1 /* 2 * Copyright (C) 2017 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License 15 */ 16 17 package com.android.internal.graphics; 18 19 import android.annotation.ColorInt; 20 import android.annotation.FloatRange; 21 import android.annotation.IntRange; 22 import android.annotation.NonNull; 23 import android.graphics.Color; 24 import android.ravenwood.annotation.RavenwoodKeepWholeClass; 25 import com.android.internal.graphics.cam.Cam; 26 27 /** 28 * Copied from: frameworks/support/core-utils/java/android/support/v4/graphics/ColorUtils.java 29 * 30 * A set of color-related utility methods, building upon those available in {@code Color}. 31 */ 32 @RavenwoodKeepWholeClass 33 public final class ColorUtils { 34 35 private static final double XYZ_WHITE_REFERENCE_X = 95.047; 36 private static final double XYZ_WHITE_REFERENCE_Y = 100; 37 private static final double XYZ_WHITE_REFERENCE_Z = 108.883; 38 private static final double XYZ_EPSILON = 0.008856; 39 private static final double XYZ_KAPPA = 903.3; 40 41 private static final int MIN_ALPHA_SEARCH_MAX_ITERATIONS = 10; 42 private static final int MIN_ALPHA_SEARCH_PRECISION = 1; 43 44 private static final ThreadLocal<double[]> TEMP_ARRAY = new ThreadLocal<>(); 45 ColorUtils()46 private ColorUtils() {} 47 48 /** 49 * Composite two potentially translucent colors over each other and returns the result. 50 */ compositeColors(@olorInt int foreground, @ColorInt int background)51 public static int compositeColors(@ColorInt int foreground, @ColorInt int background) { 52 int bgAlpha = Color.alpha(background); 53 int fgAlpha = Color.alpha(foreground); 54 int a = compositeAlpha(fgAlpha, bgAlpha); 55 56 int r = compositeComponent(Color.red(foreground), fgAlpha, 57 Color.red(background), bgAlpha, a); 58 int g = compositeComponent(Color.green(foreground), fgAlpha, 59 Color.green(background), bgAlpha, a); 60 int b = compositeComponent(Color.blue(foreground), fgAlpha, 61 Color.blue(background), bgAlpha, a); 62 63 return Color.argb(a, r, g, b); 64 } 65 66 /** 67 * Returns the composite alpha of the given foreground and background alpha. 68 */ compositeAlpha(int foregroundAlpha, int backgroundAlpha)69 public static int compositeAlpha(int foregroundAlpha, int backgroundAlpha) { 70 return 0xFF - (((0xFF - backgroundAlpha) * (0xFF - foregroundAlpha)) / 0xFF); 71 } 72 compositeComponent(int fgC, int fgA, int bgC, int bgA, int a)73 private static int compositeComponent(int fgC, int fgA, int bgC, int bgA, int a) { 74 if (a == 0) return 0; 75 return ((0xFF * fgC * fgA) + (bgC * bgA * (0xFF - fgA))) / (a * 0xFF); 76 } 77 78 /** 79 * Returns the luminance of a color as a float between {@code 0.0} and {@code 1.0}. 80 * <p>Defined as the Y component in the XYZ representation of {@code color}.</p> 81 */ 82 @FloatRange(from = 0.0, to = 1.0) calculateLuminance(@olorInt int color)83 public static double calculateLuminance(@ColorInt int color) { 84 final double[] result = getTempDouble3Array(); 85 colorToXYZ(color, result); 86 // Luminance is the Y component 87 return result[1] / 100; 88 } 89 90 /** 91 * Returns the contrast ratio between {@code foreground} and {@code background}. 92 * {@code background} must be opaque. 93 * <p> 94 * Formula defined 95 * <a href="http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef">here</a>. 