/external/ltp/testcases/realtime/func/matrix_mult/ |
D | matrix_mult.c | 50 struct matrices { struct 97 static void matrix_mult(struct matrices *matrices) in matrix_mult() argument 101 matrix_init(matrices->A, matrices->B); in matrix_mult() 105 double sum = matrices->A[i_m][j] * matrices->B[j][i]; in matrix_mult() 107 sum += matrices->A[i_m][k] * matrices->B[k][j]; in matrix_mult() 108 matrices->C[i][j] = sum; in matrix_mult() 113 static void matrix_mult_record(struct matrices *matrices, int index) in matrix_mult_record() argument 120 matrix_mult(matrices); in matrix_mult_record() 152 struct matrices *matrices = (struct matrices *) t->arg; in concurrent_thread() local 167 matrix_mult_record(matrices, index++); in concurrent_thread() [all …]
|
/external/skia/gm/ |
D | drawimageset.cpp | 120 SkMatrix matrices[4]; in onDraw() local 122 matrices[0].setRotate(30); in onDraw() 123 matrices[0].postTranslate(d / 3, 0); in onDraw() 131 SkAssertResult(matrices[1].setPolyToPoly(src, dst, 4)); in onDraw() 132 matrices[1].postTranslate(d, 50.f); in onDraw() 134 matrices[2].setRotate(-60.f); in onDraw() 135 matrices[2].postSkew(0.5f, -1.15f); in onDraw() 136 matrices[2].postScale(0.6f, 1.05f); in onDraw() 137 matrices[2].postTranslate(d, 2.6f * d); in onDraw() 143 SkAssertResult(matrices[3].setPolyToPoly(src, dst, 4)); in onDraw() [all …]
|
D | perspimages.cpp | 54 SkTDArray<SkMatrix> matrices; in onDraw() local 55 matrices.append()->setAll(1.f, 0.f, 0.f, in onDraw() 58 matrices.append()->setAll(1.f, 0.f, 0.f, in onDraw() 61 matrices[1].preSkew(0.2f, -0.1f); in onDraw() 62 matrices[1].preRotate(-65.f); in onDraw() 63 matrices[1].preScale(1.2f, .8f); in onDraw() 64 matrices[1].postTranslate(0.f, 60.f); in onDraw() 70 for (const auto& m : matrices) { in onDraw() 85 for (const auto& m : matrices) { in onDraw()
|
D | circulararcs.cpp | 251 TArray<SkMatrix> matrices; variable 252 matrices.push_back().setRotate(kRadius, kRadius, 45.f); 253 matrices.push_back(SkMatrix::I()); 254 matrices.push_back().setAll(-1, 0, 2*kRadius, 257 matrices.push_back().setAll( 1, 0, 0, 260 matrices.push_back().setAll( 1, 0, 0, 263 matrices.push_back().setAll( 0, -1, 2*kRadius, 266 matrices.push_back().setAll( 0, -1, 2*kRadius, 269 matrices.push_back().setAll( 0, 1, 0, 272 matrices.push_back().setAll( 0, 1, 0, [all …]
|
D | blurrect.cpp | 516 std::vector<SkMatrix> matrices; local 518 matrices.push_back(SkMatrix::RotateDeg(4.f, c)); 520 matrices.push_back(SkMatrix::RotateDeg(63.f, c)); 522 matrices.push_back(SkMatrix::RotateDeg(30.f, c)); 523 matrices.back().preScale(1.1f, .5f); 525 matrices.push_back(SkMatrix::RotateDeg(147.f, c)); 526 matrices.back().preScale(3.f, .1f); 532 matrices.push_back(SkMatrix::Concat(mirror, matrices.back())); 534 matrices.push_back(SkMatrix::RotateDeg(197.f, c)); 535 matrices.back().preSkew(.3f, -.5f); [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/linalg/ |
D | linear_operator_block_diag_test.py | 108 matrices = [ 114 lin_op_matrices = matrices 119 matrix, shape=None) for matrix in matrices] 135 matrices = linear_operator_util.broadcast_matrix_batch_dims(matrices) 137 block_diag_dense = _block_diag_dense(expected_shape, matrices) 341 matrices = [] 343 matrices.append(variables_module.Variable( 350 is_positive_definite=True) for matrix in matrices], 357 matrices = [] 359 matrices.append(variables_module.Variable( [all …]
|
D | linear_operator_composition_test.py | 61 matrices = [ 65 matrices = [ 71 lin_op_matrices = matrices 76 matrix, shape=None) for matrix in matrices] 84 matmul_order_list = list(reversed(matrices)) 204 matrices = [ 209 lin_op_matrices = matrices 214 matrix, shape=None) for matrix in matrices] 219 matmul_order_list = list(reversed(matrices))
|
