/external/pytorch/torch/fx/experimental/ |
D | partitioner_utils.py | 31 input_nodes: Dict[Node, None] = {} 32 map_arg(node.args, input_nodes.setdefault) 33 map_arg(node.kwargs, input_nodes.setdefault) 35 for n in input_nodes: 46 input_nodes: Dict[Node, None] = {} 47 map_arg(node.args, input_nodes.setdefault) 48 map_arg(node.kwargs, input_nodes.setdefault) 52 for input_node in input_nodes: 107 input_nodes: Dict[Node, None] = {} 108 map_arg(node.args, input_nodes.setdefault) [all …]
|
/external/pytorch/torch/_inductor/codegen/cuda/ |
D | gemm_template.py | 385 input_nodes: List[Buffer], 400 super().__init__("cutlass_gemm", input_nodes, layout, input_reorder) 403 assert len(input_nodes) == 2 or len(input_nodes) == 3 405 [node.get_layout() for node in input_nodes] 413 input_nodes: List[Buffer], 485 input_nodes: List[Buffer], 514 input_layouts = [node.get_layout() for node in input_nodes] 515 input_strides = [node.get_stride() for node in input_nodes] 744 X = self.input_nodes[0] 745 W = self.input_nodes[1] [all …]
|
D | cuda_template.py | 29 input_nodes: List[Buffer], 45 self.input_nodes = input_nodes 82 else list(range(len(self.input_nodes))) 85 unique(self.input_nodes[idx].get_name() for idx in input_reorder) 101 input_tensor_meta=TensorMeta.from_irnodes(self.input_nodes), 126 self.input_nodes,
|
/external/pytorch/torch/_inductor/codegen/rocm/ |
D | ck_universal_gemm_template.py | 84 input_nodes: List[Buffer], 92 input_nodes=input_nodes, 135 metas = [T.get_layout() for T in [*self.input_nodes, self.output_node]] 253 X, W = self.input_nodes[0], self.input_nodes[1] 255 Bias = self.input_nodes[2] if 3 == len(self.input_nodes) else None 330 T.get_layout() for T in [*self.input_nodes, self.output_node] 386 input_nodes, argument 395 input_nodes, 409 X = self.input_nodes[0] 410 W = self.input_nodes[1] [all …]
|
D | rocm_template.py | 27 input_nodes: List[Buffer], 43 self.input_nodes = input_nodes 81 else list(range(len(self.input_nodes))) 84 unique(self.input_nodes[idx].get_name() for idx in input_reorder) 100 input_tensor_meta=TensorMeta.from_irnodes(self.input_nodes), 125 self.input_nodes,
|
/external/libaom/av1/encoder/ |
D | ml.c | 31 void av1_nn_predict_c(const float *input_nodes, in av1_nn_predict_c() argument 50 val += layer_weights[node * num_input_nodes + i] * input_nodes[i]; in av1_nn_predict_c() 56 input_nodes = output_nodes; in av1_nn_predict_c() 66 val += layer_weights[node * num_input_nodes + i] * input_nodes[i]; in av1_nn_predict_c() 123 const float *input_nodes = feature; in av1_nn_predict_v2() local 129 input_nodes = nn_fc_forward(input_nodes, nn_config->layer + i); in av1_nn_predict_v2() 135 input_nodes = nn_fc_forward(input_nodes, nn_config->layer + num_layers); in av1_nn_predict_v2() 138 memcpy(output, input_nodes, sizeof(*input_nodes) * nn_config->num_logits); in av1_nn_predict_v2()
|
/external/pytorch/torch/_inductor/ |
D | select_algorithm.py | 122 input_nodes, argument 143 self.input_nodes = input_nodes 204 for i, inp in enumerate(itertools.chain(self.input_nodes, (self.output_node,))): 267 named_args = self.input_nodes[ 268 self.prefix_args : len(self.input_nodes) - self.suffix_args 275 len(self.input_nodes), 278 for input_node in self.input_nodes[: self.prefix_args]: 297 for input_node in self.input_nodes[len(self.input_nodes) - self.suffix_args :]: 459 self.input_nodes[: self.prefix_args], 460 self.input_nodes[len(self.input_nodes) - self.suffix_args :], [all …]
|
/external/pytorch/torch/_inductor/kernel/ |
D | mm_scaled.py | 261 input_nodes: Tuple[Any, ...] 264 input_nodes = (mat_a, mat_b, scale_a, scale_b) 268 input_nodes = (mat_a, mat_b, scale_a, scale_b, bias) 272 input_nodes, layout, out_dtype=out_dtype, use_fast_accum=use_fast_accum 290 input_nodes=input_nodes, 304 return autotune_select_algorithm("scaled_mm", choices, input_nodes, layout)
|
D | mm.py | 178 input_nodes=(mat1, mat2), 195 input_nodes = [mat1, mat2] 209 input_nodes=(mat1, mat2), 223 input_nodes, 302 input_nodes=(mat1, mat2), 381 input_nodes=(inp_expanded, mat1, mat2), 585 input_nodes, argument 623 input_nodes=input_nodes, 703 input_nodes=(mat1, mat2), 713 input_nodes=(mat1, mat2), [all …]
