/external/XNNPACK/test/ |
D | tanh-nc.cc | 45 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 49 .input_scale(input_scale) in TEST() 125 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 129 .input_scale(input_scale) in TEST() 189 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 195 .input_scale(input_scale) in TEST() 251 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 255 .input_scale(input_scale) in TEST() 331 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 335 .input_scale(input_scale) in TEST() [all …]
|
D | sigmoid-nc.cc | 158 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 162 .input_scale(input_scale) in TEST() 238 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 242 .input_scale(input_scale) in TEST() 302 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 308 .input_scale(input_scale) in TEST() 365 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 369 .input_scale(input_scale) in TEST() 445 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 449 .input_scale(input_scale) in TEST() [all …]
|
D | elu-nc.cc | 185 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 189 .input_scale(input_scale) in TEST() 265 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 269 .input_scale(input_scale) in TEST() 342 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 10.0f) { in TEST() local 348 .input_scale(input_scale) in TEST()
|
D | clamp.cc | 29 const float input_scale = scale_dist(rng); in TEST_F() local 31 const float output_scale = input_scale; in TEST_F() 34 const float output_min = (quantized_output_min - input_zero_point) * input_scale; in TEST_F() 35 const float output_max = (quantized_output_max - input_zero_point) * input_scale; in TEST_F() 46 … subgraph, xnn_datatype_qint8, input_zero_point, input_scale, dims.size(), dims.data(), in TEST_F() 73 const float input_scale = scale_dist(rng); in TEST_F() local 75 const float output_scale = input_scale; in TEST_F() 78 const float output_min = (quantized_output_min - input_zero_point) * input_scale; in TEST_F() 79 const float output_max = (quantized_output_max - input_zero_point) * input_scale; in TEST_F() 90 … subgraph, xnn_datatype_quint8, input_zero_point, input_scale, dims.size(), dims.data(), in TEST_F() [all …]
|
D | tanh-operator-tester.h | 75 inline TanhOperatorTester& input_scale(float input_scale) { in input_scale() function 76 assert(input_scale > 0.0f); in input_scale() 77 assert(std::isnormal(input_scale)); in input_scale() 78 this->input_scale_ = input_scale; in input_scale() 82 inline float input_scale() const { in input_scale() function 147 const float x = input_scale() * in TestQS8() 165 int8_t(input_zero_point() - 0x80), input_scale(), in TestQS8() 208 const float x = input_scale() * in TestQU8() 226 input_zero_point(), input_scale(), in TestQU8()
|
D | leaky-relu-nc.cc | 179 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 3.14159265f) { in TEST() local 183 .input_scale(input_scale) in TEST() 299 for (float input_scale = 1.0e-2f; input_scale < 1.0e+2f; input_scale *= 3.14159265f) { in TEST() local 303 .input_scale(input_scale) in TEST()
|
D | leaky-relu-operator-tester.h | 93 inline LeakyReLUOperatorTester& input_scale(float input_scale) { in input_scale() argument 94 assert(input_scale > 0.0f); in input_scale() 95 assert(std::isnormal(input_scale)); in input_scale() 96 this->input_scale_ = input_scale; in input_scale() 100 inline float input_scale() const { in input_scale() function 284 … const float x = input_scale() * (int32_t(input[i * input_stride() + c]) - input_zero_point()); in TestQS8() 300 input_zero_point(), input_scale(), in TestQS8() 325 << ", positive input-to-output ratio " << (input_scale() / output_scale()) in TestQS8() 326 … << ", negative input-to-output ratio " << (input_scale() / output_scale() * negative_slope()); in TestQS8() 353 … const float x = input_scale() * (int32_t(input[i * input_stride() + c]) - input_zero_point()); in TestQU8() [all …]
