/external/tensorflow/tensorflow/lite/python/optimize/ |
D | calibrator_test.py | 45 quantized_model = quantizer.calibrate_and_quantize(input_gen, 50 self.assertIsNotNone(quantized_model) 68 quantized_model = quantizer.calibrate_and_quantize(input_gen, 73 self.assertIsNotNone(quantized_model) 86 quantized_model = quantizer.calibrate_and_quantize_single( 88 self.assertIsNotNone(quantized_model) 101 quantized_model = quantizer.calibrate_and_quantize_single( 103 self.assertIsNotNone(quantized_model) 124 quantized_model = quantizer.calibrate_and_quantize(input_gen, 129 self.assertIsNotNone(quantized_model) [all …]
|
/external/pytorch/torch/ao/quantization/ |
D | _correct_bias.py | 98 quantized_model, argument 119 float_model, quantized_model, _supported_modules, MeanShadowLogger 123 for name, submodule in quantized_model.named_modules(): 128 quantized_submodule = get_module(quantized_model, uncorrected_module) 133 quantized_model(data[0]) 137 ob_dict = ns.get_logger_dict(quantized_model) 155 for name, submodule in quantized_model.named_modules():
|
/external/pytorch/test/quantization/core/experimental/ |
D | apot_fx_graph_mode_ptq.py | 69 quantized_model = convert_fx(prepared_model) # convert the calibrated model to a quantized model … variable 71 top1, top5 = evaluate(quantized_model, criterion, data_loader_test) 80 quantized_model = convert_fx(prepared_model) # convert the calibrated model to a quantized model … variable
|
/external/executorch/examples/mediatek/aot_utils/oss_utils/ |
D | utils.py | 39 quantized_model = convert_pt2e(annotated_model, fold_quantize=False) 40 aten_dialect = torch.export.export(quantized_model, inputs)
|
/external/executorch/backends/cadence/aot/ |
D | export_example.py | 86 quantized_model = fuse_pt2(converted_model, quantizer) 90 quantized_model, example_inputs, output_dir=working_dir
|
D | compiler.py | 222 quantized_model = quantize_pt2(model, inputs) 225 quantized_model,
|
/external/pytorch/test/mobile/ |
D | test_lite_script_module.py | 506 quantized_model = self._create_quantized_model( 509 self._compare_script_and_mobile(model=quantized_model, input=input) 513 quantized_model = self._create_quantized_model(model_class=TwoLayerLinearModel) 514 self._compare_script_and_mobile(model=quantized_model, input=input) 518 quantized_model = self._create_quantized_model( 521 self._compare_script_and_mobile(model=quantized_model, input=input)
|
/external/pytorch/torch/ao/quantization/fx/ |
D | _lower_to_native_backend.py | 446 quantized_model: GraphModule, node_name_to_scope: Dict[str, Tuple[str, type]] 457 for node in quantized_model.graph.nodes: 465 quantized_model, nodes_to_fold 477 for node in quantized_model.graph.nodes: 487 packed_weight_name = get_new_packed_weight_name(quantized_model) 488 setattr(quantized_model, packed_weight_name, packed_weight) 500 quantized_model = GraphModule(quantized_model, folded_graph) 501 quantized_model._register_state_dict_hook(_save_packed_weight) 502 quantized_model.register_load_state_dict_pre_hook(_load_packed_weight) 503 return quantized_model
|
/external/executorch/examples/xnnpack/quantization/ |
D | example.py | 182 quantized_model = quantize(model, example_inputs) 189 quantized_model, example_inputs, edge_compile_config=edge_compile_config
|
/external/tensorflow/tensorflow/lite/java/ovic/src/testdata/ |
D | BUILD | 14 "@tflite_ovic_testdata//:quantized_model.lite",
|
/external/executorch/exir/tests/ |
D | test_memory_planning.py | 430 quantized_model = eager_model 444 quantized_model, 457 quantized_model, 469 return quantized_model
|
/external/executorch/examples/models/llama/source_transformation/ |
D | quantize.py | 74 return WeightOnlyInt8QuantHandler(model).quantized_model() 284 def quantized_model(self) -> nn.Module: member in QuantHandler 386 def quantized_model(self) -> nn.Module: member in WeightOnlyInt8QuantHandler 640 def quantized_model(self) -> nn.Module: member in EmbeddingQuantHandler 758 ).quantized_model()
