1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the decoder
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 // Jyrki Alakuijala (jyrki@google.com)
14
15 #include <assert.h>
16 #include <stdlib.h>
17
18 #include "src/dec/alphai_dec.h"
19 #include "src/dec/vp8li_dec.h"
20 #include "src/dsp/dsp.h"
21 #include "src/dsp/lossless.h"
22 #include "src/dsp/lossless_common.h"
23 #include "src/utils/huffman_utils.h"
24 #include "src/utils/utils.h"
25 #include "src/webp/format_constants.h"
26
27 #define NUM_ARGB_CACHE_ROWS 16
28
29 static const int kCodeLengthLiterals = 16;
30 static const int kCodeLengthRepeatCode = 16;
31 static const uint8_t kCodeLengthExtraBits[3] = { 2, 3, 7 };
32 static const uint8_t kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
33
34 // -----------------------------------------------------------------------------
35 // Five Huffman codes are used at each meta code:
36 // 1. green + length prefix codes + color cache codes,
37 // 2. alpha,
38 // 3. red,
39 // 4. blue, and,
40 // 5. distance prefix codes.
41 typedef enum {
42 GREEN = 0,
43 RED = 1,
44 BLUE = 2,
45 ALPHA = 3,
46 DIST = 4
47 } HuffIndex;
48
49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
50 NUM_LITERAL_CODES + NUM_LENGTH_CODES,
51 NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
52 NUM_DISTANCE_CODES
53 };
54
55 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
56 0, 1, 1, 1, 0
57 };
58
59 #define NUM_CODE_LENGTH_CODES 19
60 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
61 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
62 };
63
64 #define CODE_TO_PLANE_CODES 120
65 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
66 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
67 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
68 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
69 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
70 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
71 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
72 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
73 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
74 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
75 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
76 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
77 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
78 };
79
80 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
81 // and distance alphabets are constant (256 for red, blue and alpha, 40 for
82 // distance) and lookup table sizes for them in worst case are 630 and 410
83 // respectively. Size of green alphabet depends on color cache size and is equal
84 // to 256 (green component values) + 24 (length prefix values)
85 // + color_cache_size (between 0 and 2048).
86 // All values computed for 8-bit first level lookup with Mark Adler's tool:
87 // https://github.com/madler/zlib/blob/v1.2.5/examples/enough.c
88 #define FIXED_TABLE_SIZE (630 * 3 + 410)
89 static const uint16_t kTableSize[12] = {
90 FIXED_TABLE_SIZE + 654,
91 FIXED_TABLE_SIZE + 656,
92 FIXED_TABLE_SIZE + 658,
93 FIXED_TABLE_SIZE + 662,
94 FIXED_TABLE_SIZE + 670,
95 FIXED_TABLE_SIZE + 686,
96 FIXED_TABLE_SIZE + 718,
97 FIXED_TABLE_SIZE + 782,
98 FIXED_TABLE_SIZE + 912,
99 FIXED_TABLE_SIZE + 1168,
100 FIXED_TABLE_SIZE + 1680,
101 FIXED_TABLE_SIZE + 2704
102 };
103
VP8LSetError(VP8LDecoder * const dec,VP8StatusCode error)104 static int VP8LSetError(VP8LDecoder* const dec, VP8StatusCode error) {
105 // The oldest error reported takes precedence over the new one.
106 if (dec->status_ == VP8_STATUS_OK || dec->status_ == VP8_STATUS_SUSPENDED) {
107 dec->status_ = error;
108 }
109 return 0;
110 }
111
112 static int DecodeImageStream(int xsize, int ysize,
113 int is_level0,
114 VP8LDecoder* const dec,
115 uint32_t** const decoded_data);
116
117 //------------------------------------------------------------------------------
118
VP8LCheckSignature(const uint8_t * const data,size_t size)119 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
120 return (size >= VP8L_FRAME_HEADER_SIZE &&
121 data[0] == VP8L_MAGIC_BYTE &&
122 (data[4] >> 5) == 0); // version
123 }
124
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)125 static int ReadImageInfo(VP8LBitReader* const br,
126 int* const width, int* const height,
127 int* const has_alpha) {
128 if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
129 *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
130 *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
131 *has_alpha = VP8LReadBits(br, 1);
132 if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
133 return !br->eos_;
134 }
135
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)136 int VP8LGetInfo(const uint8_t* data, size_t data_size,
137 int* const width, int* const height, int* const has_alpha) {
138 if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
139 return 0; // not enough data
140 } else if (!VP8LCheckSignature(data, data_size)) {
141 return 0; // bad signature
142 } else {
143 int w, h, a;
144 VP8LBitReader br;
145 VP8LInitBitReader(&br, data, data_size);
146 if (!ReadImageInfo(&br, &w, &h, &a)) {
147 return 0;
148 }
149 if (width != NULL) *width = w;
150 if (height != NULL) *height = h;
151 if (has_alpha != NULL) *has_alpha = a;
152 return 1;
153 }
154 }
155
156 //------------------------------------------------------------------------------
157
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)158 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
159 VP8LBitReader* const br) {
160 int extra_bits, offset;
161 if (distance_symbol < 4) {
162 return distance_symbol + 1;
163 }
164 extra_bits = (distance_symbol - 2) >> 1;
165 offset = (2 + (distance_symbol & 1)) << extra_bits;
166 return offset + VP8LReadBits(br, extra_bits) + 1;
167 }
168
GetCopyLength(int length_symbol,VP8LBitReader * const br)169 static WEBP_INLINE int GetCopyLength(int length_symbol,
170 VP8LBitReader* const br) {
171 // Length and distance prefixes are encoded the same way.
172 return GetCopyDistance(length_symbol, br);
173 }
174
PlaneCodeToDistance(int xsize,int plane_code)175 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
176 if (plane_code > CODE_TO_PLANE_CODES) {
177 return plane_code - CODE_TO_PLANE_CODES;
178 } else {
179 const int dist_code = kCodeToPlane[plane_code - 1];
180 const int yoffset = dist_code >> 4;
181 const int xoffset = 8 - (dist_code & 0xf);
182 const int dist = yoffset * xsize + xoffset;
183 return (dist >= 1) ? dist : 1; // dist<1 can happen if xsize is very small
184 }
185 }
186
187 //------------------------------------------------------------------------------
188 // Decodes the next Huffman code from bit-stream.
