Home
last modified time | relevance | path

Searched refs:matrixT (Results 1 – 25 of 30) sorted by relevance

12

/external/apache-commons-math/src/main/java/org/apache/commons/math3/linear/
DSchurTransformer.java57 private final double matrixT[][]; field in SchurTransformer
84 matrixT = transformer.getH().getData(); in SchurTransformer()
131 cachedT = MatrixUtils.createRealMatrix(matrixT); in getT()
144 final int n = matrixT.length; in transform()
163 matrixT[iu][iu] += shift.exShift; in transform()
168 double p = (matrixT[iu - 1][iu - 1] - matrixT[iu][iu]) / 2.0; in transform()
169 double q = p * p + matrixT[iu][iu - 1] * matrixT[iu - 1][iu]; in transform()
170 matrixT[iu][iu] += shift.exShift; in transform()
171 matrixT[iu - 1][iu - 1] += shift.exShift; in transform()
180 final double x = matrixT[iu][iu - 1]; in transform()
[all …]
DEigenDecomposition.java780 final double[][] matrixT = schur.getT().getData(); in findEigenVectorsFromSchur() local
783 final int n = matrixT.length; in findEigenVectorsFromSchur()
789 norm += FastMath.abs(matrixT[i][j]); in findEigenVectorsFromSchur()
811 matrixT[idx][idx] = 1.0; in findEigenVectorsFromSchur()
813 double w = matrixT[i][i] - p; in findEigenVectorsFromSchur()
816 r += matrixT[i][j] * matrixT[j][idx]; in findEigenVectorsFromSchur()
825 matrixT[i][idx] = -r / w; in findEigenVectorsFromSchur()
827 matrixT[i][idx] = -r / (Precision.EPSILON * norm); in findEigenVectorsFromSchur()
831 double x = matrixT[i][i + 1]; in findEigenVectorsFromSchur()
832 double y = matrixT[i + 1][i]; in findEigenVectorsFromSchur()
[all …]
/external/eigen/test/
Dschur_complex.cpp25 ComplexMatrixType T = schurOfA.matrixT(); in schur()
36 VERIFY_RAISES_ASSERT(csUninitialized.matrixT()); in schur()
47 VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT()); in schur()
54 VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT()); in schur()
64 VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>()); in schur()
70 VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT()); in schur()
Dschur_real.cpp46 MatrixType T = schurOfA.matrixT(); in schur()
53 VERIFY_RAISES_ASSERT(rsUninitialized.matrixT()); in schur()
64 VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT()); in schur()
71 VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT()); in schur()
83 VERIFY_IS_APPROX(rs3.matrixT(), Atriangular); // approx because of scaling... in schur()
89 VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT()); in schur()
Deigensolver_selfadjoint.cpp148 VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal()); in selfadjointeigensolver()
149 VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>()); in selfadjointeigensolver()
150 Matrix<RealScalar,Dynamic,Dynamic> T = tridiag.matrixT(); in selfadjointeigensolver()
157 …pe(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * Matrix… in selfadjointeigensolver()
158 …pe(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT() * tridiag.matri… in selfadjointeigensolver()
164 …eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1),… in selfadjointeigensolver()
166 …VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalue… in selfadjointeigensolver()
Dreal_qz.cpp55 if (abs(qz.matrixT()(i,j))!=Scalar(0.0)) in real_qz()
57 std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i,j) << std::endl; in real_qz()
73 VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B); in real_qz()
/external/eigen/Eigen/src/Eigenvalues/
DComplexEigenSolver.h274 m_eivalues = m_schur.matrixT().diagonal(); in compute()
276 doComputeEigenvectors(m_schur.matrixT().norm()); in compute()
302 m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k); in doComputeEigenvectors()
304 …m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k… in doComputeEigenvectors()
305 ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k); in doComputeEigenvectors()
DComplexSchur.h162 const ComplexMatrixType& matrixT() const in matrixT() function
DGeneralizedEigenSolver.h315 const MatrixType &mT = m_realQZ.matrixT(); in compute()
DTridiagonalization.h266 MatrixTReturnType matrixT() const
DRealSchur.h144 const MatrixType& matrixT() const in matrixT() function
/external/eigen/doc/snippets/
DComplexSchur_compute.cpp4 cout << "The matrix T in the decomposition of A is:" << endl << schur.matrixT() << endl;
6 cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.matrixT() << endl;
DRealSchur_compute.cpp4 cout << "The matrix T in the decomposition of A is:" << endl << schur.matrixT() << endl;
6 cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.matrixT() << endl;
DTridiagonalization_compute.cpp6 cout << tri.matrixT() << endl;
9 cout << tri.matrixT() << endl;
DRealSchur_RealSchur_MatrixType.cpp6 cout << "The quasi-triangular matrix T is:" << endl << schur.matrixT() << endl << endl;
9 MatrixXd T = schur.matrixT();
DRealQZ_compute.cpp8 cout << "S:\n" << qz.matrixS() << "\n" << "T:\n" << qz.matrixT() << "\n";
14 << ", |B-QTZ|: " << (B-qz.matrixQ()*qz.matrixT()*qz.matrixZ()).norm()
DComplexSchur_matrixT.cpp4 cout << "The triangular matrix T is:" << endl << schurOfA.matrixT() << endl;
DTridiagonalization_packedMatrix.cpp8 << endl << triOfA.matrixT() << endl;
DTridiagonalization_Tridiagonalization_MatrixType.cpp7 MatrixXd T = triOfA.matrixT();
DTridiagonalization_diagonal.cpp6 MatrixXd T = triOfA.matrixT();
/external/eigen/Eigen/src/QR/
DCompleteOrthogonalDecomposition.h183 const MatrixType& matrixT() const { return m_cpqr.matrixQR(); }
547 dst.topRows(rank) = matrixT()
581 matrixT().topLeftCorner(rank, rank)
/external/eigen/unsupported/test/
Dmatrix_functions.h49 MatrixType T = schur.matrixT();
Dmatrix_power.cpp116 T = schur.matrixT(); in testSingular()
/external/eigen/unsupported/Eigen/src/MatrixFunctions/
DMatrixSquareRoot.h264 const PlainType& T = schurOfA.matrixT();
290 const PlainType& T = schurOfA.matrixT();
/external/eigen/unsupported/Eigen/src/IterativeSolvers/
DDGMRES.h390 return schurofH.matrixT().diagonal();
396 const DenseMatrix& T = schurofH.matrixT();

12