|
/external/executorch/examples/qualcomm/ |
D | utils.py | 274 quantized_model = convert_pt2e(annotated_model) 275 edge_prog = capture_program(quantized_model, inputs, custom_pass_config)
|
/external/pytorch/test/quantization/eager/ |
D | test_quantize_eager_ptq.py | 831 quantized_model = convert(model) 837 self.assertTrue('QuantizedEmbeddingBag' in str(quantized_model)) 838 …self.checkDynamicQuantizedModule(quantized_model.emb, torch.ao.nn.quantized.EmbeddingBag, torch.qu… 839 …self.checkScriptable(quantized_model, [[indices, offsets, per_sample_weights]], check_save_load=Tr… 855 quantized_model = convert(model2) 857 self.assertTrue('QuantizedEmbeddingBag' in str(quantized_model)) 859 …self.checkDynamicQuantizedModule(quantized_model.emb, torch.ao.nn.quantized.EmbeddingBag, torch.qu…
|
/external/tensorflow/tensorflow/lite/g3doc/performance/ |
D | quantization_debugger.ipynb | 235 "quantized_model = converter.convert()" 259 "eval_tflite(quantized_model, ds)" 803 "quantized_model = convert.mlir_quantize(\n", 808 " quant_debug_model_content=quantized_model,\n",
|
/external/executorch/examples/models/llava/ |
D | export_llava.py | 172 ).quantized_model()
|
/external/executorch/backends/cadence/aot/tests/ |
D | test_fusion_ops_passes.py | 390 quantized_model = quantize_pt2(model, (inputs,)) 392 export_to_edge(quantized_model, (inputs,)).exported_program().graph_module
|
D | test_replace_ops_passes.py | 840 quantized_model = quantize_pt2(model, inputs) 842 exported_program = export_to_edge(quantized_model, inputs).exported_program() 887 quantized_model = quantize_pt2(model, inputs) 889 exported_program = export_to_edge(quantized_model, inputs).exported_program()
|
/external/executorch/docs/source/ |
D | native-delegates-executorch-xnnpack-delegate.md | 119 quantized_model = convert_pt2e(prepared_model) 120 print(quantized_model)
|
/external/tensorflow/tensorflow/lite/java/ovic/ |
D | README.md | 113 "@tflite_ovic_testdata//:quantized_model.lite", 227 quantized_model.lite | 73 | 61 | 13
|
/external/tensorflow/tensorflow/compiler/mlir/lite/quantization/lite/ |
D | quantize_weights_test.cc | 157 const Model* quantized_model, const Model* expected_model, in FindMatchingExpectedTensor() argument 162 CreateMutableModelFromFile(quantized_model); in FindMatchingExpectedTensor()
|
/external/tensorflow/tensorflow/lite/python/ |
D | lite_v2_test.py | 376 quantized_model = converter.convert() 381 model_content=quantized_model, 399 quantized_model = converter.convert() 404 model_content=quantized_model, 1251 quantized_model = converter.convert() 1253 interpreter = Interpreter(model_content=quantized_model) 1333 quantized_model = converter.convert() 1335 metadata = get_conversion_metadata(quantized_model) 1346 quantized_model = converter.convert() 1348 metadata = get_conversion_metadata(quantized_model)
|
/external/pytorch/test/quantization/fx/ |
D | test_equalize_fx.py | 865 quantized_model = convert_fx(copy.deepcopy(prepared_model)) 868 layer_to_sqnr_dict = get_layer_sqnr_dict(copy.deepcopy(prepared_model), quantized_model, x)
|
D | test_quantize_fx.py | 6383 quantized_model = convert_fx(prepared_model) 6390 self.checkGraphModuleNodes(quantized_model, expected_node_occurrence=node_occurrence) 6415 quantized_model = convert_fx(prepared_model) 6422 self.checkGraphModuleNodes(quantized_model, expected_node_occurrence=node_occurrence) 6567 quantized_model = convert_fx(prepared_model) 6569 quantized_model(example_inputs) 6574 self.checkGraphModuleNodes(quantized_model, expected_node_occurrence=node_occurrence) 6609 quantized_model = convert_fx(prepared_model) 6611 quantized_model(example_inputs) 6616 self.checkGraphModuleNodes(quantized_model, expected_node_occurrence=node_occurrence) [all …]
|
/external/tensorflow/tensorflow/lite/g3doc/r1/convert/ |
D | python_api.md | 213 with open('quantized_model.tflite', 'wb') as f:
|