/external/executorch/exir/operator/ |
D | convert.py | 85 def _get_overload_schema(op_overload: OpOverload) -> Optional[FunctionSchema]: 86 native_schema = _op_overload_to_schema_cache.get(op_overload) 88 native_schema = _pybind_schema_to_native_schema(op_overload._schema) 89 _op_overload_to_schema_cache[op_overload] = native_schema # pyre-ignore 93 def get_out_args_from_opoverload(op_overload: OpOverload) -> Tuple[str]: 94 return get_out_args_from_schema(_get_overload_schema(op_overload)) # pyre-ignore 231 def to_out_variant(op_overload: OpOverload) -> Tuple[OpOverload, Tuple[str]]: 239 schema = _get_overload_schema(op_overload) 241 return op_overload, get_out_args_from_schema(schema) # pyre-ignore[6] 250 op_overload not in _func_to_out_variant_map [all …]
|
/external/pytorch/torch/onnx/_internal/fx/ |
D | decomposition_table.py | 51 op_overload = getattr(op_overload_packet, overload_name) 53 qualified_name=op_overload.name() 69 table.add(op_overload) 97 …for op_overload, decomp_fn in torch._decomp.decomposition_table.items(): # type: ignore[attr-defi… 104 or op_overload in _ONNX_SUPPORT_OP_OVERLOADS 107 decomposition_table[op_overload] = decomp_fn 112 for op_overload, decomp_fn in torch._decomp.core_aten_decompositions().items(): 113 if op_overload in _ONNX_SUPPORT_OP_OVERLOADS: 115 decomposition_table[op_overload] = decomp_fn
|
D | registration.py | 64 def from_op_overload(cls, op_overload: torch._ops.OpOverload) -> OpName: 65 return cls.from_qualified_name(op_overload.name())
|
D | onnxfunction_dispatcher.py | 296 …return registration.OpName.from_op_overload(op_overload=aten_op_default) # type: ignore[no-any-re… 317 return registration.OpName.from_op_overload(op_overload=node.target)
|
/external/pytorch/torch/onnx/_internal/exporter/ |
D | _decomp.py | 37 op_overload = getattr(op_overload_packet, overload_name) 38 if registry.is_registered(op_overload): 39 registered_ops.append(op_overload) 91 …for op_overload, decomp_fn in torch._decomp.decomposition_table.items(): # type: ignore[attr-defi… 96 if op_overload in onnx_registered_ops: 98 decomposition_table[op_overload] = decomp_fn
|
/external/executorch/exir/tests/ |
D | test_op_convert.py | 27 op_overload = torch.ops.aten.topk.values 28 out_var_op = op_convert.to_out_variant(op_overload)[0] 29 self.assertTrue(op_overload is out_var_op) 32 op_overload = torch.ops.aten.topk.default 33 out_var_op, out_args = op_convert.to_out_variant(op_overload) 41 expect_values, expect_indices = op_overload(input_tensor, k)
|
/external/pytorch/docs/source/scripts/ |
D | build_opsets.py | 42 op_overload = getattr(prims, op_name, None) 44 if not isinstance(op_overload, torch._ops.OpOverload): 47 op_overloadpacket = op_overload.overloadpacket 49 op_name = str(op_overload).replace(".default", "")
|
/external/pytorch/torch/export/ |
D | exported_program.py | 196 for op_overload in ops_to_preserve: 203 def assert_valid_to_preserve(op_overload): argument 204 if op_overload in FunctionalTensor.maybe_aliasing_or_mutating_ops: 208 if op_overload in FunctionalTensor.metadata_fns: 216 [i for i in op_overload._schema.arguments if i.alias_info is not None] 219 is_mutating_or_aliasing = alias_info != 0 or op_overload._schema.is_mutable 226 if not torch._C._dispatch_has_kernel(op_overload.name()): 235 assert_valid_to_preserve(op_overload) 237 saved_tables[op_overload] = op_overload.py_kernels.copy() 238 patched_ops.add(op_overload) [all …]
|
/external/pytorch/torch/testing/_internal/ |
D | torchbind_impls.py | 127 def _register_py_impl_temporarily(op_overload, key, fn): argument 129 op_overload.py_impl(key)(fn) 132 del op_overload.py_kernels[key] 133 op_overload._dispatch_cache.clear()
|
/external/pytorch/torch/_inductor/ |
D | mkldnn_ir.py | 241 op_overload=torch.ops.mkldnn._convolution_pointwise.default, 264 op_overload=self.op_overload, 312 op_overload=torch.ops.mkldnn._convolution_pointwise.binary, 340 self.op_overload, 402 op_overload=torch.ops.mkldnn._convolution_pointwise_.binary, 435 self.op_overload, 499 op_overload=torch.ops.mkldnn._convolution_transpose_pointwise.default, 593 op_overload=torch.ops.onednn.qconv2d_pointwise.default, 722 op_overload=self.op_overload, 827 op_overload=torch.ops.onednn.qconv2d_pointwise.binary, [all …]
|