|
/external/pytorch/torch/_inductor/codegen/ |
D | cpp_template.py | 29 input_nodes, argument 35 self.input_nodes = input_nodes 58 unique(input_node.get_name() for input_node in self.input_nodes) 77 input_tensor_meta=TensorMeta.from_irnodes(self.input_nodes), 104 self.input_nodes,
|
D | cpp_gemm_template.py | 241 input_nodes, argument 253 input_nodes, 263 _, k = input_nodes[0].get_size() 419 num_byte_A = get_num_byte(self.input_nodes[0].get_dtype()) 420 num_byte_B = get_num_byte(self.input_nodes[1].get_dtype()) 510 input_nodes, argument 519 input_indices = list(range(len(input_nodes))) 577 *maybe_to_dense(*reorder_and_filter(input_nodes, layout)) 685 new_input_nodes, _ = reorder_and_filter(input_nodes, layout) 754 input_nodes=input_nodes, [all …]
|
/external/tensorflow/tensorflow/c/ |
D | c_api_function.cc | 54 std::unordered_map<const Node*, std::vector<int>>* input_nodes) in ProcessInputs() argument 71 const auto& iter = input_nodes->find(node); in ProcessInputs() 72 if (iter == input_nodes->end()) { in ProcessInputs() 73 input_nodes->insert({node, {idx}}); in ProcessInputs() 113 const std::unordered_map<const Node*, std::vector<int>>& input_nodes, in ComputeBodyNodes() argument 118 const auto& iter = input_nodes.find(node); in ComputeBodyNodes() 119 if (iter == input_nodes.end()) { in ComputeBodyNodes() 163 std::unordered_map<const Node*, std::vector<int>> input_nodes; in TF_GraphToFunctionWithControlOutputs() local 165 &input_tensors, &input_nodes); in TF_GraphToFunctionWithControlOutputs() 195 fn_body, fn_name, num_opers, opers, input_nodes, &body_nodes); in TF_GraphToFunctionWithControlOutputs()
|
/external/pytorch/torch/_inductor/autoheuristic/ |
D | autoheuristic.py | 227 input_nodes: List[Any], 239 self.input_nodes = input_nodes 266 self.register_global_feedback(input_nodes, choices) 269 self, input_nodes: List[Any], choices: List[ChoiceCaller] 286 input_nodes: List[Any], 289 current_inputs_key = create_inputs_key(input_nodes) 300 inputs_key = create_inputs_key(input_nodes)
|
/external/libaom/av1/encoder/x86/ |
D | ml_avx2.c | 140 void av1_nn_predict_avx2(const float *input_nodes, in av1_nn_predict_avx2() argument 160 nn_propagate_input_multiple_of_8(input_nodes, layer_weights, layer_bias, in av1_nn_predict_avx2() 171 input_nodes, layer_weights, layer_bias, num_inputs_to_process, in av1_nn_predict_avx2() 183 av1_nn_propagate_4to8_sse3(&input_nodes[in], in av1_nn_predict_avx2() 199 av1_nn_propagate_4to4_sse3(&input_nodes[in], in av1_nn_predict_avx2() 210 av1_nn_propagate_4to1_sse3(&input_nodes[in], in av1_nn_predict_avx2() 223 __m128 input = _mm_load1_ps(&input_nodes[in_node]); in av1_nn_predict_avx2() 235 input_nodes = output_nodes; in av1_nn_predict_avx2()
|
D | ml_sse3.c | 153 void av1_nn_predict_sse3(const float *input_nodes, in av1_nn_predict_sse3() argument 174 av1_nn_propagate_4to8_sse3(&input_nodes[in], in av1_nn_predict_sse3() 186 nn_propagate_8to4(&input_nodes[in], in av1_nn_predict_sse3() 197 av1_nn_propagate_4to4_sse3(&input_nodes[in], in av1_nn_predict_sse3() 208 nn_propagate_8to1(&input_nodes[in], in av1_nn_predict_sse3() 219 &input_nodes[in], &layer_weights[out * num_inputs + in], &total); in av1_nn_predict_sse3() 230 __m128 input = _mm_load1_ps(&input_nodes[in_node]); in av1_nn_predict_sse3() 239 input_nodes = output_nodes; in av1_nn_predict_sse3()
|
/external/executorch/backends/arm/operators/ |
D | op_add.py | 44 input_nodes = tutils.get_two_inputs(node) 48 for tensor in input_nodes 55 all(tensor.meta["val"].dtype == torch.int32 for tensor in input_nodes) 62 input_nodes, tosa_graph
|
/external/libaom/av1/encoder/arm/ |
