| /external/tensorflow/tensorflow/core/ops/ |
| D | tpu_cross_replica_ops.cc | 44 int split_dimension; in __anon385994aa0102() local 70 TF_RETURN_IF_ERROR(c->GetAttr("split_dimension", &split_dimension)); in __anon385994aa0102() 71 if (split_dimension < 0 || split_dimension >= rank) { in __anon385994aa0102() 72 return errors::InvalidArgument("split_dimension ", split_dimension, in __anon385994aa0102() 77 !c->ValueKnown(c->Dim(input, split_dimension))) { in __anon385994aa0102() 90 if (i == split_dimension) { in __anon385994aa0102()
|
| D | array_ops.cc | 575 DimensionHandle split_dimension; in __anon847f0b680a02() local 578 0, c->Rank(input), &split_dimension)); in __anon847f0b680a02() 581 if (!c->ValueKnown(split_dimension)) { in __anon847f0b680a02() 588 int64_t split_dim = c->Value(split_dimension); in __anon847f0b680a02() 611 DimensionHandle split_dimension; in __anon847f0b680b02() local 614 2, c->Rank(input), &split_dimension)); in __anon847f0b680b02() 628 } else if (size_splits == nullptr && c->ValueKnown(split_dimension)) { in __anon847f0b680b02() 634 c->Value(split_dimension), in __anon847f0b680b02() 638 } else if (size_splits == nullptr && !c->ValueKnown(split_dimension)) { in __anon847f0b680b02() 649 int64_t split_dim = c->Value(split_dimension); in __anon847f0b680b02()
|
| /external/ComputeLibrary/arm_compute/runtime/ |
| D | IScheduler.h | 77 …Hints(unsigned int split_dimension, StrategyHint strategy = StrategyHint::STATIC, int threshold = … 78 : _split_dimension(split_dimension), _strategy(strategy), _threshold(threshold) in _split_dimension() argument 87 Hints &set_split_dimension(unsigned int split_dimension) in set_split_dimension() argument 89 _split_dimension = split_dimension; in set_split_dimension() 96 unsigned int split_dimension() const in split_dimension() function 229 …std::size_t adjust_num_of_windows(const Window &window, std::size_t split_dimension, std::size_t i…
|
| /external/ComputeLibrary/src/runtime/ |
| D | IScheduler.cpp | 62 if(hints.split_dimension() == IScheduler::split_dimensions_all) in schedule_common() 103 const unsigned int num_iterations = max_window.num_iterations(hints.split_dimension()); in schedule_common() 143 …num_windows = adjust_num_of_windows(max_window, hints.split_dimension(), num_windows, *kernel, cpu… in schedule_common() 151 Window win = max_window.split_window(hints.split_dimension(), t, num_windows); in schedule_common() 178 std::size_t IScheduler::adjust_num_of_windows(const Window &window, std::size_t split_dimension, st… in adjust_num_of_windows() argument 181 if(window.num_iterations(split_dimension) < init_num_windows ) in adjust_num_of_windows() 191 …suitable dimension to split the workload. Recommended: %zu recommended_split_dim", split_dimension, in adjust_num_of_windows() 198 if((window.num_iterations(split_dimension) / kernel.get_mws(cpu_info, t)) >= t) in adjust_num_of_windows()
|
| /external/tensorflow/tensorflow/compiler/xla/experimental/xla_sharding/ |
| D | xla_sharding.py | 170 def split(cls, tensor, split_dimension, num_devices, input_shape=None): argument 190 if (shape[split_dimension] is not None and 191 shape[split_dimension] < num_devices): 194 (shape, split_dimension, num_devices)) 197 tile_assignment_dims[split_dimension] = num_devices 349 split_dimension, argument 364 return Sharding.split(tensor, split_dimension, num_devices,
|
| /external/ComputeLibrary/src/core/helpers/ |
| D | WindowHelpers.cpp | 244 size_t split_dimension = Window::DimY; in calculate_squashed_or_max_window() local 264 split_dimension = Window::DimX; in calculate_squashed_or_max_window() 283 return std::make_pair(win, split_dimension); in calculate_squashed_or_max_window() 293 size_t split_dimension = Window::DimY; in calculate_squashed_or_max_window() local 309 split_dimension = Window::DimX; in calculate_squashed_or_max_window() 325 return std::make_pair(win, split_dimension); in calculate_squashed_or_max_window()
|
| /external/tensorflow/tensorflow/core/api_def/base_api/ |
| D | api_def_AllToAll.pbtxt | 37 name: "split_dimension" 52 `split_dimension` and send to the other replicas given group_assignment. After 62 split_dimension=1
|
| /external/tensorflow/tensorflow/core/ops/compat/ops_history_v2/ |
| D | AllToAll.pbtxt | 30 name: "split_dimension" 83 name: "split_dimension" 136 name: "split_dimension"
|
| /external/ComputeLibrary/src/runtime/CPP/ |
| D | SingleThreadScheduler.cpp | 42 if(hints.split_dimension() != IScheduler::split_dimensions_all) in schedule() 44 const unsigned int num_iterations = max_window.num_iterations(hints.split_dimension()); in schedule()
|