96 */ calculateContrast(@olorInt int foreground, @ColorInt int background)97 public static double calculateContrast(@ColorInt int foreground, @ColorInt int background) { 98 if (Color.alpha(background) != 255) { 99 throw new IllegalArgumentException("background can not be translucent: #" 100 + Integer.toHexString(background)); 101 } 102 if (Color.alpha(foreground) < 255) { 103 // If the foreground is translucent, composite the foreground over the background 104 foreground = compositeColors(foreground, background); 105 } 106 107 final double luminance1 = calculateLuminance(foreground) + 0.05; 108 final double luminance2 = calculateLuminance(background) + 0.05; 109 110 // Now return the lighter luminance divided by the darker luminance 111 return Math.max(luminance1, luminance2) / Math.min(luminance1, luminance2); 112 } 113 114 /** 115 * Calculates the minimum alpha value which can be applied to {@code background} so that would 116 * have a contrast value of at least {@code minContrastRatio} when alpha blended to 117 * {@code foreground}. 118 * 119 * @param foreground the foreground color 120 * @param background the background color, opacity will be ignored 121 * @param minContrastRatio the minimum contrast ratio 122 * @return the alpha value in the range 0-255, or -1 if no value could be calculated 123 */ calculateMinimumBackgroundAlpha(@olorInt int foreground, @ColorInt int background, float minContrastRatio)124 public static int calculateMinimumBackgroundAlpha(@ColorInt int foreground, 125 @ColorInt int background, float minContrastRatio) { 126 // Ignore initial alpha that the background might have since this is 127 // what we're trying to calculate. 128 background = setAlphaComponent(background, 255); 129 final int leastContrastyColor = setAlphaComponent(foreground, 255); 130 return binaryAlphaSearch(foreground, background, minContrastRatio, (fg, bg, alpha) -> { 131 int testBackground = blendARGB(leastContrastyColor, bg, alpha/255f); 132 // Float rounding might set this alpha to something other that 255, 133 // raising an exception in calculateContrast. 134 testBackground = setAlphaComponent(testBackground, 255); 135 return calculateContrast(fg, testBackground); 136 }); 137 } 138 139 /** 140 * Calculates the minimum alpha value which can be applied to {@code foreground} so that would 141 * have a contrast value of at least {@code minContrastRatio} when compared to 142 * {@code background}. 143 * 144 * @param foreground the foreground color 145 * @param background the opaque background color 146 * @param minContrastRatio the minimum contrast ratio 147 * @return the alpha value in the range 0-255, or -1 if no value could be calculated 148 */ calculateMinimumAlpha(@olorInt int foreground, @ColorInt int background, float minContrastRatio)149 public static int calculateMinimumAlpha(@ColorInt int foreground, @ColorInt int background, 150 float minContrastRatio) { 151 if (Color.alpha(background) != 255) { 152 throw new IllegalArgumentException("background can not be translucent: #" 153 + Integer.toHexString(background)); 154 } 155 156 ContrastCalculator contrastCalculator = (fg, bg, alpha) -> { 157 int testForeground = setAlphaComponent(fg, alpha); 158 return calculateContrast(testForeground, bg); 159 }; 160 161 // First lets check that a fully opaque foreground has sufficient contrast 162 double testRatio = contrastCalculator.calculateContrast(foreground, background, 255); 163 if (testRatio < minContrastRatio) { 164 // Fully opaque foreground does not have sufficient contrast, return error 165 return -1; 166 } 167 foreground = setAlphaComponent(foreground, 255); 168 return binaryAlphaSearch(foreground, background, minContrastRatio, contrastCalculator); 169 } 170 171 /** 172 * Calculates the alpha value using binary search based on a given contrast evaluation function 173 * and target contrast that needs to be satisfied. 