/external/XNNPACK/test/ |
D | average-pooling-nhwc.cc | 36 const std::pair<size_t, size_t> pooling_size = SmallPoolSize(xnn_params.qu8.avgpool.primary_tile); in TEST() local 39 .input_height(pooling_size.first + 3) in TEST() 40 .input_width(pooling_size.second + 2) in TEST() 41 .pooling_height(pooling_size.first) in TEST() 42 .pooling_width(pooling_size.second) in TEST() 46 .input_height(pooling_size.second + 3) in TEST() 47 .input_width(pooling_size.first + 2) in TEST() 48 .pooling_height(pooling_size.second) in TEST() 49 .pooling_width(pooling_size.first) in TEST() 57 const std::pair<size_t, size_t> pooling_size = SmallPoolSize(xnn_params.qu8.avgpool.primary_tile); in TEST() local [all …]
|
D | unpooling-nhwc.cc | 14 for (size_t pooling_size : std::vector<size_t>{{2, 3, 5, 7}}) { in TEST() 20 .pooling_width(pooling_size) in TEST() 30 for (size_t pooling_size : std::vector<size_t>{{3, 5, 7}}) { in TEST() 40 .pooling_width(pooling_size) in TEST() 52 for (size_t pooling_size : std::vector<size_t>{{2, 3, 5, 7}}) { in TEST() 57 .pooling_height(pooling_size) in TEST() 68 for (size_t pooling_size : std::vector<size_t>{{3, 5, 7}}) { in TEST() 77 .pooling_height(pooling_size) in TEST() 90 for (size_t pooling_size : std::vector<size_t>{{2, 3, 5}}) { in TEST() 95 .pooling_height(pooling_size) in TEST() [all …]
|
D | unpooling-operator-tester.h | 136 inline UnpoolingOperatorTester& pooling_size(uint32_t pooling_size) { in pooling_size() function 137 assert(pooling_size >= 1); in pooling_size() 138 this->pooling_height_ = pooling_size; in pooling_size() 139 this->pooling_width_ = pooling_size; in pooling_size() 143 inline UnpoolingOperatorTester& pooling_size(uint32_t pooling_height, uint32_t pooling_width) { in pooling_size() function
|
D | argmax-pooling-operator-tester.h | 178 inline ArgmaxPoolingOperatorTester& pooling_size(uint32_t pooling_size) { in pooling_size() function 179 assert(pooling_size >= 1); in pooling_size() 180 this->pooling_height_ = pooling_size; in pooling_size() 181 this->pooling_width_ = pooling_size; in pooling_size() 185 …inline ArgmaxPoolingOperatorTester& pooling_size(uint32_t pooling_height, uint32_t pooling_width) { in pooling_size() function
|
D | average-pooling-operator-tester.h | 188 inline AveragePoolingOperatorTester& pooling_size(uint32_t pooling_size) { in pooling_size() function 189 assert(pooling_size >= 1); in pooling_size() 190 this->pooling_height_ = pooling_size; in pooling_size() 191 this->pooling_width_ = pooling_size; in pooling_size() 195 …inline AveragePoolingOperatorTester& pooling_size(uint32_t pooling_height, uint32_t pooling_width)… in pooling_size() function
|
D | max-pooling-operator-tester.h | 187 inline MaxPoolingOperatorTester& pooling_size(uint32_t pooling_size) { in pooling_size() argument 188 assert(pooling_size >= 1); in pooling_size() 189 this->pooling_height_ = pooling_size; in pooling_size() 190 this->pooling_width_ = pooling_size; in pooling_size() 194 inline MaxPoolingOperatorTester& pooling_size(uint32_t pooling_height, uint32_t pooling_width) { in pooling_size() function
|
/external/XNNPACK/src/operators/ |
D | argmax-pooling-nhwc.c | 33 size_t pooling_size, in select_ukernel() argument 36 while (ukernel->qr == 0 && ukernel->mr < pooling_size) { in select_ukernel() 66 const uint32_t pooling_size = pooling_height * pooling_width; in xnn_create_argmax_pooling2d_nhwc_f32() local 67 if (pooling_size == 0) { in xnn_create_argmax_pooling2d_nhwc_f32() 75 if (pooling_size == 1) { in xnn_create_argmax_pooling2d_nhwc_f32() 218 const size_t pooling_size = pooling_height * pooling_width; in xnn_setup_argmax_pooling2d_nhwc_f32() local 221 …const struct argmaxpool_parameters* ukernel = select_ukernel(pooling_size, xnn_params.f32.argmaxpo… in xnn_setup_argmax_pooling2d_nhwc_f32() 225 const size_t step_height = pooling_size + (output_width - 1) * step_width * pooling_height; in xnn_setup_argmax_pooling2d_nhwc_f32() 258 const size_t multipass_adjustment = qr == 0 ? 0 : round_up(pooling_size - mr, qr) + mr - qr; in xnn_setup_argmax_pooling2d_nhwc_f32() 271 .pooling_size = pooling_size, in xnn_setup_argmax_pooling2d_nhwc_f32() [all …]
|