| /external/ComputeLibrary/src/cpu/operators/ |
| D | CpuAdd.cpp | 53 …const auto split_dimension = static_cast<kernels::CpuAddKernel *>(_kernel.get())->get_split_dimens… in run() local 55 NEScheduler::get().schedule_op(_kernel.get(), split_dimension, _kernel->window(), tensors); in run()
|
| D | CpuSub.cpp | 53 …const auto split_dimension = static_cast<kernels::CpuSubKernel *>(_kernel.get())->get_split_dimens… in run() local 55 NEScheduler::get().schedule_op(_kernel.get(), split_dimension, _kernel->window(), tensors); in run()
|
| D | CpuActivation.cpp | 53 …auto split_dimension = static_cast<kernels::CpuActivationKernel *>(_kernel.get())->get_split_dimen… in run() local 54 NEScheduler::get().schedule_op(_kernel.get(), split_dimension, _kernel->window(), tensors); in run()
|
| D | CpuMul.cpp | 57 …auto split_dimension = static_cast<kernels::CpuMulKernel *>(_kernel.get())->get_split_dimension_hi… in run() local 58 NEScheduler::get().schedule_op(_kernel.get(), split_dimension, _kernel->window(), tensors); in run()
|
| /external/tensorflow/tensorflow/python/tpu/ops/ |
| D | tpu_ops.py | 42 split_dimension, argument 68 split_dimension=split_dimension, 83 split_dimension=op.get_attr("concat_dimension"),
|
| /external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
| D | AllToAll.pbtxt | 30 name: "split_dimension" 83 name: "split_dimension"
|
| /external/tensorflow/tensorflow/python/tpu/ |
| D | tpu_test.py | 179 split_dimension=0, 189 split_dimension=0, 200 split_dimension=0, 210 split_dimension=0,
|
| /external/ComputeLibrary/src/runtime/OMP/ |
| D | OMPScheduler.cpp | 63 const unsigned int num_iterations = max_window.num_iterations(hints.split_dimension()); in schedule_op() 80 Window win = max_window.split_window(hints.split_dimension(), t, num_windows); in schedule_op()
|
| /external/tensorflow/tensorflow/compiler/mlir/tensorflow/utils/ |
| D | xla_sharding_util.cc | 46 const int split_dimension, in CreateSplitOp() argument 55 mlir::DenseElementsAttr::get(split_dim_type, split_dimension); in CreateSplitOp() 65 if (input_type.getShape()[split_dimension] == in CreateSplitOp() 70 if (shape[split_dimension] % num_split != 0) { in CreateSplitOp() 76 split_dimension, num_split)); in CreateSplitOp() 79 shape[split_dimension] = shape[split_dimension] / num_split; in CreateSplitOp()
|
| /external/tensorflow/tensorflow/dtensor/mlir/ |
| D | spmd_expander_common.cc | 97 Status CreateSplitOp(const int num_split, const int split_dimension, in CreateSplitOp() argument 104 mlir::DenseElementsAttr::get(split_dim_type, split_dimension); in CreateSplitOp() 114 if (input_type.getShape()[split_dimension] == in CreateSplitOp() 119 if (shape[split_dimension] % num_split != 0) { in CreateSplitOp() 124 split_dimension, num_split) in CreateSplitOp() 128 shape[split_dimension] = shape[split_dimension] / num_split; in CreateSplitOp()
|
| D | spmd_expander_common.h | 65 Status CreateSplitOp(const int num_split, const int split_dimension,
|
| /external/ComputeLibrary/docs/contributor_guide/ |
| D | implementation_topics.dox | 88 const unsigned int num_iterations = max_window.num_iterations(split_dimension); 107 Window win = max_window.split_window(split_dimension, t, info.num_threads); 113 Window win = max_window.split_window(split_dimension, t, info.num_threads);
|
| /external/tensorflow/tensorflow/security/advisory/ |
| D | tfsa-2021-176.md | 18 split_dimension=0,
|
| /external/armnn/src/backends/neon/ |
| D | NeonInterceptorScheduler.cpp | 28 m_RealScheduler.schedule(kernel, hints.split_dimension()); in schedule()
|
| /external/tensorflow/tensorflow/compiler/xla/service/ |
| D | all_to_all_decomposer.cc | 58 int64_t split_dim = *all_to_all->split_dimension(); in ExpandInstruction()
|
| /external/tensorflow/tensorflow/compiler/xla/client/ |
| D | xla_builder.cc | 3077 XlaOp XlaBuilder::AllToAll(XlaOp operand, int64_t split_dimension, in AllToAll() argument 3084 return AllToAllTuple(operand, split_dimension, concat_dimension, in AllToAll() 3087 return AllToAllArray(operand, split_dimension, concat_dimension, split_count, in AllToAll() 3091 XlaOp XlaBuilder::AllToAllArray(XlaOp operand, int64_t split_dimension, in AllToAllArray() argument 3098 ShapeInference::InferAllToAllShape(*operand_shape, split_dimension, in AllToAllArray() 3112 instr.add_dimensions(split_dimension); in AllToAllArray() 3116 if (split_dimension == concat_dimension) { in AllToAllArray() 3121 if (i != split_dimension) { in AllToAllArray() 3134 int64_t dim_after_reshape = i >= split_dimension ? i + 1 : i; in AllToAllArray() 3136 permutation.push_back(split_dimension); in AllToAllArray() [all …]
|