1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_arm64.h"
18
19 #include "aarch64/assembler-aarch64.h"
20 #include "aarch64/registers-aarch64.h"
21 #include "arch/arm64/asm_support_arm64.h"
22 #include "arch/arm64/instruction_set_features_arm64.h"
23 #include "arch/arm64/jni_frame_arm64.h"
24 #include "art_method-inl.h"
25 #include "base/bit_utils.h"
26 #include "base/bit_utils_iterator.h"
27 #include "class_root-inl.h"
28 #include "class_table.h"
29 #include "code_generator_utils.h"
30 #include "com_android_art_flags.h"
31 #include "dex/dex_file_types.h"
32 #include "entrypoints/quick/quick_entrypoints.h"
33 #include "entrypoints/quick/quick_entrypoints_enum.h"
34 #include "gc/accounting/card_table.h"
35 #include "gc/space/image_space.h"
36 #include "heap_poisoning.h"
37 #include "interpreter/mterp/nterp.h"
38 #include "intrinsics.h"
39 #include "intrinsics_arm64.h"
40 #include "intrinsics_list.h"
41 #include "intrinsics_utils.h"
42 #include "jit/profiling_info.h"
43 #include "linker/linker_patch.h"
44 #include "lock_word.h"
45 #include "mirror/array-inl.h"
46 #include "mirror/class-inl.h"
47 #include "mirror/var_handle.h"
48 #include "offsets.h"
49 #include "optimizing/common_arm64.h"
50 #include "optimizing/nodes.h"
51 #include "profiling_info_builder.h"
52 #include "thread.h"
53 #include "trace.h"
54 #include "utils/arm64/assembler_arm64.h"
55 #include "utils/assembler.h"
56 #include "utils/stack_checks.h"
57
58 using namespace vixl::aarch64; // NOLINT(build/namespaces)
59 using vixl::ExactAssemblyScope;
60 using vixl::CodeBufferCheckScope;
61 using vixl::EmissionCheckScope;
62
63 namespace art_flags = com::android::art::flags;
64
65 #ifdef __
66 #error "ARM64 Codegen VIXL macro-assembler macro already defined."
67 #endif
68
69 namespace art HIDDEN {
70
71 template<class MirrorType>
72 class GcRoot;
73
74 namespace arm64 {
75
76 using helpers::ARM64EncodableConstantOrRegister;
77 using helpers::ArtVixlRegCodeCoherentForRegSet;
78 using helpers::CPURegisterFrom;
79 using helpers::DRegisterFrom;
80 using helpers::FPRegisterFrom;
81 using helpers::HeapOperand;
82 using helpers::HeapOperandFrom;
83 using helpers::InputCPURegisterOrZeroRegAt;
84 using helpers::InputFPRegisterAt;
85 using helpers::InputOperandAt;
86 using helpers::InputRegisterAt;
87 using helpers::Int64FromLocation;
88 using helpers::LocationFrom;
89 using helpers::OperandFromMemOperand;
90 using helpers::OutputCPURegister;
91 using helpers::OutputFPRegister;
92 using helpers::OutputRegister;
93 using helpers::RegisterFrom;
94 using helpers::StackOperandFrom;
95 using helpers::VIXLRegCodeFromART;
96 using helpers::WRegisterFrom;
97 using helpers::XRegisterFrom;
98
99 // TODO(mythria): Expand SystemRegister in vixl to include this value.
100 uint16_t SYS_CNTVCT_EL0 = SystemRegisterEncoder<1, 3, 14, 0, 2>::value;
101
102 // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
103 // table version generates 7 instructions and num_entries literals. Compare/jump sequence will
104 // generates less code/data with a small num_entries.
105 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
106
ARM64Condition(IfCondition cond)107 inline Condition ARM64Condition(IfCondition cond) {
108 switch (cond) {
109 case kCondEQ: return eq;
110 case kCondNE: return ne;
111 case kCondLT: return lt;
112 case kCondLE: return le;
113 case kCondGT: return gt;
114 case kCondGE: return ge;
115 case kCondB: return lo;
116 case kCondBE: return ls;
117 case kCondA: return hi;
118 case kCondAE: return hs;
119 }
120 LOG(FATAL) << "Unreachable";
121 UNREACHABLE();
122 }
123
ARM64FPCondition(IfCondition cond,bool gt_bias)124 inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
125 // The ARM64 condition codes can express all the necessary branches, see the
126 // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
127 // There is no dex instruction or HIR that would need the missing conditions
128 // "equal or unordered" or "not equal".
129 switch (cond) {
130 case kCondEQ: return eq;
131 case kCondNE: return ne /* unordered */;
132 case kCondLT: return gt_bias ? cc : lt /* unordered */;
133 case kCondLE: return gt_bias ? ls : le /* unordered */;
134 case kCondGT: return gt_bias ? hi /* unordered */ : gt;
135 case kCondGE: return gt_bias ? cs /* unordered */ : ge;
136 default:
137 LOG(FATAL) << "UNREACHABLE";
138 UNREACHABLE();
139 }
140 }
141
ARM64PCondition(HVecPredToBoolean::PCondKind cond)142 Condition ARM64PCondition(HVecPredToBoolean::PCondKind cond) {
143 switch (cond) {
144 case HVecPredToBoolean::PCondKind::kFirst: return mi;
145 case HVecPredToBoolean::PCondKind::kNFirst: return pl;
146 default:
147 LOG(FATAL) << "Unsupported condition type: " << enum_cast<uint32_t>(cond);
148 UNREACHABLE();
149 }
150 }
151
ARM64ReturnLocation(DataType::Type return_type)152 Location ARM64ReturnLocation(DataType::Type return_type) {
153 // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
154 // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
155 // but we use the exact registers for clarity.
156 if (return_type == DataType::Type::kFloat32) {
157 return LocationFrom(s0);
158 } else if (return_type == DataType::Type::kFloat64) {
159 return LocationFrom(d0);
160 } else if (return_type == DataType::Type::kInt64) {
161 return LocationFrom(x0);
162 } else if (return_type == DataType::Type::kVoid) {
163 return Location::NoLocation();
164 } else {
165 return LocationFrom(w0);
166 }
167 }
168
GetReturnLocation(DataType::Type return_type)169 Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) {
170 return ARM64ReturnLocation(return_type);
171 }
172
OneRegInReferenceOutSaveEverythingCallerSaves()173 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
174 InvokeRuntimeCallingConvention calling_convention;
175 RegisterSet caller_saves = RegisterSet::Empty();
176 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
177 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(),
178 RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference),
179 DataType::Type::kReference).GetCode());
180 return caller_saves;
181 }
182
183 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
184 #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()-> // NOLINT
185 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value()
186
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)187 void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
188 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
189 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
190 for (uint32_t i : LowToHighBits(core_spills)) {
191 // If the register holds an object, update the stack mask.
192 if (locations->RegisterContainsObject(i)) {
193 locations->SetStackBit(stack_offset / kVRegSize);
194 }
195 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
196 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
197 saved_core_stack_offsets_[i] = stack_offset;
198 stack_offset += kXRegSizeInBytes;
199 }
200
201 const size_t fp_reg_size = codegen->GetSlowPathFPWidth();
202 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
203 for (uint32_t i : LowToHighBits(fp_spills)) {
204 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
205 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
206 saved_fpu_stack_offsets_[i] = stack_offset;
207 stack_offset += fp_reg_size;
208 }
209
210 InstructionCodeGeneratorARM64* visitor =
211 down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64();
212 visitor->SaveLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath());
213 }
214
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)215 void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
216 InstructionCodeGeneratorARM64* visitor =
217 down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64();
218 visitor->RestoreLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath());
219 }
220
221 class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
222 public:
BoundsCheckSlowPathARM64(HBoundsCheck * instruction)223 explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
224
EmitNativeCode(CodeGenerator * codegen)225 void EmitNativeCode(CodeGenerator* codegen) override {
226 LocationSummary* locations = instruction_->GetLocations();
227 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
228
229 __ Bind(GetEntryLabel());
230 if (instruction_->CanThrowIntoCatchBlock()) {
231 // Live registers will be restored in the catch block if caught.
232 SaveLiveRegisters(codegen, instruction_->GetLocations());
233 }
234 // We're moving two locations to locations that could overlap, so we need a parallel
235 // move resolver.
236 InvokeRuntimeCallingConvention calling_convention;
237 codegen->EmitParallelMoves(locations->InAt(0),
238 LocationFrom(calling_convention.GetRegisterAt(0)),
239 DataType::Type::kInt32,
240 locations->InAt(1),
241 LocationFrom(calling_convention.GetRegisterAt(1)),
242 DataType::Type::kInt32);
243 QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
244 ? kQuickThrowStringBounds
245 : kQuickThrowArrayBounds;
246 arm64_codegen->InvokeRuntime(entrypoint, instruction_, this);
247 CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
248 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
249 }
250
IsFatal() const251 bool IsFatal() const override { return true; }
252
GetDescription() const253 const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; }
254
255 private:
256 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
257 };
258
259 class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
260 public:
DivZeroCheckSlowPathARM64(HDivZeroCheck * instruction)261 explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
262
EmitNativeCode(CodeGenerator * codegen)263 void EmitNativeCode(CodeGenerator* codegen) override {
264 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
265 __ Bind(GetEntryLabel());
266 arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, this);
267 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
268 }
269
IsFatal() const270 bool IsFatal() const override { return true; }
271
GetDescription() const272 const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; }
273
274 private:
275 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
276 };
277
278 class LoadMethodTypeSlowPathARM64 : public SlowPathCodeARM64 {
279 public:
LoadMethodTypeSlowPathARM64(HLoadMethodType * mt)280 explicit LoadMethodTypeSlowPathARM64(HLoadMethodType* mt) : SlowPathCodeARM64(mt) {}
281
EmitNativeCode(CodeGenerator * codegen)282 void EmitNativeCode(CodeGenerator* codegen) override {
283 LocationSummary* locations = instruction_->GetLocations();
284 Location out = locations->Out();
285 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
286
287 __ Bind(GetEntryLabel());
288 SaveLiveRegisters(codegen, locations);
289
290 InvokeRuntimeCallingConvention calling_convention;
291 const dex::ProtoIndex proto_index = instruction_->AsLoadMethodType()->GetProtoIndex();
292 __ Mov(calling_convention.GetRegisterAt(0).W(), proto_index.index_);
293
294 arm64_codegen->InvokeRuntime(kQuickResolveMethodType, instruction_, this);
295 CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>();
296
297 DataType::Type type = instruction_->GetType();
298 arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
299 RestoreLiveRegisters(codegen, locations);
300
301 __ B(GetExitLabel());
302 }
303
GetDescription() const304 const char* GetDescription() const override { return "LoadMethodTypeSlowPathARM64"; }
305
306 private:
307 DISALLOW_COPY_AND_ASSIGN(LoadMethodTypeSlowPathARM64);
308 };
309
310
311 class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
312 public:
LoadClassSlowPathARM64(HLoadClass * cls,HInstruction * at)313 LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at)
314 : SlowPathCodeARM64(at), cls_(cls) {
315 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
316 DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
317 }
318
EmitNativeCode(CodeGenerator * codegen)319 void EmitNativeCode(CodeGenerator* codegen) override {
320 LocationSummary* locations = instruction_->GetLocations();
321 Location out = locations->Out();
322 bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
323 bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
324
325 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
326 __ Bind(GetEntryLabel());
327 SaveLiveRegisters(codegen, locations);
328
329 InvokeRuntimeCallingConvention calling_convention;
330 if (must_resolve_type) {
331 DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile()) ||
332 arm64_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) ||
333 ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(),
334 &cls_->GetDexFile()));
335 dex::TypeIndex type_index = cls_->GetTypeIndex();
336 __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_);
337 if (cls_->NeedsAccessCheck()) {
338 CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
339 arm64_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, this);
340 } else {
341 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
342 arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, this);
343 }
344 // If we also must_do_clinit, the resolved type is now in the correct register.
345 } else {
346 DCHECK(must_do_clinit);
347 Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
348 arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)),
349 source,
350 cls_->GetType());
351 }
352 if (must_do_clinit) {
353 arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, this);
354 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
355 }
356
357 // Move the class to the desired location.
358 if (out.IsValid()) {
359 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
360 DataType::Type type = instruction_->GetType();
361 arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
362 }
363 RestoreLiveRegisters(codegen, locations);
364 __ B(GetExitLabel());
365 }
366
GetDescription() const367 const char* GetDescription() const override { return "LoadClassSlowPathARM64"; }
368
369 private:
370 // The class this slow path will load.
371 HLoadClass* const cls_;
372
373 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
374 };
375
376 class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
377 public:
LoadStringSlowPathARM64(HLoadString * instruction)378 explicit LoadStringSlowPathARM64(HLoadString* instruction)
379 : SlowPathCodeARM64(instruction) {}
380
EmitNativeCode(CodeGenerator * codegen)381 void EmitNativeCode(CodeGenerator* codegen) override {
382 LocationSummary* locations = instruction_->GetLocations();
383 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
384 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
385
386 __ Bind(GetEntryLabel());
387 SaveLiveRegisters(codegen, locations);
388
389 InvokeRuntimeCallingConvention calling_convention;
390 const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
391 __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_);
392 arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, this);
393 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
394 DataType::Type type = instruction_->GetType();
395 arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
396
397 RestoreLiveRegisters(codegen, locations);
398
399 __ B(GetExitLabel());
400 }
401
GetDescription() const402 const char* GetDescription() const override { return "LoadStringSlowPathARM64"; }
403
404 private:
405 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
406 };
407
408 class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
409 public:
NullCheckSlowPathARM64(HNullCheck * instr)410 explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
411
EmitNativeCode(CodeGenerator * codegen)412 void EmitNativeCode(CodeGenerator* codegen) override {
413 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
414 __ Bind(GetEntryLabel());
415 if (instruction_->CanThrowIntoCatchBlock()) {
416 // Live registers will be restored in the catch block if caught.
417 SaveLiveRegisters(codegen, instruction_->GetLocations());
418 }
419 arm64_codegen->InvokeRuntime(kQuickThrowNullPointer, instruction_, this);
420 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
421 }
422
IsFatal() const423 bool IsFatal() const override { return true; }
424
GetDescription() const425 const char* GetDescription() const override { return "NullCheckSlowPathARM64"; }
426
427 private:
428 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
429 };
430
431 class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
432 public:
SuspendCheckSlowPathARM64(HSuspendCheck * instruction,HBasicBlock * successor)433 SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
434 : SlowPathCodeARM64(instruction), successor_(successor) {}
435
EmitNativeCode(CodeGenerator * codegen)436 void EmitNativeCode(CodeGenerator* codegen) override {
437 LocationSummary* locations = instruction_->GetLocations();
438 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
439 __ Bind(GetEntryLabel());
440 SaveLiveRegisters(codegen, locations); // Only saves live vector regs for SIMD.
441 arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, this);
442 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
443 RestoreLiveRegisters(codegen, locations); // Only restores live vector regs for SIMD.
444 if (successor_ == nullptr) {
445 __ B(GetReturnLabel());
446 } else {
447 __ B(arm64_codegen->GetLabelOf(successor_));
448 }
449 }
450
GetReturnLabel()451 vixl::aarch64::Label* GetReturnLabel() {
452 DCHECK(successor_ == nullptr);
453 return &return_label_;
454 }
455
GetSuccessor() const456 HBasicBlock* GetSuccessor() const {
457 return successor_;
458 }
459
GetDescription() const460 const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; }
461
462 private:
463 // If not null, the block to branch to after the suspend check.
464 HBasicBlock* const successor_;
465
466 // If `successor_` is null, the label to branch to after the suspend check.
467 vixl::aarch64::Label return_label_;
468
469 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
470 };
471
472 class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
473 public:
TypeCheckSlowPathARM64(HInstruction * instruction,bool is_fatal)474 TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
475 : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
476
EmitNativeCode(CodeGenerator * codegen)477 void EmitNativeCode(CodeGenerator* codegen) override {
478 LocationSummary* locations = instruction_->GetLocations();
479
480 DCHECK(instruction_->IsCheckCast()
481 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
482 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
483
484 __ Bind(GetEntryLabel());
485
486 if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
487 SaveLiveRegisters(codegen, locations);
488 }
489
490 // We're moving two locations to locations that could overlap, so we need a parallel
491 // move resolver.
492 InvokeRuntimeCallingConvention calling_convention;
493 codegen->EmitParallelMoves(locations->InAt(0),
494 LocationFrom(calling_convention.GetRegisterAt(0)),
495 DataType::Type::kReference,
496 locations->InAt(1),
497 LocationFrom(calling_convention.GetRegisterAt(1)),
498 DataType::Type::kReference);
499 if (instruction_->IsInstanceOf()) {
500 arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, this);
501 CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
502 DataType::Type ret_type = instruction_->GetType();
503 Location ret_loc = calling_convention.GetReturnLocation(ret_type);
504 arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
505 } else {
506 DCHECK(instruction_->IsCheckCast());
507 arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, this);
508 CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
509 }
510
511 if (!is_fatal_) {
512 RestoreLiveRegisters(codegen, locations);
513 __ B(GetExitLabel());
514 }
515 }
516
GetDescription() const517 const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; }
IsFatal() const518 bool IsFatal() const override { return is_fatal_; }
519
520 private:
521 const bool is_fatal_;
522
523 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
524 };
525
526 class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
527 public:
DeoptimizationSlowPathARM64(HDeoptimize * instruction)528 explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
529 : SlowPathCodeARM64(instruction) {}
530
EmitNativeCode(CodeGenerator * codegen)531 void EmitNativeCode(CodeGenerator* codegen) override {
532 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
533 __ Bind(GetEntryLabel());
534 LocationSummary* locations = instruction_->GetLocations();
535 SaveLiveRegisters(codegen, locations);
536 InvokeRuntimeCallingConvention calling_convention;
537 __ Mov(calling_convention.GetRegisterAt(0),
538 static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
539 arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, this);
540 CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
541 }
542
GetDescription() const543 const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; }
544
545 private:
546 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
547 };
548
549 class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
550 public:
ArraySetSlowPathARM64(HInstruction * instruction)551 explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
552
EmitNativeCode(CodeGenerator * codegen)553 void EmitNativeCode(CodeGenerator* codegen) override {
554 LocationSummary* locations = instruction_->GetLocations();
555 __ Bind(GetEntryLabel());
556 SaveLiveRegisters(codegen, locations);
557
558 InvokeRuntimeCallingConvention calling_convention;
559 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
560 parallel_move.AddMove(
561 locations->InAt(0),
562 LocationFrom(calling_convention.GetRegisterAt(0)),
563 DataType::Type::kReference,
564 nullptr);
565 parallel_move.AddMove(
566 locations->InAt(1),
567 LocationFrom(calling_convention.GetRegisterAt(1)),
568 DataType::Type::kInt32,
569 nullptr);
570 parallel_move.AddMove(
571 locations->InAt(2),
572 LocationFrom(calling_convention.GetRegisterAt(2)),
573 DataType::Type::kReference,
574 nullptr);
575 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
576
577 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
578 arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, this);
579 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
580 RestoreLiveRegisters(codegen, locations);
581 __ B(GetExitLabel());
582 }
583
GetDescription() const584 const char* GetDescription() const override { return "ArraySetSlowPathARM64"; }
585
586 private:
587 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
588 };
589
EmitTable(CodeGeneratorARM64 * codegen)590 void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
591 uint32_t num_entries = switch_instr_->GetNumEntries();
592 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
593
594 // We are about to use the assembler to place literals directly. Make sure we have enough
595 // underlying code buffer and we have generated the jump table with right size.
596 ExactAssemblyScope scope(codegen->GetVIXLAssembler(),
597 num_entries * sizeof(int32_t),
598 CodeBufferCheckScope::kExactSize);
599 codegen->GetVIXLAssembler()->bind(&table_start_);
600 for (uint32_t i = 0; i < num_entries; i++) {
601 codegen->GetVIXLAssembler()->place(jump_targets_[i].get());
602 }
603 }
604
FixTable(CodeGeneratorARM64 * codegen)605 void JumpTableARM64::FixTable(CodeGeneratorARM64* codegen) {
606 uint32_t num_entries = switch_instr_->GetNumEntries();
607 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
608
609 const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
610 for (uint32_t i = 0; i < num_entries; i++) {
611 vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]);
612 DCHECK(target_label->IsBound());
613 ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
614 DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
615 DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
616 jump_targets_[i].get()->UpdateValue(jump_offset, codegen->GetVIXLAssembler());
617 }
618 }
619
620 // Slow path generating a read barrier for a heap reference.
621 class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
622 public:
ReadBarrierForHeapReferenceSlowPathARM64(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)623 ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
624 Location out,
625 Location ref,
626 Location obj,
627 uint32_t offset,
628 Location index)
629 : SlowPathCodeARM64(instruction),
630 out_(out),
631 ref_(ref),
632 obj_(obj),
633 offset_(offset),
634 index_(index) {
635 // If `obj` is equal to `out` or `ref`, it means the initial object
636 // has been overwritten by (or after) the heap object reference load
637 // to be instrumented, e.g.:
638 //
639 // __ Ldr(out, HeapOperand(out, class_offset);
640 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
641 //
642 // In that case, we have lost the information about the original
643 // object, and the emitted read barrier cannot work properly.
644 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
645 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
646 }
647
EmitNativeCode(CodeGenerator * codegen)648 void EmitNativeCode(CodeGenerator* codegen) override {
649 DCHECK(codegen->EmitReadBarrier());
650 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
651 LocationSummary* locations = instruction_->GetLocations();
652 DataType::Type type = DataType::Type::kReference;
653 DCHECK(locations->CanCall());
654 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
655 DCHECK(instruction_->IsInstanceFieldGet() ||
656 instruction_->IsStaticFieldGet() ||
657 instruction_->IsArrayGet() ||
658 instruction_->IsInstanceOf() ||
659 instruction_->IsCheckCast() ||
660 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
661 << "Unexpected instruction in read barrier for heap reference slow path: "
662 << instruction_->DebugName();
663 // The read barrier instrumentation of object ArrayGet
664 // instructions does not support the HIntermediateAddress
665 // instruction.
666 DCHECK(!(instruction_->IsArrayGet() &&
667 instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
668
669 __ Bind(GetEntryLabel());
670
671 SaveLiveRegisters(codegen, locations);
672
673 // We may have to change the index's value, but as `index_` is a
674 // constant member (like other "inputs" of this slow path),
675 // introduce a copy of it, `index`.
676 Location index = index_;
677 if (index_.IsValid()) {
678 // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
679 if (instruction_->IsArrayGet()) {
680 // Compute the actual memory offset and store it in `index`.
681 Register index_reg = RegisterFrom(index_, DataType::Type::kInt32);
682 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
683 if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
684 // We are about to change the value of `index_reg` (see the
685 // calls to vixl::MacroAssembler::Lsl and
686 // vixl::MacroAssembler::Mov below), but it has
687 // not been saved by the previous call to
688 // art::SlowPathCode::SaveLiveRegisters, as it is a
689 // callee-save register --
690 // art::SlowPathCode::SaveLiveRegisters does not consider
691 // callee-save registers, as it has been designed with the
692 // assumption that callee-save registers are supposed to be
693 // handled by the called function. So, as a callee-save
694 // register, `index_reg` _would_ eventually be saved onto
695 // the stack, but it would be too late: we would have
696 // changed its value earlier. Therefore, we manually save
697 // it here into another freely available register,
698 // `free_reg`, chosen of course among the caller-save
699 // registers (as a callee-save `free_reg` register would
700 // exhibit the same problem).
701 //
702 // Note we could have requested a temporary register from
703 // the register allocator instead; but we prefer not to, as
704 // this is a slow path, and we know we can find a
705 // caller-save register that is available.
706 Register free_reg = FindAvailableCallerSaveRegister(codegen);
707 __ Mov(free_reg.W(), index_reg);
708 index_reg = free_reg;
709 index = LocationFrom(index_reg);
710 } else {
711 // The initial register stored in `index_` has already been
712 // saved in the call to art::SlowPathCode::SaveLiveRegisters
713 // (as it is not a callee-save register), so we can freely
714 // use it.