D | linear_operator_block_lower_triangular_test.py | 107 matrices = [] 118 matrices.append(row) 120 lin_op_matrices = matrices 125 matrix, shape=None) for matrix in row] for row in matrices] 141 [op for row in matrices for op in row]) # pylint: disable=g-complex-comprehension 142 matrices = [broadcasted_matrices[i * (i + 1) // 2:(i + 1) * (i + 2) // 2] 143 for i in range(len(matrices))] 146 expected_shape, matrices)
|
D | cholesky_op_test.py | 129 matrices = np.random.rand(10, 5, 5) 132 matrices[i] = np.dot(matrices[i].T, matrices[i]) 133 self._verifyCholesky(matrices) 136 matrices = np.random.rand(10, 5, 5) + 1j * np.random.rand(10, 5, 5) 139 matrices[i] = np.dot(matrices[i].T.conj(), matrices[i]) 140 self._verifyCholesky(matrices)
|
D | linear_operator_kronecker_test.py | 114 matrices = [ 120 lin_op_matrices = matrices 124 array_ops.placeholder_with_default(m, shape=None) for m in matrices] 134 matrices = linear_operator_util.broadcast_matrix_batch_dims(matrices) 136 kronecker_dense = _kronecker_dense(matrices)
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_TridiagonalMatMul.pbtxt | 8 tri-diagonal matrices to the left of multiplication. Last element is ignored. 15 matrices to the left of multiplication. 22 matrices to the left of multiplication. First element is ignored. 28 Tensor of shape `[..., M, N]`, representing MxN matrices to the right of 40 Calculates product of two matrices, where left matrix is a tridiagonal matrix.
|
D | api_def_MatrixTriangularSolve.pbtxt | 24 Boolean indicating whether the innermost matrices in `matrix` are 39 …summary: "Solves systems of linear equations with upper or lower triangular matrices by backsubsti… 43 square matrices. If `lower` is `True` then the strictly upper triangular part 50 `True` then the innermost matrices in `output` satisfy matrix equations 52 If `adjoint` is `False` then the strictly then the innermost matrices in
|
D | api_def_Qr.pbtxt | 7 form matrices of size `[M, N]`. Let `P` be the minimum of `M` and `N`. 32 summary: "Computes the QR decompositions of one or more matrices." 43 # q is a tensor of orthonormal matrices. 44 # r is a tensor of upper triangular matrices.
|
D | api_def_Cholesky.pbtxt | 15 summary: "Computes the Cholesky decomposition of one or more square matrices." 18 form square matrices. 27 **Note**: The gradient computation on GPU is faster for large matrices but
|
D | api_def_LogMatrixDeterminant.pbtxt | 19 of the N input matrices. Shape is `[N]`. 24 one or more square matrices. 27 form square matrices. The outputs are two tensors containing the signs and
|
D | api_def_MatrixLogarithm.pbtxt | 20 summary: "Computes the matrix logarithm of one or more square matrices:" 25 This op is only defined for complex matrices. If A is positive-definite and 35 form square matrices. The output is a tensor of the same shape as the input
|
/external/pytorch/torch/distributed/algorithms/ddp_comm_hooks/ |
D | powerSGD_hook.py | 19 def _orthogonalize(matrices, epsilon=0): argument 25 assert len(matrices.shape) == 3 and matrices.shape[2] <= matrices.shape[1] 27 num_matrices = matrices.shape[0] 28 rank = matrices.shape[2] 29 dtype = matrices.dtype 31 _orthogonalize_gram_schmidt(matrices, epsilon=epsilon) 34 matrices, 36 matrices, 38 num_matrices, rank, rank, device=matrices.device, dtype=dtype 44 def _orthogonalize_gram_schmidt(matrices, epsilon=0): argument [all …]
|
/external/skia/src/gpu/ganesh/gl/ |
D | GrGLProgramDataManager.h | 73 void setMatrix2fv(UniformHandle, int arrayCount, const float matrices[]) const override; 74 void setMatrix3fv(UniformHandle, int arrayCount, const float matrices[]) const override; 75 void setMatrix4fv(UniformHandle, int arrayCount, const float matrices[]) const override; 87 const float matrices[]) const;
|
/external/skia/src/gpu/ganesh/ |
D | GrUniformDataManager.h | 50 void setMatrix2fv(UniformHandle, int arrayCount, const float matrices[]) const override; 51 void setMatrix3fv(UniformHandle, int arrayCount, const float matrices[]) const override; 52 void setMatrix4fv(UniformHandle, int arrayCount, const float matrices[]) const override; 73 inline void setMatrices(UniformHandle, int arrayCount, const float matrices[]) const;