174 * 175 * @param foreground the foreground color 176 * @param background the opaque background color 177 * @param minContrastRatio the minimum contrast ratio 178 * @param calculator function that calculates contrast 179 * @return the alpha value in the range 0-255, or -1 if no value could be calculated 180 */ binaryAlphaSearch(@olorInt int foreground, @ColorInt int background, float minContrastRatio, ContrastCalculator calculator)181 private static int binaryAlphaSearch(@ColorInt int foreground, @ColorInt int background, 182 float minContrastRatio, ContrastCalculator calculator) { 183 // Binary search to find a value with the minimum value which provides sufficient contrast 184 int numIterations = 0; 185 int minAlpha = 0; 186 int maxAlpha = 255; 187 188 while (numIterations <= MIN_ALPHA_SEARCH_MAX_ITERATIONS && 189 (maxAlpha - minAlpha) > MIN_ALPHA_SEARCH_PRECISION) { 190 final int testAlpha = (minAlpha + maxAlpha) / 2; 191 192 final double testRatio = calculator.calculateContrast(foreground, background, 193 testAlpha); 194 if (testRatio < minContrastRatio) { 195 minAlpha = testAlpha; 196 } else { 197 maxAlpha = testAlpha; 198 } 199 200 numIterations++; 201 } 202 203 // Conservatively return the max of the range of possible alphas, which is known to pass. 204 return maxAlpha; 205 } 206 207 /** 208 * Convert RGB components to HSL (hue-saturation-lightness). 209 * <ul> 210 * <li>outHsl[0] is Hue [0 .. 360)</li> 211 * <li>outHsl[1] is Saturation [0...1]</li> 212 * <li>outHsl[2] is Lightness [0...1]</li> 213 * </ul> 214 * 215 * @param r red component value [0..255] 216 * @param g green component value [0..255] 217 * @param b blue component value [0..255] 218 * @param outHsl 3-element array which holds the resulting HSL components 219 */ RGBToHSL(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull float[] outHsl)220 public static void RGBToHSL(@IntRange(from = 0x0, to = 0xFF) int r, 221 @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, 222 @NonNull float[] outHsl) { 223 final float rf = r / 255f; 224 final float gf = g / 255f; 225 final float bf = b / 255f; 226 227 final float max = Math.max(rf, Math.max(gf, bf)); 228 final float min = Math.min(rf, Math.min(gf, bf)); 229 final float deltaMaxMin = max - min; 230 231 float h, s; 232 float l = (max + min) / 2f; 233 234 if (max == min) { 235 // Monochromatic 236 h = s = 0f; 237 } else { 238 if (max == rf) { 239 h = ((gf - bf) / deltaMaxMin) % 6f; 240 } else if (max == gf) { 241 h = ((bf - rf) / deltaMaxMin) + 2f; 242 } else { 243 h = ((rf - gf) / deltaMaxMin) + 4f; 244 } 245 246 s = deltaMaxMin / (1f - Math.abs(2f * l - 1f)); 247 } 248 249 h = (h * 60f) % 360f; 250 if (h < 0) { 251 h += 360f; 252 } 253 254 outHsl[0] = constrain(h, 0f, 360f); 255 outHsl[1] = constrain(s, 0f, 1f); 256 outHsl[2] = constrain(l, 0f, 1f); 257 } 258 259 /** 260 * Convert the ARGB color to its HSL (hue-saturation-lightness) components. 261 * <ul> 262 * <li>outHsl[0] is Hue [0 .. 