189 // VP8LFillBitWindow(br) needs to be called at minimum every second call
190 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanCode * table,VP8LBitReader * const br)191 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
192 VP8LBitReader* const br) {
193 int nbits;
194 uint32_t val = VP8LPrefetchBits(br);
195 table += val & HUFFMAN_TABLE_MASK;
196 nbits = table->bits - HUFFMAN_TABLE_BITS;
197 if (nbits > 0) {
198 VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
199 val = VP8LPrefetchBits(br);
200 table += table->value;
201 table += val & ((1 << nbits) - 1);
202 }
203 VP8LSetBitPos(br, br->bit_pos_ + table->bits);
204 return table->value;
205 }
206
207 // Reads packed symbol depending on GREEN channel
208 #define BITS_SPECIAL_MARKER 0x100 // something large enough (and a bit-mask)
209 #define PACKED_NON_LITERAL_CODE 0 // must be < NUM_LITERAL_CODES
ReadPackedSymbols(const HTreeGroup * group,VP8LBitReader * const br,uint32_t * const dst)210 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
211 VP8LBitReader* const br,
212 uint32_t* const dst) {
213 const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
214 const HuffmanCode32 code = group->packed_table[val];
215 assert(group->use_packed_table);
216 if (code.bits < BITS_SPECIAL_MARKER) {
217 VP8LSetBitPos(br, br->bit_pos_ + code.bits);
218 *dst = code.value;
219 return PACKED_NON_LITERAL_CODE;
220 } else {
221 VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
222 assert(code.value >= NUM_LITERAL_CODES);
223 return code.value;
224 }
225 }
226
AccumulateHCode(HuffmanCode hcode,int shift,HuffmanCode32 * const huff)227 static int AccumulateHCode(HuffmanCode hcode, int shift,
228 HuffmanCode32* const huff) {
229 huff->bits += hcode.bits;
230 huff->value |= (uint32_t)hcode.value << shift;
231 assert(huff->bits <= HUFFMAN_TABLE_BITS);
232 return hcode.bits;
233 }
234
BuildPackedTable(HTreeGroup * const htree_group)235 static void BuildPackedTable(HTreeGroup* const htree_group) {
236 uint32_t code;
237 for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
238 uint32_t bits = code;
239 HuffmanCode32* const huff = &htree_group->packed_table[bits];
240 HuffmanCode hcode = htree_group->htrees[GREEN][bits];
241 if (hcode.value >= NUM_LITERAL_CODES) {
242 huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
243 huff->value = hcode.value;
244 } else {
245 huff->bits = 0;
246 huff->value = 0;
247 bits >>= AccumulateHCode(hcode, 8, huff);
248 bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
249 bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
250 bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
251 (void)bits;
252 }
253 }
254 }
255
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)256 static int ReadHuffmanCodeLengths(
257 VP8LDecoder* const dec, const int* const code_length_code_lengths,
258 int num_symbols, int* const code_lengths) {
259 int ok = 0;
260 VP8LBitReader* const br = &dec->br_;
261 int symbol;
262 int max_symbol;
263 int prev_code_len = DEFAULT_CODE_LENGTH;
264 HuffmanTables tables;
265
266 if (!VP8LHuffmanTablesAllocate(1 << LENGTHS_TABLE_BITS, &tables) ||
267 !VP8LBuildHuffmanTable(&tables, LENGTHS_TABLE_BITS,
268 code_length_code_lengths, NUM_CODE_LENGTH_CODES)) {
269 goto End;
270 }
271
272 if (VP8LReadBits(br, 1)) { // use length
273 const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
274 max_symbol = 2 + VP8LReadBits(br, length_nbits);
275 if (max_symbol > num_symbols) {
276 goto End;
277 }
278 } else {
279 max_symbol = num_symbols;
280 }
281
282 symbol = 0;
283 while (symbol < num_symbols) {
284 const HuffmanCode* p;
285 int code_len;
286 if (max_symbol-- == 0) break;
287 VP8LFillBitWindow(br);
288 p = &tables.curr_segment->start[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
289 VP8LSetBitPos(br, br->bit_pos_ + p->bits);
290 code_len = p->value;
291 if (code_len < kCodeLengthLiterals) {
292 code_lengths[symbol++] = code_len;
293 if (code_len != 0) prev_code_len = code_len;
294 } else {
295 const int use_prev = (code_len == kCodeLengthRepeatCode);
296 const int slot = code_len - kCodeLengthLiterals;
297 const int extra_bits = kCodeLengthExtraBits[slot];
298 const int repeat_offset = kCodeLengthRepeatOffsets[slot];
299 int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
300 if (symbol + repeat > num_symbols) {
301 goto End;
302 } else {
303 const int length = use_prev ? prev_code_len : 0;
304 while (repeat-- > 0) code_lengths[symbol++] = length;
305 }
306 }
307 }
308 ok = 1;
309
310 End:
311 VP8LHuffmanTablesDeallocate(&tables);
312 if (!ok) return VP8LSetError(dec, VP8_STATUS_BITSTREAM_ERROR);
313 return ok;
314 }
315
316 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
317 // tree.
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,int * const code_lengths,HuffmanTables * const table)318 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
319 int* const code_lengths,
320 HuffmanTables* const table) {
321 int ok = 0;
322 int size = 0;
323 VP8LBitReader* const br = &dec->br_;
324 const int simple_code = VP8LReadBits(br, 1);
325
326 memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
327
328 if (simple_code) { // Read symbols, codes & code lengths directly.
329 const int num_symbols = VP8LReadBits(br, 1) + 1;
330 const int first_symbol_len_code = VP8LReadBits(br, 1);
331 // The first code is either 1 bit or 8 bit code.
332 int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
333 code_lengths[symbol] = 1;
334 // The second code (if present), is always 8 bits long.
335 if (num_symbols == 2) {
336 symbol = VP8LReadBits(br, 8);
337 code_lengths[symbol] = 1;
338 }
339 ok = 1;
340 } else { // Decode Huffman-coded code lengths.
341 int i;
342 int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
343 const int num_codes = VP8LReadBits(br, 4) + 4;
344 assert(num_codes <= NUM_CODE_LENGTH_CODES);
345
346 for (i = 0; i < num_codes; ++i) {
347 code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
348 }
349 ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
350 code_lengths);
351 }
352
353 ok = ok && !br->eos_;
354 if (ok) {
355 size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
356 code_lengths, alphabet_size);
357 }
358 if (!ok || size == 0) {
359 return VP8LSetError(dec, VP8_STATUS_BITSTREAM_ERROR);
360 }
361 return size;
362 }
363
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)364 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
365 int color_cache_bits, int allow_recursion) {
366 int i;
367 VP8LBitReader* const br = &dec->br_;
368 VP8LMetadata* const hdr = &dec->hdr_;
369 uint32_t* huffman_image = NULL;
370 HTreeGroup* htree_groups = NULL;
371 HuffmanTables* huffman_tables = &hdr->huffman_tables_;
372 int num_htree_groups = 1;
373 int num_htree_groups_max = 1;
374 int* mapping = NULL;
375 int ok = 0;
376
377 // Check the table has been 0 initialized (through InitMetadata).
378 assert(huffman_tables->root.start == NULL);
379 assert(huffman_tables->curr_segment == NULL);
380
381 if (allow_recursion && VP8LReadBits(br, 1)) {
382 // use meta Huffman codes.
383 const int huffman_precision =
384 MIN_HUFFMAN_BITS + VP8LReadBits(br, NUM_HUFFMAN_BITS);
385 const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
386 const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
387 const int huffman_pixs = huffman_xsize * huffman_ysize;
388 if (!DecodeImageStream(huffman_xsize, huffman_ysize, /*is_level0=*/0, dec,
389 &huffman_image)) {
390 goto Error;
391 }
392 hdr->huffman_subsample_bits_ = huffman_precision;
393 for (i = 0; i < huffman_pixs; ++i) {
394 // The huffman data is stored in red and green bytes.
395 const int group = (huffman_image[i] >> 8) & 0xffff;
396 huffman_image[i] = group;
397 if (group >= num_htree_groups_max) {
398 num_htree_groups_max = group + 1;
399 }
400 }
401 // Check the validity of num_htree_groups_max. If it seems too big, use a
402 // smaller value for later. This will prevent big memory allocations to end
403 // up with a bad bitstream anyway.
404 // The value of 1000 is totally arbitrary. We know that num_htree_groups_max
405 // is smaller than (1 << 16) and should be smaller than the number of pixels
406 // (though the format allows it to be bigger).
407 if (num_htree_groups_max > 1000 || num_htree_groups_max > xsize * ysize) {
408 // Create a mapping from the used indices to the minimal set of used
409 // values [0, num_htree_groups)
410 mapping = (int*)WebPSafeMalloc(num_htree_groups_max, sizeof(*mapping));
411 if (mapping == NULL) {
412 VP8LSetError(dec, VP8_STATUS_OUT_OF_MEMORY);
413 goto Error;
414 }
415 // -1 means a value is unmapped, and therefore unused in the Huffman
416 // image.
417 memset(mapping, 0xff, num_htree_groups_max * sizeof(*mapping));
418 for (num_htree_groups = 0, i = 0; i < huffman_pixs; ++i) {
419 // Get the current mapping for the group and remap the Huffman image.
420 int* const mapped_group = &mapping[huffman_image[i]];
421 if (*mapped_group == -1) *mapped_group = num_htree_groups++;
422 huffman_image[i] = *mapped_group;
423 }
424 } else {
425 num_htree_groups = num_htree_groups_max;
426 }
427 }
428
429 if (br->eos_) goto Error;
430
431 if (!ReadHuffmanCodesHelper(color_cache_bits, num_htree_groups,
432 num_htree_groups_max, mapping, dec,
433 huffman_tables, &htree_groups)) {
434 goto Error;
435 }
436 ok = 1;
437
438 // All OK. Finalize pointers.