|
D | softmax-operator-tester.h | 79 inline SoftMaxOperatorTester& input_scale(float input_scale) { in input_scale() argument 80 assert(input_scale > 0.0f); in input_scale() 81 assert(std::isnormal(input_scale)); in input_scale() 82 this->input_scale_ = input_scale; in input_scale() 86 inline float input_scale() const { in input_scale() function 263 input_scale()); in TestQU8() 268 input_scale()) / in TestQU8() 281 input_scale(), in TestQU8()
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | logsoftmax_quantized_test.cc | 39 int32 input_offset, const double input_scale, in RunLogSoftmaxFloatReference() argument 50 dq_params.scale = input_scale; in RunLogSoftmaxFloatReference() 72 int32 input_offset, const double input_scale, in RunLogSoftmaxFloatReference() argument 83 dq_params.scale = input_scale; in RunLogSoftmaxFloatReference() 148 const double input_scale, int stride, float beta) { in RunOneLogSoftmaxTest() argument 155 input_scale, stride, beta, in RunOneLogSoftmaxTest() 164 beta, input_scale, kScaledDiffIntegerBits, &input_beta_multiplier, in RunOneLogSoftmaxTest() 184 optimized_ops::PopulateSoftmaxLookupTable(¶ms, input_scale, beta); in RunOneLogSoftmaxTest() 185 optimized_ops::LogSoftmax(params, input_scale, shape_common, input_data, in RunOneLogSoftmaxTest() 206 const double input_scale, int stride, float beta) { in RunOneLogSoftmaxTest() argument [all …]
|
D | softmax_quantized_test.cc | 37 int32 input_offset, const double input_scale, in RunSoftmaxFloatReference() argument 48 dq_params.scale = input_scale; in RunSoftmaxFloatReference() 108 const double input_scale, int stride, float beta) { in RunOneSoftmaxTest() argument 114 RunSoftmaxFloatReference(input_data, shape_common, input_offset, input_scale, in RunOneSoftmaxTest() 120 tflite::PreprocessSoftmaxScaling(beta, input_scale, kScaledDiffIntegerBits, in RunOneSoftmaxTest() 137 optimized_ops::PopulateSoftmaxLookupTable(¶ms, input_scale, beta); in RunOneSoftmaxTest() 158 optimized_ops::PopulateSoftmaxUInt8LookupTable(¶ms, input_scale, beta); in RunOneSoftmaxTest() 182 const double input_scale = std::pow(10.0, UniformRandomFloat(-2.0, 1.0)); in TryOneUniformSoftmax() local 192 RunOneSoftmaxTest(input_data.data(), shape_common, input_offset, input_scale, in TryOneUniformSoftmax() 215 const double input_scale = std::pow(10.0, UniformRandomFloat(-2.0, 1.0)); in TryOneSkyscraperSoftmax() local [all …]
|
/external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/src/ |
D | global-average-pooling.c | 24 float input_scale, in pytorch_qnnp_create_global_average_pooling_nwc_q8() argument 49 if (input_scale <= 0.0f || !isnormal(input_scale)) { in pytorch_qnnp_create_global_average_pooling_nwc_q8() 52 input_scale); in pytorch_qnnp_create_global_average_pooling_nwc_q8() 65 const float input_output_scale = input_scale / output_scale; in pytorch_qnnp_create_global_average_pooling_nwc_q8() 97 global_average_pooling_op->input_scale = input_scale; in pytorch_qnnp_create_global_average_pooling_nwc_q8() 151 global_average_pooling_op->input_scale / in pytorch_qnnp_setup_global_average_pooling_nwc_q8()
|
D | softargmax.c | 21 float input_scale, in pytorch_qnnp_create_softargmax_nc_q8() argument 44 if (input_scale <= 0.0f || !isnormal(input_scale)) { in pytorch_qnnp_create_softargmax_nc_q8() 47 input_scale); in pytorch_qnnp_create_softargmax_nc_q8() 97 qscale * exp((double)(i - 255) * (double)input_scale); in pytorch_qnnp_create_softargmax_nc_q8()
|
D | tanh.c | 22 float input_scale, in pytorch_qnnp_create_tanh_nc_q8() argument 47 if (input_scale <= 0.0f || !isnormal(input_scale)) { in pytorch_qnnp_create_tanh_nc_q8() 50 input_scale); in pytorch_qnnp_create_tanh_nc_q8() 109 input_scale * (float)(i - (int32_t)(uint32_t)input_zero_point); in pytorch_qnnp_create_tanh_nc_q8()
|