360)</li> 263 * <li>outHsl[1] is Saturation [0...1]</li> 264 * <li>outHsl[2] is Lightness [0...1]</li> 265 * </ul> 266 * 267 * @param color the ARGB color to convert. The alpha component is ignored 268 * @param outHsl 3-element array which holds the resulting HSL components 269 */ colorToHSL(@olorInt int color, @NonNull float[] outHsl)270 public static void colorToHSL(@ColorInt int color, @NonNull float[] outHsl) { 271 RGBToHSL(Color.red(color), Color.green(color), Color.blue(color), outHsl); 272 } 273 274 /** 275 * Convert HSL (hue-saturation-lightness) components to a RGB color. 276 * <ul> 277 * <li>hsl[0] is Hue [0 .. 360)</li> 278 * <li>hsl[1] is Saturation [0...1]</li> 279 * <li>hsl[2] is Lightness [0...1]</li> 280 * </ul> 281 * If hsv values are out of range, they are pinned. 282 * 283 * @param hsl 3-element array which holds the input HSL components 284 * @return the resulting RGB color 285 */ 286 @ColorInt HSLToColor(@onNull float[] hsl)287 public static int HSLToColor(@NonNull float[] hsl) { 288 final float h = hsl[0]; 289 final float s = hsl[1]; 290 final float l = hsl[2]; 291 292 final float c = (1f - Math.abs(2 * l - 1f)) * s; 293 final float m = l - 0.5f * c; 294 final float x = c * (1f - Math.abs((h / 60f % 2f) - 1f)); 295 296 final int hueSegment = (int) h / 60; 297 298 int r = 0, g = 0, b = 0; 299 300 switch (hueSegment) { 301 case 0: 302 r = Math.round(255 * (c + m)); 303 g = Math.round(255 * (x + m)); 304 b = Math.round(255 * m); 305 break; 306 case 1: 307 r = Math.round(255 * (x + m)); 308 g = Math.round(255 * (c + m)); 309 b = Math.round(255 * m); 310 break; 311 case 2: 312 r = Math.round(255 * m); 313 g = Math.round(255 * (c + m)); 314 b = Math.round(255 * (x + m)); 315 break; 316 case 3: 317 r = Math.round(255 * m); 318 g = Math.round(255 * (x + m)); 319 b = Math.round(255 * (c + m)); 320 break; 321 case 4: 322 r = Math.round(255 * (x + m)); 323 g = Math.round(255 * m); 324 b = Math.round(255 * (c + m)); 325 break; 326 case 5: 327 case 6: 328 r = Math.round(255 * (c + m)); 329 g = Math.round(255 * m); 330 b = Math.round(255 * (x + m)); 331 break; 332 } 333 334 r = constrain(r, 0, 255); 335 g = constrain(g, 0, 255); 336 b = constrain(b, 0, 255); 337 338 return Color.rgb(r, g, b); 339 } 340 341 /** 342 * Convert the ARGB color to a color appearance model. 343 * 344 * The color appearance model is based on CAM16 hue and chroma, using L*a*b*'s L* as the 345 * third dimension. 346 * 347 * @param color the ARGB color to convert. The alpha component is ignored. 348 */ colorToCAM(@olorInt int color)349 public static Cam colorToCAM(@ColorInt int color) { 350 return Cam.fromInt(color); 351 } 352 353 /** 354 * Convert a color appearance model representation to an ARGB color. 355 * 356 * Note: the returned color may have a lower chroma than requested. Whether a chroma is 357 * available depends on luminance. For example, there's no such thing as a high chroma light 358 * red, due to the limitations of our eyes and/or physics. If the requested chroma is 359 * unavailable, the highest possible chroma at the requested luminance is returned. 360 * 361 * @param hue hue, in degrees, in CAM coordinates 362 * @param chroma chroma in CAM coordinates. 363 * @param lstar perceptual luminance, L* in L*a*b* 364 */ 365 @ColorInt CAMToColor(float hue, float chroma, float lstar)366 public static int CAMToColor(float hue, float chroma, float lstar) { 367 return Cam.getInt(hue, chroma, lstar); 368 } 369 370 /** 371 * Set the alpha component of {@code color} to be {@code alpha}. 