439 hdr->huffman_image_ = huffman_image;
440 hdr->num_htree_groups_ = num_htree_groups;
441 hdr->htree_groups_ = htree_groups;
442
443 Error:
444 WebPSafeFree(mapping);
445 if (!ok) {
446 WebPSafeFree(huffman_image);
447 VP8LHuffmanTablesDeallocate(huffman_tables);
448 VP8LHtreeGroupsFree(htree_groups);
449 }
450 return ok;
451 }
452
ReadHuffmanCodesHelper(int color_cache_bits,int num_htree_groups,int num_htree_groups_max,const int * const mapping,VP8LDecoder * const dec,HuffmanTables * const huffman_tables,HTreeGroup ** const htree_groups)453 int ReadHuffmanCodesHelper(int color_cache_bits, int num_htree_groups,
454 int num_htree_groups_max, const int* const mapping,
455 VP8LDecoder* const dec,
456 HuffmanTables* const huffman_tables,
457 HTreeGroup** const htree_groups) {
458 int i, j, ok = 0;
459 const int max_alphabet_size =
460 kAlphabetSize[0] + ((color_cache_bits > 0) ? 1 << color_cache_bits : 0);
461 const int table_size = kTableSize[color_cache_bits];
462 int* code_lengths = NULL;
463
464 if ((mapping == NULL && num_htree_groups != num_htree_groups_max) ||
465 num_htree_groups > num_htree_groups_max) {
466 goto Error;
467 }
468
469 code_lengths =
470 (int*)WebPSafeCalloc((uint64_t)max_alphabet_size, sizeof(*code_lengths));
471 *htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
472
473 if (*htree_groups == NULL || code_lengths == NULL ||
474 !VP8LHuffmanTablesAllocate(num_htree_groups * table_size,
475 huffman_tables)) {
476 VP8LSetError(dec, VP8_STATUS_OUT_OF_MEMORY);
477 goto Error;
478 }
479
480 for (i = 0; i < num_htree_groups_max; ++i) {
481 // If the index "i" is unused in the Huffman image, just make sure the
482 // coefficients are valid but do not store them.
483 if (mapping != NULL && mapping[i] == -1) {
484 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
485 int alphabet_size = kAlphabetSize[j];
486 if (j == 0 && color_cache_bits > 0) {
487 alphabet_size += (1 << color_cache_bits);
488 }
489 // Passing in NULL so that nothing gets filled.
490 if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, NULL)) {
491 goto Error;
492 }
493 }
494 } else {
495 HTreeGroup* const htree_group =
496 &(*htree_groups)[(mapping == NULL) ? i : mapping[i]];
497 HuffmanCode** const htrees = htree_group->htrees;
498 int size;
499 int total_size = 0;
500 int is_trivial_literal = 1;
501 int max_bits = 0;
502 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
503 int alphabet_size = kAlphabetSize[j];
504 if (j == 0 && color_cache_bits > 0) {
505 alphabet_size += (1 << color_cache_bits);
506 }
507 size =
508 ReadHuffmanCode(alphabet_size, dec, code_lengths, huffman_tables);
509 htrees[j] = huffman_tables->curr_segment->curr_table;
510 if (size == 0) {
511 goto Error;
512 }
513 if (is_trivial_literal && kLiteralMap[j] == 1) {
514 is_trivial_literal = (htrees[j]->bits == 0);
515 }
516 total_size += htrees[j]->bits;
517 huffman_tables->curr_segment->curr_table += size;
518 if (j <= ALPHA) {
519 int local_max_bits = code_lengths[0];
520 int k;
521 for (k = 1; k < alphabet_size; ++k) {
522 if (code_lengths[k] > local_max_bits) {
523 local_max_bits = code_lengths[k];
524 }
525 }
526 max_bits += local_max_bits;
527 }
528 }
529 htree_group->is_trivial_literal = is_trivial_literal;
530 htree_group->is_trivial_code = 0;
531 if (is_trivial_literal) {
532 const int red = htrees[RED][0].value;
533 const int blue = htrees[BLUE][0].value;
534 const int alpha = htrees[ALPHA][0].value;
535 htree_group->literal_arb = ((uint32_t)alpha << 24) | (red << 16) | blue;
536 if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
537 htree_group->is_trivial_code = 1;
538 htree_group->literal_arb |= htrees[GREEN][0].value << 8;
539 }
540 }
541 htree_group->use_packed_table =
542 !htree_group->is_trivial_code && (max_bits < HUFFMAN_PACKED_BITS);
543 if (htree_group->use_packed_table) BuildPackedTable(htree_group);
544 }
545 }
546 ok = 1;
547
548 Error:
549 WebPSafeFree(code_lengths);
550 if (!ok) {
551 VP8LHuffmanTablesDeallocate(huffman_tables);
552 VP8LHtreeGroupsFree(*htree_groups);
553 *htree_groups = NULL;
554 }
555 return ok;
556 }
557
558 //------------------------------------------------------------------------------
559 // Scaling.
560
561 #if !defined(WEBP_REDUCE_SIZE)
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)562 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
563 const int num_channels = 4;
564 const int in_width = io->mb_w;
565 const int out_width = io->scaled_width;
566 const int in_height = io->mb_h;
567 const int out_height = io->scaled_height;
568 const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
569 rescaler_t* work; // Rescaler work area.
570 const uint64_t scaled_data_size = (uint64_t)out_width;
571 uint32_t* scaled_data; // Temporary storage for scaled BGRA data.
572 const uint64_t memory_size = sizeof(*dec->rescaler) +
573 work_size * sizeof(*work) +
574 scaled_data_size * sizeof(*scaled_data);
575 uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
576 if (memory == NULL) {
577 return VP8LSetError(dec, VP8_STATUS_OUT_OF_MEMORY);
578 }
579 assert(dec->rescaler_memory == NULL);
580 dec->rescaler_memory = memory;
581
582 dec->rescaler = (WebPRescaler*)memory;
583 memory += sizeof(*dec->rescaler);
584 work = (rescaler_t*)memory;
585 memory += work_size * sizeof(*work);
586 scaled_data = (uint32_t*)memory;
587
588 if (!WebPRescalerInit(dec->rescaler, in_width, in_height,
589 (uint8_t*)scaled_data, out_width, out_height,
590 0, num_channels, work)) {
591 return 0;
592 }
593 return 1;
594 }
595 #endif // WEBP_REDUCE_SIZE
596
597 //------------------------------------------------------------------------------
598 // Export to ARGB
599
600 #if !defined(WEBP_REDUCE_SIZE)
601
602 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)603 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
604 int rgba_stride, uint8_t* const rgba) {
605 uint32_t* const src = (uint32_t*)rescaler->dst;
606 uint8_t* dst = rgba;
607 const int dst_width = rescaler->dst_width;
608 int num_lines_out = 0;
609 while (WebPRescalerHasPendingOutput(rescaler)) {
610 WebPRescalerExportRow(rescaler);
611 WebPMultARGBRow(src, dst_width, 1);
612 VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
613 dst += rgba_stride;
614 ++num_lines_out;
615 }
616 return num_lines_out;
617 }
618
619 // Emit scaled rows.
EmitRescaledRowsRGBA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h,uint8_t * const out,int out_stride)620 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
621 uint8_t* in, int in_stride, int mb_h,
622 uint8_t* const out, int out_stride) {
623 const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
624 int num_lines_in = 0;
625 int num_lines_out = 0;
626 while (num_lines_in < mb_h) {
627 uint8_t* const row_in = in + (uint64_t)num_lines_in * in_stride;
628 uint8_t* const row_out = out + (uint64_t)num_lines_out * out_stride;
629 const int lines_left = mb_h - num_lines_in;
630 const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
631 int lines_imported;
632 assert(needed_lines > 0 && needed_lines <= lines_left);
633 WebPMultARGBRows(row_in, in_stride,
634 dec->rescaler->src_width, needed_lines, 0);
635 lines_imported =
636 WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
637 assert(lines_imported == needed_lines);
638 num_lines_in += lines_imported;
639 num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
640 }
641 return num_lines_out;
642 }
643
644 #endif // WEBP_REDUCE_SIZE
645
646 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint8_t * row_in,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)647 static int EmitRows(WEBP_CSP_MODE colorspace,
648 const uint8_t* row_in, int in_stride,
649 int mb_w, int mb_h,
650 uint8_t* const out, int out_stride) {
651 int lines = mb_h;
652 uint8_t* row_out = out;
653 while (lines-- > 0) {
654 VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
655 row_in += in_stride;
656 row_out += out_stride;
657 }
658 return mb_h; // Num rows out == num rows in.
659 }
660
661 //------------------------------------------------------------------------------
662 // Export to YUVA
663
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)664 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
665 const WebPDecBuffer* const output) {
666 const WebPYUVABuffer* const buf = &output->u.YUVA;
667
668 // first, the luma plane
669 WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
670
671 // then U/V planes
672 {
673 uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
674 uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
675 // even lines: store values
676 // odd lines: average with previous values
677 WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
678 }
679 // Lastly, store alpha if needed.