715 }
716 // Shifting the index value contained in `index_reg` by the scale
717 // factor (2) cannot overflow in practice, as the runtime is
718 // unable to allocate object arrays with a size larger than
719 // 2^26 - 1 (that is, 2^28 - 4 bytes).
720 __ Lsl(index_reg, index_reg, DataType::SizeShift(type));
721 static_assert(
722 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
723 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
724 __ Add(index_reg, index_reg, Operand(offset_));
725 } else {
726 // In the case of the following intrinsics `index_` is not shifted by a scale factor of 2
727 // (as in the case of ArrayGet), as it is actually an offset to an object field within an
728 // object.
729 DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
730 DCHECK(instruction_->GetLocations()->Intrinsified());
731 HInvoke* invoke = instruction_->AsInvoke();
732 DCHECK(IsUnsafeGetReference(invoke) ||
733 IsVarHandleGet(invoke) ||
734 IsUnsafeCASReference(invoke) ||
735 IsVarHandleCASFamily(invoke)) << invoke->GetIntrinsic();
736 DCHECK_EQ(offset_, 0u);
737 DCHECK(index_.IsRegister());
738 }
739 }
740
741 // We're moving two or three locations to locations that could
742 // overlap, so we need a parallel move resolver.
743 InvokeRuntimeCallingConvention calling_convention;
744 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
745 parallel_move.AddMove(ref_,
746 LocationFrom(calling_convention.GetRegisterAt(0)),
747 type,
748 nullptr);
749 parallel_move.AddMove(obj_,
750 LocationFrom(calling_convention.GetRegisterAt(1)),
751 type,
752 nullptr);
753 if (index.IsValid()) {
754 parallel_move.AddMove(index,
755 LocationFrom(calling_convention.GetRegisterAt(2)),
756 DataType::Type::kInt32,
757 nullptr);
758 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
759 } else {
760 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
761 arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
762 }
763 arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, this);
764 CheckEntrypointTypes<
765 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
766 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
767
768 RestoreLiveRegisters(codegen, locations);
769
770 __ B(GetExitLabel());
771 }
772
GetDescription() const773 const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
774
775 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)776 Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
777 size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode());
778 size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode());
779 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
780 if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
781 return Register(VIXLRegCodeFromART(i), kXRegSize);
782 }
783 }
784 // We shall never fail to find a free caller-save register, as
785 // there are more than two core caller-save registers on ARM64
786 // (meaning it is possible to find one which is different from
787 // `ref` and `obj`).
788 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
789 LOG(FATAL) << "Could not find a free register";
790 UNREACHABLE();
791 }
792
793 const Location out_;
794 const Location ref_;
795 const Location obj_;
796 const uint32_t offset_;
797 // An additional location containing an index to an array.
798 // Only used for HArrayGet and the UnsafeGetObject &
799 // UnsafeGetObjectVolatile intrinsics.
800 const Location index_;
801
802 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
803 };
804
805 // Slow path generating a read barrier for a GC root.
806 class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
807 public:
ReadBarrierForRootSlowPathARM64(HInstruction * instruction,Location out,Location root)808 ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
809 : SlowPathCodeARM64(instruction), out_(out), root_(root) {
810 }
811
EmitNativeCode(CodeGenerator * codegen)812 void EmitNativeCode(CodeGenerator* codegen) override {
813 DCHECK(codegen->EmitReadBarrier());
814 LocationSummary* locations = instruction_->GetLocations();
815 DataType::Type type = DataType::Type::kReference;
816 DCHECK(locations->CanCall());
817 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
818 DCHECK(instruction_->IsLoadClass() ||
819 instruction_->IsLoadString() ||
820 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
821 << "Unexpected instruction in read barrier for GC root slow path: "
822 << instruction_->DebugName();
823
824 __ Bind(GetEntryLabel());
825 SaveLiveRegisters(codegen, locations);
826
827 InvokeRuntimeCallingConvention calling_convention;
828 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
829 // The argument of the ReadBarrierForRootSlow is not a managed
830 // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
831 // thus we need a 64-bit move here, and we cannot use
832 //
833 // arm64_codegen->MoveLocation(
834 // LocationFrom(calling_convention.GetRegisterAt(0)),
835 // root_,
836 // type);
837 //
838 // which would emit a 32-bit move, as `type` is a (32-bit wide)
839 // reference type (`DataType::Type::kReference`).
840 __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
841 arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, instruction_, this);
842 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
843 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
844
845 RestoreLiveRegisters(codegen, locations);
846 __ B(GetExitLabel());
847 }
848
GetDescription() const849 const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; }
850
851 private:
852 const Location out_;
853 const Location root_;
854
855 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
856 };
857
858 class TracingMethodEntryExitHooksSlowPathARM64 : public SlowPathCodeARM64 {
859 public:
TracingMethodEntryExitHooksSlowPathARM64(bool is_method_entry)860 explicit TracingMethodEntryExitHooksSlowPathARM64(bool is_method_entry)
861 : SlowPathCodeARM64(/* instruction= */ nullptr), is_method_entry_(is_method_entry) {}
862
EmitNativeCode(CodeGenerator * codegen)863 void EmitNativeCode(CodeGenerator* codegen) override {
864 QuickEntrypointEnum entry_point =
865 (is_method_entry_) ? kQuickRecordEntryTraceEvent : kQuickRecordExitTraceEvent;
866 vixl::aarch64::Label call;
867 __ Bind(GetEntryLabel());
868 uint32_t entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entry_point).Int32Value();
869 __ Ldr(lr, MemOperand(tr, entrypoint_offset));
870 __ Blr(lr);
871 __ B(GetExitLabel());
872 }
873
GetDescription() const874 const char* GetDescription() const override {
875 return "TracingMethodEntryExitHooksSlowPath";
876 }
877
878 private:
879 const bool is_method_entry_;
880
881 DISALLOW_COPY_AND_ASSIGN(TracingMethodEntryExitHooksSlowPathARM64);
882 };
883
884 class MethodEntryExitHooksSlowPathARM64 : public SlowPathCodeARM64 {
885 public:
MethodEntryExitHooksSlowPathARM64(HInstruction * instruction)886 explicit MethodEntryExitHooksSlowPathARM64(HInstruction* instruction)
887 : SlowPathCodeARM64(instruction) {}
888
EmitNativeCode(CodeGenerator * codegen)889 void EmitNativeCode(CodeGenerator* codegen) override {
890 LocationSummary* locations = instruction_->GetLocations();
891 QuickEntrypointEnum entry_point =
892 (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook;
893 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
894 __ Bind(GetEntryLabel());
895 SaveLiveRegisters(codegen, locations);
896 if (instruction_->IsMethodExitHook()) {
897 __ Mov(vixl::aarch64::x4, arm64_codegen->GetFrameSize());
898 }
899 arm64_codegen->InvokeRuntime(entry_point, instruction_, this);
900 RestoreLiveRegisters(codegen, locations);
901 __ B(GetExitLabel());
902 }
903
GetDescription() const904 const char* GetDescription() const override {
905 return "MethodEntryExitHooksSlowPath";
906 }
907
908 private:
909 DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathARM64);
910 };
911
912 class CompileOptimizedSlowPathARM64 : public SlowPathCodeARM64 {
913 public:
CompileOptimizedSlowPathARM64(HSuspendCheck * check,Register profiling_info)914 CompileOptimizedSlowPathARM64(HSuspendCheck* check, Register profiling_info)
915 : SlowPathCodeARM64(check),
916 profiling_info_(profiling_info) {}
917
EmitNativeCode(CodeGenerator * codegen)918 void EmitNativeCode(CodeGenerator* codegen) override {
919 uint32_t entrypoint_offset =
920 GetThreadOffset<kArm64PointerSize>(kQuickCompileOptimized).Int32Value();
921 __ Bind(GetEntryLabel());
922 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
923 UseScratchRegisterScope temps(arm64_codegen->GetVIXLAssembler());
924 Register counter = temps.AcquireW();
925 __ Mov(counter, ProfilingInfo::GetOptimizeThreshold());
926 __ Strh(counter,
927 MemOperand(profiling_info_, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
928 if (instruction_ != nullptr) {
929 // Only saves live vector regs for SIMD.
930 SaveLiveRegisters(codegen, instruction_->GetLocations());
931 }
932 __ Ldr(lr, MemOperand(tr, entrypoint_offset));
933 // Note: we don't record the call here (and therefore don't generate a stack
934 // map), as the entrypoint should never be suspended.
935 __ Blr(lr);
936 if (instruction_ != nullptr) {
937 // Only restores live vector regs for SIMD.
938 RestoreLiveRegisters(codegen, instruction_->GetLocations());
939 }
940 __ B(GetExitLabel());
941 }
942
GetDescription() const943 const char* GetDescription() const override {
944 return "CompileOptimizedSlowPath";
945 }
946
947 private:
948 // The register where the profiling info is stored when entering the slow
949 // path.
950 Register profiling_info_;
951
952 DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathARM64);
953 };
954
955 #undef __
956
GetNextLocation(DataType::Type type)957 Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
958 Location next_location;
959 if (type == DataType::Type::kVoid) {
960 LOG(FATAL) << "Unreachable type " << type;
961 }
962
963 if (DataType::IsFloatingPointType(type) &&
964 (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
965 next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
966 } else if (!DataType::IsFloatingPointType(type) &&
967 (gp_index_ < calling_convention.GetNumberOfRegisters())) {
968 next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
969 } else {
970 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
971 next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
972 : Location::StackSlot(stack_offset);
973 }
974
975 // Space on the stack is reserved for all arguments.
976 stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
977 return next_location;
978 }
979
GetMethodLocation() const980 Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
981 return LocationFrom(kArtMethodRegister);
982 }
983
GetNextLocation(DataType::Type type)984 Location CriticalNativeCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
985 DCHECK_NE(type, DataType::Type::kReference);
986
987 Location location = Location::NoLocation();
988 if (DataType::IsFloatingPointType(type)) {
989 if (fpr_index_ < kParameterFPRegistersLength) {
990 location = LocationFrom(kParameterFPRegisters[fpr_index_]);
991 ++fpr_index_;
992 }
993 } else {
994 // Native ABI uses the same registers as managed, except that the method register x0
995 // is a normal argument.
996 if (gpr_index_ < 1u + kParameterCoreRegistersLength) {
997 location = LocationFrom(gpr_index_ == 0u ? x0 : kParameterCoreRegisters[gpr_index_ - 1u]);
998 ++gpr_index_;
999 }
1000 }
1001 if (location.IsInvalid()) {
1002 if (DataType::Is64BitType(type)) {
1003 location = Location::DoubleStackSlot(stack_offset_);
1004 } else {
1005 location = Location::StackSlot(stack_offset_);
1006 }
1007 stack_offset_ += kFramePointerSize;
1008
1009 if (for_register_allocation_) {
1010 location = Location::Any();
1011 }
1012 }
1013 return location;
1014 }
1015
GetReturnLocation(DataType::Type type) const1016 Location CriticalNativeCallingConventionVisitorARM64::GetReturnLocation(DataType::Type type) const {
1017 // We perform conversion to the managed ABI return register after the call if needed.
1018 InvokeDexCallingConventionVisitorARM64 dex_calling_convention;
1019 return dex_calling_convention.GetReturnLocation(type);
1020 }
1021
GetMethodLocation() const1022 Location CriticalNativeCallingConventionVisitorARM64::GetMethodLocation() const {
1023 // Pass the method in the hidden argument x15.
1024 return Location::RegisterLocation(x15.GetCode());
1025 }
1026
1027 namespace detail {
1028
1029 // Mark which intrinsics we don't have handcrafted code for.
1030 template <Intrinsics T>
1031 struct IsUnimplemented {
1032 bool is_unimplemented = false;
1033 };
1034
1035 #define TRUE_OVERRIDE(Name) \
1036 template <> \
1037 struct IsUnimplemented<Intrinsics::k##Name> { \
1038 bool is_unimplemented = true; \
1039 };
1040 UNIMPLEMENTED_INTRINSIC_LIST_ARM64(TRUE_OVERRIDE)
1041 #undef TRUE_OVERRIDE
1042
1043 static constexpr bool kIsIntrinsicUnimplemented[] = {
1044 false, // kNone
1045 #define IS_UNIMPLEMENTED(Intrinsic, ...) \
1046 IsUnimplemented<Intrinsics::k##Intrinsic>().is_unimplemented,
1047 ART_INTRINSICS_LIST(IS_UNIMPLEMENTED)
1048 #undef IS_UNIMPLEMENTED
1049 };
1050
1051 } // namespace detail
1052
CodeGeneratorARM64(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1053 CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
1054 const CompilerOptions& compiler_options,
1055 OptimizingCompilerStats* stats)
1056 : CodeGenerator(graph,
1057 kNumberOfAllocatableRegisters,
1058 kNumberOfAllocatableFPRegisters,
1059 kNumberOfAllocatableRegisterPairs,
1060 callee_saved_core_registers.GetList(),
1061 callee_saved_fp_registers.GetList(),
1062 compiler_options,
1063 stats,
1064 ArrayRef<const bool>(detail::kIsIntrinsicUnimplemented)),
1065 block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1066 jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1067 location_builder_neon_(graph, this),
1068 instruction_visitor_neon_(graph, this),
1069 location_builder_sve_(graph, this),
1070 instruction_visitor_sve_(graph, this),
1071 move_resolver_(graph->GetAllocator(), this),
1072 assembler_(graph->GetAllocator(),
1073 compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()),
1074 boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1075 app_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1076 method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1077 boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1078 app_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1079 type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1080 public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1081 package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1082 boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1083 string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1084 method_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1085 boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1086 boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1087 call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1088 baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1089 jit_patches_(&assembler_, graph->GetAllocator()),
1090 jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
1091 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
1092 // Save the link register (containing the return address) to mimic Quick.
1093 AddAllocatedRegister(LocationFrom(lr));
1094
1095 bool use_sve = ShouldUseSVE();
1096 if (use_sve) {
1097 location_builder_ = &location_builder_sve_;
1098 instruction_visitor_ = &instruction_visitor_sve_;
1099 } else {
1100 location_builder_ = &location_builder_neon_;
1101 instruction_visitor_ = &instruction_visitor_neon_;
1102 }
1103 }
1104
ShouldUseSVE() const1105 bool CodeGeneratorARM64::ShouldUseSVE() const {
1106 return GetInstructionSetFeatures().HasSVE();
1107 }
1108
GetSIMDRegisterWidth() const1109 size_t CodeGeneratorARM64::GetSIMDRegisterWidth() const {
1110 return SupportsPredicatedSIMD()
1111 ? GetInstructionSetFeatures().GetSVEVectorLength() / kBitsPerByte
1112 : vixl::aarch64::kQRegSizeInBytes;
1113 }
1114
1115 #define __ GetVIXLAssembler()->
1116
FixJumpTables()1117 void CodeGeneratorARM64::FixJumpTables() {
1118 for (auto&& jump_table : jump_tables_) {
1119 jump_table->FixTable(this);
1120 }
1121 }
1122
Finalize()1123 void CodeGeneratorARM64::Finalize() {
1124 FixJumpTables();
1125
1126 // Emit JIT baker read barrier slow paths.
1127 DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty());
1128 for (auto& entry : jit_baker_read_barrier_slow_paths_) {
1129 uint32_t encoded_data = entry.first;
1130 vixl::aarch64::Label* slow_path_entry = &entry.second.label;
1131 __ Bind(slow_path_entry);
1132 CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
1133 }
1134
1135 // Ensure we emit the literal pool.
1136 __ FinalizeCode();
1137
1138 CodeGenerator::Finalize();
1139
1140 // Verify Baker read barrier linker patches.
1141 if (kIsDebugBuild) {
1142 ArrayRef<const uint8_t> code(GetCode());
1143 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
1144 DCHECK(info.label.IsBound());
1145 uint32_t literal_offset = info.label.GetLocation();
1146 DCHECK_ALIGNED(literal_offset, 4u);
1147
1148 auto GetInsn = [&code](uint32_t offset) {
1149 DCHECK_ALIGNED(offset, 4u);
1150 return
1151 (static_cast<uint32_t>(code[offset + 0]) << 0) +
1152 (static_cast<uint32_t>(code[offset + 1]) << 8) +
1153 (static_cast<uint32_t>(code[offset + 2]) << 16)+
1154 (static_cast<uint32_t>(code[offset + 3]) << 24);
1155 };
1156
1157 const uint32_t encoded_data = info.custom_data;
1158 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
1159 // Check that the next instruction matches the expected LDR.
1160 switch (kind) {
1161 case BakerReadBarrierKind::kField:
1162 case BakerReadBarrierKind::kAcquire: {
1163 DCHECK_GE(code.size() - literal_offset, 8u);
1164 uint32_t next_insn = GetInsn(literal_offset + 4u);
1165 CheckValidReg(next_insn & 0x1fu); // Check destination register.
1166 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1167 if (kind == BakerReadBarrierKind::kField) {
1168 // LDR (immediate) with correct base_reg.
1169 CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5));
1170 } else {
1171 DCHECK(kind == BakerReadBarrierKind::kAcquire);
1172 // LDAR with correct base_reg.
1173 CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5));
1174 }
1175 break;
1176 }
1177 case BakerReadBarrierKind::kArray: {
1178 DCHECK_GE(code.size() - literal_offset, 8u);
1179 uint32_t next_insn = GetInsn(literal_offset + 4u);
1180 // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL),
1181 // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2].
1182 CheckValidReg(next_insn & 0x1fu); // Check destination register.
1183 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1184 CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5));
1185 CheckValidReg((next_insn >> 16) & 0x1f); // Check index register
1186 break;
1187 }
1188 case BakerReadBarrierKind::kGcRoot: {
1189 DCHECK_GE(literal_offset, 4u);
1190 uint32_t prev_insn = GetInsn(literal_offset - 4u);
1191 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1192 // Usually LDR (immediate) with correct root_reg but
1193 // we may have a "MOV marked, old_value" for intrinsic CAS.
1194 if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) { // MOV?
1195 CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); // LDR?
1196 }
1197 break;
1198 }
1199 default:
1200 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
1201 UNREACHABLE();
1202 }
1203 }
1204 }
1205 }
1206
PrepareForEmitNativeCode()1207 void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
1208 // Note: There are 6 kinds of moves:
1209 // 1. constant -> GPR/FPR (non-cycle)
1210 // 2. constant -> stack (non-cycle)
1211 // 3. GPR/FPR -> GPR/FPR
1212 // 4. GPR/FPR -> stack
1213 // 5. stack -> GPR/FPR
1214 // 6. stack -> stack (non-cycle)
1215 // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
1216 // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
1217 // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
1218 // dependency.
1219 vixl_temps_.Open(GetVIXLAssembler());
1220 }
1221
FinishEmitNativeCode()1222 void ParallelMoveResolverARM64::FinishEmitNativeCode() {
1223 vixl_temps_.Close();
1224 }
1225
AllocateScratchLocationFor(Location::Kind kind)1226 Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
1227 DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister
1228 || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot
1229 || kind == Location::kSIMDStackSlot);
1230 kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot)
1231 ? Location::kFpuRegister
1232 : Location::kRegister;
1233 Location scratch = GetScratchLocation(kind);
1234 if (!scratch.Equals(Location::NoLocation())) {
1235 return scratch;
1236 }
1237 // Allocate from VIXL temp registers.
1238 if (kind == Location::kRegister) {
1239 scratch = LocationFrom(vixl_temps_.AcquireX());
1240 } else {
1241 DCHECK_EQ(kind, Location::kFpuRegister);
1242 scratch = codegen_->GetGraph()->HasSIMD()
1243 ? codegen_->GetInstructionCodeGeneratorArm64()->AllocateSIMDScratchLocation(&vixl_temps_)
1244 : LocationFrom(vixl_temps_.AcquireD());
1245 }
1246 AddScratchLocation(scratch);
1247 return scratch;
1248 }
1249
FreeScratchLocation(Location loc)1250 void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
1251 if (loc.IsRegister()) {
1252 vixl_temps_.Release(XRegisterFrom(loc));
1253 } else {
1254 DCHECK(loc.IsFpuRegister());
1255 if (codegen_->GetGraph()->HasSIMD()) {
1256 codegen_->GetInstructionCodeGeneratorArm64()->FreeSIMDScratchLocation(loc, &vixl_temps_);
1257 } else {
1258 vixl_temps_.Release(DRegisterFrom(loc));
1259 }
1260 }
1261 RemoveScratchLocation(loc);
1262 }
1263
EmitMove(size_t index)1264 void ParallelMoveResolverARM64::EmitMove(size_t index) {
1265 MoveOperands* move = moves_[index];
1266 codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid);
1267 }
1268
VisitMethodExitHook(HMethodExitHook * method_hook)1269 void LocationsBuilderARM64::VisitMethodExitHook(HMethodExitHook* method_hook) {
1270 LocationSummary* locations = new (GetGraph()->GetAllocator())
1271 LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
1272 DataType::Type return_type = method_hook->InputAt(0)->GetType();
1273 locations->SetInAt(0, ARM64ReturnLocation(return_type));
1274 }
1275
GenerateMethodEntryExitHook(HInstruction * instruction)1276 void InstructionCodeGeneratorARM64::GenerateMethodEntryExitHook(HInstruction* instruction) {
1277 MacroAssembler* masm = GetVIXLAssembler();
1278 UseScratchRegisterScope temps(masm);
1279 Register addr = temps.AcquireX();
1280 Register curr_entry = temps.AcquireX();
1281 Register value = curr_entry.W();
1282
1283 SlowPathCodeARM64* slow_path =
1284 new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathARM64(instruction);
1285 codegen_->AddSlowPath(slow_path);
1286
1287 if (instruction->IsMethodExitHook()) {
1288 // Check if we are required to check if the caller needs a deoptimization. Strictly speaking it
1289 // would be sufficient to check if CheckCallerForDeopt bit is set. Though it is faster to check
1290 // if it is just non-zero. kCHA bit isn't used in debuggable runtimes as cha optimization is
1291 // disabled in debuggable runtime. The other bit is used when this method itself requires a
1292 // deoptimization due to redefinition. So it is safe to just check for non-zero value here.
1293 __ Ldr(value, MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
1294 __ Cbnz(value, slow_path->GetEntryLabel());
1295 }
1296
1297 uint64_t address = reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation());
1298 MemberOffset offset = instruction->IsMethodExitHook() ?
1299 instrumentation::Instrumentation::HaveMethodExitListenersOffset() :
1300 instrumentation::Instrumentation::HaveMethodEntryListenersOffset();
1301 __ Mov(addr, address + offset.Int32Value());
1302 __ Ldrb(value, MemOperand(addr, 0));
1303 __ Cmp(value, Operand(instrumentation::Instrumentation::kFastTraceListeners));
1304 // Check if there are any method entry / exit listeners. If no, continue.
1305 __ B(lt, slow_path->GetExitLabel());
1306 // Check if there are any slow (jvmti / trace with thread cpu time) method entry / exit listeners.
1307 // If yes, just take the slow path.
1308 __ B(gt, slow_path->GetEntryLabel());
1309
1310 Register init_entry = addr;
1311 // Check if there is place in the buffer to store a new entry, if no, take slow path.
1312 uint32_t trace_buffer_curr_entry_offset =
1313 Thread::TraceBufferCurrPtrOffset<kArm64PointerSize>().Int32Value();
1314 __ Ldr(curr_entry, MemOperand(tr, trace_buffer_curr_entry_offset));
1315 __ Sub(curr_entry, curr_entry, kNumEntriesForWallClock * sizeof(void*));
1316 __ Ldr(init_entry, MemOperand(tr, Thread::TraceBufferPtrOffset<kArm64PointerSize>().SizeValue()));
1317 __ Cmp(curr_entry, init_entry);
1318 __ B(lt, slow_path->GetEntryLabel());
1319
1320 // Update the index in the `Thread`.
1321 __ Str(curr_entry, MemOperand(tr, trace_buffer_curr_entry_offset));
1322
1323 Register tmp = init_entry;
1324 // Record method pointer and trace action.
1325 __ Ldr(tmp, MemOperand(sp, 0));
1326 // Use last two bits to encode trace method action. For MethodEntry it is 0
1327 // so no need to set the bits since they are 0 already.