372 */ 373 @ColorInt setAlphaComponent(@olorInt int color, @IntRange(from = 0x0, to = 0xFF) int alpha)374 public static int setAlphaComponent(@ColorInt int color, 375 @IntRange(from = 0x0, to = 0xFF) int alpha) { 376 if (alpha < 0 || alpha > 255) { 377 throw new IllegalArgumentException("alpha must be between 0 and 255."); 378 } 379 return (color & 0x00ffffff) | (alpha << 24); 380 } 381 382 /** 383 * Convert the ARGB color to its CIE Lab representative components. 384 * 385 * @param color the ARGB color to convert. The alpha component is ignored 386 * @param outLab 3-element array which holds the resulting LAB components 387 */ colorToLAB(@olorInt int color, @NonNull double[] outLab)388 public static void colorToLAB(@ColorInt int color, @NonNull double[] outLab) { 389 RGBToLAB(Color.red(color), Color.green(color), Color.blue(color), outLab); 390 } 391 392 /** 393 * Convert RGB components to its CIE Lab representative components. 394 * 395 * <ul> 396 * <li>outLab[0] is L [0 ...100)</li> 397 * <li>outLab[1] is a [-128...127)</li> 398 * <li>outLab[2] is b [-128...127)</li> 399 * </ul> 400 * 401 * @param r red component value [0..255] 402 * @param g green component value [0..255] 403 * @param b blue component value [0..255] 404 * @param outLab 3-element array which holds the resulting LAB components 405 */ RGBToLAB(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull double[] outLab)406 public static void RGBToLAB(@IntRange(from = 0x0, to = 0xFF) int r, 407 @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, 408 @NonNull double[] outLab) { 409 // First we convert RGB to XYZ 410 RGBToXYZ(r, g, b, outLab); 411 // outLab now contains XYZ 412 XYZToLAB(outLab[0], outLab[1], outLab[2], outLab); 413 // outLab now contains LAB representation 414 } 415 416 /** 417 * Convert the ARGB color to its CIE XYZ representative components. 418 * 419 * <p>The resulting XYZ representation will use the D65 illuminant and the CIE 420 * 2° Standard Observer (1931).</p> 421 * 422 * <ul> 423 * <li>outXyz[0] is X [0 ...95.047)</li> 424 * <li>outXyz[1] is Y [0...100)</li> 425 * <li>outXyz[2] is Z [0...108.883)</li> 426 * </ul> 427 * 428 * @param color the ARGB color to convert. The alpha component is ignored 429 * @param outXyz 3-element array which holds the resulting LAB components 430 */ colorToXYZ(@olorInt int color, @NonNull double[] outXyz)431 public static void colorToXYZ(@ColorInt int color, @NonNull double[] outXyz) { 432 RGBToXYZ(Color.red(color), Color.green(color), Color.blue(color), outXyz); 433 } 434 435 /** 436 * Convert RGB components to its CIE XYZ representative components. 437 * 438 * <p>The resulting XYZ representation will use the D65 illuminant and the CIE 439 * 2° Standard Observer (1931).</p> 440 * 441 * <ul> 442 * <li>outXyz[0] is X [0 ...95.047)</li> 443 * <li>outXyz[1] is Y [0...100)</li> 444 * <li>outXyz[2] is Z [0...108.883)</li> 445 * </ul> 446 * 447 * @param r red component value [0..255] 448 * @param g green component value [0..255] 449 * @param b blue component value [0..255] 450 * @param outXyz 3-element array which holds the resulting XYZ components 451 */ RGBToXYZ(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull double[] outXyz)452 public static void RGBToXYZ(@IntRange(from = 0x0, to = 0xFF) int r, 453 @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, 454 @NonNull double[] outXyz) { 455 if (outXyz.length != 3) { 456 throw new IllegalArgumentException("outXyz must have a length of 3."); 457 } 458 459 double sr = r / 255.0; 460 sr = sr < 0.04045 ? sr / 12.92 : Math.pow((sr + 0.055) / 1.055, 2.4); 461 double sg = g / 255.0; 462 sg = sg < 0.04045 ? sg / 12.92 : Math.pow((sg + 0.055) / 1.055, 2.4); 463 double sb = b / 255.0; 464 sb = sb < 0.04045 ? sb / 12.92 : Math.pow((sb + 0.055) / 1.055, 2.4); 465 466 outXyz[0] = 100 * (sr * 0.4124 + sg * 0.3576 + sb * 0.1805); 467 outXyz[1] = 100 * (sr * 0.2126 + sg * 0.7152 + sb * 0.0722); 468 outXyz[2] = 100 * (sr * 0.0193 + sg * 0.1192 + sb * 0.9505); 469 } 470 471 /** 472 * Converts a color from CIE XYZ to CIE Lab representation. 