/external/vulkan-validation-layers/layers/generated/ |
D | vk_enum_string_helper.h | 42 …ic inline const char* string_VkPipelineCacheHeaderVersion(VkPipelineCacheHeaderVersion input_value) in string_VkPipelineCacheHeaderVersion() argument 44 switch ((VkPipelineCacheHeaderVersion)input_value) in string_VkPipelineCacheHeaderVersion() 53 static inline const char* string_VkResult(VkResult input_value) in string_VkResult() argument 55 switch ((VkResult)input_value) in string_VkResult() 126 static inline const char* string_VkStructureType(VkStructureType input_value) in string_VkStructureType() argument 128 switch ((VkStructureType)input_value) in string_VkStructureType() 881 static inline const char* string_VkSystemAllocationScope(VkSystemAllocationScope input_value) in string_VkSystemAllocationScope() argument 883 switch ((VkSystemAllocationScope)input_value) in string_VkSystemAllocationScope() 900 static inline const char* string_VkInternalAllocationType(VkInternalAllocationType input_value) in string_VkInternalAllocationType() argument 902 switch ((VkInternalAllocationType)input_value) in string_VkInternalAllocationType() [all …]
|
/external/tensorflow/tensorflow/compiler/mlir/tosa/transforms/ |
D | legalize_common.h | 43 Value input_value, 82 Value input_value, 89 Value input_value, 96 Value input_value, Value dim_value); 100 Value result_value, Value input_value, 120 Value input_value, 127 Value input_value, 134 Value input_value, int32_t num_split, int32_t axis); 139 Value input_value, SmallVectorImpl<int32_t>& size_split, int32_t axis); 144 Value input_value, Value begin_value, Value end_value, Value strides_value, [all …]
|
/external/tensorflow/tensorflow/lite/testing/op_tests/ |
D | topk.py | 35 input_value = tf.compat.v1.placeholder( 41 inputs = [input_value, k] 44 inputs = [input_value] 45 out = tf.nn.top_k(input_value, k) 49 input_value = create_tensor_data(parameters["input_dtype"], 53 return [input_value, k], sess.run( 54 outputs, feed_dict=dict(zip(inputs, [input_value, k]))) 56 return [input_value], sess.run( 57 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | floor.py | 33 input_value = tf.compat.v1.placeholder( 37 out = tf.floor(input_value) 38 return [input_value], [out] 41 input_value = create_tensor_data(parameters["input_dtype"], 43 return [input_value], sess.run(outputs, feed_dict={inputs[0]: input_value})
|
D | ceil.py | 33 input_value = tf.compat.v1.placeholder( 37 out = tf.math.ceil(input_value) 38 return [input_value], [out] 41 input_value = create_tensor_data(parameters["input_dtype"], 43 return [input_value], sess.run(outputs, feed_dict={inputs[0]: input_value})
|
D | rank.py | 33 input_value = tf.compat.v1.placeholder( 35 out = tf.rank(input_value) 36 return [input_value], [out] 39 input_value = create_tensor_data(parameters["input_dtype"], 41 return [input_value], sess.run( 42 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | round.py | 33 input_value = tf.compat.v1.placeholder( 37 out = tf.round(input_value) 38 return [input_value], [out] 41 input_value = create_tensor_data(parameters["input_dtype"], 43 return [input_value], sess.run(outputs, feed_dict={inputs[0]: input_value})
|
D | roll.py | 61 input_value = tf.compat.v1.placeholder( 66 input_value, shift=parameters["shift"], axis=parameters["axis"]) 67 return [input_value], [outs] 70 input_value = create_tensor_data(parameters["input_dtype"], 72 return [input_value], sess.run( 73 outputs, feed_dict=dict(zip(inputs, [input_value]))) 118 input_value = create_tensor_data( 122 return [input_value, shift_value, axis_value], sess.run( 124 feed_dict=dict(zip(inputs, [input_value, shift_value, axis_value])))
|
D | arg_min_max.py | 58 input_value = tf.compat.v1.placeholder( 68 input_value, axis, output_type=parameters["output_type"]) 71 input_value, axis, output_type=parameters["output_type"]) 72 return [input_value], [out] 75 input_value = create_tensor_data(parameters["input_dtype"], 77 return [input_value], sess.run( 78 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | rfft2d.py | 37 input_value = tf.compat.v1.placeholder( 41 outs = tf.signal.rfft2d(input_value, fft_length=parameters["fft_length"]) 42 return [input_value], [outs] 45 input_value = create_tensor_data(parameters["input_dtype"], 47 return [input_value], sess.run( 48 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | rfft.py | 34 input_value = tf.compat.v1.placeholder( 38 outs = tf.signal.rfft(input_value, fft_length=parameters["fft_length"]) 39 return [input_value], [outs] 42 input_value = create_tensor_data(parameters["input_dtype"], 44 return [input_value], sess.run( 45 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | stft.py | 36 input_value = tf.compat.v1.placeholder( 41 input_value, 45 return [input_value], [outs] 48 input_value = create_tensor_data(parameters["input_dtype"], 50 return [input_value], sess.run( 51 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | reverse_sequence.py | 48 input_value = tf.compat.v1.placeholder( 53 input_value, 57 return [input_value], [outs] 60 input_value = create_tensor_data(parameters["input_dtype"], 62 return [input_value], sess.run( 63 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | random_standard_normal.py | 49 input_value = tf.compat.v1.placeholder( 54 shape=input_value, dtype=parameters["dtype"], seed=parameters["seed2"]) 55 return [input_value], [out] 58 input_value = create_tensor_data( 63 return [input_value], sess.run( 64 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | random_uniform.py | 49 input_value = tf.compat.v1.placeholder( 54 shape=input_value, dtype=parameters["dtype"], seed=parameters["seed2"]) 55 return [input_value], [out] 58 input_value = create_tensor_data( 63 return [input_value], sess.run( 64 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | shape.py | 41 input_value = tf.compat.v1.placeholder( 48 reshaped = tf.reshape(input_value, shape=new_shape) 50 return [input_value, new_shape], [out] 53 input_value = create_tensor_data(parameters["input_dtype"], 56 return [input_value, new_shape], sess.run( 57 outputs, feed_dict=dict(zip(inputs, [input_value, new_shape])))
|
D | cast.py | 73 input_value = tf.compat.v1.placeholder( 77 out = tf.cast(input_value, parameters["output_dtype"]) 78 return [input_value], [out] 81 input_value = create_tensor_data(parameters["input_dtype"], 83 return [input_value], sess.run( 84 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | tile.py | 52 input_value = tf.compat.v1.placeholder( 60 out = tf.tile(input_value, multiplier_value) 61 return [input_value, multiplier_value], [out] 65 input_value = create_tensor_data( 74 return [input_value, multipliers_value], sess.run( 77 inputs[0]: input_value,
|
/external/icing/icing/util/ |
D | math-util.h | 41 static IntType RoundDownTo(IntType input_value, IntType rounding_value) { in RoundDownTo() argument 45 if (input_value <= 0) { in RoundDownTo() 53 return (input_value / rounding_value) * rounding_value; in RoundDownTo() 62 static IntType RoundUpTo(IntType input_value, IntType rounding_value) { in RoundUpTo() argument 66 if (input_value <= 0) { in RoundUpTo() 74 const IntType remainder = input_value % rounding_value; in RoundUpTo() 75 return (remainder == 0) ? input_value in RoundUpTo() 76 : (input_value - remainder + rounding_value); in RoundUpTo()
|
/external/XNNPACK/src/subgraph/ |
D | validation.c | 53 const struct xnn_value* input_value) in xnn_subgraph_check_input_type_dense() argument 55 if (input_value->type != xnn_value_type_dense_tensor) { in xnn_subgraph_check_input_type_dense() 58 xnn_node_type_to_string(node_type), input_id, input_value->type); in xnn_subgraph_check_input_type_dense() 67 const struct xnn_value* input_value, in xnn_subgraph_check_nth_input_type_dense() argument 70 if (input_value->type != xnn_value_type_dense_tensor) { in xnn_subgraph_check_nth_input_type_dense() 73 xnn_node_type_to_string(node_type), nth, input_id, input_value->type); in xnn_subgraph_check_nth_input_type_dense() 107 const struct xnn_value* input_value, in xnn_subgraph_check_datatype_matches() argument 111 assert(input_value->datatype != xnn_datatype_invalid); in xnn_subgraph_check_datatype_matches() 113 if (input_value->datatype != output_value->datatype) { in xnn_subgraph_check_datatype_matches() 118 xnn_datatype_to_string(input_value->datatype), in xnn_subgraph_check_datatype_matches()
|
/external/tensorflow/tensorflow/lite/experimental/mlir/testing/op_tests/ |
D | roll.py | 65 input_value = tf.compat.v1.placeholder( 70 input_value, shift=parameters["shift"], axis=parameters["axis"]) 71 return [input_value], [outs] 74 input_value = create_tensor_data(parameters["input_dtype"], 76 return [input_value], sess.run( 77 outputs, feed_dict=dict(zip(inputs, [input_value]))) 122 input_value = create_tensor_data( 126 return [input_value, shift_value, axis_value], sess.run( 128 feed_dict=dict(zip(inputs, [input_value, shift_value, axis_value])))
|
D | rfft.py | 38 input_value = tf.compat.v1.placeholder( 42 outs = tf.signal.rfft(input_value, fft_length=parameters["fft_length"]) 43 return [input_value], [outs] 46 input_value = create_tensor_data(parameters["input_dtype"], 48 return [input_value], sess.run( 49 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | rfft2d.py | 41 input_value = tf.compat.v1.placeholder( 45 outs = tf.signal.rfft2d(input_value, fft_length=parameters["fft_length"]) 46 return [input_value], [outs] 49 input_value = create_tensor_data(parameters["input_dtype"], 51 return [input_value], sess.run( 52 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
D | stft.py | 40 input_value = tf.compat.v1.placeholder( 45 input_value, 49 return [input_value], [outs] 52 input_value = create_tensor_data(parameters["input_dtype"], 54 return [input_value], sess.run( 55 outputs, feed_dict=dict(zip(inputs, [input_value])))
|
/external/tensorflow/tensorflow/lite/kernels/internal/reference/ |
D | prelu.h | 49 const int32_t input_value = in BroadcastPrelu4DSlow() local 52 if (input_value >= 0) { in BroadcastPrelu4DSlow() 54 input_value, params.output_multiplier_1, params.output_shift_1); in BroadcastPrelu4DSlow() 61 input_value * alpha_value, params.output_multiplier_2, in BroadcastPrelu4DSlow() 88 const int32_t input_value = params.input_offset + input_data[i]; in Prelu() local 90 if (input_value >= 0) { in Prelu() 92 input_value, params.output_multiplier_1, params.output_shift_1); in Prelu() 96 output_value = MultiplyByQuantizedMultiplier(input_value * alpha_value, in Prelu()
|