1328 if (instruction->IsMethodExitHook()) {
1329 DCHECK_GE(ArtMethod::Alignment(kRuntimePointerSize), static_cast<size_t>(4));
1330 static_assert(enum_cast<int32_t>(TraceAction::kTraceMethodEnter) == 0);
1331 static_assert(enum_cast<int32_t>(TraceAction::kTraceMethodExit) == 1);
1332 __ Orr(tmp, tmp, Operand(enum_cast<int32_t>(TraceAction::kTraceMethodExit)));
1333 }
1334 __ Str(tmp, MemOperand(curr_entry, kMethodOffsetInBytes));
1335 // Record the timestamp.
1336 __ Mrs(tmp, (SystemRegister)SYS_CNTVCT_EL0);
1337 __ Str(tmp, MemOperand(curr_entry, kTimestampOffsetInBytes));
1338 __ Bind(slow_path->GetExitLabel());
1339 }
1340
VisitMethodExitHook(HMethodExitHook * instruction)1341 void InstructionCodeGeneratorARM64::VisitMethodExitHook(HMethodExitHook* instruction) {
1342 DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
1343 DCHECK(codegen_->RequiresCurrentMethod());
1344 GenerateMethodEntryExitHook(instruction);
1345 }
1346
VisitMethodEntryHook(HMethodEntryHook * method_hook)1347 void LocationsBuilderARM64::VisitMethodEntryHook(HMethodEntryHook* method_hook) {
1348 new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
1349 }
1350
VisitMethodEntryHook(HMethodEntryHook * instruction)1351 void InstructionCodeGeneratorARM64::VisitMethodEntryHook(HMethodEntryHook* instruction) {
1352 DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
1353 DCHECK(codegen_->RequiresCurrentMethod());
1354 GenerateMethodEntryExitHook(instruction);
1355 }
1356
MaybeRecordTraceEvent(bool is_method_entry)1357 void CodeGeneratorARM64::MaybeRecordTraceEvent(bool is_method_entry) {
1358 if (!art_flags::always_enable_profile_code()) {
1359 return;
1360 }
1361
1362 MacroAssembler* masm = GetVIXLAssembler();
1363 UseScratchRegisterScope temps(masm);
1364 Register addr = temps.AcquireX();
1365 CHECK(addr.Is(vixl::aarch64::x16));
1366
1367 SlowPathCodeARM64* slow_path =
1368 new (GetScopedAllocator()) TracingMethodEntryExitHooksSlowPathARM64(is_method_entry);
1369 AddSlowPath(slow_path);
1370
1371 __ Ldr(addr, MemOperand(tr, Thread::TraceBufferPtrOffset<kArm64PointerSize>().SizeValue()));
1372 __ Cbnz(addr, slow_path->GetEntryLabel());
1373 __ Bind(slow_path->GetExitLabel());
1374 }
1375
MaybeIncrementHotness(HSuspendCheck * suspend_check,bool is_frame_entry)1376 void CodeGeneratorARM64::MaybeIncrementHotness(HSuspendCheck* suspend_check, bool is_frame_entry) {
1377 MacroAssembler* masm = GetVIXLAssembler();
1378 if (GetCompilerOptions().CountHotnessInCompiledCode()) {
1379 UseScratchRegisterScope temps(masm);
1380 Register counter = temps.AcquireX();
1381 Register method = is_frame_entry ? kArtMethodRegister : temps.AcquireX();
1382 if (!is_frame_entry) {
1383 __ Ldr(method, MemOperand(sp, 0));
1384 }
1385 __ Ldrh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1386 vixl::aarch64::Label done;
1387 DCHECK_EQ(0u, interpreter::kNterpHotnessValue);
1388 __ Cbz(counter, &done);
1389 __ Add(counter, counter, -1);
1390 __ Strh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1391 __ Bind(&done);
1392 }
1393
1394 if (GetGraph()->IsCompilingBaseline() &&
1395 GetGraph()->IsUsefulOptimizing() &&
1396 !Runtime::Current()->IsAotCompiler()) {
1397 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
1398 DCHECK(info != nullptr);
1399 DCHECK(!HasEmptyFrame());
1400 uint64_t address = reinterpret_cast64<uint64_t>(info);
1401 UseScratchRegisterScope temps(masm);
1402 Register counter = temps.AcquireW();
1403 SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathARM64(
1404 suspend_check, /* profiling_info= */ lr);
1405 AddSlowPath(slow_path);
1406 __ Ldr(lr, jit_patches_.DeduplicateUint64Literal(address));
1407 __ Ldrh(counter, MemOperand(lr, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1408 __ Cbz(counter, slow_path->GetEntryLabel());
1409 __ Add(counter, counter, -1);
1410 __ Strh(counter, MemOperand(lr, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1411 __ Bind(slow_path->GetExitLabel());
1412 }
1413 }
1414
GenerateFrameEntry()1415 void CodeGeneratorARM64::GenerateFrameEntry() {
1416 MacroAssembler* masm = GetVIXLAssembler();
1417
1418 // Check if we need to generate the clinit check. We will jump to the
1419 // resolution stub if the class is not initialized and the executing thread is
1420 // not the thread initializing it.
1421 // We do this before constructing the frame to get the correct stack trace if
1422 // an exception is thrown.
1423 if (GetCompilerOptions().ShouldCompileWithClinitCheck(GetGraph()->GetArtMethod())) {
1424 UseScratchRegisterScope temps(masm);
1425 vixl::aarch64::Label resolution;
1426 vixl::aarch64::Label memory_barrier;
1427
1428 Register temp1 = temps.AcquireW();
1429 Register temp2 = temps.AcquireW();
1430
1431 // Check if we're visibly initialized.
1432
1433 // We don't emit a read barrier here to save on code size. We rely on the
1434 // resolution trampoline to do a suspend check before re-entering this code.
1435 __ Ldr(temp1, MemOperand(kArtMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value()));
1436 __ Ldrb(temp2, HeapOperand(temp1, kClassStatusByteOffset));
1437 __ Cmp(temp2, kShiftedVisiblyInitializedValue);
1438 __ B(hs, &frame_entry_label_);
1439
1440 // Check if we're initialized and jump to code that does a memory barrier if
1441 // so.
1442 __ Cmp(temp2, kShiftedInitializedValue);
1443 __ B(hs, &memory_barrier);
1444
1445 // Check if we're initializing and the thread initializing is the one
1446 // executing the code.
1447 __ Cmp(temp2, kShiftedInitializingValue);
1448 __ B(lo, &resolution);
1449
1450 __ Ldr(temp1, HeapOperand(temp1, mirror::Class::ClinitThreadIdOffset().Int32Value()));
1451 __ Ldr(temp2, MemOperand(tr, Thread::TidOffset<kArm64PointerSize>().Int32Value()));
1452 __ Cmp(temp1, temp2);
1453 __ B(eq, &frame_entry_label_);
1454 __ Bind(&resolution);
1455
1456 // Jump to the resolution stub.
1457 ThreadOffset64 entrypoint_offset =
1458 GetThreadOffset<kArm64PointerSize>(kQuickQuickResolutionTrampoline);
1459 __ Ldr(temp1.X(), MemOperand(tr, entrypoint_offset.Int32Value()));
1460 __ Br(temp1.X());
1461
1462 __ Bind(&memory_barrier);
1463 GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
1464 }
1465 __ Bind(&frame_entry_label_);
1466
1467 bool do_overflow_check =
1468 FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod();
1469 if (do_overflow_check) {
1470 UseScratchRegisterScope temps(masm);
1471 Register temp = temps.AcquireX();
1472 DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1473 __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64)));
1474 {
1475 // Ensure that between load and RecordPcInfo there are no pools emitted.
1476 ExactAssemblyScope eas(GetVIXLAssembler(),
1477 kInstructionSize,
1478 CodeBufferCheckScope::kExactSize);
1479 __ ldr(wzr, MemOperand(temp, 0));
1480 RecordPcInfoForFrameOrBlockEntry();
1481 }
1482 }
1483
1484 if (!HasEmptyFrame()) {
1485 // Make sure the frame size isn't unreasonably large.
1486 DCHECK_LE(GetFrameSize(), GetMaximumFrameSize());
1487
1488 // Stack layout:
1489 // sp[frame_size - 8] : lr.
1490 // ... : other preserved core registers.
1491 // ... : other preserved fp registers.
1492 // ... : reserved frame space.
1493 // sp[0] : current method.
1494 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1495 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1496 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1497 DCHECK(!preserved_core_registers.IsEmpty());
1498 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1499 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1500
1501 // Save the current method if we need it, or if using STP reduces code
1502 // size. Note that we do not do this in HCurrentMethod, as the
1503 // instruction might have been removed in the SSA graph.
1504 CPURegister lowest_spill;
1505 if (core_spills_offset == kXRegSizeInBytes) {
1506 // If there is no gap between the method and the lowest core spill, use
1507 // aligned STP pre-index to store both. Max difference is 512. We do
1508 // that to reduce code size even if we do not have to save the method.
1509 DCHECK_LE(frame_size, 512); // 32 core registers are only 256 bytes.
1510 lowest_spill = preserved_core_registers.PopLowestIndex();
1511 __ Stp(kArtMethodRegister, lowest_spill, MemOperand(sp, -frame_size, PreIndex));
1512 } else if (RequiresCurrentMethod()) {
1513 __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
1514 } else {
1515 __ Claim(frame_size);
1516 }
1517 GetAssembler()->cfi().AdjustCFAOffset(frame_size);
1518 if (lowest_spill.IsValid()) {
1519 GetAssembler()->cfi().RelOffset(DWARFReg(lowest_spill), core_spills_offset);
1520 core_spills_offset += kXRegSizeInBytes;
1521 }
1522 GetAssembler()->SpillRegisters(preserved_core_registers, core_spills_offset);
1523 GetAssembler()->SpillRegisters(preserved_fp_registers, fp_spills_offset);
1524
1525 if (GetGraph()->HasShouldDeoptimizeFlag()) {
1526 // Initialize should_deoptimize flag to 0.
1527 Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize);
1528 __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag()));
1529 }
1530
1531 MaybeRecordTraceEvent(/* is_method_entry= */ true);
1532 }
1533 MaybeIncrementHotness(/* suspend_check= */ nullptr, /* is_frame_entry= */ true);
1534 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
1535 }
1536
GenerateFrameExit()1537 void CodeGeneratorARM64::GenerateFrameExit() {
1538 if (!HasEmptyFrame()) {
1539 MaybeRecordTraceEvent(/* is_method_entry= */ false);
1540 PopFrameAndReturn(GetAssembler(),
1541 dchecked_integral_cast<int32_t>(GetFrameSize()),
1542 GetFramePreservedCoreRegisters(),
1543 GetFramePreservedFPRegisters());
1544 } else {
1545 __ Ret();
1546 }
1547 }
1548
PopFrameAndReturn(Arm64Assembler * assembler,int32_t frame_size,CPURegList preserved_core_registers,CPURegList preserved_fp_registers)1549 void CodeGeneratorARM64::PopFrameAndReturn(Arm64Assembler* assembler,
1550 int32_t frame_size,
1551 CPURegList preserved_core_registers,
1552 CPURegList preserved_fp_registers) {
1553 DCHECK(!preserved_core_registers.IsEmpty());
1554 uint32_t core_spill_size = preserved_core_registers.GetTotalSizeInBytes();
1555 uint32_t frame_entry_spill_size = preserved_fp_registers.GetTotalSizeInBytes() + core_spill_size;
1556 uint32_t core_spills_offset = frame_size - core_spill_size;
1557 uint32_t fp_spills_offset = frame_size - frame_entry_spill_size;
1558 vixl::aarch64::MacroAssembler* vixl_assembler = assembler->GetVIXLAssembler();
1559
1560 CPURegister lowest_spill;
1561 if (core_spills_offset == kXRegSizeInBytes) {
1562 // If there is no gap between the method and the lowest core spill, use
1563 // aligned LDP pre-index to pop both. Max difference is 504. We do
1564 // that to reduce code size even though the loaded method is unused.
1565 DCHECK_LE(frame_size, 504); // 32 core registers are only 256 bytes.
1566 lowest_spill = preserved_core_registers.PopLowestIndex();
1567 core_spills_offset += kXRegSizeInBytes;
1568 }
1569
1570 assembler->cfi().RememberState();
1571 assembler->UnspillRegisters(preserved_fp_registers, fp_spills_offset);
1572 assembler->UnspillRegisters(preserved_core_registers, core_spills_offset);
1573 if (lowest_spill.IsValid()) {
1574 vixl_assembler->Ldp(xzr, lowest_spill, MemOperand(sp, frame_size, PostIndex));
1575 assembler->cfi().Restore(DWARFReg(lowest_spill));
1576 } else {
1577 vixl_assembler->Drop(frame_size);
1578 }
1579 assembler->cfi().AdjustCFAOffset(-frame_size);
1580 vixl_assembler->Ret();
1581 assembler->cfi().RestoreState();
1582 assembler->cfi().DefCFAOffset(frame_size);
1583 }
1584
GetFramePreservedCoreRegisters() const1585 CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
1586 DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
1587 return CPURegList(CPURegister::kRegister, kXRegSize,
1588 core_spill_mask_);
1589 }
1590
GetFramePreservedFPRegisters() const1591 CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
1592 DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
1593 GetNumberOfFloatingPointRegisters()));
1594 return CPURegList(CPURegister::kVRegister, kDRegSize,
1595 fpu_spill_mask_);
1596 }
1597
Bind(HBasicBlock * block)1598 void CodeGeneratorARM64::Bind(HBasicBlock* block) {
1599 __ Bind(GetLabelOf(block));
1600 }
1601
MoveConstant(Location location,int32_t value)1602 void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
1603 DCHECK(location.IsRegister());
1604 __ Mov(RegisterFrom(location, DataType::Type::kInt32), value);
1605 }
1606
AddLocationAsTemp(Location location,LocationSummary * locations)1607 void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
1608 if (location.IsRegister()) {
1609 locations->AddTemp(location);
1610 } else {
1611 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1612 }
1613 }
1614
MaybeMarkGCCard(Register object,Register value,bool emit_null_check)1615 void CodeGeneratorARM64::MaybeMarkGCCard(Register object, Register value, bool emit_null_check) {
1616 vixl::aarch64::Label done;
1617 if (emit_null_check) {
1618 __ Cbz(value, &done);
1619 }
1620 MarkGCCard(object);
1621 if (emit_null_check) {
1622 __ Bind(&done);
1623 }
1624 }
1625
MarkGCCard(Register object)1626 void CodeGeneratorARM64::MarkGCCard(Register object) {
1627 UseScratchRegisterScope temps(GetVIXLAssembler());
1628 Register card = temps.AcquireX();
1629 Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
1630 // Load the address of the card table into `card`.
1631 __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
1632 // Calculate the offset (in the card table) of the card corresponding to `object`.
1633 __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1634 // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
1635 // `object`'s card.
1636 //
1637 // Register `card` contains the address of the card table. Note that the card
1638 // table's base is biased during its creation so that it always starts at an
1639 // address whose least-significant byte is equal to `kCardDirty` (see
1640 // art::gc::accounting::CardTable::Create). Therefore the STRB instruction
1641 // below writes the `kCardDirty` (byte) value into the `object`'s card
1642 // (located at `card + object >> kCardShift`).
1643 //
1644 // This dual use of the value in register `card` (1. to calculate the location
1645 // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
1646 // (no need to explicitly load `kCardDirty` as an immediate value).
1647 __ Strb(card, MemOperand(card, temp.X()));
1648 }
1649
CheckGCCardIsValid(Register object)1650 void CodeGeneratorARM64::CheckGCCardIsValid(Register object) {
1651 UseScratchRegisterScope temps(GetVIXLAssembler());
1652 Register card = temps.AcquireX();
1653 Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
1654 vixl::aarch64::Label done;
1655 // Load the address of the card table into `card`.
1656 __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
1657 // Calculate the offset (in the card table) of the card corresponding to `object`.
1658 __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1659 // assert (!clean || !self->is_gc_marking)
1660 __ Ldrb(temp, MemOperand(card, temp.X()));
1661 static_assert(gc::accounting::CardTable::kCardClean == 0);
1662 __ Cbnz(temp, &done);
1663 __ Cbz(mr, &done);
1664 __ Unreachable();
1665 __ Bind(&done);
1666 }
1667
SetupBlockedRegisters() const1668 void CodeGeneratorARM64::SetupBlockedRegisters() const {
1669 // Blocked core registers:
1670 // lr : Runtime reserved.
1671 // tr : Runtime reserved.
1672 // mr : Runtime reserved.
1673 // ip1 : VIXL core temp.
1674 // ip0 : VIXL core temp.
1675 // x18 : Platform register.
1676 //
1677 // Blocked fp registers:
1678 // d31 : VIXL fp temp.
1679 CPURegList reserved_core_registers = vixl_reserved_core_registers;
1680 reserved_core_registers.Combine(runtime_reserved_core_registers);
1681 while (!reserved_core_registers.IsEmpty()) {
1682 blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true;
1683 }
1684 blocked_core_registers_[X18] = true;
1685
1686 CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
1687 while (!reserved_fp_registers.IsEmpty()) {
1688 blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true;
1689 }
1690
1691 if (GetGraph()->IsDebuggable()) {
1692 // Stubs do not save callee-save floating point registers. If the graph
1693 // is debuggable, we need to deal with these registers differently. For
1694 // now, just block them.
1695 CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
1696 while (!reserved_fp_registers_debuggable.IsEmpty()) {
1697 blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true;
1698 }
1699 }
1700 }
1701
SaveCoreRegister(size_t stack_index,uint32_t reg_id)1702 size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1703 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1704 __ Str(reg, MemOperand(sp, stack_index));
1705 return kArm64WordSize;
1706 }
1707
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)1708 size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1709 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1710 __ Ldr(reg, MemOperand(sp, stack_index));
1711 return kArm64WordSize;
1712 }
1713
SaveFloatingPointRegister(size_t stack_index,uint32_t reg_id)1714 size_t CodeGeneratorARM64::SaveFloatingPointRegister([[maybe_unused]] size_t stack_index,
1715 [[maybe_unused]] uint32_t reg_id) {
1716 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1717 << "use SaveRestoreLiveRegistersHelper";
1718 UNREACHABLE();
1719 }
1720
RestoreFloatingPointRegister(size_t stack_index,uint32_t reg_id)1721 size_t CodeGeneratorARM64::RestoreFloatingPointRegister([[maybe_unused]] size_t stack_index,
1722 [[maybe_unused]] uint32_t reg_id) {
1723 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1724 << "use SaveRestoreLiveRegistersHelper";
1725 UNREACHABLE();
1726 }
1727
DumpCoreRegister(std::ostream & stream,int reg) const1728 void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
1729 stream << XRegister(reg);
1730 }
1731
DumpFloatingPointRegister(std::ostream & stream,int reg) const1732 void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1733 stream << DRegister(reg);
1734 }
1735
GetInstructionSetFeatures() const1736 const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const {
1737 return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures();
1738 }
1739
MoveConstant(CPURegister destination,HConstant * constant)1740 void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
1741 if (constant->IsIntConstant()) {
1742 __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
1743 } else if (constant->IsLongConstant()) {
1744 __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
1745 } else if (constant->IsNullConstant()) {
1746 __ Mov(Register(destination), 0);
1747 } else if (constant->IsFloatConstant()) {
1748 __ Fmov(VRegister(destination), constant->AsFloatConstant()->GetValue());
1749 } else {
1750 DCHECK(constant->IsDoubleConstant());
1751 __ Fmov(VRegister(destination), constant->AsDoubleConstant()->GetValue());
1752 }
1753 }
1754
1755
CoherentConstantAndType(Location constant,DataType::Type type)1756 static bool CoherentConstantAndType(Location constant, DataType::Type type) {
1757 DCHECK(constant.IsConstant());
1758 HConstant* cst = constant.GetConstant();
1759 return (cst->IsIntConstant() && type == DataType::Type::kInt32) ||
1760 // Null is mapped to a core W register, which we associate with kPrimInt.
1761 (cst->IsNullConstant() && type == DataType::Type::kInt32) ||
1762 (cst->IsLongConstant() && type == DataType::Type::kInt64) ||
1763 (cst->IsFloatConstant() && type == DataType::Type::kFloat32) ||
1764 (cst->IsDoubleConstant() && type == DataType::Type::kFloat64);
1765 }
1766
1767 // Allocate a scratch register from the VIXL pool, querying first
1768 // the floating-point register pool, and then the core register
1769 // pool. This is essentially a reimplementation of
1770 // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize
1771 // using a different allocation strategy.
AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler * masm,vixl::aarch64::UseScratchRegisterScope * temps,int size_in_bits)1772 static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm,
1773 vixl::aarch64::UseScratchRegisterScope* temps,
1774 int size_in_bits) {
1775 return masm->GetScratchVRegisterList()->IsEmpty()
1776 ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits))
1777 : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits));
1778 }
1779
MoveLocation(Location destination,Location source,DataType::Type dst_type)1780 void CodeGeneratorARM64::MoveLocation(Location destination,
1781 Location source,
1782 DataType::Type dst_type) {
1783 if (source.Equals(destination)) {
1784 return;
1785 }
1786
1787 // A valid move can always be inferred from the destination and source
1788 // locations. When moving from and to a register, the argument type can be
1789 // used to generate 32bit instead of 64bit moves. In debug mode we also
1790 // checks the coherency of the locations and the type.
1791 bool unspecified_type = (dst_type == DataType::Type::kVoid);
1792
1793 if (destination.IsRegister() || destination.IsFpuRegister()) {
1794 if (unspecified_type) {
1795 HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
1796 if (source.IsStackSlot() ||
1797 (src_cst != nullptr && (src_cst->IsIntConstant()
1798 || src_cst->IsFloatConstant()
1799 || src_cst->IsNullConstant()))) {
1800 // For stack slots and 32bit constants, a 64bit type is appropriate.
1801 dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32;
1802 } else {
1803 // If the source is a double stack slot or a 64bit constant, a 64bit
1804 // type is appropriate. Else the source is a register, and since the
1805 // type has not been specified, we chose a 64bit type to force a 64bit
1806 // move.
1807 dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64;
1808 }
1809 }
1810 DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) ||
1811 (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type)));
1812 CPURegister dst = CPURegisterFrom(destination, dst_type);
1813 if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
1814 DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
1815 __ Ldr(dst, StackOperandFrom(source));
1816 } else if (source.IsSIMDStackSlot()) {
1817 GetInstructionCodeGeneratorArm64()->LoadSIMDRegFromStack(destination, source);
1818 } else if (source.IsConstant()) {
1819 DCHECK(CoherentConstantAndType(source, dst_type));
1820 MoveConstant(dst, source.GetConstant());
1821 } else if (source.IsRegister()) {
1822 if (destination.IsRegister()) {
1823 __ Mov(Register(dst), RegisterFrom(source, dst_type));
1824 } else {
1825 DCHECK(destination.IsFpuRegister());
1826 DataType::Type source_type = DataType::Is64BitType(dst_type)
1827 ? DataType::Type::kInt64
1828 : DataType::Type::kInt32;
1829 __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
1830 }
1831 } else {
1832 DCHECK(source.IsFpuRegister());
1833 if (destination.IsRegister()) {
1834 DataType::Type source_type = DataType::Is64BitType(dst_type)
1835 ? DataType::Type::kFloat64
1836 : DataType::Type::kFloat32;
1837 __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
1838 } else {
1839 DCHECK(destination.IsFpuRegister());
1840 if (GetGraph()->HasSIMD()) {
1841 GetInstructionCodeGeneratorArm64()->MoveSIMDRegToSIMDReg(destination, source);
1842 } else {
1843 __ Fmov(VRegister(dst), FPRegisterFrom(source, dst_type));
1844 }
1845 }
1846 }
1847 } else if (destination.IsSIMDStackSlot()) {
1848 GetInstructionCodeGeneratorArm64()->MoveToSIMDStackSlot(destination, source);
1849 } else { // The destination is not a register. It must be a stack slot.