473 * 474 * <p>This method expects the XYZ representation to use the D65 illuminant and the CIE 475 * 2° Standard Observer (1931).</p> 476 * 477 * <ul> 478 * <li>outLab[0] is L [0 ...100)</li> 479 * <li>outLab[1] is a [-128...127)</li> 480 * <li>outLab[2] is b [-128...127)</li> 481 * </ul> 482 * 483 * @param x X component value [0...95.047) 484 * @param y Y component value [0...100) 485 * @param z Z component value [0...108.883) 486 * @param outLab 3-element array which holds the resulting Lab components 487 */ 488 public static void XYZToLAB(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x, 489 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y, 490 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z, 491 @NonNull double[] outLab) { 492 if (outLab.length != 3) { 493 throw new IllegalArgumentException("outLab must have a length of 3."); 494 } 495 x = pivotXyzComponent(x / XYZ_WHITE_REFERENCE_X); 496 y = pivotXyzComponent(y / XYZ_WHITE_REFERENCE_Y); 497 z = pivotXyzComponent(z / XYZ_WHITE_REFERENCE_Z); 498 outLab[0] = Math.max(0, 116 * y - 16); 499 outLab[1] = 500 * (x - y); 500 outLab[2] = 200 * (y - z); 501 } 502 503 /** 504 * Converts a color from CIE Lab to CIE XYZ representation. 505 * 506 * <p>The resulting XYZ representation will use the D65 illuminant and the CIE 507 * 2° Standard Observer (1931).</p> 508 * 509 * <ul> 510 * <li>outXyz[0] is X [0 ...95.047)</li> 511 * <li>outXyz[1] is Y [0...100)</li> 512 * <li>outXyz[2] is Z [0...108.883)</li> 513 * </ul> 514 * 515 * @param l L component value [0...100) 516 * @param a A component value [-128...127) 517 * @param b B component value [-128...127) 518 * @param outXyz 3-element array which holds the resulting XYZ components 519 */ 520 public static void LABToXYZ(@FloatRange(from = 0f, to = 100) final double l, 521 @FloatRange(from = -128, to = 127) final double a, 522 @FloatRange(from = -128, to = 127) final double b, 523 @NonNull double[] outXyz) { 524 final double fy = (l + 16) / 116; 525 final double fx = a / 500 + fy; 526 final double fz = fy - b / 200; 527 528 double tmp = Math.pow(fx, 3); 529 final double xr = tmp > XYZ_EPSILON ? tmp : (116 * fx - 16) / XYZ_KAPPA; 530 final double yr = l > XYZ_KAPPA * XYZ_EPSILON ? Math.pow(fy, 3) : l / XYZ_KAPPA; 531 532 tmp = Math.pow(fz, 3); 533 final double zr = tmp > XYZ_EPSILON ? tmp : (116 * fz - 16) / XYZ_KAPPA; 534 535 outXyz[0] = xr * XYZ_WHITE_REFERENCE_X; 536 outXyz[1] = yr * XYZ_WHITE_REFERENCE_Y; 537 outXyz[2] = zr * XYZ_WHITE_REFERENCE_Z; 538 } 539 540 /** 541 * Converts a color from CIE XYZ to its RGB representation. 542 * 543 * <p>This method expects the XYZ representation to use the D65 illuminant and the CIE 544 * 2° Standard Observer (1931).