• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 //
6 // Auto-generated file. Do not edit!
7 //   Specification: src/operator-strings.yaml
8 //   Generator: tools/generate-enum.py
9 
10 #pragma once
11 
12 enum xnn_operator_type {
13   xnn_operator_type_invalid = 0,
14   xnn_operator_type_abs_nc_f16,
15   xnn_operator_type_abs_nc_f32,
16   xnn_operator_type_add_nd_f16,
17   xnn_operator_type_add_nd_f32,
18   xnn_operator_type_add_nd_qs8,
19   xnn_operator_type_add_nd_qu8,
20   xnn_operator_type_argmax_pooling_nhwc_f32,
21   xnn_operator_type_average_pooling_nhwc_f16,
22   xnn_operator_type_average_pooling_nhwc_f32,
23   xnn_operator_type_average_pooling_nhwc_qu8,
24   xnn_operator_type_bankers_rounding_nc_f16,
25   xnn_operator_type_bankers_rounding_nc_f32,
26   xnn_operator_type_ceiling_nc_f16,
27   xnn_operator_type_ceiling_nc_f32,
28   xnn_operator_type_channel_shuffle_nc_x8,
29   xnn_operator_type_channel_shuffle_nc_x32,
30   xnn_operator_type_clamp_nc_f16,
31   xnn_operator_type_clamp_nc_f32,
32   xnn_operator_type_clamp_nc_s8,
33   xnn_operator_type_clamp_nc_u8,
34   xnn_operator_type_constant_pad_nd_x8,
35   xnn_operator_type_constant_pad_nd_x16,
36   xnn_operator_type_constant_pad_nd_x32,
37   xnn_operator_type_convert_nc_f16_f32,
38   xnn_operator_type_convert_nc_f32_f16,
39   xnn_operator_type_convert_nc_f32_qs8,
40   xnn_operator_type_convert_nc_f32_qu8,
41   xnn_operator_type_convert_nc_qs8,
42   xnn_operator_type_convert_nc_qs8_f32,
43   xnn_operator_type_convert_nc_qu8,
44   xnn_operator_type_convert_nc_qu8_f32,
45   xnn_operator_type_convolution_nhwc_f16,
46   xnn_operator_type_convolution_nhwc_f32,
47   xnn_operator_type_convolution_nhwc_qc8,
48   xnn_operator_type_convolution_nhwc_qs8,
49   xnn_operator_type_convolution_nhwc_qu8,
50   xnn_operator_type_convolution_nchw_f32,
51   xnn_operator_type_copy_nc_x8,
52   xnn_operator_type_copy_nc_x16,
53   xnn_operator_type_copy_nc_x32,
54   xnn_operator_type_deconvolution_nhwc_f16,
55   xnn_operator_type_deconvolution_nhwc_f32,
56   xnn_operator_type_deconvolution_nhwc_qs8,
57   xnn_operator_type_deconvolution_nhwc_qu8,
58   xnn_operator_type_depth_to_space_nchw2nhwc_x32,
59   xnn_operator_type_depth_to_space_nhwc_x8,
60   xnn_operator_type_depth_to_space_nhwc_x16,
61   xnn_operator_type_depth_to_space_nhwc_x32,
62   xnn_operator_type_divide_nd_f16,
63   xnn_operator_type_divide_nd_f32,
64   xnn_operator_type_elu_nc_f16,
65   xnn_operator_type_elu_nc_f32,
66   xnn_operator_type_elu_nc_qs8,
67   xnn_operator_type_floor_nc_f16,
68   xnn_operator_type_floor_nc_f32,
69   xnn_operator_type_fully_connected_nc_f16,
70   xnn_operator_type_fully_connected_nc_f32,
71   xnn_operator_type_fully_connected_nc_qs8,
72   xnn_operator_type_fully_connected_nc_qu8,
73   xnn_operator_type_global_average_pooling_nwc_f16,
74   xnn_operator_type_global_average_pooling_nwc_f32,
75   xnn_operator_type_global_average_pooling_nwc_qs8,
76   xnn_operator_type_global_average_pooling_nwc_qu8,
77   xnn_operator_type_global_average_pooling_ncw_f32,
78   xnn_operator_type_hardswish_nc_f16,
79   xnn_operator_type_hardswish_nc_f32,
80   xnn_operator_type_leaky_relu_nc_f16,
81   xnn_operator_type_leaky_relu_nc_f32,
82   xnn_operator_type_leaky_relu_nc_qs8,
83   xnn_operator_type_leaky_relu_nc_qu8,
84   xnn_operator_type_max_pooling_nhwc_f16,
85   xnn_operator_type_max_pooling_nhwc_f32,
86   xnn_operator_type_max_pooling_nhwc_s8,
87   xnn_operator_type_max_pooling_nhwc_u8,
88   xnn_operator_type_maximum_nd_f16,
89   xnn_operator_type_maximum_nd_f32,
90   xnn_operator_type_minimum_nd_f16,
91   xnn_operator_type_minimum_nd_f32,
92   xnn_operator_type_multiply_nd_f16,
93   xnn_operator_type_multiply_nd_f32,
94   xnn_operator_type_multiply_nd_qs8,
95   xnn_operator_type_multiply_nd_qu8,
96   xnn_operator_type_negate_nc_f16,
97   xnn_operator_type_negate_nc_f32,
98   xnn_operator_type_prelu_nc_f16,
99   xnn_operator_type_prelu_nc_f32,
100   xnn_operator_type_resize_bilinear_nhwc_f16,
101   xnn_operator_type_resize_bilinear_nhwc_f32,
102   xnn_operator_type_resize_bilinear_nhwc_s8,
103   xnn_operator_type_resize_bilinear_nhwc_u8,
104   xnn_operator_type_resize_bilinear_nchw_f32,
105   xnn_operator_type_sigmoid_nc_f16,
106   xnn_operator_type_sigmoid_nc_f32,
107   xnn_operator_type_sigmoid_nc_qs8,
108   xnn_operator_type_sigmoid_nc_qu8,
109   xnn_operator_type_softmax_nc_f16,
110   xnn_operator_type_softmax_nc_f32,
111   xnn_operator_type_softmax_nc_qu8,
112   xnn_operator_type_space_to_depth_nhwc_x8,
113   xnn_operator_type_space_to_depth_nhwc_x16,
114   xnn_operator_type_space_to_depth_nhwc_x32,
115   xnn_operator_type_square_nc_f16,
116   xnn_operator_type_square_nc_f32,
117   xnn_operator_type_square_root_nc_f16,
118   xnn_operator_type_square_root_nc_f32,
119   xnn_operator_type_squared_difference_nd_f16,
120   xnn_operator_type_squared_difference_nd_f32,
121   xnn_operator_type_subtract_nd_f16,
122   xnn_operator_type_subtract_nd_f32,
123   xnn_operator_type_subtract_nd_qs8,
124   xnn_operator_type_subtract_nd_qu8,
125   xnn_operator_type_tanh_nc_qs8,
126   xnn_operator_type_tanh_nc_qu8,
127   xnn_operator_type_truncation_nc_f16,
128   xnn_operator_type_truncation_nc_f32,
129   xnn_operator_type_transpose_nd_x8,
130   xnn_operator_type_transpose_nd_x16,
131   xnn_operator_type_transpose_nd_x32,
132   xnn_operator_type_unpooling_nhwc_x32,
133 };