1850 DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
1851 if (source.IsRegister() || source.IsFpuRegister()) {
1852 if (unspecified_type) {
1853 if (source.IsRegister()) {
1854 dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64;
1855 } else {
1856 dst_type =
1857 destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64;
1858 }
1859 }
1860 DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) &&
1861 (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type)));
1862 __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
1863 } else if (source.IsConstant()) {
1864 DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
1865 << source << " " << dst_type;
1866 UseScratchRegisterScope temps(GetVIXLAssembler());
1867 HConstant* src_cst = source.GetConstant();
1868 CPURegister temp;
1869 if (src_cst->IsZeroBitPattern()) {
1870 temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant())
1871 ? Register(xzr)
1872 : Register(wzr);
1873 } else {
1874 if (src_cst->IsIntConstant()) {
1875 temp = temps.AcquireW();
1876 } else if (src_cst->IsLongConstant()) {
1877 temp = temps.AcquireX();
1878 } else if (src_cst->IsFloatConstant()) {
1879 temp = temps.AcquireS();
1880 } else {
1881 DCHECK(src_cst->IsDoubleConstant());
1882 temp = temps.AcquireD();
1883 }
1884 MoveConstant(temp, src_cst);
1885 }
1886 __ Str(temp, StackOperandFrom(destination));
1887 } else {
1888 DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
1889 DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
1890 UseScratchRegisterScope temps(GetVIXLAssembler());
1891 // Use any scratch register (a core or a floating-point one)
1892 // from VIXL scratch register pools as a temporary.
1893 //
1894 // We used to only use the FP scratch register pool, but in some
1895 // rare cases the only register from this pool (D31) would
1896 // already be used (e.g. within a ParallelMove instruction, when
1897 // a move is blocked by a another move requiring a scratch FP
1898 // register, which would reserve D31). To prevent this issue, we
1899 // ask for a scratch register of any type (core or FP).
1900 //
1901 // Also, we start by asking for a FP scratch register first, as the
1902 // demand of scratch core registers is higher. This is why we
1903 // use AcquireFPOrCoreCPURegisterOfSize instead of
1904 // UseScratchRegisterScope::AcquireCPURegisterOfSize, which
1905 // allocates core scratch registers first.
1906 CPURegister temp = AcquireFPOrCoreCPURegisterOfSize(
1907 GetVIXLAssembler(),
1908 &temps,
1909 (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize));
1910 __ Ldr(temp, StackOperandFrom(source));
1911 __ Str(temp, StackOperandFrom(destination));
1912 }
1913 }
1914 }
1915
Load(DataType::Type type,CPURegister dst,const MemOperand & src)1916 void CodeGeneratorARM64::Load(DataType::Type type,
1917 CPURegister dst,
1918 const MemOperand& src) {
1919 switch (type) {
1920 case DataType::Type::kBool:
1921 case DataType::Type::kUint8:
1922 __ Ldrb(Register(dst), src);
1923 break;
1924 case DataType::Type::kInt8:
1925 __ Ldrsb(Register(dst), src);
1926 break;
1927 case DataType::Type::kUint16:
1928 __ Ldrh(Register(dst), src);
1929 break;
1930 case DataType::Type::kInt16:
1931 __ Ldrsh(Register(dst), src);
1932 break;
1933 case DataType::Type::kInt32:
1934 case DataType::Type::kReference:
1935 case DataType::Type::kInt64:
1936 case DataType::Type::kFloat32:
1937 case DataType::Type::kFloat64:
1938 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1939 __ Ldr(dst, src);
1940 break;
1941 case DataType::Type::kUint32:
1942 case DataType::Type::kUint64:
1943 case DataType::Type::kVoid:
1944 LOG(FATAL) << "Unreachable type " << type;
1945 }
1946 }
1947
LoadAcquire(HInstruction * instruction,DataType::Type type,CPURegister dst,const MemOperand & src,bool needs_null_check)1948 void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
1949 DataType::Type type,
1950 CPURegister dst,
1951 const MemOperand& src,
1952 bool needs_null_check) {
1953 MacroAssembler* masm = GetVIXLAssembler();
1954 UseScratchRegisterScope temps(masm);
1955 Register temp_base = temps.AcquireX();
1956
1957 DCHECK(!src.IsPreIndex());
1958 DCHECK(!src.IsPostIndex());
1959
1960 // TODO(vixl): Let the MacroAssembler handle MemOperand.
1961 __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src));
1962 {
1963 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
1964 MemOperand base = MemOperand(temp_base);
1965 switch (type) {
1966 case DataType::Type::kBool:
1967 case DataType::Type::kUint8:
1968 case DataType::Type::kInt8:
1969 {
1970 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1971 __ ldarb(Register(dst), base);
1972 if (needs_null_check) {
1973 MaybeRecordImplicitNullCheck(instruction);
1974 }
1975 }
1976 if (type == DataType::Type::kInt8) {
1977 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1978 }
1979 break;
1980 case DataType::Type::kUint16:
1981 case DataType::Type::kInt16:
1982 {
1983 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1984 __ ldarh(Register(dst), base);
1985 if (needs_null_check) {
1986 MaybeRecordImplicitNullCheck(instruction);
1987 }
1988 }
1989 if (type == DataType::Type::kInt16) {
1990 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1991 }
1992 break;
1993 case DataType::Type::kInt32:
1994 case DataType::Type::kReference:
1995 case DataType::Type::kInt64:
1996 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1997 {
1998 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1999 __ ldar(Register(dst), base);
2000 if (needs_null_check) {
2001 MaybeRecordImplicitNullCheck(instruction);
2002 }
2003 }
2004 break;
2005 case DataType::Type::kFloat32:
2006 case DataType::Type::kFloat64: {
2007 DCHECK(dst.IsFPRegister());
2008 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
2009
2010 Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
2011 {
2012 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2013 __ ldar(temp, base);
2014 if (needs_null_check) {
2015 MaybeRecordImplicitNullCheck(instruction);
2016 }
2017 }
2018 __ Fmov(VRegister(dst), temp);
2019 break;
2020 }
2021 case DataType::Type::kUint32:
2022 case DataType::Type::kUint64:
2023 case DataType::Type::kVoid:
2024 LOG(FATAL) << "Unreachable type " << type;
2025 }
2026 }
2027 }
2028
Store(DataType::Type type,CPURegister src,const MemOperand & dst)2029 void CodeGeneratorARM64::Store(DataType::Type type,
2030 CPURegister src,
2031 const MemOperand& dst) {
2032 switch (type) {
2033 case DataType::Type::kBool:
2034 case DataType::Type::kUint8:
2035 case DataType::Type::kInt8:
2036 __ Strb(Register(src), dst);
2037 break;
2038 case DataType::Type::kUint16:
2039 case DataType::Type::kInt16:
2040 __ Strh(Register(src), dst);
2041 break;
2042 case DataType::Type::kInt32:
2043 case DataType::Type::kReference:
2044 case DataType::Type::kInt64:
2045 case DataType::Type::kFloat32:
2046 case DataType::Type::kFloat64:
2047 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
2048 __ Str(src, dst);
2049 break;
2050 case DataType::Type::kUint32:
2051 case DataType::Type::kUint64:
2052 case DataType::Type::kVoid:
2053 LOG(FATAL) << "Unreachable type " << type;
2054 }
2055 }
2056
StoreRelease(HInstruction * instruction,DataType::Type type,CPURegister src,const MemOperand & dst,bool needs_null_check)2057 void CodeGeneratorARM64::StoreRelease(HInstruction* instruction,
2058 DataType::Type type,
2059 CPURegister src,
2060 const MemOperand& dst,
2061 bool needs_null_check) {
2062 MacroAssembler* masm = GetVIXLAssembler();
2063 UseScratchRegisterScope temps(GetVIXLAssembler());
2064 Register temp_base = temps.AcquireX();
2065
2066 DCHECK(!dst.IsPreIndex());
2067 DCHECK(!dst.IsPostIndex());
2068
2069 // TODO(vixl): Let the MacroAssembler handle this.
2070 Operand op = OperandFromMemOperand(dst);
2071 __ Add(temp_base, dst.GetBaseRegister(), op);
2072 MemOperand base = MemOperand(temp_base);
2073 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2074 switch (type) {
2075 case DataType::Type::kBool:
2076 case DataType::Type::kUint8:
2077 case DataType::Type::kInt8:
2078 {
2079 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2080 __ stlrb(Register(src), base);
2081 if (needs_null_check) {
2082 MaybeRecordImplicitNullCheck(instruction);
2083 }
2084 }
2085 break;
2086 case DataType::Type::kUint16:
2087 case DataType::Type::kInt16:
2088 {
2089 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2090 __ stlrh(Register(src), base);
2091 if (needs_null_check) {
2092 MaybeRecordImplicitNullCheck(instruction);
2093 }
2094 }
2095 break;
2096 case DataType::Type::kInt32:
2097 case DataType::Type::kReference:
2098 case DataType::Type::kInt64:
2099 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
2100 {
2101 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2102 __ stlr(Register(src), base);
2103 if (needs_null_check) {
2104 MaybeRecordImplicitNullCheck(instruction);
2105 }
2106 }
2107 break;
2108 case DataType::Type::kFloat32:
2109 case DataType::Type::kFloat64: {
2110 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
2111 Register temp_src;
2112 if (src.IsZero()) {
2113 // The zero register is used to avoid synthesizing zero constants.
2114 temp_src = Register(src);
2115 } else {
2116 DCHECK(src.IsFPRegister());
2117 temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
2118 __ Fmov(temp_src, VRegister(src));
2119 }
2120 {
2121 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2122 __ stlr(temp_src, base);
2123 if (needs_null_check) {
2124 MaybeRecordImplicitNullCheck(instruction);
2125 }
2126 }
2127 break;
2128 }
2129 case DataType::Type::kUint32:
2130 case DataType::Type::kUint64:
2131 case DataType::Type::kVoid:
2132 LOG(FATAL) << "Unreachable type " << type;
2133 }
2134 }
2135
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,SlowPathCode * slow_path)2136 void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
2137 HInstruction* instruction,
2138 SlowPathCode* slow_path) {
2139 ValidateInvokeRuntime(entrypoint, instruction, slow_path);
2140
2141 ThreadOffset64 entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entrypoint);
2142 // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
2143 // entire oat file. This adds an extra branch and we do not want to slow down the main path.
2144 // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
2145 if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) {
2146 __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
2147 // Ensure the pc position is recorded immediately after the `blr` instruction.
2148 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
2149 __ blr(lr);
2150 if (EntrypointRequiresStackMap(entrypoint)) {
2151 RecordPcInfo(instruction, slow_path);
2152 }
2153 } else {
2154 // Ensure the pc position is recorded immediately after the `bl` instruction.
2155 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
2156 EmitEntrypointThunkCall(entrypoint_offset);
2157 if (EntrypointRequiresStackMap(entrypoint)) {
2158 RecordPcInfo(instruction, slow_path);
2159 }
2160 }
2161 }
2162
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)2163 void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
2164 HInstruction* instruction,
2165 SlowPathCode* slow_path) {
2166 ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
2167 __ Ldr(lr, MemOperand(tr, entry_point_offset));
2168 __ Blr(lr);
2169 }
2170
GenerateClassInitializationCheck(SlowPathCodeARM64 * slow_path,Register class_reg)2171 void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
2172 Register class_reg) {
2173 UseScratchRegisterScope temps(GetVIXLAssembler());
2174 Register temp = temps.AcquireW();
2175
2176 // CMP (immediate) is limited to imm12 or imm12<<12, so we would need to materialize
2177 // the constant 0xf0000000 for comparison with the full 32-bit field. To reduce the code
2178 // size, load only the high byte of the field and compare with 0xf0.
2179 // Note: The same code size could be achieved with LDR+MNV(asr #24)+CBNZ but benchmarks
2180 // show that this pattern is slower (tested on little cores).
2181 __ Ldrb(temp, HeapOperand(class_reg, kClassStatusByteOffset));
2182 __ Cmp(temp, kShiftedVisiblyInitializedValue);
2183 __ B(lo, slow_path->GetEntryLabel());
2184 __ Bind(slow_path->GetExitLabel());
2185 }
2186
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,vixl::aarch64::Register temp)2187 void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare(
2188 HTypeCheckInstruction* check, vixl::aarch64::Register temp) {
2189 uint32_t path_to_root = check->GetBitstringPathToRoot();
2190 uint32_t mask = check->GetBitstringMask();
2191 DCHECK(IsPowerOfTwo(mask + 1));
2192 size_t mask_bits = WhichPowerOf2(mask + 1);
2193
2194 if (mask_bits == 16u) {
2195 // Load only the bitstring part of the status word.
2196 __ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
2197 } else {
2198 // /* uint32_t */ temp = temp->status_
2199 __ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
2200 // Extract the bitstring bits.
2201 __ Ubfx(temp, temp, 0, mask_bits);
2202 }
2203 // Compare the bitstring bits to `path_to_root`.
2204 __ Cmp(temp, path_to_root);
2205 }
2206
GenerateMemoryBarrier(MemBarrierKind kind)2207 void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
2208 BarrierType type = BarrierAll;
2209
2210 switch (kind) {
2211 case MemBarrierKind::kAnyAny:
2212 case MemBarrierKind::kAnyStore: {
2213 type = BarrierAll;
2214 break;
2215 }
2216 case MemBarrierKind::kLoadAny: {
2217 type = BarrierReads;
2218 break;
2219 }
2220 case MemBarrierKind::kStoreStore: {
2221 type = BarrierWrites;
2222 break;
2223 }
2224 default:
2225 LOG(FATAL) << "Unexpected memory barrier " << kind;
2226 }
2227 __ Dmb(InnerShareable, type);
2228 }
2229
CanUseImplicitSuspendCheck() const2230 bool CodeGeneratorARM64::CanUseImplicitSuspendCheck() const {
2231 // Use implicit suspend checks if requested in compiler options unless there are SIMD
2232 // instructions in the graph. The implicit suspend check saves all FP registers as
2233 // 64-bit (in line with the calling convention) but SIMD instructions can use 128-bit
2234 // registers, so they need to be saved in an explicit slow path.
2235 return GetCompilerOptions().GetImplicitSuspendChecks() && !GetGraph()->HasSIMD();
2236 }
2237
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)2238 void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
2239 HBasicBlock* successor) {
2240 if (instruction->IsNoOp()) {
2241 if (successor != nullptr) {
2242 __ B(codegen_->GetLabelOf(successor));
2243 }
2244 return;
2245 }
2246
2247 if (codegen_->CanUseImplicitSuspendCheck()) {
2248 __ Ldr(kImplicitSuspendCheckRegister, MemOperand(kImplicitSuspendCheckRegister));
2249 codegen_->RecordPcInfo(instruction);
2250 if (successor != nullptr) {
2251 __ B(codegen_->GetLabelOf(successor));
2252 }
2253 return;
2254 }
2255
2256 SuspendCheckSlowPathARM64* slow_path =
2257 down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
2258 if (slow_path == nullptr) {
2259 slow_path =
2260 new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor);
2261 instruction->SetSlowPath(slow_path);
2262 codegen_->AddSlowPath(slow_path);
2263 if (successor != nullptr) {
2264 DCHECK(successor->IsLoopHeader());
2265 }
2266 } else {
2267 DCHECK_EQ(slow_path->GetSuccessor(), successor);
2268 }
2269
2270 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
2271 Register temp = temps.AcquireW();
2272
2273 __ Ldr(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue()));
2274 __ Tst(temp, Thread::SuspendOrCheckpointRequestFlags());
2275 if (successor == nullptr) {
2276 __ B(ne, slow_path->GetEntryLabel());
2277 __ Bind(slow_path->GetReturnLabel());
2278 } else {
2279 __ B(eq, codegen_->GetLabelOf(successor));
2280 __ B(slow_path->GetEntryLabel());
2281 // slow_path will return to GetLabelOf(successor).
2282 }
2283 }
2284
InstructionCodeGeneratorARM64(HGraph * graph,CodeGeneratorARM64 * codegen)2285 InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
2286 CodeGeneratorARM64* codegen)
2287 : InstructionCodeGenerator(graph, codegen),
2288 assembler_(codegen->GetAssembler()),
2289 codegen_(codegen) {}
2290
HandleBinaryOp(HBinaryOperation * instr)2291 void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
2292 DCHECK_EQ(instr->InputCount(), 2U);
2293 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2294 DataType::Type type = instr->GetResultType();
2295 switch (type) {
2296 case DataType::Type::kInt32:
2297 case DataType::Type::kInt64:
2298 locations->SetInAt(0, Location::RequiresRegister());
2299 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
2300 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2301 break;
2302
2303 case DataType::Type::kFloat32:
2304 case DataType::Type::kFloat64:
2305 locations->SetInAt(0, Location::RequiresFpuRegister());
2306 locations->SetInAt(1, Location::RequiresFpuRegister());
2307 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2308 break;
2309
2310 default:
2311 LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
2312 }
2313 }
2314
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)2315 void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction,
2316 const FieldInfo& field_info) {
2317 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
2318
2319 bool object_field_get_with_read_barrier =
2320 (instruction->GetType() == DataType::Type::kReference) && codegen_->EmitReadBarrier();
2321 LocationSummary* locations =
2322 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2323 object_field_get_with_read_barrier
2324 ? LocationSummary::kCallOnSlowPath
2325 : LocationSummary::kNoCall);
2326 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
2327 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2328 // We need a temporary register for the read barrier load in
2329 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
2330 // only if the field is volatile or the offset is too big.
2331 if (field_info.IsVolatile() ||
2332 field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
2333 locations->AddTemp(FixedTempLocation());
2334 }
2335 }
2336 // Input for object receiver.
2337 locations->SetInAt(0, Location::RequiresRegister());
2338 if (DataType::IsFloatingPointType(instruction->GetType())) {
2339 locations->SetOut(Location::RequiresFpuRegister());
2340 } else {
2341 // The output overlaps for an object field get for non-Baker read barriers: we do not want
2342 // the load to overwrite the object's location, as we need it to emit the read barrier.
2343 // Baker read barrier implementation with introspection does not have this restriction.
2344 bool overlap = object_field_get_with_read_barrier && !kUseBakerReadBarrier;
2345 locations->SetOut(Location::RequiresRegister(),
2346 overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2347 }
2348 }
2349
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)2350 void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
2351 const FieldInfo& field_info) {
2352 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
2353 LocationSummary* locations = instruction->GetLocations();
2354 uint32_t receiver_input = 0;
2355 Location base_loc = locations->InAt(receiver_input);
2356 Location out = locations->Out();
2357 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
2358 DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
2359 DataType::Type load_type = instruction->GetType();
2360 MemOperand field =
2361 HeapOperand(InputRegisterAt(instruction, receiver_input), field_info.GetFieldOffset());
2362
2363 if (load_type == DataType::Type::kReference && codegen_->EmitBakerReadBarrier()) {
2364 // Object FieldGet with Baker's read barrier case.
2365 // /* HeapReference<Object> */ out = *(base + offset)
2366 Register base = RegisterFrom(base_loc, DataType::Type::kReference);
2367 Location maybe_temp =
2368 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2369 // Note that potential implicit null checks are handled in this
2370 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
2371 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2372 instruction,
2373 out,
2374 base,
2375 offset,
2376 maybe_temp,
2377 /* needs_null_check= */ true,
2378 field_info.IsVolatile());
2379 } else {
2380 // General case.
2381 if (field_info.IsVolatile()) {
2382 // Note that a potential implicit null check is handled in this
2383 // CodeGeneratorARM64::LoadAcquire call.
2384 // NB: LoadAcquire will record the pc info if needed.
2385 codegen_->LoadAcquire(instruction,
2386 load_type,
2387 OutputCPURegister(instruction),
2388 field,
2389 /* needs_null_check= */ true);
2390 } else {
2391 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2392 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2393 codegen_->Load(load_type, OutputCPURegister(instruction), field);
2394 codegen_->MaybeRecordImplicitNullCheck(instruction);
2395 }
2396 if (load_type == DataType::Type::kReference) {
2397 // If read barriers are enabled, emit read barriers other than
2398 // Baker's using a slow path (and also unpoison the loaded
2399 // reference, if heap poisoning is enabled).
2400 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
2401 }
2402 }
2403 }
2404
HandleFieldSet(HInstruction * instruction)2405 void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
2406 LocationSummary* locations =
2407 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2408 locations->SetInAt(0, Location::RequiresRegister());
2409 HInstruction* value = instruction->InputAt(1);
2410 if (IsZeroBitPattern(value)) {
2411 locations->SetInAt(1, Location::ConstantLocation(value));
2412 } else if (DataType::IsFloatingPointType(value->GetType())) {
2413 locations->SetInAt(1, Location::RequiresFpuRegister());
2414 } else {
2415 locations->SetInAt(1, Location::RequiresRegister());
2416 }
2417 }
2418
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null,WriteBarrierKind write_barrier_kind)2419 void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
2420 const FieldInfo& field_info,
2421 bool value_can_be_null,
2422 WriteBarrierKind write_barrier_kind) {
2423 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
2424
2425 Register obj = InputRegisterAt(instruction, 0);
2426 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1);
2427 CPURegister source = value;
2428 Offset offset = field_info.GetFieldOffset();
2429 DataType::Type field_type = field_info.GetFieldType();
2430 {
2431 // We use a block to end the scratch scope before the write barrier, thus
2432 // freeing the temporary registers so they can be used in `MarkGCCard`.
2433 UseScratchRegisterScope temps(GetVIXLAssembler());
2434
2435 if (kPoisonHeapReferences && field_type == DataType::Type::kReference) {
2436 DCHECK(value.IsW());
2437 Register temp = temps.AcquireW();
2438 __ Mov(temp, value.W());
2439 GetAssembler()->PoisonHeapReference(temp.W());
2440 source = temp;
2441 }
2442
2443 if (field_info.IsVolatile()) {
2444 codegen_->StoreRelease(
2445 instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true);
2446 } else {
2447 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2448 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2449 codegen_->Store(field_type, source, HeapOperand(obj, offset));
2450 codegen_->MaybeRecordImplicitNullCheck(instruction);
2451 }
2452 }
2453
2454 const bool needs_write_barrier =
2455 codegen_->StoreNeedsWriteBarrier(field_type, instruction->InputAt(1), write_barrier_kind);
2456
2457 if (needs_write_barrier) {
2458 DCHECK_IMPLIES(Register(value).IsZero(),
2459 write_barrier_kind == WriteBarrierKind::kEmitBeingReliedOn);
2460 codegen_->MaybeMarkGCCard(
2461 obj,
2462 Register(value),
2463 value_can_be_null && write_barrier_kind == WriteBarrierKind::kEmitNotBeingReliedOn);
2464 } else if (codegen_->ShouldCheckGCCard(field_type, instruction->InputAt(1), write_barrier_kind)) {
2465 codegen_->CheckGCCardIsValid(obj);
2466 }
2467 }
2468
HandleBinaryOp(HBinaryOperation * instr)2469 void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
2470 DataType::Type type = instr->GetType();
2471
2472 switch (type) {
2473 case DataType::Type::kInt32:
2474 case DataType::Type::kInt64: {
2475 Register dst = OutputRegister(instr);
2476 Register lhs = InputRegisterAt(instr, 0);
2477 Operand rhs = InputOperandAt(instr, 1);
2478 if (instr->IsAdd()) {
2479 __ Add(dst, lhs, rhs);
2480 } else if (instr->IsAnd()) {
2481 __ And(dst, lhs, rhs);
2482 } else if (instr->IsOr()) {
2483 __ Orr(dst, lhs, rhs);
2484 } else if (instr->IsSub()) {
2485 __ Sub(dst, lhs, rhs);
2486 } else if (instr->IsRol()) {
2487 if (rhs.IsImmediate()) {
2488 uint32_t shift = (-rhs.GetImmediate()) & (lhs.GetSizeInBits() - 1);
2489 __ Ror(dst, lhs, shift);
2490 } else {
2491 UseScratchRegisterScope temps(GetVIXLAssembler());
2492
2493 // Ensure shift distance is in the same size register as the result. If
2494 // we are rotating a long and the shift comes in a w register originally,
2495 // we don't need to sxtw for use as an x since the shift distances are
2496 // all & reg_bits - 1.
2497 Register right = RegisterFrom(instr->GetLocations()->InAt(1), type);
2498 Register negated = (type == DataType::Type::kInt32) ? temps.AcquireW() : temps.AcquireX();
2499 __ Neg(negated, right);
2500 __ Ror(dst, lhs, negated);
2501 }
2502 } else if (instr->IsRor()) {
2503 if (rhs.IsImmediate()) {
2504 uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1);
2505 __ Ror(dst, lhs, shift);
2506 } else {
2507 // Ensure shift distance is in the same size register as the result. If
2508 // we are rotating a long and the shift comes in a w register originally,
2509 // we don't need to sxtw for use as an x since the shift distances are
2510 // all & reg_bits - 1.