</p> 545 * 546 * @param x X component value [0...95.047) 547 * @param y Y component value [0...100) 548 * @param z Z component value [0...108.883) 549 * @return int containing the RGB representation 550 */ 551 @ColorInt XYZToColor(@loatRangefrom = 0f, to = XYZ_WHITE_REFERENCE_X) double x, @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y, @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z)552 public static int XYZToColor(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x, 553 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y, 554 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z) { 555 double r = (x * 3.2406 + y * -1.5372 + z * -0.4986) / 100; 556 double g = (x * -0.9689 + y * 1.8758 + z * 0.0415) / 100; 557 double b = (x * 0.0557 + y * -0.2040 + z * 1.0570) / 100; 558 559 r = r > 0.0031308 ? 1.055 * Math.pow(r, 1 / 2.4) - 0.055 : 12.92 * r; 560 g = g > 0.0031308 ? 1.055 * Math.pow(g, 1 / 2.4) - 0.055 : 12.92 * g; 561 b = b > 0.0031308 ? 1.055 * Math.pow(b, 1 / 2.4) - 0.055 : 12.92 * b; 562 563 return Color.rgb( 564 constrain((int) Math.round(r * 255), 0, 255), 565 constrain((int) Math.round(g * 255), 0, 255), 566 constrain((int) Math.round(b * 255), 0, 255)); 567 } 568 569 /** 570 * Converts a color from CIE Lab to its RGB representation. 571 * 572 * @param l L component value [0...100] 573 * @param a A component value [-128...127] 574 * @param b B component value [-128...127] 575 * @return int containing the RGB representation 576 */ 577 @ColorInt LABToColor(@loatRangefrom = 0f, to = 100) final double l, @FloatRange(from = -128, to = 127) final double a, @FloatRange(from = -128, to = 127) final double b)578 public static int LABToColor(@FloatRange(from = 0f, to = 100) final double l, 579 @FloatRange(from = -128, to = 127) final double a, 580 @FloatRange(from = -128, to = 127) final double b) { 581 final double[] result = getTempDouble3Array(); 582 LABToXYZ(l, a, b, result); 583 return XYZToColor(result[0], result[1], result[2]); 584 } 585 586 /** 587 * Returns the euclidean distance between two LAB colors. 588 */ distanceEuclidean(@onNull double[] labX, @NonNull double[] labY)589 public static double distanceEuclidean(@NonNull double[] labX, @NonNull double[] labY) { 590 return Math.sqrt(Math.pow(labX[0] - labY[0], 2) 591 + Math.pow(labX[1] - labY[1], 2) 592 + Math.pow(labX[2] - labY[2], 2)); 593 } 594 constrain(float amount, float low, float high)595 private static float constrain(float amount, float low, float high) { 596 return amount < low ? low : (amount > high ? high : amount); 597 } 598 constrain(int amount, int low, int high)599 private static int constrain(int amount, int low, int high) { 600 return amount < low ? low : (amount > high ? high : amount); 601 } 602 pivotXyzComponent(double component)603 private static double pivotXyzComponent(double component) { 604 return component > XYZ_EPSILON 605 ? Math.pow(component, 1 / 3.0) 606 : (XYZ_KAPPA * component + 16) / 116; 607 } 608 609 /** 610 * Blend between two ARGB colors using the given ratio. 611 * 612 * <p>A blend ratio of 0.0 will result in {@code color1}, 0.5 will give an even blend, 613 * 1.0 will result in {@code color2}.</p> 614 * 615 * @param color1 the first ARGB color 616 * @param color2 the second ARGB color 617 * @param ratio the blend ratio of {@code color1} to {@code color2} 618 */ 619 @ColorInt blendARGB(@olorInt int color1, @ColorInt int color2, @FloatRange(from = 0.0, to = 1.0) float ratio)620 public static int blendARGB(@ColorInt int color1, @ColorInt int color2, 621 @FloatRange(from = 0.0, to = 1.0) float ratio) { 622 final float inverseRatio = 1 - ratio; 623 float a = Color.alpha(color1) * inverseRatio + Color.alpha(color2) * ratio; 624 float r = Color.red(color1) * inverseRatio + Color.red(color2) * ratio; 625 float g = Color.green(color1) * inverseRatio + Color.green(color2) * ratio; 626 float b = Color.blue(color1) * inverseRatio + Color.blue(color2) * ratio; 627 return Color.argb((int) a, (int) r, (int) g, (int) b); 628 } 629 630 /** 631 * Blend between {@code hsl1} and {@code hsl2} using the given ratio. This will interpolate 632 * the hue using the shortest angle. 