D | ml_neon.c | 267 void av1_nn_predict_neon(const float *input_nodes, in av1_nn_predict_neon() argument 284 nn_propagate_4to8(num_inputs, input_nodes, in av1_nn_predict_neon() 290 nn_propagate_8to4(num_inputs, input_nodes, in av1_nn_predict_neon() 296 nn_propagate_4to4(num_inputs, input_nodes, in av1_nn_predict_neon() 302 nn_propagate_8to1(num_inputs, input_nodes, in av1_nn_predict_neon() 308 nn_propagate_4to1(num_inputs, input_nodes, in av1_nn_predict_neon() 314 nn_propagate_xto1(num_inputs, input_nodes, in av1_nn_predict_neon() 320 nn_propagate_xsto1(num_inputs, input_nodes, in av1_nn_predict_neon() 328 val += layer_weights[node * num_inputs + i] * input_nodes[i]; in av1_nn_predict_neon() 334 input_nodes = output_nodes; in av1_nn_predict_neon()
|
/external/executorch/backends/qualcomm/quantizer/ |
D | custom_annotation.py | 47 input_nodes = node.args[0] 49 first_input_node = input_nodes[0] 56 for input_node in input_nodes[1:]: 149 input_nodes = node.args[0] 150 assert isinstance(input_nodes, Sequence) 151 first_input_node = input_nodes[0] 159 for input_node in input_nodes[1:]:
|
/external/pytorch/torch/fx/passes/utils/ |
D | source_matcher_utils.py | 40 input_nodes: List[Node] = field(default_factory=list) variable in SourcePartition 98 input_nodes = set() 104 input_nodes.add(arg) 116 list(input_nodes),
|
/external/executorch/backends/qualcomm/_passes/ |
D | recompose_rms_norm.py | 40 input_len = len(src_partition.input_nodes) 42 input_node = src_partition.input_nodes[0] 44 inp_0, inp_1 = src_partition.input_nodes
|
/external/tensorflow/tensorflow/core/tfrt/utils/ |
D | graph_partition.cc | 76 absl::flat_hash_map<std::string, NodeInfo>& input_nodes, in PrepareSubgraphForFunctionConversion() argument 105 input_nodes.emplace(node->name(), node_info); in PrepareSubgraphForFunctionConversion() 216 const absl::flat_hash_map<std::string, NodeInfo>& input_nodes, in BuildPartitionedCallOp() argument 228 std::vector<DataType> input_dtypes(input_nodes.size()); in BuildPartitionedCallOp() 229 for (const auto& input_node : input_nodes) { in BuildPartitionedCallOp() 248 std::vector<NodeBuilder::NodeOut> call_node_inputs(input_nodes.size()); in BuildPartitionedCallOp() 249 for (const auto& input_node : input_nodes) { in BuildPartitionedCallOp() 458 absl::flat_hash_map<std::string, NodeInfo> input_nodes; in InsertTransferOps() local 470 inputs, outputs, host_device, func_name, input_nodes, output_nodes, in InsertTransferOps() 477 BuildPartitionedCallOp(func_name, host_device, device, input_nodes, in InsertTransferOps()
|
/external/tensorflow/tensorflow/tools/graph_transforms/ |
D | strip_unused_nodes.cc | 120 std::set<string> input_nodes; in StripUnusedNodes() local 123 input_nodes.insert(NodeNameFromInput(input)); in StripUnusedNodes() 141 if (input_nodes.count(current_input)) { in StripUnusedNodes() 169 if (input_nodes.count(node.name())) { in StripUnusedNodes()
|
D | backports.cc | 34 [](const NodeMatch& match, const std::set<string>& input_nodes, in BackportConcatV2Transform() 71 const std::set<string>& input_nodes, in BackportTensorArrayV3Transform() argument 117 [](const NodeMatch& match, const std::set<string>& input_nodes, in BackportTensorArrayV3Transform() argument
|
D | fold_constants_lib.cc | 54 StringPieceSet input_nodes; in ReplaceSendRecvs() local 61 input_nodes.insert(id.first); in ReplaceSendRecvs() 103 auto iter = input_nodes.find(new_node->name()); in ReplaceSendRecvs() 104 if (iter != input_nodes.end()) { in ReplaceSendRecvs() 105 input_nodes.erase(iter); in ReplaceSendRecvs() 111 for (StringPiece name : input_nodes) { in ReplaceSendRecvs()
|
/external/tensorflow/tensorflow/core/tpu/graph_rewrite/ |
D | configure_tpu_embedding_rewrite_pass.cc | 82 absl::Span<Node* const> input_nodes, in AddSetupPropagationEmbeddingNode() argument 88 AddNodeAttr("N", static_cast<int>(input_nodes.size()), &node_def); in AddSetupPropagationEmbeddingNode() 89 if (!input_nodes.empty()) { in AddSetupPropagationEmbeddingNode() 90 MergeDebugInfo(NodeDebugInfo(input_nodes[0]->def()), &node_def); in AddSetupPropagationEmbeddingNode() 96 for (int i = 0; i < input_nodes.size(); ++i) { in AddSetupPropagationEmbeddingNode() 97 graph->AddEdge(input_nodes[i], 0, *node, i); in AddSetupPropagationEmbeddingNode()
|