2511 __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
2512 }
2513 } else if (instr->IsMin() || instr->IsMax()) {
2514 __ Cmp(lhs, rhs);
2515 __ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt);
2516 } else {
2517 DCHECK(instr->IsXor());
2518 __ Eor(dst, lhs, rhs);
2519 }
2520 break;
2521 }
2522 case DataType::Type::kFloat32:
2523 case DataType::Type::kFloat64: {
2524 VRegister dst = OutputFPRegister(instr);
2525 VRegister lhs = InputFPRegisterAt(instr, 0);
2526 VRegister rhs = InputFPRegisterAt(instr, 1);
2527 if (instr->IsAdd()) {
2528 __ Fadd(dst, lhs, rhs);
2529 } else if (instr->IsSub()) {
2530 __ Fsub(dst, lhs, rhs);
2531 } else if (instr->IsMin()) {
2532 __ Fmin(dst, lhs, rhs);
2533 } else if (instr->IsMax()) {
2534 __ Fmax(dst, lhs, rhs);
2535 } else {
2536 LOG(FATAL) << "Unexpected floating-point binary operation";
2537 }
2538 break;
2539 }
2540 default:
2541 LOG(FATAL) << "Unexpected binary operation type " << type;
2542 }
2543 }
2544
HandleShift(HBinaryOperation * instr)2545 void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
2546 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2547
2548 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2549 DataType::Type type = instr->GetResultType();
2550 switch (type) {
2551 case DataType::Type::kInt32:
2552 case DataType::Type::kInt64: {
2553 locations->SetInAt(0, Location::RequiresRegister());
2554 locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
2555 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2556 break;
2557 }
2558 default:
2559 LOG(FATAL) << "Unexpected shift type " << type;
2560 }
2561 }
2562
HandleShift(HBinaryOperation * instr)2563 void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
2564 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2565
2566 DataType::Type type = instr->GetType();
2567 switch (type) {
2568 case DataType::Type::kInt32:
2569 case DataType::Type::kInt64: {
2570 Register dst = OutputRegister(instr);
2571 Register lhs = InputRegisterAt(instr, 0);
2572 Operand rhs = InputOperandAt(instr, 1);
2573 if (rhs.IsImmediate()) {
2574 uint32_t shift_value = rhs.GetImmediate() &
2575 (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance);
2576 if (instr->IsShl()) {
2577 __ Lsl(dst, lhs, shift_value);
2578 } else if (instr->IsShr()) {
2579 __ Asr(dst, lhs, shift_value);
2580 } else {
2581 __ Lsr(dst, lhs, shift_value);
2582 }
2583 } else {
2584 Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W();
2585
2586 if (instr->IsShl()) {
2587 __ Lsl(dst, lhs, rhs_reg);
2588 } else if (instr->IsShr()) {
2589 __ Asr(dst, lhs, rhs_reg);
2590 } else {
2591 __ Lsr(dst, lhs, rhs_reg);
2592 }
2593 }
2594 break;
2595 }
2596 default:
2597 LOG(FATAL) << "Unexpected shift operation type " << type;
2598 }
2599 }
2600
VisitAdd(HAdd * instruction)2601 void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
2602 HandleBinaryOp(instruction);
2603 }
2604
VisitAdd(HAdd * instruction)2605 void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
2606 HandleBinaryOp(instruction);
2607 }
2608
VisitAnd(HAnd * instruction)2609 void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
2610 HandleBinaryOp(instruction);
2611 }
2612
VisitAnd(HAnd * instruction)2613 void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
2614 HandleBinaryOp(instruction);
2615 }
2616
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2617 void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2618 DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType();
2619 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2620 locations->SetInAt(0, Location::RequiresRegister());
2621 // There is no immediate variant of negated bitwise instructions in AArch64.
2622 locations->SetInAt(1, Location::RequiresRegister());
2623 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2624 }
2625
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2626 void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2627 Register dst = OutputRegister(instr);
2628 Register lhs = InputRegisterAt(instr, 0);
2629 Register rhs = InputRegisterAt(instr, 1);
2630
2631 switch (instr->GetOpKind()) {
2632 case HInstruction::kAnd:
2633 __ Bic(dst, lhs, rhs);
2634 break;
2635 case HInstruction::kOr:
2636 __ Orn(dst, lhs, rhs);
2637 break;
2638 case HInstruction::kXor:
2639 __ Eon(dst, lhs, rhs);
2640 break;
2641 default:
2642 LOG(FATAL) << "Unreachable";
2643 }
2644 }
2645
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2646 void LocationsBuilderARM64::VisitDataProcWithShifterOp(
2647 HDataProcWithShifterOp* instruction) {
2648 DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
2649 instruction->GetType() == DataType::Type::kInt64);
2650 LocationSummary* locations =
2651 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2652 if (instruction->GetInstrKind() == HInstruction::kNeg) {
2653 locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)));
2654 } else {
2655 locations->SetInAt(0, Location::RequiresRegister());
2656 }
2657 locations->SetInAt(1, Location::RequiresRegister());
2658 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2659 }
2660
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2661 void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp(
2662 HDataProcWithShifterOp* instruction) {
2663 DataType::Type type = instruction->GetType();
2664 HInstruction::InstructionKind kind = instruction->GetInstrKind();
2665 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2666 Register out = OutputRegister(instruction);
2667 Register left;
2668 if (kind != HInstruction::kNeg) {
2669 left = InputRegisterAt(instruction, 0);
2670 }
2671 // If this `HDataProcWithShifterOp` was created by merging a type conversion as the
2672 // shifter operand operation, the IR generating `right_reg` (input to the type
2673 // conversion) can have a different type from the current instruction's type,
2674 // so we manually indicate the type.
2675 Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
2676 Operand right_operand(0);
2677
2678 HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
2679 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
2680 right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
2681 } else {
2682 right_operand = Operand(right_reg,
2683 helpers::ShiftFromOpKind(op_kind),
2684 instruction->GetShiftAmount());
2685 }
2686
2687 // Logical binary operations do not support extension operations in the
2688 // operand. Note that VIXL would still manage if it was passed by generating
2689 // the extension as a separate instruction.
2690 // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
2691 DCHECK_IMPLIES(right_operand.IsExtendedRegister(),
2692 kind != HInstruction::kAnd && kind != HInstruction::kOr &&
2693 kind != HInstruction::kXor && kind != HInstruction::kNeg);
2694 switch (kind) {
2695 case HInstruction::kAdd:
2696 __ Add(out, left, right_operand);
2697 break;
2698 case HInstruction::kAnd:
2699 __ And(out, left, right_operand);
2700 break;
2701 case HInstruction::kNeg:
2702 DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
2703 __ Neg(out, right_operand);
2704 break;
2705 case HInstruction::kOr:
2706 __ Orr(out, left, right_operand);
2707 break;
2708 case HInstruction::kSub:
2709 __ Sub(out, left, right_operand);
2710 break;
2711 case HInstruction::kXor:
2712 __ Eor(out, left, right_operand);
2713 break;
2714 default:
2715 LOG(FATAL) << "Unexpected operation kind: " << kind;
2716 UNREACHABLE();
2717 }
2718 }
2719
VisitIntermediateAddress(HIntermediateAddress * instruction)2720 void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2721 LocationSummary* locations =
2722 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2723 locations->SetInAt(0, Location::RequiresRegister());
2724 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
2725 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2726 }
2727
VisitIntermediateAddress(HIntermediateAddress * instruction)2728 void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2729 __ Add(OutputRegister(instruction),
2730 InputRegisterAt(instruction, 0),
2731 Operand(InputOperandAt(instruction, 1)));
2732 }
2733
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2734 void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) {
2735 LocationSummary* locations =
2736 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2737
2738 HIntConstant* shift = instruction->GetShift()->AsIntConstant();
2739
2740 locations->SetInAt(0, Location::RequiresRegister());
2741 // For byte case we don't need to shift the index variable so we can encode the data offset into
2742 // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist
2743 // data offset constant generation out of the loop and reduce the critical path length in the
2744 // loop.
2745 locations->SetInAt(1, shift->GetValue() == 0
2746 ? Location::ConstantLocation(instruction->GetOffset())
2747 : Location::RequiresRegister());
2748 locations->SetInAt(2, Location::ConstantLocation(shift));
2749 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2750 }
2751
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2752 void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex(
2753 HIntermediateAddressIndex* instruction) {
2754 Register index_reg = InputRegisterAt(instruction, 0);
2755 uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2));
2756 uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue();
2757
2758 if (shift == 0) {
2759 __ Add(OutputRegister(instruction), index_reg, offset);
2760 } else {
2761 Register offset_reg = InputRegisterAt(instruction, 1);
2762 __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift));
2763 }
2764 }
2765
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2766 void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2767 LocationSummary* locations =
2768 new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
2769 HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2770 if (instr->GetOpKind() == HInstruction::kSub &&
2771 accumulator->IsConstant() &&
2772 accumulator->AsConstant()->IsArithmeticZero()) {
2773 // Don't allocate register for Mneg instruction.
2774 } else {
2775 locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
2776 Location::RequiresRegister());
2777 }
2778 locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
2779 locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
2780 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2781 }
2782
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2783 void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2784 Register res = OutputRegister(instr);
2785 Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
2786 Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
2787
2788 // Avoid emitting code that could trigger Cortex A53's erratum 835769.
2789 // This fixup should be carried out for all multiply-accumulate instructions:
2790 // madd, msub, smaddl, smsubl, umaddl and umsubl.
2791 if (instr->GetType() == DataType::Type::kInt64 &&
2792 codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
2793 MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
2794 ptrdiff_t off = masm->GetCursorOffset();
2795 if (off >= static_cast<ptrdiff_t>(kInstructionSize) &&
2796 masm->GetInstructionAt(off - static_cast<ptrdiff_t>(kInstructionSize))->IsLoadOrStore()) {
2797 // Make sure we emit only exactly one nop.
2798 ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2799 __ nop();
2800 }
2801 }
2802
2803 if (instr->GetOpKind() == HInstruction::kAdd) {
2804 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2805 __ Madd(res, mul_left, mul_right, accumulator);
2806 } else {
2807 DCHECK(instr->GetOpKind() == HInstruction::kSub);
2808 HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2809 if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
2810 __ Mneg(res, mul_left, mul_right);
2811 } else {
2812 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2813 __ Msub(res, mul_left, mul_right, accumulator);
2814 }
2815 }
2816 }
2817
VisitArrayGet(HArrayGet * instruction)2818 void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
2819 bool object_array_get_with_read_barrier =
2820 (instruction->GetType() == DataType::Type::kReference) && codegen_->EmitReadBarrier();
2821 LocationSummary* locations =
2822 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2823 object_array_get_with_read_barrier
2824 ? LocationSummary::kCallOnSlowPath
2825 : LocationSummary::kNoCall);
2826 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
2827 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2828 if (instruction->GetIndex()->IsConstant()) {
2829 // Array loads with constant index are treated as field loads.
2830 // We need a temporary register for the read barrier load in
2831 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
2832 // only if the offset is too big.
2833 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2834 uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
2835 offset += index << DataType::SizeShift(DataType::Type::kReference);
2836 if (offset >= kReferenceLoadMinFarOffset) {
2837 locations->AddTemp(FixedTempLocation());
2838 }
2839 } else if (!instruction->GetArray()->IsIntermediateAddress()) {
2840 // We need a non-scratch temporary for the array data pointer in
2841 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no
2842 // intermediate address.
2843 locations->AddTemp(Location::RequiresRegister());
2844 }
2845 }
2846 locations->SetInAt(0, Location::RequiresRegister());
2847 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2848 if (DataType::IsFloatingPointType(instruction->GetType())) {
2849 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2850 } else {
2851 // The output overlaps for an object array get for non-Baker read barriers: we do not want
2852 // the load to overwrite the object's location, as we need it to emit the read barrier.
2853 // Baker read barrier implementation with introspection does not have this restriction.
2854 bool overlap = object_array_get_with_read_barrier && !kUseBakerReadBarrier;
2855 locations->SetOut(Location::RequiresRegister(),
2856 overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2857 }
2858 }
2859
VisitArrayGet(HArrayGet * instruction)2860 void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
2861 DataType::Type type = instruction->GetType();
2862 Register obj = InputRegisterAt(instruction, 0);
2863 LocationSummary* locations = instruction->GetLocations();
2864 Location index = locations->InAt(1);
2865 Location out = locations->Out();
2866 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2867 const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
2868 instruction->IsStringCharAt();
2869 MacroAssembler* masm = GetVIXLAssembler();
2870 UseScratchRegisterScope temps(masm);
2871
2872 // The non-Baker read barrier instrumentation of object ArrayGet instructions
2873 // does not support the HIntermediateAddress instruction.
2874 DCHECK(!((type == DataType::Type::kReference) &&
2875 instruction->GetArray()->IsIntermediateAddress() &&
2876 codegen_->EmitNonBakerReadBarrier()));
2877
2878 if (type == DataType::Type::kReference && codegen_->EmitBakerReadBarrier()) {
2879 // Object ArrayGet with Baker's read barrier case.
2880 // Note that a potential implicit null check is handled in the
2881 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
2882 DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
2883 if (index.IsConstant()) {
2884 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
2885 // Array load with a constant index can be treated as a field load.
2886 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2887 Location maybe_temp =
2888 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2889 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
2890 out,
2891 obj.W(),
2892 offset,
2893 maybe_temp,
2894 /* needs_null_check= */ false,
2895 /* use_load_acquire= */ false);
2896 } else {
2897 codegen_->GenerateArrayLoadWithBakerReadBarrier(
2898 instruction, out, obj.W(), offset, index, /* needs_null_check= */ false);
2899 }
2900 } else {
2901 // General case.
2902 MemOperand source = HeapOperand(obj);
2903 Register length;
2904 if (maybe_compressed_char_at) {
2905 uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2906 length = temps.AcquireW();
2907 {
2908 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2909 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2910
2911 if (instruction->GetArray()->IsIntermediateAddress()) {
2912 DCHECK_LT(count_offset, offset);
2913 int64_t adjusted_offset =
2914 static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset);
2915 // Note that `adjusted_offset` is negative, so this will be a LDUR.
2916 __ Ldr(length, MemOperand(obj.X(), adjusted_offset));
2917 } else {
2918 __ Ldr(length, HeapOperand(obj, count_offset));
2919 }
2920 codegen_->MaybeRecordImplicitNullCheck(instruction);
2921 }
2922 }
2923 if (index.IsConstant()) {
2924 if (maybe_compressed_char_at) {
2925 vixl::aarch64::Label uncompressed_load, done;
2926 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2927 "Expecting 0=compressed, 1=uncompressed");
2928 __ Tbnz(length.W(), 0, &uncompressed_load);
2929 __ Ldrb(Register(OutputCPURegister(instruction)),
2930 HeapOperand(obj, offset + Int64FromLocation(index)));
2931 __ B(&done);
2932 __ Bind(&uncompressed_load);
2933 __ Ldrh(Register(OutputCPURegister(instruction)),
2934 HeapOperand(obj, offset + (Int64FromLocation(index) << 1)));
2935 __ Bind(&done);
2936 } else {
2937 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2938 source = HeapOperand(obj, offset);
2939 }
2940 } else {
2941 Register temp = temps.AcquireSameSizeAs(obj);
2942 if (instruction->GetArray()->IsIntermediateAddress()) {
2943 // We do not need to compute the intermediate address from the array: the
2944 // input instruction has done it already. See the comment in
2945 // `TryExtractArrayAccessAddress()`.
2946 if (kIsDebugBuild) {
2947 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
2948 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
2949 }
2950 temp = obj;
2951 } else {
2952 __ Add(temp, obj, offset);
2953 }
2954 if (maybe_compressed_char_at) {
2955 vixl::aarch64::Label uncompressed_load, done;
2956 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2957 "Expecting 0=compressed, 1=uncompressed");
2958 __ Tbnz(length.W(), 0, &uncompressed_load);
2959 __ Ldrb(Register(OutputCPURegister(instruction)),
2960 HeapOperand(temp, XRegisterFrom(index), LSL, 0));
2961 __ B(&done);
2962 __ Bind(&uncompressed_load);
2963 __ Ldrh(Register(OutputCPURegister(instruction)),
2964 HeapOperand(temp, XRegisterFrom(index), LSL, 1));
2965 __ Bind(&done);
2966 } else {
2967 source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type));
2968 }
2969 }
2970 if (!maybe_compressed_char_at) {
2971 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2972 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2973 codegen_->Load(type, OutputCPURegister(instruction), source);
2974 codegen_->MaybeRecordImplicitNullCheck(instruction);
2975 }
2976
2977 if (type == DataType::Type::kReference) {
2978 static_assert(
2979 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2980 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2981 Location obj_loc = locations->InAt(0);
2982 if (index.IsConstant()) {
2983 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
2984 } else {
2985 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
2986 }
2987 }
2988 }
2989 }
2990
VisitArrayLength(HArrayLength * instruction)2991 void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
2992 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2993 locations->SetInAt(0, Location::RequiresRegister());
2994 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2995 }
2996
VisitArrayLength(HArrayLength * instruction)2997 void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
2998 uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
2999 vixl::aarch64::Register out = OutputRegister(instruction);
3000 {
3001 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
3002 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
3003 __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset));
3004 codegen_->MaybeRecordImplicitNullCheck(instruction);
3005 }
3006 // Mask out compression flag from String's array length.
3007 if (mirror::kUseStringCompression && instruction->IsStringLength()) {
3008 __ Lsr(out.W(), out.W(), 1u);
3009 }
3010 }
3011
VisitArraySet(HArraySet * instruction)3012 void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
3013 DataType::Type value_type = instruction->GetComponentType();
3014
3015 bool needs_type_check = instruction->NeedsTypeCheck();
3016 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
3017 instruction,
3018 needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
3019 locations->SetInAt(0, Location::RequiresRegister());
3020 locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetIndex()));
3021 HInstruction* value = instruction->GetValue();
3022 if (IsZeroBitPattern(value)) {
3023 locations->SetInAt(2, Location::ConstantLocation(value));
3024 } else if (DataType::IsFloatingPointType(value_type)) {
3025 locations->SetInAt(2, Location::RequiresFpuRegister());
3026 } else {
3027 locations->SetInAt(2, Location::RequiresRegister());
3028 }
3029 }
3030
VisitArraySet(HArraySet * instruction)3031 void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
3032 DataType::Type value_type = instruction->GetComponentType();
3033 LocationSummary* locations = instruction->GetLocations();
3034 bool needs_type_check = instruction->NeedsTypeCheck();
3035 const WriteBarrierKind write_barrier_kind = instruction->GetWriteBarrierKind();
3036 bool needs_write_barrier =
3037 codegen_->StoreNeedsWriteBarrier(value_type, instruction->GetValue(), write_barrier_kind);
3038
3039 Register array = InputRegisterAt(instruction, 0);
3040 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2);
3041 CPURegister source = value;
3042 Location index = locations->InAt(1);
3043 size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
3044 MemOperand destination = HeapOperand(array);
3045 MacroAssembler* masm = GetVIXLAssembler();
3046
3047 if (!needs_write_barrier) {
3048 if (codegen_->ShouldCheckGCCard(value_type, instruction->GetValue(), write_barrier_kind)) {
3049 codegen_->CheckGCCardIsValid(array);
3050 }
3051
3052 DCHECK(!needs_type_check);
3053 UseScratchRegisterScope temps(masm);
3054 if (index.IsConstant()) {
3055 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
3056 destination = HeapOperand(array, offset);
3057 } else {
3058 Register temp_dest = temps.AcquireSameSizeAs(array);
3059 if (instruction->GetArray()->IsIntermediateAddress()) {
3060 // We do not need to compute the intermediate address from the array: the
3061 // input instruction has done it already. See the comment in
3062 // `TryExtractArrayAccessAddress()`.
3063 if (kIsDebugBuild) {
3064 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
3065 DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
3066 }
3067 temp_dest = array;
3068 } else {
3069 __ Add(temp_dest, array, offset);
3070 }
3071 destination = HeapOperand(temp_dest,
3072 XRegisterFrom(index),
3073 LSL,
3074 DataType::SizeShift(value_type));
3075 }
3076
3077 if (kPoisonHeapReferences && value_type == DataType::Type::kReference) {
3078 DCHECK(value.IsW());
3079 Register temp_src = temps.AcquireW();
3080 __ Mov(temp_src, value.W());
3081 GetAssembler()->PoisonHeapReference(temp_src.W());
3082 source = temp_src;
3083 }
3084
3085 {
3086 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
3087 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
3088 codegen_->Store(value_type, source, destination);
3089 codegen_->MaybeRecordImplicitNullCheck(instruction);
3090 }
3091 } else {
3092 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
3093 bool can_value_be_null = true;
3094 // The WriteBarrierKind::kEmitNotBeingReliedOn case is able to skip the write barrier when its
3095 // value is null (without an extra CompareAndBranchIfZero since we already checked if the
3096 // value is null for the type check).
3097 bool skip_marking_gc_card = false;
3098 SlowPathCodeARM64* slow_path = nullptr;
3099 vixl::aarch64::Label skip_writing_card;
3100 if (!Register(value).IsZero()) {
3101 can_value_be_null = instruction->GetValueCanBeNull();
3102 skip_marking_gc_card =
3103 can_value_be_null && write_barrier_kind == WriteBarrierKind::kEmitNotBeingReliedOn;
3104 vixl::aarch64::Label do_store;
3105 if (can_value_be_null) {
3106 if (skip_marking_gc_card) {
3107 __ Cbz(Register(value), &skip_writing_card);
3108 } else {
3109 __ Cbz(Register(value), &do_store);
3110 }
3111 }
3112
3113 if (needs_type_check) {
3114 slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction);
3115 codegen_->AddSlowPath(slow_path);
3116
3117 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3118 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3119 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3120
3121 UseScratchRegisterScope temps(masm);
3122 Register temp = temps.AcquireSameSizeAs(array);
3123 Register temp2 = temps.AcquireSameSizeAs(array);
3124
3125 // Note that when Baker read barriers are enabled, the type
3126 // checks are performed without read barriers. This is fine,
3127 // even in the case where a class object is in the from-space
3128 // after the flip, as a comparison involving such a type would
3129 // not produce a false positive; it may of course produce a
3130 // false negative, in which case we would take the ArraySet
3131 // slow path.
3132
3133 // /* HeapReference<Class> */ temp = array->klass_
3134 {
3135 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
3136 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
3137 __ Ldr(temp, HeapOperand(array, class_offset));
3138 codegen_->MaybeRecordImplicitNullCheck(instruction);
3139 }
3140 GetAssembler()->MaybeUnpoisonHeapReference(temp);
3141
3142 // /* HeapReference<Class> */ temp = temp->component_type_
3143 __ Ldr(temp, HeapOperand(temp, component_offset));
3144 // /* HeapReference<Class> */ temp2 = value->klass_
3145 __ Ldr(temp2, HeapOperand(Register(value), class_offset));
3146 // If heap poisoning is enabled, no need to unpoison `temp`
3147 // nor `temp2`, as we are comparing two poisoned references.
3148 __ Cmp(temp, temp2);
3149
3150 if (instruction->StaticTypeOfArrayIsObjectArray()) {
3151 vixl::aarch64::Label do_put;
3152 __ B(eq, &do_put);
3153 // If heap poisoning is enabled, the `temp` reference has
3154 // not been unpoisoned yet; unpoison it now.
3155 GetAssembler()->MaybeUnpoisonHeapReference(temp);
3156
3157 // /* HeapReference<Class> */ temp = temp->super_class_
3158 __ Ldr(temp, HeapOperand(temp, super_offset));
3159 // If heap poisoning is enabled, no need to unpoison
3160 // `temp`, as we are comparing against null below.