|
/external/eigen/doc/ |
D | TutorialArrayClass.dox | 59 …overloaded to provide write and read access to the coefficients of an array, just as with matrices. 76 Adding and subtracting two arrays is the same as for matrices. 94 … course you can multiply an array by a scalar, this works in the same way as matrices. Where arrays 95 are fundamentally different from matrices, is when you multiply two together. Matrices interpret 133 apply Matrix operations on arrays, or Array operations on matrices. Thus, if you need to do linear … 134 operations such as matrix multiplication, then you should use matrices; if you need to do coefficie… 137 access to all operations regardless of the choice of declaring objects as arrays or as matrices. 147 Mixing matrices and arrays in an expression is forbidden with Eigen. For instance, you cannot add a… 148 array directly; the operands of a \c + operator should either both be matrices or both be arrays. H… 156 <tt>result = m.array() * n.array()</tt> takes two matrices \c m and \c n, converts them both to an … [all …]
|
D | StorageOrders.dox | 5 There are two different storage orders for matrices and two-dimensional arrays: column-major and ro… 63 Matrices and arrays using one storage order can be assigned to matrices and arrays using the other … 65 the entries automatically. More generally, row-major and column-major matrices can be mixed in an e… 79 … matrices. It may be worthwhile to experiment a bit to find out what is faster for your particular 82 …is thus done with column-major matrices. This means that, even though we aim to support column-maj… 83 …ajor storage orders transparently, the Eigen library may well work best with column-major matrices.
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | cholesky_op_test.py | 77 matrices = np.random.rand(10, 5, 5).astype(dtype) 79 matrices[i] = np.dot(matrices[i].T, matrices[i]) 80 self._verifyCholesky(matrices, atol=1e-4)
|
/external/skia/src/gpu/ganesh/glsl/ |
D | GrGLSLProgramDataManager.h | 56 virtual void setMatrix2fv(UniformHandle, int arrayCount, const float matrices[]) const = 0; 57 virtual void setMatrix3fv(UniformHandle, int arrayCount, const float matrices[]) const = 0; 58 virtual void setMatrix4fv(UniformHandle, int arrayCount, const float matrices[]) const = 0;
|
/external/skia/tools/viewer/ |
D | ShadowUtilsSlide.cpp | 132 SkTDArray<SkMatrix> matrices; in draw() local 133 matrices.append()->reset(); in draw() 134 matrices.append()->setRotate(33.f, 25.f, 25.f).postScale(1.2f, 0.8f, 25.f, 25.f); in draw() 141 for (auto& m : matrices) { in draw() 175 for (auto& m : matrices) { in draw()
|
/external/mesa3d/src/amd/vpelib/src/core/ |
D | color_gamut.c | 286 const struct gamut_src_dst_matrix *matrices, bool invert, struct fixed31_32 *tempMatrix3X3, in gamut_to_color_matrix() argument 292 const struct fixed31_32 *pXYZofRGB = matrices->rgbCoeffDst; /*destination gamut*/ in gamut_to_color_matrix() 293 const struct fixed31_32 *pXYZofWhite = matrices->whiteCoeffDst; /*destination of white point*/ in gamut_to_color_matrix() 294 const struct fixed31_32 *pRefXYZofRGB = matrices->rgbCoeffSrc; /*source gamut*/ in gamut_to_color_matrix() 295 const struct fixed31_32 *pRefXYZofWhite = matrices->whiteCoeffSrc; /*source of white point*/ in gamut_to_color_matrix() 296 const struct fixed31_32 *pColorTransformXYZ = matrices->xyzMatrix; /*additional XYZ->XYZ tfm*/ in gamut_to_color_matrix() 297 const struct fixed31_32 *pColorTransformXYZOffset = matrices->xyzOffset; /*XYZ tfm offset*/ in gamut_to_color_matrix() 298 const struct fixed31_32 *pBradford = matrices->bradford; /*Bradford chromatic adaptation*/ in gamut_to_color_matrix()
|