/external/apache-commons-math/src/main/java/org/apache/commons/math3/linear/ |
D | SchurTransformer.java | 57 private final double matrixT[][]; field in SchurTransformer 84 matrixT = transformer.getH().getData(); in SchurTransformer() 131 cachedT = MatrixUtils.createRealMatrix(matrixT); in getT() 144 final int n = matrixT.length; in transform() 163 matrixT[iu][iu] += shift.exShift; in transform() 168 double p = (matrixT[iu - 1][iu - 1] - matrixT[iu][iu]) / 2.0; in transform() 169 double q = p * p + matrixT[iu][iu - 1] * matrixT[iu - 1][iu]; in transform() 170 matrixT[iu][iu] += shift.exShift; in transform() 171 matrixT[iu - 1][iu - 1] += shift.exShift; in transform() 180 final double x = matrixT[iu][iu - 1]; in transform() [all …]
|
D | EigenDecomposition.java | 780 final double[][] matrixT = schur.getT().getData(); in findEigenVectorsFromSchur() local 783 final int n = matrixT.length; in findEigenVectorsFromSchur() 789 norm += FastMath.abs(matrixT[i][j]); in findEigenVectorsFromSchur() 811 matrixT[idx][idx] = 1.0; in findEigenVectorsFromSchur() 813 double w = matrixT[i][i] - p; in findEigenVectorsFromSchur() 816 r += matrixT[i][j] * matrixT[j][idx]; in findEigenVectorsFromSchur() 825 matrixT[i][idx] = -r / w; in findEigenVectorsFromSchur() 827 matrixT[i][idx] = -r / (Precision.EPSILON * norm); in findEigenVectorsFromSchur() 831 double x = matrixT[i][i + 1]; in findEigenVectorsFromSchur() 832 double y = matrixT[i + 1][i]; in findEigenVectorsFromSchur() [all …]
|
/external/eigen/test/ |
D | schur_complex.cpp | 25 ComplexMatrixType T = schurOfA.matrixT(); in schur() 36 VERIFY_RAISES_ASSERT(csUninitialized.matrixT()); in schur() 47 VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT()); in schur() 54 VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT()); in schur() 64 VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>()); in schur() 70 VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT()); in schur()
|
D | schur_real.cpp | 46 MatrixType T = schurOfA.matrixT(); in schur() 53 VERIFY_RAISES_ASSERT(rsUninitialized.matrixT()); in schur() 64 VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT()); in schur() 71 VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT()); in schur() 83 VERIFY_IS_APPROX(rs3.matrixT(), Atriangular); // approx because of scaling... in schur() 89 VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT()); in schur()
|
D | eigensolver_selfadjoint.cpp | 148 VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal()); in selfadjointeigensolver() 149 VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>()); in selfadjointeigensolver() 150 Matrix<RealScalar,Dynamic,Dynamic> T = tridiag.matrixT(); in selfadjointeigensolver() 157 …pe(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * Matrix… in selfadjointeigensolver() 158 …pe(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT() * tridiag.matri… in selfadjointeigensolver() 164 …eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1),… in selfadjointeigensolver() 166 …VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalue… in selfadjointeigensolver()
|
D | real_qz.cpp | 55 if (abs(qz.matrixT()(i,j))!=Scalar(0.0)) in real_qz() 57 std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i,j) << std::endl; in real_qz() 73 VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B); in real_qz()
|
/external/eigen/Eigen/src/Eigenvalues/ |
D | ComplexEigenSolver.h | 274 m_eivalues = m_schur.matrixT().diagonal(); in compute() 276 doComputeEigenvectors(m_schur.matrixT().norm()); in compute() 302 m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k); in doComputeEigenvectors() 304 …m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k… in doComputeEigenvectors() 305 ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k); in doComputeEigenvectors()
|
D | ComplexSchur.h | 162 const ComplexMatrixType& matrixT() const in matrixT() function
|
D | GeneralizedEigenSolver.h | 315 const MatrixType &mT = m_realQZ.matrixT(); in compute()
|
D | Tridiagonalization.h | 266 MatrixTReturnType matrixT() const
|
D | RealSchur.h | 144 const MatrixType& matrixT() const in matrixT() function
|
/external/eigen/doc/snippets/ |
D | ComplexSchur_compute.cpp | 4 cout << "The matrix T in the decomposition of A is:" << endl << schur.matrixT() << endl; 6 cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.matrixT() << endl;
|
D | RealSchur_compute.cpp | 4 cout << "The matrix T in the decomposition of A is:" << endl << schur.matrixT() << endl; 6 cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.matrixT() << endl;
|
D | Tridiagonalization_compute.cpp | 6 cout << tri.matrixT() << endl; 9 cout << tri.matrixT() << endl;
|
D | RealSchur_RealSchur_MatrixType.cpp | 6 cout << "The quasi-triangular matrix T is:" << endl << schur.matrixT() << endl << endl; 9 MatrixXd T = schur.matrixT();
|
D | RealQZ_compute.cpp | 8 cout << "S:\n" << qz.matrixS() << "\n" << "T:\n" << qz.matrixT() << "\n"; 14 << ", |B-QTZ|: " << (B-qz.matrixQ()*qz.matrixT()*qz.matrixZ()).norm()
|
D | ComplexSchur_matrixT.cpp | 4 cout << "The triangular matrix T is:" << endl << schurOfA.matrixT() << endl;
|
D | Tridiagonalization_packedMatrix.cpp | 8 << endl << triOfA.matrixT() << endl;
|
D | Tridiagonalization_Tridiagonalization_MatrixType.cpp | 7 MatrixXd T = triOfA.matrixT();
|
D | Tridiagonalization_diagonal.cpp | 6 MatrixXd T = triOfA.matrixT();
|
/external/eigen/Eigen/src/QR/ |
D | CompleteOrthogonalDecomposition.h | 183 const MatrixType& matrixT() const { return m_cpqr.matrixQR(); } 547 dst.topRows(rank) = matrixT() 581 matrixT().topLeftCorner(rank, rank)
|
/external/eigen/unsupported/test/ |
D | matrix_functions.h | 49 MatrixType T = schur.matrixT();
|
D | matrix_power.cpp | 116 T = schur.matrixT(); in testSingular()
|
/external/eigen/unsupported/Eigen/src/MatrixFunctions/ |
D | MatrixSquareRoot.h | 264 const PlainType& T = schurOfA.matrixT(); 290 const PlainType& T = schurOfA.matrixT();
|
/external/eigen/unsupported/Eigen/src/IterativeSolvers/ |
D | DGMRES.h | 390 return schurofH.matrixT().diagonal(); 396 const DenseMatrix& T = schurofH.matrixT();
|