in_buf, 0, sizeof(T) * padded_filter_inner_dim_size);
335             in_buf += padded_filter_inner_dim_size;
336           }
337         }
338       }
339     }
340   }
341 };
342 
343 }  // namespace functor
344 }  // namespace tensorflow
345 
346 #endif  // TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_
347