680 if (buf->a != NULL) {
681 uint8_t* const a = buf->a + y_pos * buf->a_stride;
682 #if defined(WORDS_BIGENDIAN)
683 WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
684 #else
685 WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
686 #endif
687 }
688 }
689
ExportYUVA(const VP8LDecoder * const dec,int y_pos)690 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
691 WebPRescaler* const rescaler = dec->rescaler;
692 uint32_t* const src = (uint32_t*)rescaler->dst;
693 const int dst_width = rescaler->dst_width;
694 int num_lines_out = 0;
695 while (WebPRescalerHasPendingOutput(rescaler)) {
696 WebPRescalerExportRow(rescaler);
697 WebPMultARGBRow(src, dst_width, 1);
698 ConvertToYUVA(src, dst_width, y_pos, dec->output_);
699 ++y_pos;
700 ++num_lines_out;
701 }
702 return num_lines_out;
703 }
704
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h)705 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
706 uint8_t* in, int in_stride, int mb_h) {
707 int num_lines_in = 0;
708 int y_pos = dec->last_out_row_;
709 while (num_lines_in < mb_h) {
710 const int lines_left = mb_h - num_lines_in;
711 const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
712 int lines_imported;
713 WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
714 lines_imported =
715 WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
716 assert(lines_imported == needed_lines);
717 num_lines_in += lines_imported;
718 in += needed_lines * in_stride;
719 y_pos += ExportYUVA(dec, y_pos);
720 }
721 return y_pos;
722 }
723
EmitRowsYUVA(const VP8LDecoder * const dec,const uint8_t * in,int in_stride,int mb_w,int num_rows)724 static int EmitRowsYUVA(const VP8LDecoder* const dec,
725 const uint8_t* in, int in_stride,
726 int mb_w, int num_rows) {
727 int y_pos = dec->last_out_row_;
728 while (num_rows-- > 0) {
729 ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
730 in += in_stride;
731 ++y_pos;
732 }
733 return y_pos;
734 }
735
736 //------------------------------------------------------------------------------
737 // Cropping.
738
739 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
740 // crop options. Also updates the input data pointer, so that it points to the
741 // start of the cropped window. Note that pixels are in ARGB format even if
742 // 'in_data' is uint8_t*.
743 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,uint8_t ** const in_data,int pixel_stride)744 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
745 uint8_t** const in_data, int pixel_stride) {
746 assert(y_start < y_end);
747 assert(io->crop_left < io->crop_right);
748 if (y_end > io->crop_bottom) {
749 y_end = io->crop_bottom; // make sure we don't overflow on last row.
750 }
751 if (y_start < io->crop_top) {
752 const int delta = io->crop_top - y_start;
753 y_start = io->crop_top;
754 *in_data += delta * pixel_stride;
755 }
756 if (y_start >= y_end) return 0; // Crop window is empty.
757
758 *in_data += io->crop_left * sizeof(uint32_t);
759
760 io->mb_y = y_start - io->crop_top;
761 io->mb_w = io->crop_right - io->crop_left;
762 io->mb_h = y_end - y_start;
763 return 1; // Non-empty crop window.
764 }
765
766 //------------------------------------------------------------------------------
767
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)768 static WEBP_INLINE int GetMetaIndex(
769 const uint32_t* const image, int xsize, int bits, int x, int y) {
770 if (bits == 0) return 0;
771 return image[xsize * (y >> bits) + (x >> bits)];
772 }
773
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)774 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
775 int x, int y) {
776 const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
777 hdr->huffman_subsample_bits_, x, y);
778 assert(meta_index < hdr->num_htree_groups_);
779 return hdr->htree_groups_ + meta_index;
780 }
781
782 //------------------------------------------------------------------------------
783 // Main loop, with custom row-processing function
784
785 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
786
ApplyInverseTransforms(VP8LDecoder * const dec,int start_row,int num_rows,const uint32_t * const rows)787 static void ApplyInverseTransforms(VP8LDecoder* const dec,
788 int start_row, int num_rows,
789 const uint32_t* const rows) {
790 int n = dec->next_transform_;
791 const int cache_pixs = dec->width_ * num_rows;
792 const int end_row = start_row + num_rows;
793 const uint32_t* rows_in = rows;
794 uint32_t* const rows_out = dec->argb_cache_;
795
796 // Inverse transforms.
797 while (n-- > 0) {
798 VP8LTransform* const transform = &dec->transforms_[n];
799 VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
800 rows_in = rows_out;
801 }
802 if (rows_in != rows_out) {
803 // No transform called, hence just copy.
804 memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
805 }
806 }
807
808 // Processes (transforms, scales & color-converts) the rows decoded after the
809 // last call.
ProcessRows(VP8LDecoder * const dec,int row)810 static void ProcessRows(VP8LDecoder* const dec, int row) {
811 const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
812 const int num_rows = row - dec->last_row_;
813
814 assert(row <= dec->io_->crop_bottom);
815 // We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size
816 // of argb_cache_), but we currently don't need more than that.
817 assert(num_rows <= NUM_ARGB_CACHE_ROWS);
818 if (num_rows > 0) { // Emit output.
819 VP8Io* const io = dec->io_;
820 uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
821 const int in_stride = io->width * sizeof(uint32_t); // in unit of RGBA
822 ApplyInverseTransforms(dec, dec->last_row_, num_rows, rows);
823 if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
824 // Nothing to output (this time).
825 } else {
826 const WebPDecBuffer* const output = dec->output_;
827 if (WebPIsRGBMode(output->colorspace)) { // convert to RGBA
828 const WebPRGBABuffer* const buf = &output->u.RGBA;
829 uint8_t* const rgba =
830 buf->rgba + (int64_t)dec->last_out_row_ * buf->stride;
831 const int num_rows_out =
832 #if !defined(WEBP_REDUCE_SIZE)
833 io->use_scaling ?
834 EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
835 rgba, buf->stride) :
836 #endif // WEBP_REDUCE_SIZE
837 EmitRows(output->colorspace, rows_data, in_stride,
838 io->mb_w, io->mb_h, rgba, buf->stride);
839 // Update 'last_out_row_'.
840 dec->last_out_row_ += num_rows_out;
841 } else { // convert to YUVA
842 dec->last_out_row_ = io->use_scaling ?
843 EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
844 EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
845 }
846 assert(dec->last_out_row_ <= output->height);
847 }
848 }
849
850 // Update 'last_row_'.
851 dec->last_row_ = row;
852 assert(dec->last_row_ <= dec->height_);
853 }
854
855 // Row-processing for the special case when alpha data contains only one
856 // transform (color indexing), and trivial non-green literals.
Is8bOptimizable(const VP8LMetadata * const hdr)857 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
858 int i;
859 if (hdr->color_cache_size_ > 0) return 0;
860 // When the Huffman tree contains only one symbol, we can skip the
861 // call to ReadSymbol() for red/blue/alpha channels.
862 for (i = 0; i < hdr->num_htree_groups_; ++i) {
863 HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
864 if (htrees[RED][0].bits > 0) return 0;
865 if (htrees[BLUE][0].bits > 0) return 0;
866 if (htrees[ALPHA][0].bits > 0) return 0;
867 }
868 return 1;
869 }
870
AlphaApplyFilter(ALPHDecoder * const alph_dec,int first_row,int last_row,uint8_t * out,int stride)871 static void AlphaApplyFilter(ALPHDecoder* const alph_dec,
872 int first_row, int last_row,
873 uint8_t* out, int stride) {
874 if (alph_dec->filter_ != WEBP_FILTER_NONE) {
875 int y;
876 const uint8_t* prev_line = alph_dec->prev_line_;
877 assert(WebPUnfilters[alph_dec->filter_] != NULL);
878 for (y = first_row; y < last_row; ++y) {
879 WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride);
880 prev_line = out;
881 out += stride;
882 }
883 alph_dec->prev_line_ = prev_line;
884 }
885 }
886
ExtractPalettedAlphaRows(VP8LDecoder * const dec,int last_row)887 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) {
888 // For vertical and gradient filtering, we need to decode the part above the
889 // crop_top row, in order to have the correct spatial predictors.