D | ir.py | 3955 op_overload: Optional[ variable in ExternKernel 3975 op_overload=None, argument 3987 self.cpp_kernel_name = cpp_kernel_name or get_aten_cpp_kernel_name(op_overload) 3989 self.op_overload = op_overload 4007 for x in self.op_overload._schema.arguments 4010 if isinstance(self.op_overload, torch._ops.OpOverload) 4016 for x in self.op_overload._schema.arguments 4018 if isinstance(self.op_overload, torch._ops.OpOverload) 4024 isinstance(self.op_overload, torch._ops.OpOverload) 4028 x.name for x in self.op_overload._schema.arguments if x.kwarg_only [all …]
|
D | select_algorithm.py | 790 op_overload=None, argument 802 self.op_overload = op_overload 979 self.choice.op_overload is not None 982 self.choice.op_overload, *self.input_nodes, **self.kwargs 994 op_overload=self.choice.op_overload,
|
D | utils.py | 1637 return type(node) == ir._CollectiveKernel and (op is None or node.op_overload is op) 1671 return isinstance(node, ir.FallbackKernel) and node.op_overload in op 1815 op_overload: torch._ops.OpOverload, 1823 op_overload.overloadpacket 1830 "add" if op_overload.overloadpacket == torch.ops.aten.scatter_ else "sum" 1841 op_overload.overloadpacket == torch.ops.aten.scatter_reduce_
|
/external/executorch/exir/dialects/backend/ |
D | _ops.py | 55 op_overload: EdgeOpOverload, 58 op_overload._op, 59 op_overload._schema,
|
/external/pytorch/torch/_decomp/ |
D | __init__.py | 58 for op_overload in overloads: 59 if op_overload in registry: 64 if torch._C._dispatch_has_kernel(op_overload.name()): 65 registry[op_overload] = fn 222 for op_overload in packets_to_overloads[op]: 223 decompositions[op_overload] = registry[op_overload]
|
/external/pytorch/torch/distributed/tensor/ |
D | _sharding_prop.py | 83 op_overload: OpOverload, 90 self.op_to_rules[op_overload] = rule_func 92 self.op_to_schema_info[op_overload] = schema_info 96 op_overload: OpOverload, 103 self.op_strategy_funcs[op_overload] = strategy_func 105 self.op_to_schema_info[op_overload] = schema_info
|
/external/pytorch/torch/_inductor/codegen/ |
D | cpp_wrapper_cpu.py | 1989 self, op_overload, raw_args, output_args argument 1991 arg_types = [x.real_type for x in op_overload._schema.arguments] 1992 return_types = [x.type for x in op_overload._schema.returns] 2126 op_overload: Optional[torch._ops.OpOverload] = None, 2152 assert op_overload is not None 2158 op_overload, 2171 op_overload, 2300 op_overload: Optional[torch._ops.OpOverload] = None, 2337 assert op_overload is not None, "op_overload should not be None" 2340 zip(raw_args, op_overload._schema.arguments) [all …]
|
/external/pytorch/torch/_custom_op/ |
D | autograd.py | 96 op_overload, argument 108 output = op_overload(*args)
|
/external/pytorch/torch/_library/ |
D | utils.py | 267 def handle_dispatch_mode(curr_mode, op_overload, *args, **kwargs): argument 282 return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
|
/external/pytorch/torch/ |
D | _ops.py | 632 def add_cached_op(op_overload): argument 634 cached_ops.add(op_overload) 1142 op_overload = getattr(op, overload_name) 1145 op_overload._schema, *args, **kwargs 1147 found_op = op_overload
|
D | _meta_registrations.py | 6579 for op_overload, fn in activate_meta_table.items(): 6584 if isinstance(op_overload, torch._ops.HigherOrderOperator): 6586 assert isinstance(op_overload, OpOverload) 6588 op_overload.py_impl(torch._C.DispatchKey.Meta)(fn) 6591 op_overload.name(), "CompositeImplicitAutograd" 6597 if op_overload in global_decomposition_table["meta"]: 6603 elif op_overload.is_view: 6609 op_overload.name() 6622 if "mkldnn::" in op_overload.name(): 6623 _meta_lib_dont_use_me_use_register_meta_for_mkldnn.impl(op_overload, fn) [all …]
|
/external/pytorch/test/export/ |
D | test_passes.py | 518 op_overload = getattr(getattr(torch.ops.aten, name), overload) 519 if torch.Tag.core in op_overload.tags and is_view_op(op_overload._schema): 520 self.assertIsNotNone(get_view_copy_of_view_op(op_overload._schema))
|
/external/executorch/exir/emit/ |
D | _emitter.py | 1110 op_overload = "" 1112 op_overload = target._overloadname 1131 op_index, operator = self._get_operator(name=op_name, overload=op_overload) 1153 if is_out_variant(op_name, op_overload):
|
/external/pytorch/torch/_inductor/kernel/ |
D | conv.py | 357 op_overload=aten.convolution.default,
|
/external/pytorch/test/distributed/ |
D | test_compute_comm_reordering.py | 54 and snode.node.op_overload == torch.ops._c10d_functional.all_reduce_.default
|