D | unpooling-nhwc.c | 48 const uint32_t pooling_size = pooling_height * pooling_width; in xnn_create_unpooling2d_nhwc_x32() local 49 if (pooling_size == 0) { in xnn_create_unpooling2d_nhwc_x32() 57 if (pooling_size == 1) { in xnn_create_unpooling2d_nhwc_x32() 185 const size_t pooling_size = pooling_height * pooling_width; in xnn_setup_unpooling2d_nhwc_x32() local 187 …indirection_buffer_size = sizeof(void*) * (batch_size * input_height * input_width * pooling_size); in xnn_setup_unpooling2d_nhwc_x32() 209 .indirect_output_height_stride = input_width * pooling_size * sizeof(void*), in xnn_setup_unpooling2d_nhwc_x32() 210 .indirect_output_width_stride = pooling_size * sizeof(void*), in xnn_setup_unpooling2d_nhwc_x32() 211 .pooling_size = pooling_size, in xnn_setup_unpooling2d_nhwc_x32()
|
D | average-pooling-nhwc.c | 69 const uint32_t pooling_size = pooling_height * pooling_width; in xnn_create_average_pooling2d_nhwc_qu8() local 70 if (pooling_size == 0) { in xnn_create_average_pooling2d_nhwc_qu8() 78 if (pooling_size == 1) { in xnn_create_average_pooling2d_nhwc_qu8() 174 if (pooling_size >= 16777216) { in xnn_create_average_pooling2d_nhwc_qu8() 179 pooling_size, pooling_width, pooling_height); in xnn_create_average_pooling2d_nhwc_qu8() 225 …round_up(doz(pooling_size, xnn_params.qu8.avgpool.primary_tile), xnn_params.qu8.avgpool.incrementa… in xnn_create_average_pooling2d_nhwc_qu8() 226 const float requantization_scale = input_scale / (output_scale * (float) pooling_size); in xnn_create_average_pooling2d_nhwc_qu8() 282 const uint32_t pooling_size = pooling_height * pooling_width; in xnn_create_average_pooling2d_nhwc_f16() local 283 if (pooling_size == 0) { in xnn_create_average_pooling2d_nhwc_f16() 291 if (pooling_size == 1) { in xnn_create_average_pooling2d_nhwc_f16() [all …]
|
D | max-pooling-nhwc.c | 78 const uint32_t pooling_size = pooling_height * pooling_width; in create_max_pooling2d_nhwc() local 79 if (pooling_size == 0) { in create_max_pooling2d_nhwc() 88 if (pooling_size == 1) { in create_max_pooling2d_nhwc() 274 const size_t pooling_size = pooling_height * pooling_width; in setup_max_pooling2d_nhwc() local 281 const size_t step_height = pooling_size + (output_width - 1) * step_width * pooling_height; in setup_max_pooling2d_nhwc() 309 const size_t multipass_adjustment = round_up(doz(pooling_size, mr), qr) + mr; in setup_max_pooling2d_nhwc() 320 .pooling_size = pooling_size, in setup_max_pooling2d_nhwc()
|
/external/XNNPACK/bench/ |
D | max-pooling.cc | 27 const size_t pooling_size = state.range(3); in max_pooling_u8() local 36 const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; in max_pooling_u8() 37 const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; in max_pooling_u8() 53 pooling_size, pooling_size, in max_pooling_u8() 104 const size_t pooling_size = state.range(3); in max_pooling_f32() local 113 const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; in max_pooling_f32() 114 const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; in max_pooling_f32() 130 pooling_size, pooling_size, in max_pooling_f32()
|
D | average-pooling.cc | 35 const size_t pooling_size = state.range(3); in xnnpack_average_pooling_qu8() local 44 const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; in xnnpack_average_pooling_qu8() 45 const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; in xnnpack_average_pooling_qu8() 61 pooling_size, pooling_size, in xnnpack_average_pooling_qu8() 114 const size_t pooling_size = state.range(3); in xnnpack_average_pooling_f32() local 123 const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; in xnnpack_average_pooling_f32() 124 const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; in xnnpack_average_pooling_f32() 140 pooling_size, pooling_size, in xnnpack_average_pooling_f32() 191 const size_t pooling_size = state.range(3); in tflite_average_pooling_f32() local 201 if (2 * padding_size == (pooling_size - 1)) { in tflite_average_pooling_f32() [all …]
|
/external/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/src/ |