890 ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
891 const int top_row =
892 (alph_dec->filter_ == WEBP_FILTER_NONE ||
893 alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top
894 : dec->last_row_;
895 const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_;
896 assert(last_row <= dec->io_->crop_bottom);
897 if (last_row > first_row) {
898 // Special method for paletted alpha data. We only process the cropped area.
899 const int width = dec->io_->width;
900 uint8_t* out = alph_dec->output_ + width * first_row;
901 const uint8_t* const in =
902 (uint8_t*)dec->pixels_ + dec->width_ * first_row;
903 VP8LTransform* const transform = &dec->transforms_[0];
904 assert(dec->next_transform_ == 1);
905 assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
906 VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row,
907 in, out);
908 AlphaApplyFilter(alph_dec, first_row, last_row, out, width);
909 }
910 dec->last_row_ = dec->last_out_row_ = last_row;
911 }
912
913 //------------------------------------------------------------------------------
914 // Helper functions for fast pattern copy (8b and 32b)
915
916 // cyclic rotation of pattern word
Rotate8b(uint32_t V)917 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
918 #if defined(WORDS_BIGENDIAN)
919 return ((V & 0xff000000u) >> 24) | (V << 8);
920 #else
921 return ((V & 0xffu) << 24) | (V >> 8);
922 #endif
923 }
924
925 // copy 1, 2 or 4-bytes pattern
CopySmallPattern8b(const uint8_t * src,uint8_t * dst,int length,uint32_t pattern)926 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
927 int length, uint32_t pattern) {
928 int i;
929 // align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
930 while ((uintptr_t)dst & 3) {
931 *dst++ = *src++;
932 pattern = Rotate8b(pattern);
933 --length;
934 }
935 // Copy the pattern 4 bytes at a time.
936 for (i = 0; i < (length >> 2); ++i) {
937 ((uint32_t*)dst)[i] = pattern;
938 }
939 // Finish with left-overs. 'pattern' is still correctly positioned,
940 // so no Rotate8b() call is needed.
941 for (i <<= 2; i < length; ++i) {
942 dst[i] = src[i];
943 }
944 }
945
CopyBlock8b(uint8_t * const dst,int dist,int length)946 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
947 const uint8_t* src = dst - dist;
948 if (length >= 8) {
949 uint32_t pattern = 0;
950 switch (dist) {
951 case 1:
952 pattern = src[0];
953 #if defined(__arm__) || defined(_M_ARM) // arm doesn't like multiply that much
954 pattern |= pattern << 8;
955 pattern |= pattern << 16;
956 #elif defined(WEBP_USE_MIPS_DSP_R2)
957 __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
958 #else
959 pattern = 0x01010101u * pattern;
960 #endif
961 break;
962 case 2:
963 #if !defined(WORDS_BIGENDIAN)
964 memcpy(&pattern, src, sizeof(uint16_t));
965 #else
966 pattern = ((uint32_t)src[0] << 8) | src[1];
967 #endif
968 #if defined(__arm__) || defined(_M_ARM)
969 pattern |= pattern << 16;
970 #elif defined(WEBP_USE_MIPS_DSP_R2)
971 __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
972 #else
973 pattern = 0x00010001u * pattern;
974 #endif
975 break;
976 case 4:
977 memcpy(&pattern, src, sizeof(uint32_t));
978 break;
979 default:
980 goto Copy;
981 }
982 CopySmallPattern8b(src, dst, length, pattern);
983 return;
984 }
985 Copy:
986 if (dist >= length) { // no overlap -> use memcpy()
987 memcpy(dst, src, length * sizeof(*dst));
988 } else {
989 int i;
990 for (i = 0; i < length; ++i) dst[i] = src[i];
991 }
992 }
993
994 // copy pattern of 1 or 2 uint32_t's
CopySmallPattern32b(const uint32_t * src,uint32_t * dst,int length,uint64_t pattern)995 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
996 uint32_t* dst,
997 int length, uint64_t pattern) {
998 int i;
999 if ((uintptr_t)dst & 4) { // Align 'dst' to 8-bytes boundary.
1000 *dst++ = *src++;
1001 pattern = (pattern >> 32) | (pattern << 32);
1002 --length;
1003 }
1004 assert(0 == ((uintptr_t)dst & 7));
1005 for (i = 0; i < (length >> 1); ++i) {
1006 ((uint64_t*)dst)[i] = pattern; // Copy the pattern 8 bytes at a time.
1007 }
1008 if (length & 1) { // Finish with left-over.
1009 dst[i << 1] = src[i << 1];
1010 }
1011 }
1012
CopyBlock32b(uint32_t * const dst,int dist,int length)1013 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
1014 int dist, int length) {
1015 const uint32_t* const src = dst - dist;
1016 if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
1017 uint64_t pattern;
1018 if (dist == 1) {
1019 pattern = (uint64_t)src[0];
1020 pattern |= pattern << 32;
1021 } else {
1022 memcpy(&pattern, src, sizeof(pattern));
1023 }
1024 CopySmallPattern32b(src, dst, length, pattern);
1025 } else if (dist >= length) { // no overlap
1026 memcpy(dst, src, length * sizeof(*dst));
1027 } else {
1028 int i;
1029 for (i = 0; i < length; ++i) dst[i] = src[i];
1030 }
1031 }
1032
1033 //------------------------------------------------------------------------------
1034
DecodeAlphaData(VP8LDecoder * const dec,uint8_t * const data,int width,int height,int last_row)1035 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
1036 int width, int height, int last_row) {
1037 int ok = 1;
1038 int row = dec->last_pixel_ / width;
1039 int col = dec->last_pixel_ % width;
1040 VP8LBitReader* const br = &dec->br_;
1041 VP8LMetadata* const hdr = &dec->hdr_;
1042 int pos = dec->last_pixel_; // current position
1043 const int end = width * height; // End of data
1044 const int last = width * last_row; // Last pixel to decode
1045 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1046 const int mask = hdr->huffman_mask_;
1047 const HTreeGroup* htree_group =
1048 (pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
1049 assert(pos <= end);
1050 assert(last_row <= height);
1051 assert(Is8bOptimizable(hdr));
1052
1053 while (!br->eos_ && pos < last) {
1054 int code;
1055 // Only update when changing tile.
1056 if ((col & mask) == 0) {
1057 htree_group = GetHtreeGroupForPos(hdr, col, row);
1058 }
1059 assert(htree_group != NULL);
1060 VP8LFillBitWindow(br);
1061 code = ReadSymbol(htree_group->htrees[GREEN], br);
1062 if (code < NUM_LITERAL_CODES) { // Literal
1063 data[pos] = code;
1064 ++pos;
1065 ++col;
1066 if (col >= width) {
1067 col = 0;
1068 ++row;
1069 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1070 ExtractPalettedAlphaRows(dec, row);
1071 }
1072 }
1073 } else if (code < len_code_limit) { // Backward reference
1074 int dist_code, dist;
1075 const int length_sym = code - NUM_LITERAL_CODES;
1076 const int length = GetCopyLength(length_sym, br);
1077 const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1078 VP8LFillBitWindow(br);
1079 dist_code = GetCopyDistance(dist_symbol, br);
1080 dist = PlaneCodeToDistance(width, dist_code);
1081 if (pos >= dist && end - pos >= length) {
1082 CopyBlock8b(data + pos, dist, length);
1083 } else {
1084 ok = 0;
1085 goto End;
1086 }
1087 pos += length;
1088 col += length;
1089 while (col >= width) {
1090 col -= width;
1091 ++row;
1092 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1093 ExtractPalettedAlphaRows(dec, row);
1094 }
1095 }
1096 if (pos < last && (col & mask)) {
1097 htree_group = GetHtreeGroupForPos(hdr, col, row);
1098 }
1099 } else { // Not reached
1100 ok = 0;
1101 goto End;
1102 }
1103 br->eos_ = VP8LIsEndOfStream(br);
1104 }
1105 // Process the remaining rows corresponding to last row-block.