633 * 634 * <p>A blend ratio of 0.0 will result in {@code hsl1}, 0.5 will give an even blend, 635 * 1.0 will result in {@code hsl2}.</p> 636 * 637 * @param hsl1 3-element array which holds the first HSL color 638 * @param hsl2 3-element array which holds the second HSL color 639 * @param ratio the blend ratio of {@code hsl1} to {@code hsl2} 640 * @param outResult 3-element array which holds the resulting HSL components 641 */ blendHSL(@onNull float[] hsl1, @NonNull float[] hsl2, @FloatRange(from = 0.0, to = 1.0) float ratio, @NonNull float[] outResult)642 public static void blendHSL(@NonNull float[] hsl1, @NonNull float[] hsl2, 643 @FloatRange(from = 0.0, to = 1.0) float ratio, @NonNull float[] outResult) { 644 if (outResult.length != 3) { 645 throw new IllegalArgumentException("result must have a length of 3."); 646 } 647 final float inverseRatio = 1 - ratio; 648 // Since hue is circular we will need to interpolate carefully 649 outResult[0] = circularInterpolate(hsl1[0], hsl2[0], ratio); 650 outResult[1] = hsl1[1] * inverseRatio + hsl2[1] * ratio; 651 outResult[2] = hsl1[2] * inverseRatio + hsl2[2] * ratio; 652 } 653 654 /** 655 * Blend between two CIE-LAB colors using the given ratio. 656 * 657 * <p>A blend ratio of 0.0 will result in {@code lab1}, 0.5 will give an even blend, 658 * 1.0 will result in {@code lab2}.</p> 659 * 660 * @param lab1 3-element array which holds the first LAB color 661 * @param lab2 3-element array which holds the second LAB color 662 * @param ratio the blend ratio of {@code lab1} to {@code lab2} 663 * @param outResult 3-element array which holds the resulting LAB components 664 */ blendLAB(@onNull double[] lab1, @NonNull double[] lab2, @FloatRange(from = 0.0, to = 1.0) double ratio, @NonNull double[] outResult)665 public static void blendLAB(@NonNull double[] lab1, @NonNull double[] lab2, 666 @FloatRange(from = 0.0, to = 1.0) double ratio, @NonNull double[] outResult) { 667 if (outResult.length != 3) { 668 throw new IllegalArgumentException("outResult must have a length of 3."); 669 } 670 final double inverseRatio = 1 - ratio; 671 outResult[0] = lab1[0] * inverseRatio + lab2[0] * ratio; 672 outResult[1] = lab1[1] * inverseRatio + lab2[1] * ratio; 673 outResult[2] = lab1[2] * inverseRatio + lab2[2] * ratio; 674 } 675 circularInterpolate(float a, float b, float f)676 static float circularInterpolate(float a, float b, float f) { 677 if (Math.abs(b - a) > 180) { 678 if (b > a) { 679 a += 360; 680 } else { 681 b += 360; 682 } 683 } 684 return (a + ((b - a) * f)) % 360; 685 } 686 getTempDouble3Array()687 private static double[] getTempDouble3Array() { 688 double[] result = TEMP_ARRAY.get(); 689 if (result == null) { 690 result = new double[3]; 691 TEMP_ARRAY.set(result); 692 } 693 return result; 694 } 695 696 private interface ContrastCalculator { calculateContrast(int foreground, int background, int alpha)697 double calculateContrast(int foreground, int background, int alpha); 698 } 699 700 } 701