3161 __ Cbnz(temp, slow_path->GetEntryLabel());
3162 __ Bind(&do_put);
3163 } else {
3164 __ B(ne, slow_path->GetEntryLabel());
3165 }
3166 }
3167
3168 if (can_value_be_null && !skip_marking_gc_card) {
3169 DCHECK(do_store.IsLinked());
3170 __ Bind(&do_store);
3171 }
3172 }
3173
3174 DCHECK_NE(write_barrier_kind, WriteBarrierKind::kDontEmit);
3175 DCHECK_IMPLIES(Register(value).IsZero(),
3176 write_barrier_kind == WriteBarrierKind::kEmitBeingReliedOn);
3177 codegen_->MarkGCCard(array);
3178
3179 if (skip_marking_gc_card) {
3180 // Note that we don't check that the GC card is valid as it can be correctly clean.
3181 DCHECK(skip_writing_card.IsLinked());
3182 __ Bind(&skip_writing_card);
3183 }
3184
3185 UseScratchRegisterScope temps(masm);
3186 if (kPoisonHeapReferences) {
3187 DCHECK(value.IsW());
3188 Register temp_source = temps.AcquireW();
3189 __ Mov(temp_source, value.W());
3190 GetAssembler()->PoisonHeapReference(temp_source);
3191 source = temp_source;
3192 }
3193
3194 if (index.IsConstant()) {
3195 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
3196 destination = HeapOperand(array, offset);
3197 } else {
3198 Register temp_base = temps.AcquireSameSizeAs(array);
3199 __ Add(temp_base, array, offset);
3200 destination = HeapOperand(temp_base,
3201 XRegisterFrom(index),
3202 LSL,
3203 DataType::SizeShift(value_type));
3204 }
3205
3206 {
3207 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
3208 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
3209 __ Str(source, destination);
3210
3211 if (can_value_be_null || !needs_type_check) {
3212 codegen_->MaybeRecordImplicitNullCheck(instruction);
3213 }
3214 }
3215
3216 if (slow_path != nullptr) {
3217 __ Bind(slow_path->GetExitLabel());
3218 }
3219 }
3220 }
3221
VisitBoundsCheck(HBoundsCheck * instruction)3222 void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
3223 RegisterSet caller_saves = RegisterSet::Empty();
3224 InvokeRuntimeCallingConvention calling_convention;
3225 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
3226 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode()));
3227 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
3228
3229 // If both index and length are constant, we can check the bounds statically and
3230 // generate code accordingly. We want to make sure we generate constant locations
3231 // in that case, regardless of whether they are encodable in the comparison or not.
3232 HInstruction* index = instruction->InputAt(0);
3233 HInstruction* length = instruction->InputAt(1);
3234 bool both_const = index->IsConstant() && length->IsConstant();
3235 locations->SetInAt(0, both_const
3236 ? Location::ConstantLocation(index)
3237 : ARM64EncodableConstantOrRegister(index, instruction));
3238 locations->SetInAt(1, both_const
3239 ? Location::ConstantLocation(length)
3240 : ARM64EncodableConstantOrRegister(length, instruction));
3241 }
3242
VisitBoundsCheck(HBoundsCheck * instruction)3243 void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
3244 LocationSummary* locations = instruction->GetLocations();
3245 Location index_loc = locations->InAt(0);
3246 Location length_loc = locations->InAt(1);
3247
3248 int cmp_first_input = 0;
3249 int cmp_second_input = 1;
3250 Condition cond = hs;
3251
3252 if (index_loc.IsConstant()) {
3253 int64_t index = Int64FromLocation(index_loc);
3254 if (length_loc.IsConstant()) {
3255 int64_t length = Int64FromLocation(length_loc);
3256 if (index < 0 || index >= length) {
3257 BoundsCheckSlowPathARM64* slow_path =
3258 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
3259 codegen_->AddSlowPath(slow_path);
3260 __ B(slow_path->GetEntryLabel());
3261 } else {
3262 // BCE will remove the bounds check if we are guaranteed to pass.
3263 // However, some optimization after BCE may have generated this, and we should not
3264 // generate a bounds check if it is a valid range.
3265 }
3266 return;
3267 }
3268 // Only the index is constant: change the order of the operands and commute the condition
3269 // so we can use an immediate constant for the index (only the second input to a cmp
3270 // instruction can be an immediate).
3271 cmp_first_input = 1;
3272 cmp_second_input = 0;
3273 cond = ls;
3274 }
3275 BoundsCheckSlowPathARM64* slow_path =
3276 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
3277 __ Cmp(InputRegisterAt(instruction, cmp_first_input),
3278 InputOperandAt(instruction, cmp_second_input));
3279 codegen_->AddSlowPath(slow_path);
3280 __ B(slow_path->GetEntryLabel(), cond);
3281 }
3282
VisitClinitCheck(HClinitCheck * check)3283 void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
3284 LocationSummary* locations =
3285 new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
3286 locations->SetInAt(0, Location::RequiresRegister());
3287 if (check->HasUses()) {
3288 locations->SetOut(Location::SameAsFirstInput());
3289 }
3290 // Rely on the type initialization to save everything we need.
3291 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
3292 }
3293
VisitClinitCheck(HClinitCheck * check)3294 void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
3295 // We assume the class is not null.
3296 SlowPathCodeARM64* slow_path =
3297 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check);
3298 codegen_->AddSlowPath(slow_path);
3299 GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
3300 }
3301
IsFloatingPointZeroConstant(HInstruction * inst)3302 static bool IsFloatingPointZeroConstant(HInstruction* inst) {
3303 return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
3304 || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
3305 }
3306
GenerateFcmp(HInstruction * instruction)3307 void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
3308 VRegister lhs_reg = InputFPRegisterAt(instruction, 0);
3309 Location rhs_loc = instruction->GetLocations()->InAt(1);
3310 if (rhs_loc.IsConstant()) {
3311 // 0.0 is the only immediate that can be encoded directly in
3312 // an FCMP instruction.
3313 //
3314 // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
3315 // specify that in a floating-point comparison, positive zero
3316 // and negative zero are considered equal, so we can use the
3317 // literal 0.0 for both cases here.
3318 //
3319 // Note however that some methods (Float.equal, Float.compare,
3320 // Float.compareTo, Double.equal, Double.compare,
3321 // Double.compareTo, Math.max, Math.min, StrictMath.max,
3322 // StrictMath.min) consider 0.0 to be (strictly) greater than
3323 // -0.0. So if we ever translate calls to these methods into a
3324 // HCompare instruction, we must handle the -0.0 case with
3325 // care here.
3326 DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
3327 __ Fcmp(lhs_reg, 0.0);
3328 } else {
3329 __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
3330 }
3331 }
3332
VisitCompare(HCompare * compare)3333 void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
3334 LocationSummary* locations =
3335 new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
3336 DataType::Type compare_type = compare->GetComparisonType();
3337 HInstruction* rhs = compare->InputAt(1);
3338 switch (compare_type) {
3339 case DataType::Type::kBool:
3340 case DataType::Type::kUint8:
3341 case DataType::Type::kInt8:
3342 case DataType::Type::kUint16:
3343 case DataType::Type::kInt16:
3344 case DataType::Type::kInt32:
3345 case DataType::Type::kUint32:
3346 case DataType::Type::kInt64:
3347 case DataType::Type::kUint64: {
3348 locations->SetInAt(0, Location::RequiresRegister());
3349 locations->SetInAt(1, ARM64EncodableConstantOrRegister(rhs, compare));
3350 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3351 break;
3352 }
3353 case DataType::Type::kFloat32:
3354 case DataType::Type::kFloat64: {
3355 locations->SetInAt(0, Location::RequiresFpuRegister());
3356 locations->SetInAt(1,
3357 IsFloatingPointZeroConstant(rhs)
3358 ? Location::ConstantLocation(rhs)
3359 : Location::RequiresFpuRegister());
3360 locations->SetOut(Location::RequiresRegister());
3361 break;
3362 }
3363 default:
3364 LOG(FATAL) << "Unexpected type for compare operation " << compare_type;
3365 }
3366 }
3367
VisitCompare(HCompare * compare)3368 void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
3369 DataType::Type compare_type = compare->GetComparisonType();
3370
3371 // 0 if: left == right
3372 // 1 if: left > right
3373 // -1 if: left < right
3374 Condition less_cond = lt;
3375 switch (compare_type) {
3376 case DataType::Type::kUint32:
3377 case DataType::Type::kUint64:
3378 less_cond = lo;
3379 FALLTHROUGH_INTENDED;
3380 case DataType::Type::kBool:
3381 case DataType::Type::kUint8:
3382 case DataType::Type::kInt8:
3383 case DataType::Type::kUint16:
3384 case DataType::Type::kInt16:
3385 case DataType::Type::kInt32:
3386 case DataType::Type::kInt64: {
3387 Register result = OutputRegister(compare);
3388 Register left = InputRegisterAt(compare, 0);
3389 Operand right = InputOperandAt(compare, 1);
3390 __ Cmp(left, right);
3391 __ Cset(result, ne); // result == +1 if NE or 0 otherwise
3392 __ Cneg(result, result, less_cond); // result == -1 if LT or unchanged otherwise
3393 break;
3394 }
3395 case DataType::Type::kFloat32:
3396 case DataType::Type::kFloat64: {
3397 Register result = OutputRegister(compare);
3398 GenerateFcmp(compare);
3399 __ Cset(result, ne);
3400 __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
3401 break;
3402 }
3403 default:
3404 LOG(FATAL) << "Unimplemented compare type " << compare_type;
3405 }
3406 }
3407
HandleCondition(HCondition * instruction)3408 void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
3409 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
3410
3411 HInstruction* rhs = instruction->InputAt(1);
3412 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
3413 locations->SetInAt(0, Location::RequiresFpuRegister());
3414 locations->SetInAt(1,
3415 IsFloatingPointZeroConstant(rhs)
3416 ? Location::ConstantLocation(rhs)
3417 : Location::RequiresFpuRegister());
3418 } else {
3419 // Integer cases.
3420 locations->SetInAt(0, Location::RequiresRegister());
3421 locations->SetInAt(1, ARM64EncodableConstantOrRegister(rhs, instruction));
3422 }
3423
3424 if (!instruction->IsEmittedAtUseSite()) {
3425 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3426 }
3427 }
3428
HandleCondition(HCondition * instruction)3429 void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
3430 if (instruction->IsEmittedAtUseSite()) {
3431 return;
3432 }
3433
3434 LocationSummary* locations = instruction->GetLocations();
3435 Register res = RegisterFrom(locations->Out(), instruction->GetType());
3436 IfCondition if_cond = instruction->GetCondition();
3437
3438 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
3439 GenerateFcmp(instruction);
3440 __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
3441 } else {
3442 // Integer cases.
3443 Register lhs = InputRegisterAt(instruction, 0);
3444 Operand rhs = InputOperandAt(instruction, 1);
3445 __ Cmp(lhs, rhs);
3446 __ Cset(res, ARM64Condition(if_cond));
3447 }
3448 }
3449
3450 #define FOR_EACH_CONDITION_INSTRUCTION(M) \
3451 M(Equal) \
3452 M(NotEqual) \
3453 M(LessThan) \
3454 M(LessThanOrEqual) \
3455 M(GreaterThan) \
3456 M(GreaterThanOrEqual) \
3457 M(Below) \
3458 M(BelowOrEqual) \
3459 M(Above) \
3460 M(AboveOrEqual)
3461 #define DEFINE_CONDITION_VISITORS(Name) \
3462 void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \
3463 void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)3464 FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
3465 #undef DEFINE_CONDITION_VISITORS
3466 #undef FOR_EACH_CONDITION_INSTRUCTION
3467
3468 void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) {
3469 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3470 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
3471 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
3472
3473 Register out = OutputRegister(instruction);
3474 Register dividend = InputRegisterAt(instruction, 0);
3475
3476 Register final_dividend;
3477 if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
3478 // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
3479 // NOTE: The generated code for HDiv correctly works for the INT32_MIN/INT64_MIN dividends:
3480 // imm == 2
3481 // add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001
3482 // asr out, out(0x80000001), #1 => out = 0xc0000000
3483 // This is the same as 'asr out, 0x80000000, #1'
3484 //
3485 // imm > 2
3486 // add temp, dividend(0x80000000), imm - 1 => temp = 0b10..01..1, where the number
3487 // of the rightmost 1s is ctz_imm.
3488 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
3489 // csel out, temp(0b10..01..1), dividend(0x80000000), lt => out = 0b10..01..1
3490 // asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the
3491 // leftmost 1s is ctz_imm + 1.
3492 // This is the same as 'asr out, dividend(0x80000000), #ctz_imm'.
3493 //
3494 // imm == INT32_MIN
3495 // add tmp, dividend(0x80000000), #0x7fffffff => tmp = -1
3496 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
3497 // csel out, temp(-1), dividend(0x80000000), lt => out = -1
3498 // neg out, out(-1), asr #31 => out = 1
3499 // This is the same as 'neg out, dividend(0x80000000), asr #31'.
3500 final_dividend = dividend;
3501 } else {
3502 if (abs_imm == 2) {
3503 int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte;
3504 __ Add(out, dividend, Operand(dividend, LSR, bits - 1));
3505 } else {
3506 UseScratchRegisterScope temps(GetVIXLAssembler());
3507 Register temp = temps.AcquireSameSizeAs(out);
3508 __ Add(temp, dividend, abs_imm - 1);
3509 __ Cmp(dividend, 0);
3510 __ Csel(out, temp, dividend, lt);
3511 }
3512 final_dividend = out;
3513 }
3514
3515 int ctz_imm = CTZ(abs_imm);
3516 if (imm > 0) {
3517 __ Asr(out, final_dividend, ctz_imm);
3518 } else {
3519 __ Neg(out, Operand(final_dividend, ASR, ctz_imm));
3520 }
3521 }
3522
3523 // Return true if the magic number was modified by subtracting 2^32(Int32 div) or 2^64(Int64 div).
3524 // So dividend needs to be added.
NeedToAddDividend(int64_t magic_number,int64_t divisor)3525 static inline bool NeedToAddDividend(int64_t magic_number, int64_t divisor) {
3526 return divisor > 0 && magic_number < 0;
3527 }
3528
3529 // Return true if the magic number was modified by adding 2^32(Int32 div) or 2^64(Int64 div).
3530 // So dividend needs to be subtracted.
NeedToSubDividend(int64_t magic_number,int64_t divisor)3531 static inline bool NeedToSubDividend(int64_t magic_number, int64_t divisor) {
3532 return divisor < 0 && magic_number > 0;
3533 }
3534
3535 // Generate code which increments the value in register 'in' by 1 if the value is negative.
3536 // It is done with 'add out, in, in, lsr #31 or #63'.
3537 // If the value is a result of an operation setting the N flag, CINC MI can be used
3538 // instead of ADD. 'use_cond_inc' controls this.
GenerateIncrementNegativeByOne(Register out,Register in,bool use_cond_inc)3539 void InstructionCodeGeneratorARM64::GenerateIncrementNegativeByOne(
3540 Register out,
3541 Register in,
3542 bool use_cond_inc) {
3543 if (use_cond_inc) {
3544 __ Cinc(out, in, mi);
3545 } else {
3546 __ Add(out, in, Operand(in, LSR, in.GetSizeInBits() - 1));
3547 }
3548 }
3549
3550 // Helper to generate code producing the result of HRem with a constant divisor.
GenerateResultRemWithAnyConstant(Register out,Register dividend,Register quotient,int64_t divisor,UseScratchRegisterScope * temps_scope)3551 void InstructionCodeGeneratorARM64::GenerateResultRemWithAnyConstant(
3552 Register out,
3553 Register dividend,
3554 Register quotient,
3555 int64_t divisor,
3556 UseScratchRegisterScope* temps_scope) {
3557 Register temp_imm = temps_scope->AcquireSameSizeAs(out);
3558 __ Mov(temp_imm, divisor);
3559 __ Msub(out, quotient, temp_imm, dividend);
3560 }
3561
3562 // Helper to generate code for HDiv/HRem instructions when a dividend is non-negative and
3563 // a divisor is a positive constant, not power of 2.
GenerateInt64UnsignedDivRemWithAnyPositiveConstant(HBinaryOperation * instruction)3564 void InstructionCodeGeneratorARM64::GenerateInt64UnsignedDivRemWithAnyPositiveConstant(
3565 HBinaryOperation* instruction) {
3566 DCHECK(instruction->IsDiv() || instruction->IsRem());
3567 DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
3568
3569 LocationSummary* locations = instruction->GetLocations();
3570 Location second = locations->InAt(1);
3571 DCHECK(second.IsConstant());
3572
3573 Register out = OutputRegister(instruction);
3574 Register dividend = InputRegisterAt(instruction, 0);
3575 int64_t imm = Int64FromConstant(second.GetConstant());
3576 DCHECK_GT(imm, 0);
3577
3578 int64_t magic;
3579 int shift;
3580 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
3581
3582 UseScratchRegisterScope temps(GetVIXLAssembler());
3583 Register temp = temps.AcquireSameSizeAs(out);
3584
3585 auto generate_unsigned_div_code = [this, magic, shift](Register out,
3586 Register dividend,
3587 Register temp) {
3588 // temp = get_high(dividend * magic)
3589 __ Mov(temp, magic);
3590 if (magic > 0 && shift == 0) {
3591 __ Smulh(out, dividend, temp);
3592 } else {
3593 __ Smulh(temp, dividend, temp);
3594 if (magic < 0) {
3595 // The negative magic means that the multiplier m is greater than INT64_MAX.
3596 // In such a case shift is never 0. See the proof in
3597 // InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant.
3598 __ Add(temp, temp, dividend);
3599 }
3600 DCHECK_NE(shift, 0);
3601 __ Lsr(out, temp, shift);
3602 }
3603 };
3604
3605 if (instruction->IsDiv()) {
3606 generate_unsigned_div_code(out, dividend, temp);
3607 } else {
3608 generate_unsigned_div_code(temp, dividend, temp);
3609 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3610 }
3611 }
3612
3613 // Helper to generate code for HDiv/HRem instructions for any dividend and a constant divisor
3614 // (not power of 2).
GenerateInt64DivRemWithAnyConstant(HBinaryOperation * instruction)3615 void InstructionCodeGeneratorARM64::GenerateInt64DivRemWithAnyConstant(
3616 HBinaryOperation* instruction) {
3617 DCHECK(instruction->IsDiv() || instruction->IsRem());
3618 DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
3619
3620 LocationSummary* locations = instruction->GetLocations();
3621 Location second = locations->InAt(1);
3622 DCHECK(second.IsConstant());
3623
3624 Register out = OutputRegister(instruction);
3625 Register dividend = InputRegisterAt(instruction, 0);
3626 int64_t imm = Int64FromConstant(second.GetConstant());
3627
3628 int64_t magic;
3629 int shift;
3630 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
3631
3632 UseScratchRegisterScope temps(GetVIXLAssembler());
3633 Register temp = temps.AcquireSameSizeAs(out);
3634
3635 // temp = get_high(dividend * magic)
3636 __ Mov(temp, magic);
3637 __ Smulh(temp, dividend, temp);
3638
3639 // The multiplication result might need some corrections to be finalized.
3640 // The last correction is to increment by 1, if the result is negative.
3641 // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
3642 // Such ADD usually has latency 2, e.g. on Cortex-A55.
3643 // However if one of the corrections is ADD or SUB, the sign can be detected
3644 // with ADDS/SUBS. They set the N flag if the result is negative.
3645 // This allows to use CINC MI which has latency 1.
3646 bool use_cond_inc = false;
3647
3648 // Some combinations of magic_number and the divisor require to correct the result.
3649 // Check whether the correction is needed.
3650 if (NeedToAddDividend(magic, imm)) {
3651 __ Adds(temp, temp, dividend);
3652 use_cond_inc = true;
3653 } else if (NeedToSubDividend(magic, imm)) {
3654 __ Subs(temp, temp, dividend);
3655 use_cond_inc = true;
3656 }
3657
3658 if (shift != 0) {
3659 __ Asr(temp, temp, shift);
3660 }
3661
3662 if (instruction->IsRem()) {
3663 GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
3664 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3665 } else {
3666 GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
3667 }
3668 }
3669
GenerateInt32DivRemWithAnyConstant(HBinaryOperation * instruction)3670 void InstructionCodeGeneratorARM64::GenerateInt32DivRemWithAnyConstant(
3671 HBinaryOperation* instruction) {
3672 DCHECK(instruction->IsDiv() || instruction->IsRem());
3673 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
3674
3675 LocationSummary* locations = instruction->GetLocations();
3676 Location second = locations->InAt(1);
3677 DCHECK(second.IsConstant());
3678
3679 Register out = OutputRegister(instruction);
3680 Register dividend = InputRegisterAt(instruction, 0);
3681 int64_t imm = Int64FromConstant(second.GetConstant());
3682
3683 int64_t magic;
3684 int shift;
3685 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
3686 UseScratchRegisterScope temps(GetVIXLAssembler());
3687 Register temp = temps.AcquireSameSizeAs(out);
3688
3689 // temp = get_high(dividend * magic)
3690 __ Mov(temp, magic);
3691 __ Smull(temp.X(), dividend, temp);
3692
3693 // The multiplication result might need some corrections to be finalized.
3694 // The last correction is to increment by 1, if the result is negative.
3695 // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
3696 // Such ADD usually has latency 2, e.g. on Cortex-A55.
3697 // However if one of the corrections is ADD or SUB, the sign can be detected
3698 // with ADDS/SUBS. They set the N flag if the result is negative.
3699 // This allows to use CINC MI which has latency 1.
3700 bool use_cond_inc = false;
3701
3702 // ADD/SUB correction is performed in the high 32 bits
3703 // as high 32 bits are ignored because type are kInt32.
3704 if (NeedToAddDividend(magic, imm)) {
3705 __ Adds(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
3706 use_cond_inc = true;
3707 } else if (NeedToSubDividend(magic, imm)) {
3708 __ Subs(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
3709 use_cond_inc = true;
3710 }
3711
3712 // Extract the result from the high 32 bits and apply the final right shift.
3713 DCHECK_LT(shift, 32);
3714 if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) {
3715 // No need to adjust the result for a non-negative dividend and a positive divisor.
3716 if (instruction->IsDiv()) {
3717 __ Lsr(out.X(), temp.X(), 32 + shift);
3718 } else {
3719 __ Lsr(temp.X(), temp.X(), 32 + shift);
3720 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3721 }
3722 } else {
3723 __ Asr(temp.X(), temp.X(), 32 + shift);
3724
3725 if (instruction->IsRem()) {
3726 GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
3727 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3728 } else {
3729 GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
3730 }
3731 }
3732 }
3733
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction,int64_t divisor)3734 void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction,
3735 int64_t divisor) {
3736 DCHECK(instruction->IsDiv() || instruction->IsRem());
3737 if (instruction->GetResultType() == DataType::Type::kInt64) {
3738 if (divisor > 0 && HasNonNegativeInputAt(instruction, 0)) {
3739 GenerateInt64UnsignedDivRemWithAnyPositiveConstant(instruction);
3740 } else {
3741 GenerateInt64DivRemWithAnyConstant(instruction);
3742 }
3743 } else {
3744 GenerateInt32DivRemWithAnyConstant(instruction);
3745 }
3746 }
3747
GenerateIntDivForConstDenom(HDiv * instruction)3748 void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) {
3749 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3750
3751 if (imm == 0) {
3752 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
3753 return;
3754 }
3755
3756 if (IsPowerOfTwo(AbsOrMin(imm))) {
3757 GenerateIntDivForPower2Denom(instruction);
3758 } else {
3759 // Cases imm == -1 or imm == 1 are handled by InstructionSimplifier.