1106 ExtractPalettedAlphaRows(dec, row > last_row ? last_row : row);
1107
1108 End:
1109 br->eos_ = VP8LIsEndOfStream(br);
1110 if (!ok || (br->eos_ && pos < end)) {
1111 return VP8LSetError(
1112 dec, br->eos_ ? VP8_STATUS_SUSPENDED : VP8_STATUS_BITSTREAM_ERROR);
1113 }
1114 dec->last_pixel_ = pos;
1115 return ok;
1116 }
1117
SaveState(VP8LDecoder * const dec,int last_pixel)1118 static void SaveState(VP8LDecoder* const dec, int last_pixel) {
1119 assert(dec->incremental_);
1120 dec->saved_br_ = dec->br_;
1121 dec->saved_last_pixel_ = last_pixel;
1122 if (dec->hdr_.color_cache_size_ > 0) {
1123 VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_);
1124 }
1125 }
1126
RestoreState(VP8LDecoder * const dec)1127 static void RestoreState(VP8LDecoder* const dec) {
1128 assert(dec->br_.eos_);
1129 dec->status_ = VP8_STATUS_SUSPENDED;
1130 dec->br_ = dec->saved_br_;
1131 dec->last_pixel_ = dec->saved_last_pixel_;
1132 if (dec->hdr_.color_cache_size_ > 0) {
1133 VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_);
1134 }
1135 }
1136
1137 #define SYNC_EVERY_N_ROWS 8 // minimum number of rows between check-points
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,int last_row,ProcessRowsFunc process_func)1138 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
1139 int width, int height, int last_row,
1140 ProcessRowsFunc process_func) {
1141 int row = dec->last_pixel_ / width;
1142 int col = dec->last_pixel_ % width;
1143 VP8LBitReader* const br = &dec->br_;
1144 VP8LMetadata* const hdr = &dec->hdr_;
1145 uint32_t* src = data + dec->last_pixel_;
1146 uint32_t* last_cached = src;
1147 uint32_t* const src_end = data + width * height; // End of data
1148 uint32_t* const src_last = data + width * last_row; // Last pixel to decode
1149 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1150 const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
1151 int next_sync_row = dec->incremental_ ? row : 1 << 24;
1152 VP8LColorCache* const color_cache =
1153 (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
1154 const int mask = hdr->huffman_mask_;
1155 const HTreeGroup* htree_group =
1156 (src < src_last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
1157 assert(dec->last_row_ < last_row);
1158 assert(src_last <= src_end);
1159
1160 while (src < src_last) {
1161 int code;
1162 if (row >= next_sync_row) {
1163 SaveState(dec, (int)(src - data));
1164 next_sync_row = row + SYNC_EVERY_N_ROWS;
1165 }
1166 // Only update when changing tile. Note we could use this test:
1167 // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
1168 // but that's actually slower and needs storing the previous col/row.
1169 if ((col & mask) == 0) {
1170 htree_group = GetHtreeGroupForPos(hdr, col, row);
1171 }
1172 assert(htree_group != NULL);
1173 if (htree_group->is_trivial_code) {
1174 *src = htree_group->literal_arb;
1175 goto AdvanceByOne;
1176 }
1177 VP8LFillBitWindow(br);
1178 if (htree_group->use_packed_table) {
1179 code = ReadPackedSymbols(htree_group, br, src);
1180 if (VP8LIsEndOfStream(br)) break;
1181 if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
1182 } else {
1183 code = ReadSymbol(htree_group->htrees[GREEN], br);
1184 }
1185 if (VP8LIsEndOfStream(br)) break;
1186 if (code < NUM_LITERAL_CODES) { // Literal
1187 if (htree_group->is_trivial_literal) {
1188 *src = htree_group->literal_arb | (code << 8);
1189 } else {
1190 int red, blue, alpha;
1191 red = ReadSymbol(htree_group->htrees[RED], br);
1192 VP8LFillBitWindow(br);
1193 blue = ReadSymbol(htree_group->htrees[BLUE], br);
1194 alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
1195 if (VP8LIsEndOfStream(br)) break;
1196 *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
1197 }
1198 AdvanceByOne:
1199 ++src;
1200 ++col;
1201 if (col >= width) {
1202 col = 0;
1203 ++row;
1204 if (process_func != NULL) {
1205 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1206 process_func(dec, row);
1207 }
1208 }
1209 if (color_cache != NULL) {
1210 while (last_cached < src) {
1211 VP8LColorCacheInsert(color_cache, *last_cached++);
1212 }
1213 }
1214 }
1215 } else if (code < len_code_limit) { // Backward reference
1216 int dist_code, dist;
1217 const int length_sym = code - NUM_LITERAL_CODES;
1218 const int length = GetCopyLength(length_sym, br);
1219 const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1220 VP8LFillBitWindow(br);
1221 dist_code = GetCopyDistance(dist_symbol, br);
1222 dist = PlaneCodeToDistance(width, dist_code);
1223
1224 if (VP8LIsEndOfStream(br)) break;
1225 if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
1226 goto Error;
1227 } else {
1228 CopyBlock32b(src, dist, length);
1229 }
1230 src += length;
1231 col += length;
1232 while (col >= width) {
1233 col -= width;
1234 ++row;
1235 if (process_func != NULL) {
1236 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1237 process_func(dec, row);
1238 }
1239 }
1240 }
1241 // Because of the check done above (before 'src' was incremented by
1242 // 'length'), the following holds true.
1243 assert(src <= src_end);
1244 if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
1245 if (color_cache != NULL) {
1246 while (last_cached < src) {
1247 VP8LColorCacheInsert(color_cache, *last_cached++);
1248 }
1249 }
1250 } else if (code < color_cache_limit) { // Color cache
1251 const int key = code - len_code_limit;
1252 assert(color_cache != NULL);
1253 while (last_cached < src) {
1254 VP8LColorCacheInsert(color_cache, *last_cached++);
1255 }
1256 *src = VP8LColorCacheLookup(color_cache, key);
1257 goto AdvanceByOne;
1258 } else { // Not reached
1259 goto Error;
1260 }
1261 }
1262
1263 br->eos_ = VP8LIsEndOfStream(br);
1264 // In incremental decoding:
1265 // br->eos_ && src < src_last: if 'br' reached the end of the buffer and
1266 // 'src_last' has not been reached yet, there is not enough data. 'dec' has to
1267 // be reset until there is more data.
1268 // !br->eos_ && src < src_last: this cannot happen as either the buffer is
1269 // fully read, either enough has been read to reach 'src_last'.
1270 // src >= src_last: 'src_last' is reached, all is fine. 'src' can actually go
1271 // beyond 'src_last' in case the image is cropped and an LZ77 goes further.
1272 // The buffer might have been enough or there is some left. 'br->eos_' does
1273 // not matter.
1274 assert(!dec->incremental_ || (br->eos_ && src < src_last) || src >= src_last);
1275 if (dec->incremental_ && br->eos_ && src < src_last) {
1276 RestoreState(dec);
1277 } else if ((dec->incremental_ && src >= src_last) || !br->eos_) {
1278 // Process the remaining rows corresponding to last row-block.
1279 if (process_func != NULL) {
1280 process_func(dec, row > last_row ? last_row : row);
1281 }
1282 dec->status_ = VP8_STATUS_OK;
1283 dec->last_pixel_ = (int)(src - data); // end-of-scan marker
1284 } else {
1285 // if not incremental, and we are past the end of buffer (eos_=1), then this
1286 // is a real bitstream error.
1287 goto Error;
1288 }
1289 return 1;
1290
1291 Error:
1292 return VP8LSetError(dec, VP8_STATUS_BITSTREAM_ERROR);
1293 }
1294
1295 // -----------------------------------------------------------------------------
1296 // VP8LTransform
1297
ClearTransform(VP8LTransform * const transform)1298 static void ClearTransform(VP8LTransform* const transform) {
1299 WebPSafeFree(transform->data_);
1300 transform->data_ = NULL;
1301 }
1302
1303 // For security reason, we need to remap the color map to span
1304 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)1305 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
1306 int i;
1307 const int final_num_colors = 1 << (8 >> transform->bits_);
1308 uint32_t* const new_color_map =
1309 (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
1310 sizeof(*new_color_map));
1311 if (new_color_map == NULL) {
1312 return 0;
1313 } else {
1314 uint8_t* const data = (uint8_t*)transform->data_;
1315 uint8_t* const new_data = (uint8_t*)new_color_map;
1316 new_color_map[0] = transform->data_[0];
1317 for (i = 4; i < 4 * num_colors; ++i) {
1318 // Equivalent to VP8LAddPixels(), on a byte-basis.
1319 new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
1320 }
1321 for (; i < 4 * final_num_colors; ++i) {
1322 new_data[i] = 0; // black tail.