D | average-pooling.c | 59 const uint32_t pooling_size = pooling_height * pooling_width; in pytorch_qnnp_create_average_pooling2d_nhwc_q8() local 60 if (pooling_size == 0) { in pytorch_qnnp_create_average_pooling2d_nhwc_q8() 70 if (pooling_size == 1) { in pytorch_qnnp_create_average_pooling2d_nhwc_q8() 124 if (pooling_size >= 16777216) { in pytorch_qnnp_create_average_pooling2d_nhwc_q8() 130 pooling_size, in pytorch_qnnp_create_average_pooling2d_nhwc_q8() 150 if (any_padding || (channels >= kr || (pooling_size - mr) % qr != 0)) { in pytorch_qnnp_create_average_pooling2d_nhwc_q8() 188 input_scale / (output_scale * (float)pooling_size), in pytorch_qnnp_create_average_pooling2d_nhwc_q8()
|
D | max-pooling.c | 62 const uint32_t pooling_size = pooling_height * pooling_width; in pytorch_qnnp_create_max_pooling2d_nhwc_u8() local 63 if (pooling_size == 0) { in pytorch_qnnp_create_max_pooling2d_nhwc_u8() 73 if (pooling_size == 1) { in pytorch_qnnp_create_max_pooling2d_nhwc_u8()
|
D | operator-run.c | 535 size_t pooling_size; member 555 context->pooling_size, in compute_max_pooling() 572 size_t pooling_size; member 597 context->pooling_size, in compute_average_pooling_unipass() 626 context->pooling_size, in compute_average_pooling_multipass() 1338 const size_t pooling_size = pooling_height * pooling_width; in pytorch_qnnp_run_operator() local 1346 if (channels >= kr && pooling_size > mr) { in pytorch_qnnp_run_operator() 1347 multipass_adjustment = round_up(pooling_size - mr, qr) + mr - qr; in pytorch_qnnp_run_operator() 1358 .pooling_size = pooling_size, in pytorch_qnnp_run_operator() 1376 if (pooling_size <= mr) { in pytorch_qnnp_run_operator() [all …]
|
/external/XNNPACK/src/subgraph/ |
D | argmax-pooling-2d.c | 125 const uint32_t pooling_size = pooling_height * pooling_width; in xnn_define_argmax_pooling_2d() local 126 if (pooling_size == 0) { in xnn_define_argmax_pooling_2d() 134 if (pooling_size == 1) { in xnn_define_argmax_pooling_2d()
|
D | unpooling-2d.c | 124 const uint32_t pooling_size = pooling_height * pooling_width; in xnn_define_unpooling_2d() local 125 if (pooling_size == 0) { in xnn_define_unpooling_2d() 133 if (pooling_size == 1) { in xnn_define_unpooling_2d()
|
D | average-pooling-2d.c | 156 const uint32_t pooling_size = pooling_height * pooling_width; in xnn_define_average_pooling_2d() local 157 if (pooling_size == 0) { in xnn_define_average_pooling_2d() 165 if (pooling_size == 1) { in xnn_define_average_pooling_2d()
|
D | max-pooling-2d.c | 238 const uint32_t pooling_size = pooling_height * pooling_width; in xnn_define_max_pooling_2d() local 239 if (pooling_size == 0) { in xnn_define_max_pooling_2d() 247 if (pooling_size == 1) { in xnn_define_max_pooling_2d()
|
/external/XNNPACK/src/xnnpack/ |
D | compute.h | 557 size_t pooling_size; member 585 size_t pooling_size; member 610 size_t pooling_size; member 641 size_t pooling_size; member 680 size_t pooling_size; member
|
/external/XNNPACK/src/ |
D | operator-run.c | 689 context->output_width, context->pooling_size, context->channels, in xnn_compute_argmax_pooling_unipass() 711 context->output_width, context->pooling_size, context->channels, in xnn_compute_argmax_pooling_multipass() 728 context->output_width, context->pooling_size, context->channels, in xnn_compute_max_pooling() 748 context->pooling_size, in xnn_compute_unpooling() 766 context->output_width, context->pooling_size, context->channels, in xnn_compute_average_pooling_unipass() 787 context->output_width, context->pooling_size, context->channels, in xnn_compute_average_pooling_multipass() 807 context->output_width, context->pooling_size, context->channels, in xnn_compute_pixelwise_average_pooling_unipass() 829 context->output_width, context->pooling_size, context->channels, in xnn_compute_pixelwise_average_pooling_multipass()
|
/external/pytorch/torch/_inductor/ |
D | lowering.py | 3752 def pooling_size(x, i, kernel_size, stride, padding, ceil_mode): function 3826 h_out, ceil_mode1 = pooling_size(h, 0, kernel_size, stride, padding, ceil_mode) 3827 w_out, ceil_mode2 = pooling_size(w, 1, kernel_size, stride, padding, ceil_mode) 4608 pooling_size(h[i], i, kernel_size, stride, padding, ceil_mode) 4726 h_out, ceil_mode1 = pooling_size(height, 0, kernel_size, stride, padding, ceil_mode) 4727 w_out, ceil_mode2 = pooling_size(width, 1, kernel_size, stride, padding, ceil_mode) 4895 d_out, ceil_mode_d = pooling_size(depth, 0, kernel_size, stride, padding, ceil_mode) 4896 h_out, ceil_mode_h = pooling_size( 4899 w_out, ceil_mode_w = pooling_size(width, 2, kernel_size, stride, padding, ceil_mode)
|