3760 DCHECK(imm < -2 || imm > 2) << imm;
3761 GenerateDivRemWithAnyConstant(instruction, imm);
3762 }
3763 }
3764
GenerateIntDiv(HDiv * instruction)3765 void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) {
3766 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
3767 << instruction->GetResultType();
3768
3769 if (instruction->GetLocations()->InAt(1).IsConstant()) {
3770 GenerateIntDivForConstDenom(instruction);
3771 } else {
3772 Register out = OutputRegister(instruction);
3773 Register dividend = InputRegisterAt(instruction, 0);
3774 Register divisor = InputRegisterAt(instruction, 1);
3775 __ Sdiv(out, dividend, divisor);
3776 }
3777 }
3778
VisitDiv(HDiv * div)3779 void LocationsBuilderARM64::VisitDiv(HDiv* div) {
3780 LocationSummary* locations =
3781 new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall);
3782 switch (div->GetResultType()) {
3783 case DataType::Type::kInt32:
3784 case DataType::Type::kInt64:
3785 locations->SetInAt(0, Location::RequiresRegister());
3786 locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
3787 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3788 break;
3789
3790 case DataType::Type::kFloat32:
3791 case DataType::Type::kFloat64:
3792 locations->SetInAt(0, Location::RequiresFpuRegister());
3793 locations->SetInAt(1, Location::RequiresFpuRegister());
3794 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3795 break;
3796
3797 default:
3798 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3799 }
3800 }
3801
VisitDiv(HDiv * div)3802 void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
3803 DataType::Type type = div->GetResultType();
3804 switch (type) {
3805 case DataType::Type::kInt32:
3806 case DataType::Type::kInt64:
3807 GenerateIntDiv(div);
3808 break;
3809
3810 case DataType::Type::kFloat32:
3811 case DataType::Type::kFloat64:
3812 __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
3813 break;
3814
3815 default:
3816 LOG(FATAL) << "Unexpected div type " << type;
3817 }
3818 }
3819
VisitDivZeroCheck(HDivZeroCheck * instruction)3820 void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3821 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3822 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3823 }
3824
VisitDivZeroCheck(HDivZeroCheck * instruction)3825 void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3826 SlowPathCodeARM64* slow_path =
3827 new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction);
3828 codegen_->AddSlowPath(slow_path);
3829 Location value = instruction->GetLocations()->InAt(0);
3830
3831 DataType::Type type = instruction->GetType();
3832
3833 if (!DataType::IsIntegralType(type)) {
3834 LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
3835 UNREACHABLE();
3836 }
3837
3838 if (value.IsConstant()) {
3839 int64_t divisor = Int64FromLocation(value);
3840 if (divisor == 0) {
3841 __ B(slow_path->GetEntryLabel());
3842 } else {
3843 // A division by a non-null constant is valid. We don't need to perform
3844 // any check, so simply fall through.
3845 }
3846 } else {
3847 __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
3848 }
3849 }
3850
VisitDoubleConstant(HDoubleConstant * constant)3851 void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
3852 LocationSummary* locations =
3853 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3854 locations->SetOut(Location::ConstantLocation(constant));
3855 }
3856
VisitDoubleConstant(HDoubleConstant * constant)3857 void InstructionCodeGeneratorARM64::VisitDoubleConstant(
3858 [[maybe_unused]] HDoubleConstant* constant) {
3859 // Will be generated at use site.
3860 }
3861
VisitExit(HExit * exit)3862 void LocationsBuilderARM64::VisitExit(HExit* exit) {
3863 exit->SetLocations(nullptr);
3864 }
3865
VisitExit(HExit * exit)3866 void InstructionCodeGeneratorARM64::VisitExit([[maybe_unused]] HExit* exit) {}
3867
VisitFloatConstant(HFloatConstant * constant)3868 void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
3869 LocationSummary* locations =
3870 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3871 locations->SetOut(Location::ConstantLocation(constant));
3872 }
3873
VisitFloatConstant(HFloatConstant * constant)3874 void InstructionCodeGeneratorARM64::VisitFloatConstant([[maybe_unused]] HFloatConstant* constant) {
3875 // Will be generated at use site.
3876 }
3877
HandleGoto(HInstruction * got,HBasicBlock * successor)3878 void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
3879 if (successor->IsExitBlock()) {
3880 DCHECK(got->GetPrevious()->AlwaysThrows());
3881 return; // no code needed
3882 }
3883
3884 HBasicBlock* block = got->GetBlock();
3885 HInstruction* previous = got->GetPrevious();
3886 HLoopInformation* info = block->GetLoopInformation();
3887
3888 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
3889 codegen_->MaybeIncrementHotness(info->GetSuspendCheck(), /* is_frame_entry= */ false);
3890 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
3891 return; // `GenerateSuspendCheck()` emitted the jump.
3892 }
3893 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
3894 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
3895 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
3896 }
3897 if (!codegen_->GoesToNextBlock(block, successor)) {
3898 __ B(codegen_->GetLabelOf(successor));
3899 }
3900 }
3901
VisitGoto(HGoto * got)3902 void LocationsBuilderARM64::VisitGoto(HGoto* got) {
3903 got->SetLocations(nullptr);
3904 }
3905
VisitGoto(HGoto * got)3906 void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
3907 HandleGoto(got, got->GetSuccessor());
3908 }
3909
VisitTryBoundary(HTryBoundary * try_boundary)3910 void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3911 try_boundary->SetLocations(nullptr);
3912 }
3913
VisitTryBoundary(HTryBoundary * try_boundary)3914 void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3915 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
3916 if (!successor->IsExitBlock()) {
3917 HandleGoto(try_boundary, successor);
3918 }
3919 }
3920
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl::aarch64::Label * true_target,vixl::aarch64::Label * false_target)3921 void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
3922 size_t condition_input_index,
3923 vixl::aarch64::Label* true_target,
3924 vixl::aarch64::Label* false_target) {
3925 HInstruction* cond = instruction->InputAt(condition_input_index);
3926
3927 if (true_target == nullptr && false_target == nullptr) {
3928 // Nothing to do. The code always falls through.
3929 return;
3930 } else if (cond->IsIntConstant()) {
3931 // Constant condition, statically compared against "true" (integer value 1).
3932 if (cond->AsIntConstant()->IsTrue()) {
3933 if (true_target != nullptr) {
3934 __ B(true_target);
3935 }
3936 } else {
3937 DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
3938 if (false_target != nullptr) {
3939 __ B(false_target);
3940 }
3941 }
3942 return;
3943 }
3944
3945 // The following code generates these patterns:
3946 // (1) true_target == nullptr && false_target != nullptr
3947 // - opposite condition true => branch to false_target
3948 // (2) true_target != nullptr && false_target == nullptr
3949 // - condition true => branch to true_target
3950 // (3) true_target != nullptr && false_target != nullptr
3951 // - condition true => branch to true_target
3952 // - branch to false_target
3953 if (IsBooleanValueOrMaterializedCondition(cond)) {
3954 // The condition instruction has been materialized, compare the output to 0.
3955 Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
3956 DCHECK(cond_val.IsRegister());
3957 if (true_target == nullptr) {
3958 __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
3959 } else {
3960 __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
3961 }
3962 } else {
3963 // The condition instruction has not been materialized, use its inputs as
3964 // the comparison and its condition as the branch condition.
3965 HCondition* condition = cond->AsCondition();
3966
3967 DataType::Type type = condition->InputAt(0)->GetType();
3968 if (DataType::IsFloatingPointType(type)) {
3969 GenerateFcmp(condition);
3970 if (true_target == nullptr) {
3971 IfCondition opposite_condition = condition->GetOppositeCondition();
3972 __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
3973 } else {
3974 __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
3975 }
3976 } else {
3977 // Integer cases.
3978 Register lhs = InputRegisterAt(condition, 0);
3979 Operand rhs = InputOperandAt(condition, 1);
3980
3981 Condition arm64_cond;
3982 vixl::aarch64::Label* non_fallthrough_target;
3983 if (true_target == nullptr) {
3984 arm64_cond = ARM64Condition(condition->GetOppositeCondition());
3985 non_fallthrough_target = false_target;
3986 } else {
3987 arm64_cond = ARM64Condition(condition->GetCondition());
3988 non_fallthrough_target = true_target;
3989 }
3990
3991 if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
3992 rhs.IsImmediate() && (rhs.GetImmediate() == 0)) {
3993 switch (arm64_cond) {
3994 case eq:
3995 __ Cbz(lhs, non_fallthrough_target);
3996 break;
3997 case ne:
3998 __ Cbnz(lhs, non_fallthrough_target);
3999 break;
4000 case lt:
4001 // Test the sign bit and branch accordingly.
4002 __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
4003 break;
4004 case ge:
4005 // Test the sign bit and branch accordingly.
4006 __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
4007 break;
4008 default:
4009 // Without the `static_cast` the compiler throws an error for
4010 // `-Werror=sign-promo`.
4011 LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
4012 }
4013 } else {
4014 __ Cmp(lhs, rhs);
4015 __ B(arm64_cond, non_fallthrough_target);
4016 }
4017 }
4018 }
4019
4020 // If neither branch falls through (case 3), the conditional branch to `true_target`
4021 // was already emitted (case 2) and we need to emit a jump to `false_target`.
4022 if (true_target != nullptr && false_target != nullptr) {
4023 __ B(false_target);
4024 }
4025 }
4026
VisitIf(HIf * if_instr)4027 void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
4028 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
4029 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
4030 locations->SetInAt(0, Location::RequiresRegister());
4031 }
4032 }
4033
VisitIf(HIf * if_instr)4034 void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
4035 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
4036 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
4037 vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor);
4038 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) {
4039 true_target = nullptr;
4040 }
4041 vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor);
4042 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) {
4043 false_target = nullptr;
4044 }
4045 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
4046 if (GetGraph()->IsCompilingBaseline() &&
4047 codegen_->GetCompilerOptions().ProfileBranches() &&
4048 !Runtime::Current()->IsAotCompiler()) {
4049 DCHECK(if_instr->InputAt(0)->IsCondition());
4050 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
4051 DCHECK(info != nullptr);
4052 BranchCache* cache = info->GetBranchCache(if_instr->GetDexPc());
4053 // Currently, not all If branches are profiled.
4054 if (cache != nullptr) {
4055 uint64_t address =
4056 reinterpret_cast64<uint64_t>(cache) + BranchCache::FalseOffset().Int32Value();
4057 static_assert(
4058 BranchCache::TrueOffset().Int32Value() - BranchCache::FalseOffset().Int32Value() == 2,
4059 "Unexpected offsets for BranchCache");
4060 vixl::aarch64::Label done;
4061 UseScratchRegisterScope temps(GetVIXLAssembler());
4062 Register temp = temps.AcquireX();
4063 Register counter = temps.AcquireW();
4064 Register condition = InputRegisterAt(if_instr, 0).X();
4065 __ Mov(temp, address);
4066 __ Ldrh(counter, MemOperand(temp, condition, LSL, 1));
4067 __ Add(counter, counter, 1);
4068 __ Tbnz(counter, 16, &done);
4069 __ Strh(counter, MemOperand(temp, condition, LSL, 1));
4070 __ Bind(&done);
4071 }
4072 }
4073 }
4074 GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
4075 }
4076
VisitDeoptimize(HDeoptimize * deoptimize)4077 void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
4078 LocationSummary* locations = new (GetGraph()->GetAllocator())
4079 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
4080 InvokeRuntimeCallingConvention calling_convention;
4081 RegisterSet caller_saves = RegisterSet::Empty();
4082 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
4083 locations->SetCustomSlowPathCallerSaves(caller_saves);
4084 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
4085 locations->SetInAt(0, Location::RequiresRegister());
4086 }
4087 }
4088
VisitDeoptimize(HDeoptimize * deoptimize)4089 void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
4090 SlowPathCodeARM64* slow_path =
4091 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
4092 GenerateTestAndBranch(deoptimize,
4093 /* condition_input_index= */ 0,
4094 slow_path->GetEntryLabel(),
4095 /* false_target= */ nullptr);
4096 }
4097
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)4098 void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
4099 LocationSummary* locations = new (GetGraph()->GetAllocator())
4100 LocationSummary(flag, LocationSummary::kNoCall);
4101 locations->SetOut(Location::RequiresRegister());
4102 }
4103
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)4104 void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
4105 __ Ldr(OutputRegister(flag),
4106 MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
4107 }
4108
IsConditionOnFloatingPointValues(HInstruction * condition)4109 static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
4110 return condition->IsCondition() &&
4111 DataType::IsFloatingPointType(condition->InputAt(0)->GetType());
4112 }
4113
GetConditionForSelect(HCondition * condition)4114 static inline Condition GetConditionForSelect(HCondition* condition) {
4115 IfCondition cond = condition->GetCondition();
4116 return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
4117 : ARM64Condition(cond);
4118 }
4119
VisitSelect(HSelect * select)4120 void LocationsBuilderARM64::VisitSelect(HSelect* select) {
4121 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
4122 if (DataType::IsFloatingPointType(select->GetType())) {
4123 locations->SetInAt(0, Location::RequiresFpuRegister());
4124 locations->SetInAt(1, Location::RequiresFpuRegister());
4125 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4126 } else {
4127 HConstant* cst_true_value = select->GetTrueValue()->AsConstantOrNull();
4128 HConstant* cst_false_value = select->GetFalseValue()->AsConstantOrNull();
4129 bool is_true_value_constant = cst_true_value != nullptr;
4130 bool is_false_value_constant = cst_false_value != nullptr;
4131 // Ask VIXL whether we should synthesize constants in registers.
4132 // We give an arbitrary register to VIXL when dealing with non-constant inputs.
4133 Operand true_op = is_true_value_constant ?
4134 Operand(Int64FromConstant(cst_true_value)) : Operand(x1);
4135 Operand false_op = is_false_value_constant ?
4136 Operand(Int64FromConstant(cst_false_value)) : Operand(x2);
4137 bool true_value_in_register = false;
4138 bool false_value_in_register = false;
4139 MacroAssembler::GetCselSynthesisInformation(
4140 x0, true_op, false_op, &true_value_in_register, &false_value_in_register);
4141 true_value_in_register |= !is_true_value_constant;
4142 false_value_in_register |= !is_false_value_constant;
4143
4144 locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister()
4145 : Location::ConstantLocation(cst_true_value));
4146 locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister()
4147 : Location::ConstantLocation(cst_false_value));
4148 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4149 }
4150
4151 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
4152 locations->SetInAt(2, Location::RequiresRegister());
4153 }
4154 }
4155
VisitSelect(HSelect * select)4156 void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
4157 HInstruction* cond = select->GetCondition();
4158 Condition csel_cond;
4159
4160 if (IsBooleanValueOrMaterializedCondition(cond)) {
4161 if (cond->IsCondition() && cond->GetNext() == select) {
4162 // Use the condition flags set by the previous instruction.
4163 csel_cond = GetConditionForSelect(cond->AsCondition());
4164 } else {
4165 __ Cmp(InputRegisterAt(select, 2), 0);
4166 csel_cond = ne;
4167 }
4168 } else if (IsConditionOnFloatingPointValues(cond)) {
4169 GenerateFcmp(cond);
4170 csel_cond = GetConditionForSelect(cond->AsCondition());
4171 } else {
4172 __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
4173 csel_cond = GetConditionForSelect(cond->AsCondition());
4174 }
4175
4176 if (DataType::IsFloatingPointType(select->GetType())) {
4177 __ Fcsel(OutputFPRegister(select),
4178 InputFPRegisterAt(select, 1),
4179 InputFPRegisterAt(select, 0),
4180 csel_cond);
4181 } else {
4182 __ Csel(OutputRegister(select),
4183 InputOperandAt(select, 1),
4184 InputOperandAt(select, 0),
4185 csel_cond);
4186 }
4187 }
4188
VisitNop(HNop * nop)4189 void LocationsBuilderARM64::VisitNop(HNop* nop) {
4190 new (GetGraph()->GetAllocator()) LocationSummary(nop);
4191 }
4192
VisitNop(HNop *)4193 void InstructionCodeGeneratorARM64::VisitNop(HNop*) {
4194 // The environment recording already happened in CodeGenerator::Compile.
4195 }
4196
IncreaseFrame(size_t adjustment)4197 void CodeGeneratorARM64::IncreaseFrame(size_t adjustment) {
4198 __ Claim(adjustment);
4199 GetAssembler()->cfi().AdjustCFAOffset(adjustment);
4200 }
4201
DecreaseFrame(size_t adjustment)4202 void CodeGeneratorARM64::DecreaseFrame(size_t adjustment) {
4203 __ Drop(adjustment);
4204 GetAssembler()->cfi().AdjustCFAOffset(-adjustment);
4205 }
4206
GenerateNop()4207 void CodeGeneratorARM64::GenerateNop() {
4208 __ Nop();
4209 }
4210
VisitInstanceFieldGet(HInstanceFieldGet * instruction)4211 void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4212 HandleFieldGet(instruction, instruction->GetFieldInfo());
4213 }
4214
VisitInstanceFieldGet(HInstanceFieldGet * instruction)4215 void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4216 HandleFieldGet(instruction, instruction->GetFieldInfo());
4217 }
4218
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4219 void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4220 HandleFieldSet(instruction);
4221 }
4222
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4223 void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4224 HandleFieldSet(instruction,
4225 instruction->GetFieldInfo(),
4226 instruction->GetValueCanBeNull(),
4227 instruction->GetWriteBarrierKind());
4228 }
4229
4230 // Temp is used for read barrier.
NumberOfInstanceOfTemps(bool emit_read_barrier,TypeCheckKind type_check_kind)4231 static size_t NumberOfInstanceOfTemps(bool emit_read_barrier, TypeCheckKind type_check_kind) {
4232 if (emit_read_barrier &&
4233 (kUseBakerReadBarrier ||
4234 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
4235 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
4236 type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
4237 return 1;
4238 }
4239 return 0;
4240 }
4241
4242 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
4243 // interface pointer, one for loading the current interface.
4244 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(bool emit_read_barrier,TypeCheckKind type_check_kind)4245 static size_t NumberOfCheckCastTemps(bool emit_read_barrier, TypeCheckKind type_check_kind) {
4246 if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
4247 return 3;
4248 }
4249 return 1 + NumberOfInstanceOfTemps(emit_read_barrier, type_check_kind);
4250 }
4251
VisitInstanceOf(HInstanceOf * instruction)4252 void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
4253 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
4254 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4255 bool baker_read_barrier_slow_path = false;
4256 switch (type_check_kind) {
4257 case TypeCheckKind::kExactCheck:
4258 case TypeCheckKind::kAbstractClassCheck:
4259 case TypeCheckKind::kClassHierarchyCheck:
4260 case TypeCheckKind::kArrayObjectCheck:
4261 case TypeCheckKind::kInterfaceCheck: {
4262 bool needs_read_barrier = codegen_->InstanceOfNeedsReadBarrier(instruction);
4263 call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
4264 baker_read_barrier_slow_path = (kUseBakerReadBarrier && needs_read_barrier) &&
4265 (type_check_kind != TypeCheckKind::kInterfaceCheck);
4266 break;
4267 }
4268 case TypeCheckKind::kArrayCheck:
4269 case TypeCheckKind::kUnresolvedCheck:
4270 call_kind = LocationSummary::kCallOnSlowPath;
4271 break;
4272 case TypeCheckKind::kBitstringCheck:
4273 break;
4274 }
4275
4276 LocationSummary* locations =
4277 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4278 if (baker_read_barrier_slow_path) {
4279 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
4280 }
4281 locations->SetInAt(0, Location::RequiresRegister());
4282 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
4283 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
4284 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
4285 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
4286 } else {
4287 locations->SetInAt(1, Location::RequiresRegister());
4288 }
4289 // The "out" register is used as a temporary, so it overlaps with the inputs.
4290 // Note that TypeCheckSlowPathARM64 uses this register too.
4291 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4292 // Add temps if necessary for read barriers.
4293 locations->AddRegisterTemps(
4294 NumberOfInstanceOfTemps(codegen_->EmitReadBarrier(), type_check_kind));
4295 }
4296
VisitInstanceOf(HInstanceOf * instruction)4297 void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
4298 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4299 LocationSummary* locations = instruction->GetLocations();
4300 Location obj_loc = locations->InAt(0);
4301 Register obj = InputRegisterAt(instruction, 0);
4302 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
4303 ? Register()
4304 : InputRegisterAt(instruction, 1);
4305 Location out_loc = locations->Out();
4306 Register out = OutputRegister(instruction);
4307 const size_t num_temps = NumberOfInstanceOfTemps(codegen_->EmitReadBarrier(), type_check_kind);
4308 DCHECK_LE(num_temps, 1u);
4309 Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
4310 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4311 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
4312 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
4313 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
4314 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
4315 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
4316 const uint32_t object_array_data_offset =
4317 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
4318
4319 vixl::aarch64::Label done, zero;
4320 SlowPathCodeARM64* slow_path = nullptr;
4321
4322 // Return 0 if `obj` is null.
4323 // Avoid null check if we know `obj` is not null.
4324 if (instruction->MustDoNullCheck()) {
4325 __ Cbz(obj, &zero);
4326 }
4327
4328 switch (type_check_kind) {
4329 case TypeCheckKind::kExactCheck: {
4330 ReadBarrierOption read_barrier_option =
4331 codegen_->ReadBarrierOptionForInstanceOf(instruction);
4332 // /* HeapReference<Class> */ out = obj->klass_
4333 GenerateReferenceLoadTwoRegisters(instruction,
4334 out_loc,
4335 obj_loc,
4336 class_offset,
4337 maybe_temp_loc,
4338 read_barrier_option);
4339 __ Cmp(out, cls);
4340 __ Cset(out, eq);
4341 if (zero.IsLinked()) {
4342 __ B(&done);
4343 }
4344 break;
4345 }
4346
4347 case TypeCheckKind::kAbstractClassCheck: {
4348 ReadBarrierOption read_barrier_option =
4349 codegen_->ReadBarrierOptionForInstanceOf(instruction);
4350 // /* HeapReference<Class> */ out = obj->klass_
4351 GenerateReferenceLoadTwoRegisters(instruction,
4352 out_loc,
4353 obj_loc,
4354 class_offset,
4355 maybe_temp_loc,
4356 read_barrier_option);
4357 // If the class is abstract, we eagerly fetch the super class of the
4358 // object to avoid doing a comparison we know will fail.
4359 vixl::aarch64::Label loop, success;
4360 __ Bind(&loop);
4361 // /* HeapReference<Class> */ out = out->super_class_
4362 GenerateReferenceLoadOneRegister(instruction,
4363 out_loc,
4364 super_offset,
4365 maybe_temp_loc,
4366 read_barrier_option);
4367 // If `out` is null, we use it for the result, and jump to `done`.
4368 __ Cbz(out, &done);
4369 __ Cmp(out, cls);
4370 __ B(ne, &loop);
4371 __ Mov(out, 1);
4372 if (zero.IsLinked()) {
4373 __ B(&done);
4374 }
4375 break;
4376 }
4377
4378 case TypeCheckKind::kClassHierarchyCheck: {
4379 ReadBarrierOption read_barrier_option =
4380 codegen_->ReadBarrierOptionForInstanceOf(instruction);
4381 // /* HeapReference<Class> */ out = obj->klass_
4382 GenerateReferenceLoadTwoRegisters(instruction,
4383 out_loc,
4384 obj_loc,
4385 class_offset,
4386 maybe_temp_loc,
4387 read_barrier_option);
4388 // Walk over the class hierarchy to find a match.
4389 vixl::aarch64::Label loop, success;
4390 __ Bind(&loop);
4391 __ Cmp(out, cls);
4392 __ B(eq, &success);
4393 // /* HeapReference<Class> */ out = out->super_class_
4394 GenerateReferenceLoadOneRegister(instruction,
4395 out_loc,
4396 super_offset,
4397 maybe_temp_loc,
4398 read_barrier_option);
4399 __ Cbnz(out, &loop);
4400 // If `out` is null, we use it for the result, and jump to `done`.
4401 __ B(&done);
4402 __ Bind(&success);
4403 __ Mov(out, 1);
4404 if (zero.IsLinked()) {
4405 __ B(&done);
4406 }
4407 break;
4408 }
4409
4410 case TypeCheckKind::kArrayObjectCheck: {
4411 ReadBarrierOption read_barrier_option =
4412 codegen_->ReadBarrierOptionForInstanceOf(instruction);
4413 // /* HeapReference<Class> */ out = obj->klass_
4414 GenerateReferenceLoadTwoRegisters(instruction,
4415 out_loc,
4416 obj_loc,
4417 class_offset,
4418 maybe_temp_loc,
4419 read_barrier_option);
4420 // Do an exact check.
4421 vixl::aarch64::Label exact_check;
4422 __ Cmp(out, cls);
4423 __ B(eq, &exact_check);
4424 // Otherwise, we need to check that the object's class is a non-primitive array.
4425 // /* HeapReference<Class> */ out = out->component_type_
4426 GenerateReferenceLoadOneRegister(instruction,
4427 out_loc,
4428 component_offset,
4429 maybe_temp_loc,
4430 read_barrier_option);
4431 // If `out` is null, we use it for the result, and jump to `done`.