1323 }
1324 WebPSafeFree(transform->data_);
1325 transform->data_ = new_color_map;
1326 }
1327 return 1;
1328 }
1329
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)1330 static int ReadTransform(int* const xsize, int const* ysize,
1331 VP8LDecoder* const dec) {
1332 int ok = 1;
1333 VP8LBitReader* const br = &dec->br_;
1334 VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
1335 const VP8LImageTransformType type =
1336 (VP8LImageTransformType)VP8LReadBits(br, 2);
1337
1338 // Each transform type can only be present once in the stream.
1339 if (dec->transforms_seen_ & (1U << type)) {
1340 return 0; // Already there, let's not accept the second same transform.
1341 }
1342 dec->transforms_seen_ |= (1U << type);
1343
1344 transform->type_ = type;
1345 transform->xsize_ = *xsize;
1346 transform->ysize_ = *ysize;
1347 transform->data_ = NULL;
1348 ++dec->next_transform_;
1349 assert(dec->next_transform_ <= NUM_TRANSFORMS);
1350
1351 switch (type) {
1352 case PREDICTOR_TRANSFORM:
1353 case CROSS_COLOR_TRANSFORM:
1354 transform->bits_ =
1355 MIN_TRANSFORM_BITS + VP8LReadBits(br, NUM_TRANSFORM_BITS);
1356 ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
1357 transform->bits_),
1358 VP8LSubSampleSize(transform->ysize_,
1359 transform->bits_),
1360 /*is_level0=*/0, dec, &transform->data_);
1361 break;
1362 case COLOR_INDEXING_TRANSFORM: {
1363 const int num_colors = VP8LReadBits(br, 8) + 1;
1364 const int bits = (num_colors > 16) ? 0
1365 : (num_colors > 4) ? 1
1366 : (num_colors > 2) ? 2
1367 : 3;
1368 *xsize = VP8LSubSampleSize(transform->xsize_, bits);
1369 transform->bits_ = bits;
1370 ok = DecodeImageStream(num_colors, /*ysize=*/1, /*is_level0=*/0, dec,
1371 &transform->data_);
1372 if (ok && !ExpandColorMap(num_colors, transform)) {
1373 return VP8LSetError(dec, VP8_STATUS_OUT_OF_MEMORY);
1374 }
1375 break;
1376 }
1377 case SUBTRACT_GREEN_TRANSFORM:
1378 break;
1379 default:
1380 assert(0); // can't happen
1381 break;
1382 }
1383
1384 return ok;
1385 }
1386
1387 // -----------------------------------------------------------------------------
1388 // VP8LMetadata
1389
InitMetadata(VP8LMetadata * const hdr)1390 static void InitMetadata(VP8LMetadata* const hdr) {
1391 assert(hdr != NULL);
1392 memset(hdr, 0, sizeof(*hdr));
1393 }
1394
ClearMetadata(VP8LMetadata * const hdr)1395 static void ClearMetadata(VP8LMetadata* const hdr) {
1396 assert(hdr != NULL);
1397
1398 WebPSafeFree(hdr->huffman_image_);
1399 VP8LHuffmanTablesDeallocate(&hdr->huffman_tables_);
1400 VP8LHtreeGroupsFree(hdr->htree_groups_);
1401 VP8LColorCacheClear(&hdr->color_cache_);
1402 VP8LColorCacheClear(&hdr->saved_color_cache_);
1403 InitMetadata(hdr);
1404 }
1405
1406 // -----------------------------------------------------------------------------
1407 // VP8LDecoder
1408
VP8LNew(void)1409 VP8LDecoder* VP8LNew(void) {
1410 VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
1411 if (dec == NULL) return NULL;
1412 dec->status_ = VP8_STATUS_OK;
1413 dec->state_ = READ_DIM;
1414
1415 VP8LDspInit(); // Init critical function pointers.
1416
1417 return dec;
1418 }
1419
1420 // Resets the decoder in its initial state, reclaiming memory.
1421 // Preserves the dec->status_ value.
VP8LClear(VP8LDecoder * const dec)1422 static void VP8LClear(VP8LDecoder* const dec) {
1423 int i;
1424 if (dec == NULL) return;
1425 ClearMetadata(&dec->hdr_);
1426
1427 WebPSafeFree(dec->pixels_);
1428 dec->pixels_ = NULL;
1429 for (i = 0; i < dec->next_transform_; ++i) {
1430 ClearTransform(&dec->transforms_[i]);
1431 }
1432 dec->next_transform_ = 0;
1433 dec->transforms_seen_ = 0;
1434
1435 WebPSafeFree(dec->rescaler_memory);
1436 dec->rescaler_memory = NULL;
1437
1438 dec->output_ = NULL; // leave no trace behind
1439 }
1440
VP8LDelete(VP8LDecoder * const dec)1441 void VP8LDelete(VP8LDecoder* const dec) {
1442 if (dec != NULL) {
1443 VP8LClear(dec);
1444 WebPSafeFree(dec);
1445 }
1446 }
1447
UpdateDecoder(VP8LDecoder * const dec,int width,int height)1448 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
1449 VP8LMetadata* const hdr = &dec->hdr_;
1450 const int num_bits = hdr->huffman_subsample_bits_;
1451 dec->width_ = width;
1452 dec->height_ = height;
1453
1454 hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
1455 hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
1456 }
1457
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)1458 static int DecodeImageStream(int xsize, int ysize,
1459 int is_level0,
1460 VP8LDecoder* const dec,
1461 uint32_t** const decoded_data) {
1462 int ok = 1;
1463 int transform_xsize = xsize;
1464 int transform_ysize = ysize;
1465 VP8LBitReader* const br = &dec->br_;
1466 VP8LMetadata* const hdr = &dec->hdr_;
1467 uint32_t* data = NULL;
1468 int color_cache_bits = 0;
1469
1470 // Read the transforms (may recurse).
1471 if (is_level0) {
1472 while (ok && VP8LReadBits(br, 1)) {
1473 ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
1474 }
1475 }
1476
1477 // Color cache
1478 if (ok && VP8LReadBits(br, 1)) {
1479 color_cache_bits = VP8LReadBits(br, 4);
1480 ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
1481 if (!ok) {
1482 VP8LSetError(dec, VP8_STATUS_BITSTREAM_ERROR);
1483 goto End;
1484 }
1485 }
1486
1487 // Read the Huffman codes (may recurse).
1488 ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
1489 color_cache_bits, is_level0);
1490 if (!ok) {
1491 VP8LSetError(dec, VP8_STATUS_BITSTREAM_ERROR);
1492 goto End;
1493 }
1494
1495 // Finish setting up the color-cache
1496 if (color_cache_bits > 0) {
1497 hdr->color_cache_size_ = 1 << color_cache_bits;
1498 if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
1499 ok = VP8LSetError(dec, VP8_STATUS_OUT_OF_MEMORY);
1500 goto End;
1501 }
1502 } else {
1503 hdr->color_cache_size_ = 0;
1504 }
1505 UpdateDecoder(dec, transform_xsize, transform_ysize);
1506
1507 if (is_level0) { // level 0 complete
1508 dec->state_ = READ_HDR;
1509 goto End;
1510 }
1511
1512 {
1513 const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1514 data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1515 if (data == NULL) {
1516 ok = VP8LSetError(dec, VP8_STATUS_OUT_OF_MEMORY);
1517 goto End;
1518 }
1519 }
1520
1521 // Use the Huffman trees to decode the LZ77 encoded data.
1522 ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
1523 transform_ysize, NULL);
1524 ok = ok && !br->eos_;
1525
1526 End:
1527 if (!ok) {
1528 WebPSafeFree(data);
1529 ClearMetadata(hdr);
1530 } else {
1531 if (decoded_data != NULL) {
1532 *decoded_data = data;
1533 } else {
1534 // We allocate image data in this function only for transforms. At level 0
1535 // (that is: not the transforms), we shouldn't have allocated anything.
1536 assert(data == NULL);
1537 assert(is_level0);
1538 }
1539 dec->last_pixel_ = 0; // Reset for future DECODE_DATA_FUNC() calls.
1540 if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind.
1541 }
1542 return ok;
1543 }
1544
1545 //------------------------------------------------------------------------------
1546 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
AllocateInternalBuffers32b(VP8LDecoder * const dec,int final_width)1547 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
1548 const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1549 // Scratch buffer corresponding to top-prediction row for transforming the
1550 // first row in the row-blocks. Not needed for paletted alpha.