D | sigmoid.c | 22 float input_scale, in pytorch_qnnp_create_sigmoid_nc_q8() argument 47 if (input_scale <= 0.0f || !isnormal(input_scale)) { in pytorch_qnnp_create_sigmoid_nc_q8() 50 input_scale); in pytorch_qnnp_create_sigmoid_nc_q8() 109 input_scale * (float)(i - (int32_t)(uint32_t)input_zero_point); in pytorch_qnnp_create_sigmoid_nc_q8()
|
D | hardswish.c | 22 float input_scale, in pytorch_qnnp_create_hardswish_nc_q8() argument 47 if (input_scale <= 0.0f || !isnormal(input_scale)) { in pytorch_qnnp_create_hardswish_nc_q8() 50 input_scale); in pytorch_qnnp_create_hardswish_nc_q8() 93 input_scale * (float)(i - (int32_t)(uint32_t)input_zero_point); in pytorch_qnnp_create_hardswish_nc_q8()
|
D | leaky-relu.c | 23 float input_scale, in pytorch_qnnp_create_leaky_relu_nc_q8() argument 62 if (input_scale <= 0.0f || !isnormal(input_scale)) { in pytorch_qnnp_create_leaky_relu_nc_q8() 65 input_scale); in pytorch_qnnp_create_leaky_relu_nc_q8() 87 const float input_output_scale = input_scale / output_scale; in pytorch_qnnp_create_leaky_relu_nc_q8()
|
D | hardsigmoid.c | 22 float input_scale, in pytorch_qnnp_create_hardsigmoid_nc_q8() argument 47 if (input_scale <= 0.0f || !isnormal(input_scale)) { in pytorch_qnnp_create_hardsigmoid_nc_q8() 50 input_scale); in pytorch_qnnp_create_hardsigmoid_nc_q8() 110 input_scale * (float)(i - (int32_t)(uint32_t)input_zero_point); in pytorch_qnnp_create_hardsigmoid_nc_q8()
|
D | average-pooling.c | 41 float input_scale, in pytorch_qnnp_create_average_pooling2d_nhwc_q8() argument 95 if (input_scale <= 0.0f || !isnormal(input_scale)) { in pytorch_qnnp_create_average_pooling2d_nhwc_q8() 99 input_scale); in pytorch_qnnp_create_average_pooling2d_nhwc_q8() 113 const float input_output_scale = input_scale / output_scale; in pytorch_qnnp_create_average_pooling2d_nhwc_q8() 118 input_scale, in pytorch_qnnp_create_average_pooling2d_nhwc_q8() 188 input_scale / (output_scale * (float)pooling_size), in pytorch_qnnp_create_average_pooling2d_nhwc_q8()
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/integer_ops/ |
D | depthwise_conv_hybrid_3x3_filter.h | 129 static inline void Run(const float* input_scale, 1028 [input_scale] "r"(input_scale), 1064 static inline void Run(const float* input_scale, const int8* input_ptr, 2034 [input_scale] "r"(input_scale), 2072 static inline void Run(const float* input_scale, const int8* input_ptr, 2171 [params_ptr] "r"(params_ptr), [input_scale] "r"(input_scale) 2188 static inline void Run(const float* input_scale, const int8* input_ptr, 2340 [input_scale] "r"(input_scale), 2358 static inline void Run(const float* input_scale, const int8* input_ptr, 2545 [input_scale] "r"(input_scale), [params_ptr] "r"(params_ptr) [all …]
|
/external/XNNPACK/src/operators/ |
D | lut-elementwise-nc.c | 25 float input_scale, in create_lut_elementwise_nc() argument 71 if (input_scale <= 0.0f || !isnormal(input_scale)) { in create_lut_elementwise_nc() 74 xnn_operator_type_to_string(operator_type), input_scale); in create_lut_elementwise_nc() 113 const float dequantized_input = (i - input_zero_point) * input_scale; in create_lut_elementwise_nc() 149 float input_scale, in xnn_create_elu_nc_qs8() argument 166 (int32_t) input_zero_point, input_scale, INT8_MIN, in xnn_create_elu_nc_qs8() 183 float input_scale, in xnn_create_sigmoid_nc_qs8() argument 207 (int32_t) input_zero_point, input_scale, INT8_MIN, in xnn_create_sigmoid_nc_qs8() 220 float input_scale, in xnn_create_sigmoid_nc_qu8() argument 244 (int32_t) (uint32_t) input_zero_point, input_scale, 0 /* input min */, in xnn_create_sigmoid_nc_qu8() [all …]
|
