/external/XNNPACK/src/subgraph/ |
D | validation.c | 128 const struct xnn_value* input1_value, in xnn_subgraph_check_datatype_matches_two_inputs() argument 134 assert(input1_value->datatype != xnn_datatype_invalid); in xnn_subgraph_check_datatype_matches_two_inputs() 137 if (input1_value->datatype != input2_value->datatype || in xnn_subgraph_check_datatype_matches_two_inputs() 138 input1_value->datatype != output_value->datatype) in xnn_subgraph_check_datatype_matches_two_inputs() 144 xnn_datatype_to_string(input1_value->datatype), in xnn_subgraph_check_datatype_matches_two_inputs()
|
D | maximum2.c | 162 const struct xnn_value* input1_value = &subgraph->values[input1_id]; in xnn_define_maximum2() local 163 …status = xnn_subgraph_check_nth_input_type_dense(xnn_node_type_maximum2, input1_id, input1_value, … in xnn_define_maximum2() 168 switch (input1_value->datatype) { in xnn_define_maximum2() 175 xnn_datatype_to_string(input1_value->datatype), input1_value->datatype); in xnn_define_maximum2()
|
D | squared-difference.c | 162 const struct xnn_value* input1_value = &subgraph->values[input1_id]; in xnn_define_squared_difference() local 163 …_subgraph_check_nth_input_type_dense(xnn_node_type_squared_difference, input1_id, input1_value, 1); in xnn_define_squared_difference() 168 switch (input1_value->datatype) { in xnn_define_squared_difference() 175 xnn_datatype_to_string(input1_value->datatype), input1_value->datatype); in xnn_define_squared_difference()
|
D | minimum2.c | 162 const struct xnn_value* input1_value = &subgraph->values[input1_id]; in xnn_define_minimum2() local 163 …status = xnn_subgraph_check_nth_input_type_dense(xnn_node_type_minimum2, input1_id, input1_value, … in xnn_define_minimum2() 168 switch (input1_value->datatype) { in xnn_define_minimum2() 175 xnn_datatype_to_string(input1_value->datatype), input1_value->datatype); in xnn_define_minimum2()
|
D | divide.c | 172 const struct xnn_value* input1_value = &subgraph->values[input1_id]; in xnn_define_divide() local 173 …status = xnn_subgraph_check_nth_input_type_dense(xnn_node_type_divide, input1_id, input1_value, 1); in xnn_define_divide() 178 switch (input1_value->datatype) { in xnn_define_divide() 185 xnn_datatype_to_string(input1_value->datatype), input1_value->datatype); in xnn_define_divide()
|
D | subtract.c | 230 const struct xnn_value* input1_value = &subgraph->values[input1_id]; in xnn_define_subtract() local 231 …status = xnn_subgraph_check_nth_input_type_dense(xnn_node_type_subtract, input1_id, input1_value, … in xnn_define_subtract() 236 switch (input1_value->datatype) { in xnn_define_subtract() 249 xnn_datatype_to_string(input1_value->datatype), input1_value->datatype); in xnn_define_subtract() 316 …xnn_node_type_subtract, input1_id, input1_value, input2_id, input2_value, output_id, output_value); in xnn_define_subtract()
|
D | multiply2.c | 234 const struct xnn_value* input1_value = &subgraph->values[input1_id]; in xnn_define_multiply2() local 235 …status = xnn_subgraph_check_nth_input_type_dense(xnn_node_type_multiply2, input1_id, input1_value,… in xnn_define_multiply2() 240 switch (input1_value->datatype) { in xnn_define_multiply2() 253 xnn_datatype_to_string(input1_value->datatype), input1_value->datatype); in xnn_define_multiply2() 320 …xnn_node_type_multiply2, input1_id, input1_value, input2_id, input2_value, output_id, output_value… in xnn_define_multiply2()
|
D | add2.c | 230 const struct xnn_value* input1_value = &subgraph->values[input1_id]; in xnn_define_add2() local 231 status = xnn_subgraph_check_nth_input_type_dense(xnn_node_type_add2, input1_id, input1_value, 1); in xnn_define_add2() 236 switch (input1_value->datatype) { in xnn_define_add2() 249 xnn_datatype_to_string(input1_value->datatype), input1_value->datatype); in xnn_define_add2() 316 … xnn_node_type_add2, input1_id, input1_value, input2_id, input2_value, output_id, output_value); in xnn_define_add2()
|
/external/tensorflow/tensorflow/lite/testing/op_tests/ |
D | einsum.py | 79 input1_value = create_tensor_data(parameters["dtype"], input1_shape) 81 outputs, feed_dict=dict(zip(inputs, [input0_value, input1_value]))) 82 return [input0_value, input1_value], output_values
|
D | batchmatmul.py | 95 input1_value = create_tensor_data( 98 outputs, feed_dict=dict(zip(inputs, [input0_value, input1_value]))) 99 return [input0_value, input1_value], output_values
|
/external/tensorflow/tensorflow/lite/experimental/mlir/testing/op_tests/ |
D | einsum.py | 75 input1_value = create_tensor_data(parameters["dtype"], input1_shape) 77 outputs, feed_dict=dict(zip(inputs, [input0_value, input1_value]))) 78 return [input0_value, input1_value], output_values
|
D | batchmatmul.py | 97 input1_value = create_tensor_data( 100 outputs, feed_dict=dict(zip(inputs, [input0_value, input1_value]))) 101 return [input0_value, input1_value], output_values
|
/external/XNNPACK/src/xnnpack/ |
D | subgraph-validation.h | 45 const struct xnn_value* input1_value,
|
/external/pytorch/torch/csrc/jit/passes/onnx/ |
D | shape_type_inference.cpp | 1194 auto input1_value = input1_shape_value.value()[1].static_size(); in ProcessTimeSeriesNode() local 1197 hidden_size = c10::ShapeSymbol::fromStaticSize(input1_value); in ProcessTimeSeriesNode() 1200 hidden_size = c10::ShapeSymbol::fromStaticSize(input1_value / 4); in ProcessTimeSeriesNode() 1203 hidden_size = c10::ShapeSymbol::fromStaticSize(input1_value / 3); in ProcessTimeSeriesNode()
|