1551 const uint64_t cache_top_pixels = (uint16_t)final_width;
1552 // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
1553 const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1554 const uint64_t total_num_pixels =
1555 num_pixels + cache_top_pixels + cache_pixels;
1556
1557 assert(dec->width_ <= final_width);
1558 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
1559 if (dec->pixels_ == NULL) {
1560 dec->argb_cache_ = NULL; // for soundness
1561 return VP8LSetError(dec, VP8_STATUS_OUT_OF_MEMORY);
1562 }
1563 dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
1564 return 1;
1565 }
1566
AllocateInternalBuffers8b(VP8LDecoder * const dec)1567 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
1568 const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
1569 dec->argb_cache_ = NULL; // for soundness
1570 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
1571 if (dec->pixels_ == NULL) {
1572 return VP8LSetError(dec, VP8_STATUS_OUT_OF_MEMORY);
1573 }
1574 return 1;
1575 }
1576
1577 //------------------------------------------------------------------------------
1578
1579 // Special row-processing that only stores the alpha data.
ExtractAlphaRows(VP8LDecoder * const dec,int last_row)1580 static void ExtractAlphaRows(VP8LDecoder* const dec, int last_row) {
1581 int cur_row = dec->last_row_;
1582 int num_rows = last_row - cur_row;
1583 const uint32_t* in = dec->pixels_ + dec->width_ * cur_row;
1584
1585 assert(last_row <= dec->io_->crop_bottom);
1586 while (num_rows > 0) {
1587 const int num_rows_to_process =
1588 (num_rows > NUM_ARGB_CACHE_ROWS) ? NUM_ARGB_CACHE_ROWS : num_rows;
1589 // Extract alpha (which is stored in the green plane).
1590 ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
1591 uint8_t* const output = alph_dec->output_;
1592 const int width = dec->io_->width; // the final width (!= dec->width_)
1593 const int cache_pixs = width * num_rows_to_process;
1594 uint8_t* const dst = output + width * cur_row;
1595 const uint32_t* const src = dec->argb_cache_;
1596 ApplyInverseTransforms(dec, cur_row, num_rows_to_process, in);
1597 WebPExtractGreen(src, dst, cache_pixs);
1598 AlphaApplyFilter(alph_dec,
1599 cur_row, cur_row + num_rows_to_process, dst, width);
1600 num_rows -= num_rows_to_process;
1601 in += num_rows_to_process * dec->width_;
1602 cur_row += num_rows_to_process;
1603 }
1604 assert(cur_row == last_row);
1605 dec->last_row_ = dec->last_out_row_ = last_row;
1606 }
1607
VP8LDecodeAlphaHeader(ALPHDecoder * const alph_dec,const uint8_t * const data,size_t data_size)1608 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
1609 const uint8_t* const data, size_t data_size) {
1610 int ok = 0;
1611 VP8LDecoder* dec = VP8LNew();
1612
1613 if (dec == NULL) return 0;
1614
1615 assert(alph_dec != NULL);
1616
1617 dec->width_ = alph_dec->width_;
1618 dec->height_ = alph_dec->height_;
1619 dec->io_ = &alph_dec->io_;
1620 dec->io_->opaque = alph_dec;
1621 dec->io_->width = alph_dec->width_;
1622 dec->io_->height = alph_dec->height_;
1623
1624 dec->status_ = VP8_STATUS_OK;
1625 VP8LInitBitReader(&dec->br_, data, data_size);
1626
1627 if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, /*is_level0=*/1,
1628 dec, /*decoded_data=*/NULL)) {
1629 goto Err;
1630 }
1631
1632 // Special case: if alpha data uses only the color indexing transform and
1633 // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
1634 // method that only needs allocation of 1 byte per pixel (alpha channel).
1635 if (dec->next_transform_ == 1 &&
1636 dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
1637 Is8bOptimizable(&dec->hdr_)) {
1638 alph_dec->use_8b_decode_ = 1;
1639 ok = AllocateInternalBuffers8b(dec);
1640 } else {
1641 // Allocate internal buffers (note that dec->width_ may have changed here).
1642 alph_dec->use_8b_decode_ = 0;
1643 ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
1644 }
1645
1646 if (!ok) goto Err;
1647
1648 // Only set here, once we are sure it is valid (to avoid thread races).
1649 alph_dec->vp8l_dec_ = dec;
1650 return 1;
1651
1652 Err:
1653 VP8LDelete(dec);
1654 return 0;
1655 }
1656
VP8LDecodeAlphaImageStream(ALPHDecoder * const alph_dec,int last_row)1657 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
1658 VP8LDecoder* const dec = alph_dec->vp8l_dec_;
1659 assert(dec != NULL);
1660 assert(last_row <= dec->height_);
1661
1662 if (dec->last_row_ >= last_row) {
1663 return 1; // done
1664 }
1665
1666 if (!alph_dec->use_8b_decode_) WebPInitAlphaProcessing();
1667
1668 // Decode (with special row processing).
1669 return alph_dec->use_8b_decode_ ?
1670 DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
1671 last_row) :
1672 DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1673 last_row, ExtractAlphaRows);
1674 }
1675
1676 //------------------------------------------------------------------------------
1677
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1678 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1679 int width, height, has_alpha;
1680
1681 if (dec == NULL) return 0;
1682 if (io == NULL) {
1683 return VP8LSetError(dec, VP8_STATUS_INVALID_PARAM);
1684 }
1685
1686 dec->io_ = io;
1687 dec->status_ = VP8_STATUS_OK;
1688 VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1689 if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1690 VP8LSetError(dec, VP8_STATUS_BITSTREAM_ERROR);
1691 goto Error;
1692 }
1693 dec->state_ = READ_DIM;
1694 io->width = width;
1695 io->height = height;
1696
1697 if (!DecodeImageStream(width, height, /*is_level0=*/1, dec,
1698 /*decoded_data=*/NULL)) {
1699 goto Error;
1700 }
1701 return 1;
1702
1703 Error:
1704 VP8LClear(dec);
1705 assert(dec->status_ != VP8_STATUS_OK);
1706 return 0;
1707 }
1708
VP8LDecodeImage(VP8LDecoder * const dec)1709 int VP8LDecodeImage(VP8LDecoder* const dec) {
1710 VP8Io* io = NULL;
1711 WebPDecParams* params = NULL;
1712
1713 if (dec == NULL) return 0;
1714
1715 assert(dec->hdr_.huffman_tables_.root.start != NULL);
1716 assert(dec->hdr_.htree_groups_ != NULL);
1717 assert(dec->hdr_.num_htree_groups_ > 0);
1718
1719 io = dec->io_;
1720 assert(io != NULL);
1721 params = (WebPDecParams*)io->opaque;
1722 assert(params != NULL);
1723
1724 // Initialization.
1725 if (dec->state_ != READ_DATA) {
1726 dec->output_ = params->output;
1727 assert(dec->output_ != NULL);
1728
1729 if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1730 VP8LSetError(dec, VP8_STATUS_INVALID_PARAM);
1731 goto Err;
1732 }
1733
1734 if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
1735
1736 #if !defined(WEBP_REDUCE_SIZE)
1737 if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1738 #else
1739 if (io->use_scaling) {
1740 VP8LSetError(dec, VP8_STATUS_INVALID_PARAM);
1741 goto Err;
1742 }
1743 #endif
1744 if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
1745 // need the alpha-multiply functions for premultiplied output or rescaling
1746 WebPInitAlphaProcessing();
1747 }
1748
1749 if (!WebPIsRGBMode(dec->output_->colorspace)) {
1750 WebPInitConvertARGBToYUV();
1751 if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();
1752 }
1753 if (dec->incremental_) {
1754 if (dec->hdr_.color_cache_size_ > 0 &&
1755 dec->hdr_.saved_color_cache_.colors_ == NULL) {
1756 if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_,
1757 dec->hdr_.color_cache_.hash_bits_)) {
1758 VP8LSetError(dec, VP8_STATUS_OUT_OF_MEMORY);
1759 goto Err;
1760 }
1761 }
1762 }
1763 dec->state_ = READ_DATA;
1764 }
1765
1766 // Decode.
1767 if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1768 io->crop_bottom, ProcessRows)) {
1769 goto Err;
1770 }
1771
1772 params->last_y = dec->last_out_row_;
1773 return 1;
1774
1775 Err:
1776 VP8LClear(dec);
1777 assert(dec->status_ != VP8_STATUS_OK);
1778 return 0;
1779 }
1780
1781 //------------------------------------------------------------------------------
1782