D | global-average-pooling-nwc.c | 206 float input_scale, in xnn_create_global_average_pooling_nwc_qu8() argument 214 if (input_scale <= 0.0f || !isnormal(input_scale)) { in xnn_create_global_average_pooling_nwc_qu8() 217 xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_nwc_qu8), input_scale); in xnn_create_global_average_pooling_nwc_qu8() 235 const float input_output_scale = input_scale / output_scale; in xnn_create_global_average_pooling_nwc_qu8() 259 global_average_pooling_op->input_scale = input_scale; in xnn_create_global_average_pooling_nwc_qu8() 270 float input_scale, in xnn_create_global_average_pooling_nwc_qs8() argument 278 if (input_scale <= 0.0f || !isnormal(input_scale)) { in xnn_create_global_average_pooling_nwc_qs8() 281 xnn_operator_type_to_string(xnn_operator_type_global_average_pooling_nwc_qs8), input_scale); in xnn_create_global_average_pooling_nwc_qs8() 299 const float input_output_scale = input_scale / output_scale; in xnn_create_global_average_pooling_nwc_qs8() 323 global_average_pooling_op->input_scale = input_scale; in xnn_create_global_average_pooling_nwc_qs8() [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/quantization/tensorflow/passes/ |
D | quantized_function_library.mlir | 36 %input_scale : tensor<*xf32>, %input_zp : tensor<*xi32>, 39 …%scale_prod = "tf.Mul"(%input_scale, %filter_scale) : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf… 57 %input_scale : tensor<*xf32>, %input_zp : tensor<*xi32>, 60 … %rescale = "tf.PartitionedCall"(%accumulation, %input_scale, %input_zp, %filter_scale, %filter_zp, 74 %input_scale : tensor<*xf32>, %input_zp : tensor<*xi32>, 77 … %rescale = "tf.PartitionedCall"(%accumulation, %input_scale, %input_zp, %filter_scale, %filter_zp, 93 %input_scale : tensor<*xf32>, %input_zp : tensor<*xi32>, 96 … %rescale = "tf.PartitionedCall"(%accumulation, %input_scale, %input_zp, %filter_scale, %filter_zp, 118 %input_scale : tensor<*xf32>, %input_zp : tensor<*xi32>, 121 …%accumulation_scale = "tf.Mul"(%input_scale, %filter_scale) : (tensor<*xf32>, tensor<*xf32>) -> te… [all …]
|
/external/executorch/backends/cadence/hifi/operators/ |
D | quantized_layer_norm.cpp | 32 float input_scale, in quantized_layer_norm_per_tensor_() argument 71 float mean = XT_DIV_S(XT_MUL_S(input_scale, sum), last_dim); in quantized_layer_norm_per_tensor_() 74 XT_MUL_S(sq_sum, XT_MUL_S(input_scale, input_scale)), last_dim) - in quantized_layer_norm_per_tensor_() 84 x[j], input_scale, input_zero_point); in quantized_layer_norm_per_tensor_() 106 float input_scale = in_scale.const_data_ptr<float>()[0]; in quantized_layer_norm_() local 112 input_scale, in quantized_layer_norm_()
|
/external/executorch/backends/cadence/reference/operators/ |
D | quantized_layer_norm.cpp | 29 double input_scale, in quantized_layer_norm_per_tensor_() argument 67 float mean = (input_scale * sum) / last_dim; in quantized_layer_norm_per_tensor_() 69 (sq_sum * input_scale * input_scale) / last_dim - mean * mean; in quantized_layer_norm_per_tensor_() 77 float val = kernels::dequantize<T>(x[j], input_scale, input_zero_point); in quantized_layer_norm_per_tensor_() 99 float input_scale = in_scale.const_data_ptr<float>()[0]; in quantized_layer_norm_() local 105 input_scale, in quantized_layer_norm_()
|
/external/pytorch/aten/src/ATen/native/quantized/cpu/ |
D | qlinear.cpp | 291 double input_scale, in apply_with_input_q_dq_qweight_dq_output_fp32() argument 296 …return apply_with_input_q_dq_qweight_dq_output_fp32_impl<false>(input, input_scale, input_zero_poi… in apply_with_input_q_dq_qweight_dq_output_fp32() 301 double input_scale, in apply_with_input_q_dq_qweight_dq_relu_output_fp32() argument 306 …return apply_with_input_q_dq_qweight_dq_output_fp32_impl<true>(input, input_scale, input_zero_poin… in apply_with_input_q_dq_qweight_dq_relu_output_fp32() 313 double input_scale, in apply_with_input_q_dq_qweight_dq_output_fp32_impl() argument 336 float input_scale_float = input_scale; in apply_with_input_q_dq_qweight_dq_output_fp32_impl() 472 const auto input_scale = input_contig.q_scale(); in apply_impl_xnnp() local 481 (!this->input_scale.has_value() || in apply_impl_xnnp() 482 this->input_scale.value() != input_scale)) { in apply_impl_xnnp() 484 this->input_scale = input_scale; in apply_impl_xnnp() [all …]
|