4432 __ Cbz(out, &done);
4433 __ Ldrh(out, HeapOperand(out, primitive_offset));
4434 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
4435 __ Cbnz(out, &zero);
4436 __ Bind(&exact_check);
4437 __ Mov(out, 1);
4438 __ B(&done);
4439 break;
4440 }
4441
4442 case TypeCheckKind::kArrayCheck: {
4443 // No read barrier since the slow path will retry upon failure.
4444 // /* HeapReference<Class> */ out = obj->klass_
4445 GenerateReferenceLoadTwoRegisters(instruction,
4446 out_loc,
4447 obj_loc,
4448 class_offset,
4449 maybe_temp_loc,
4450 kWithoutReadBarrier);
4451 __ Cmp(out, cls);
4452 DCHECK(locations->OnlyCallsOnSlowPath());
4453 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4454 instruction, /* is_fatal= */ false);
4455 codegen_->AddSlowPath(slow_path);
4456 __ B(ne, slow_path->GetEntryLabel());
4457 __ Mov(out, 1);
4458 if (zero.IsLinked()) {
4459 __ B(&done);
4460 }
4461 break;
4462 }
4463
4464 case TypeCheckKind::kInterfaceCheck: {
4465 if (codegen_->InstanceOfNeedsReadBarrier(instruction)) {
4466 DCHECK(locations->OnlyCallsOnSlowPath());
4467 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4468 instruction, /* is_fatal= */ false);
4469 codegen_->AddSlowPath(slow_path);
4470 if (codegen_->EmitNonBakerReadBarrier()) {
4471 __ B(slow_path->GetEntryLabel());
4472 break;
4473 }
4474 // For Baker read barrier, take the slow path while marking.
4475 __ Cbnz(mr, slow_path->GetEntryLabel());
4476 }
4477
4478 // Fast-path without read barriers.
4479 UseScratchRegisterScope temps(GetVIXLAssembler());
4480 Register temp = temps.AcquireW();
4481 Register temp2 = temps.AcquireW();
4482 // /* HeapReference<Class> */ temp = obj->klass_
4483 __ Ldr(temp, HeapOperand(obj, class_offset));
4484 GetAssembler()->MaybeUnpoisonHeapReference(temp);
4485 // /* HeapReference<Class> */ temp = temp->iftable_
4486 __ Ldr(temp, HeapOperand(temp, iftable_offset));
4487 GetAssembler()->MaybeUnpoisonHeapReference(temp);
4488 // Load the size of the `IfTable`. The `Class::iftable_` is never null.
4489 __ Ldr(out, HeapOperand(temp, array_length_offset));
4490 // Loop through the `IfTable` and check if any class matches.
4491 vixl::aarch64::Label loop;
4492 __ Bind(&loop);
4493 __ Cbz(out, &done); // If taken, the result in `out` is already 0 (false).
4494 __ Ldr(temp2, HeapOperand(temp, object_array_data_offset));
4495 GetAssembler()->MaybeUnpoisonHeapReference(temp2);
4496 // Go to next interface.
4497 __ Add(temp, temp, 2 * kHeapReferenceSize);
4498 __ Sub(out, out, 2);
4499 // Compare the classes and continue the loop if they do not match.
4500 __ Cmp(cls, temp2);
4501 __ B(ne, &loop);
4502 __ Mov(out, 1);
4503 if (zero.IsLinked()) {
4504 __ B(&done);
4505 }
4506 break;
4507 }
4508
4509 case TypeCheckKind::kUnresolvedCheck: {
4510 // Note that we indeed only call on slow path, but we always go
4511 // into the slow path for the unresolved check case.
4512 //
4513 // We cannot directly call the InstanceofNonTrivial runtime
4514 // entry point without resorting to a type checking slow path
4515 // here (i.e. by calling InvokeRuntime directly), as it would
4516 // require to assign fixed registers for the inputs of this
4517 // HInstanceOf instruction (following the runtime calling
4518 // convention), which might be cluttered by the potential first
4519 // read barrier emission at the beginning of this method.
4520 //
4521 // TODO: Introduce a new runtime entry point taking the object
4522 // to test (instead of its class) as argument, and let it deal
4523 // with the read barrier issues. This will let us refactor this
4524 // case of the `switch` code as it was previously (with a direct
4525 // call to the runtime not using a type checking slow path).
4526 // This should also be beneficial for the other cases above.
4527 DCHECK(locations->OnlyCallsOnSlowPath());
4528 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4529 instruction, /* is_fatal= */ false);
4530 codegen_->AddSlowPath(slow_path);
4531 __ B(slow_path->GetEntryLabel());
4532 break;
4533 }
4534
4535 case TypeCheckKind::kBitstringCheck: {
4536 // /* HeapReference<Class> */ temp = obj->klass_
4537 GenerateReferenceLoadTwoRegisters(instruction,
4538 out_loc,
4539 obj_loc,
4540 class_offset,
4541 maybe_temp_loc,
4542 kWithoutReadBarrier);
4543
4544 GenerateBitstringTypeCheckCompare(instruction, out);
4545 __ Cset(out, eq);
4546 if (zero.IsLinked()) {
4547 __ B(&done);
4548 }
4549 break;
4550 }
4551 }
4552
4553 if (zero.IsLinked()) {
4554 __ Bind(&zero);
4555 __ Mov(out, 0);
4556 }
4557
4558 if (done.IsLinked()) {
4559 __ Bind(&done);
4560 }
4561
4562 if (slow_path != nullptr) {
4563 __ Bind(slow_path->GetExitLabel());
4564 }
4565 }
4566
VisitCheckCast(HCheckCast * instruction)4567 void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
4568 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4569 LocationSummary::CallKind call_kind = codegen_->GetCheckCastCallKind(instruction);
4570 LocationSummary* locations =
4571 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4572 locations->SetInAt(0, Location::RequiresRegister());
4573 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
4574 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
4575 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
4576 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
4577 } else {
4578 locations->SetInAt(1, Location::RequiresRegister());
4579 }
4580 locations->AddRegisterTemps(NumberOfCheckCastTemps(codegen_->EmitReadBarrier(), type_check_kind));
4581 }
4582
VisitCheckCast(HCheckCast * instruction)4583 void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
4584 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4585 LocationSummary* locations = instruction->GetLocations();
4586 Location obj_loc = locations->InAt(0);
4587 Register obj = InputRegisterAt(instruction, 0);
4588 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
4589 ? Register()
4590 : InputRegisterAt(instruction, 1);
4591 const size_t num_temps = NumberOfCheckCastTemps(codegen_->EmitReadBarrier(), type_check_kind);
4592 DCHECK_GE(num_temps, 1u);
4593 DCHECK_LE(num_temps, 3u);
4594 Location temp_loc = locations->GetTemp(0);
4595 Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
4596 Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
4597 Register temp = WRegisterFrom(temp_loc);
4598 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4599 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
4600 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
4601 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
4602 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
4603 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
4604 const uint32_t object_array_data_offset =
4605 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
4606
4607 bool is_type_check_slow_path_fatal = codegen_->IsTypeCheckSlowPathFatal(instruction);
4608 SlowPathCodeARM64* type_check_slow_path =
4609 new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4610 instruction, is_type_check_slow_path_fatal);
4611 codegen_->AddSlowPath(type_check_slow_path);
4612
4613 vixl::aarch64::Label done;
4614 // Avoid null check if we know obj is not null.
4615 if (instruction->MustDoNullCheck()) {
4616 __ Cbz(obj, &done);
4617 }
4618
4619 switch (type_check_kind) {
4620 case TypeCheckKind::kExactCheck:
4621 case TypeCheckKind::kArrayCheck: {
4622 // /* HeapReference<Class> */ temp = obj->klass_
4623 GenerateReferenceLoadTwoRegisters(instruction,
4624 temp_loc,
4625 obj_loc,
4626 class_offset,
4627 maybe_temp2_loc,
4628 kWithoutReadBarrier);
4629
4630 __ Cmp(temp, cls);
4631 // Jump to slow path for throwing the exception or doing a
4632 // more involved array check.
4633 __ B(ne, type_check_slow_path->GetEntryLabel());
4634 break;
4635 }
4636
4637 case TypeCheckKind::kAbstractClassCheck: {
4638 // /* HeapReference<Class> */ temp = obj->klass_
4639 GenerateReferenceLoadTwoRegisters(instruction,
4640 temp_loc,
4641 obj_loc,
4642 class_offset,
4643 maybe_temp2_loc,
4644 kWithoutReadBarrier);
4645
4646 // If the class is abstract, we eagerly fetch the super class of the
4647 // object to avoid doing a comparison we know will fail.
4648 vixl::aarch64::Label loop;
4649 __ Bind(&loop);
4650 // /* HeapReference<Class> */ temp = temp->super_class_
4651 GenerateReferenceLoadOneRegister(instruction,
4652 temp_loc,
4653 super_offset,
4654 maybe_temp2_loc,
4655 kWithoutReadBarrier);
4656
4657 // If the class reference currently in `temp` is null, jump to the slow path to throw the
4658 // exception.
4659 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
4660 // Otherwise, compare classes.
4661 __ Cmp(temp, cls);
4662 __ B(ne, &loop);
4663 break;
4664 }
4665
4666 case TypeCheckKind::kClassHierarchyCheck: {
4667 // /* HeapReference<Class> */ temp = obj->klass_
4668 GenerateReferenceLoadTwoRegisters(instruction,
4669 temp_loc,
4670 obj_loc,
4671 class_offset,
4672 maybe_temp2_loc,
4673 kWithoutReadBarrier);
4674
4675 // Walk over the class hierarchy to find a match.
4676 vixl::aarch64::Label loop;
4677 __ Bind(&loop);
4678 __ Cmp(temp, cls);
4679 __ B(eq, &done);
4680
4681 // /* HeapReference<Class> */ temp = temp->super_class_
4682 GenerateReferenceLoadOneRegister(instruction,
4683 temp_loc,
4684 super_offset,
4685 maybe_temp2_loc,
4686 kWithoutReadBarrier);
4687
4688 // If the class reference currently in `temp` is not null, jump
4689 // back at the beginning of the loop.
4690 __ Cbnz(temp, &loop);
4691 // Otherwise, jump to the slow path to throw the exception.
4692 __ B(type_check_slow_path->GetEntryLabel());
4693 break;
4694 }
4695
4696 case TypeCheckKind::kArrayObjectCheck: {
4697 // /* HeapReference<Class> */ temp = obj->klass_
4698 GenerateReferenceLoadTwoRegisters(instruction,
4699 temp_loc,
4700 obj_loc,
4701 class_offset,
4702 maybe_temp2_loc,
4703 kWithoutReadBarrier);
4704
4705 // Do an exact check.
4706 __ Cmp(temp, cls);
4707 __ B(eq, &done);
4708
4709 // Otherwise, we need to check that the object's class is a non-primitive array.
4710 // /* HeapReference<Class> */ temp = temp->component_type_
4711 GenerateReferenceLoadOneRegister(instruction,
4712 temp_loc,
4713 component_offset,
4714 maybe_temp2_loc,
4715 kWithoutReadBarrier);
4716
4717 // If the component type is null, jump to the slow path to throw the exception.
4718 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
4719 // Otherwise, the object is indeed an array. Further check that this component type is not a
4720 // primitive type.
4721 __ Ldrh(temp, HeapOperand(temp, primitive_offset));
4722 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
4723 __ Cbnz(temp, type_check_slow_path->GetEntryLabel());
4724 break;
4725 }
4726
4727 case TypeCheckKind::kUnresolvedCheck:
4728 // We always go into the type check slow path for the unresolved check cases.
4729 //
4730 // We cannot directly call the CheckCast runtime entry point
4731 // without resorting to a type checking slow path here (i.e. by
4732 // calling InvokeRuntime directly), as it would require to
4733 // assign fixed registers for the inputs of this HInstanceOf
4734 // instruction (following the runtime calling convention), which
4735 // might be cluttered by the potential first read barrier
4736 // emission at the beginning of this method.
4737 __ B(type_check_slow_path->GetEntryLabel());
4738 break;
4739 case TypeCheckKind::kInterfaceCheck: {
4740 // /* HeapReference<Class> */ temp = obj->klass_
4741 GenerateReferenceLoadTwoRegisters(instruction,
4742 temp_loc,
4743 obj_loc,
4744 class_offset,
4745 maybe_temp2_loc,
4746 kWithoutReadBarrier);
4747
4748 // /* HeapReference<Class> */ temp = temp->iftable_
4749 GenerateReferenceLoadOneRegister(instruction,
4750 temp_loc,
4751 iftable_offset,
4752 maybe_temp2_loc,
4753 kWithoutReadBarrier);
4754 // Load the size of the `IfTable`. The `Class::iftable_` is never null.
4755 __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset));
4756 // Loop through the iftable and check if any class matches.
4757 vixl::aarch64::Label start_loop;
4758 __ Bind(&start_loop);
4759 __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel());
4760 __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset));
4761 GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc));
4762 // Go to next interface.
4763 __ Add(temp, temp, 2 * kHeapReferenceSize);
4764 __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2);
4765 // Compare the classes and continue the loop if they do not match.
4766 __ Cmp(cls, WRegisterFrom(maybe_temp3_loc));
4767 __ B(ne, &start_loop);
4768 break;
4769 }
4770
4771 case TypeCheckKind::kBitstringCheck: {
4772 // /* HeapReference<Class> */ temp = obj->klass_
4773 GenerateReferenceLoadTwoRegisters(instruction,
4774 temp_loc,
4775 obj_loc,
4776 class_offset,
4777 maybe_temp2_loc,
4778 kWithoutReadBarrier);
4779
4780 GenerateBitstringTypeCheckCompare(instruction, temp);
4781 __ B(ne, type_check_slow_path->GetEntryLabel());
4782 break;
4783 }
4784 }
4785 __ Bind(&done);
4786
4787 __ Bind(type_check_slow_path->GetExitLabel());
4788 }
4789
VisitIntConstant(HIntConstant * constant)4790 void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
4791 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4792 locations->SetOut(Location::ConstantLocation(constant));
4793 }
4794
VisitIntConstant(HIntConstant * constant)4795 void InstructionCodeGeneratorARM64::VisitIntConstant([[maybe_unused]] HIntConstant* constant) {
4796 // Will be generated at use site.
4797 }
4798
VisitNullConstant(HNullConstant * constant)4799 void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
4800 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4801 locations->SetOut(Location::ConstantLocation(constant));
4802 }
4803
VisitNullConstant(HNullConstant * constant)4804 void InstructionCodeGeneratorARM64::VisitNullConstant([[maybe_unused]] HNullConstant* constant) {
4805 // Will be generated at use site.
4806 }
4807
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4808 void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4809 // The trampoline uses the same calling convention as dex calling conventions,
4810 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
4811 // the method_idx.
4812 HandleInvoke(invoke);
4813 }
4814
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4815 void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4816 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
4817 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4818 }
4819
HandleInvoke(HInvoke * invoke)4820 void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
4821 InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
4822 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4823 }
4824
VisitInvokeInterface(HInvokeInterface * invoke)4825 void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4826 HandleInvoke(invoke);
4827 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
4828 // We cannot request ip1 as it's blocked by the register allocator.
4829 invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any());
4830 }
4831 }
4832
MaybeGenerateInlineCacheCheck(HInstruction * instruction,Register klass)4833 void CodeGeneratorARM64::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
4834 Register klass) {
4835 DCHECK_EQ(klass.GetCode(), 0u);
4836 if (ProfilingInfoBuilder::IsInlineCacheUseful(instruction->AsInvoke(), this)) {
4837 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
4838 DCHECK(info != nullptr);
4839 InlineCache* cache = ProfilingInfoBuilder::GetInlineCache(
4840 info, GetCompilerOptions(), instruction->AsInvoke());
4841 if (cache != nullptr) {
4842 uint64_t address = reinterpret_cast64<uint64_t>(cache);
4843 vixl::aarch64::Label done;
4844 __ Mov(x8, address);
4845 __ Ldr(w9, MemOperand(x8, InlineCache::ClassesOffset().Int32Value()));
4846 // Fast path for a monomorphic cache.
4847 __ Cmp(klass.W(), w9);
4848 __ B(eq, &done);
4849 InvokeRuntime(kQuickUpdateInlineCache, instruction);
4850 __ Bind(&done);
4851 } else {
4852 // This is unexpected, but we don't guarantee stable compilation across
4853 // JIT runs so just warn about it.
4854 ScopedObjectAccess soa(Thread::Current());
4855 LOG(WARNING) << "Missing inline cache for " << GetGraph()->GetArtMethod()->PrettyMethod();
4856 }
4857 }
4858 }
4859
VisitInvokeInterface(HInvokeInterface * invoke)4860 void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4861 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
4862 LocationSummary* locations = invoke->GetLocations();
4863 Register temp = XRegisterFrom(locations->GetTemp(0));
4864 Location receiver = locations->InAt(0);
4865 Offset class_offset = mirror::Object::ClassOffset();
4866 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4867
4868 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
4869 if (receiver.IsStackSlot()) {
4870 __ Ldr(temp.W(), StackOperandFrom(receiver));
4871 {
4872 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4873 // /* HeapReference<Class> */ temp = temp->klass_
4874 __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
4875 codegen_->MaybeRecordImplicitNullCheck(invoke);
4876 }
4877 } else {
4878 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4879 // /* HeapReference<Class> */ temp = receiver->klass_
4880 __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
4881 codegen_->MaybeRecordImplicitNullCheck(invoke);
4882 }
4883
4884 // Instead of simply (possibly) unpoisoning `temp` here, we should
4885 // emit a read barrier for the previous class reference load.
4886 // However this is not required in practice, as this is an
4887 // intermediate/temporary reference and because the current
4888 // concurrent copying collector keeps the from-space memory
4889 // intact/accessible until the end of the marking phase (the
4890 // concurrent copying collector may not in the future).
4891 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
4892
4893 // If we're compiling baseline, update the inline cache.
4894 codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
4895
4896 // The register ip1 is required to be used for the hidden argument in
4897 // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
4898 MacroAssembler* masm = GetVIXLAssembler();
4899 UseScratchRegisterScope scratch_scope(masm);
4900 scratch_scope.Exclude(ip1);
4901 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
4902 Location interface_method = locations->InAt(invoke->GetNumberOfArguments() - 1);
4903 if (interface_method.IsStackSlot()) {
4904 __ Ldr(ip1, StackOperandFrom(interface_method));
4905 } else {
4906 __ Mov(ip1, XRegisterFrom(interface_method));
4907 }
4908 // If the load kind is through a runtime call, we will pass the method we
4909 // fetch the IMT, which will either be a no-op if we don't hit the conflict
4910 // stub, or will make us always go through the trampoline when there is a
4911 // conflict.
4912 } else if (invoke->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) {
4913 codegen_->LoadMethod(
4914 invoke->GetHiddenArgumentLoadKind(), Location::RegisterLocation(ip1.GetCode()), invoke);
4915 }
4916
4917 __ Ldr(temp,
4918 MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
4919 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
4920 invoke->GetImtIndex(), kArm64PointerSize));
4921 // temp = temp->GetImtEntryAt(method_offset);
4922 __ Ldr(temp, MemOperand(temp, method_offset));
4923 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) {
4924 // We pass the method from the IMT in case of a conflict. This will ensure
4925 // we go into the runtime to resolve the actual method.
4926 __ Mov(ip1, temp);
4927 }
4928 // lr = temp->GetEntryPoint();
4929 __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
4930
4931 {
4932 // Ensure the pc position is recorded immediately after the `blr` instruction.
4933 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
4934
4935 // lr();
4936 __ blr(lr);
4937 DCHECK(!codegen_->IsLeafMethod());
4938 codegen_->RecordPcInfo(invoke);
4939 }
4940
4941 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4942 }
4943
VisitInvokeVirtual(HInvokeVirtual * invoke)4944 void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
4945 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4946 if (intrinsic.TryDispatch(invoke)) {
4947 return;
4948 }
4949
4950 HandleInvoke(invoke);
4951 }
4952
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)4953 void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
4954 // Explicit clinit checks triggered by static invokes must have been pruned by
4955 // art::PrepareForRegisterAllocation.
4956 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
4957
4958 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4959 if (intrinsic.TryDispatch(invoke)) {
4960 return;
4961 }
4962
4963 if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
4964 CriticalNativeCallingConventionVisitorARM64 calling_convention_visitor(
4965 /*for_register_allocation=*/ true);
4966 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4967 } else {
4968 HandleInvoke(invoke);
4969 }
4970 }
4971
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARM64 * codegen)4972 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
4973 if (invoke->GetLocations()->Intrinsified()) {
4974 IntrinsicCodeGeneratorARM64 intrinsic(codegen);
4975 intrinsic.Dispatch(invoke);
4976 return true;
4977 }
4978 return false;
4979 }
4980
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method)4981 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
4982 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
4983 [[maybe_unused]] ArtMethod* method) {
4984 // On ARM64 we support all dispatch types.
4985 return desired_dispatch_info;
4986 }
4987
LoadMethod(MethodLoadKind load_kind,Location temp,HInvoke * invoke)4988 void CodeGeneratorARM64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
4989 switch (load_kind) {
4990 case MethodLoadKind::kBootImageLinkTimePcRelative: {
4991 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
4992 // Add ADRP with its PC-relative method patch.
4993 vixl::aarch64::Label* adrp_label =
4994 NewBootImageMethodPatch(invoke->GetResolvedMethodReference());
4995 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4996 // Add ADD with its PC-relative method patch.
4997 vixl::aarch64::Label* add_label =
4998 NewBootImageMethodPatch(invoke->GetResolvedMethodReference(), adrp_label);
4999 EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp));
5000 break;
5001 }
5002 case MethodLoadKind::kBootImageRelRo: {
5003 // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load.
5004 uint32_t boot_image_offset = GetBootImageOffset(invoke);
5005 LoadBootImageRelRoEntry(WRegisterFrom(temp), boot_image_offset);
5006 break;
5007 }
5008 case MethodLoadKind::kAppImageRelRo: {
5009 DCHECK(GetCompilerOptions().IsAppImage());
5010 // Add ADRP with its PC-relative method patch.
5011 vixl::aarch64::Label* adrp_label =
5012 NewAppImageMethodPatch(invoke->GetResolvedMethodReference());
5013 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
5014 // Add LDR with its PC-relative method patch.
5015 // Note: App image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load.
5016 vixl::aarch64::Label* ldr_label =
5017 NewAppImageMethodPatch(invoke->GetResolvedMethodReference(), adrp_label);
5018 EmitLdrOffsetPlaceholder(ldr_label, WRegisterFrom(temp), XRegisterFrom(temp));
5019 break;
5020 }
5021 case MethodLoadKind::kBssEntry: {
5022 // Add ADRP with its PC-relative .bss entry patch.
5023 vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(invoke->GetMethodReference());
5024 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
5025 // Add LDR with its PC-relative .bss entry patch.
5026 vixl::aarch64::Label* ldr_label =
5027 NewMethodBssEntryPatch(invoke->GetMethodReference(), adrp_label);
5028 // All aligned loads are implicitly atomic consume operations on ARM64.
5029 EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp));
5030 break;
5031 }
5032 case MethodLoadKind::kJitDirectAddress: {
5033 // Load method address from literal pool.
5034 __ Ldr(XRegisterFrom(temp),
5035 jit_patches_.DeduplicateUint64Literal(
5036 reinterpret_cast<uint64_t>(invoke->GetResolvedMethod())));
5037 break;
5038 }
5039 case MethodLoadKind::kRuntimeCall: {
5040 // Test situation, don't do anything.
5041 break;
5042 }
5043 default: {
5044 LOG(FATAL) << "Load kind should have already been handled " << load_kind;
5045 UNREACHABLE();
5046 }
5047 }
5048 }
5049
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)5050 void CodeGeneratorARM64::GenerateStaticOrDirectCall(
5051 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
5052 // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
5053 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
5054 switch (invoke->GetMethodLoadKind()) {
5055 case MethodLoadKind::kStringInit: {
5056 uint32_t offset =
5057 GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
5058 // temp = thread->string_init_entrypoint
5059 __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset));
5060 break;
5061 }
5062 case MethodLoadKind::kRecursive:
5063 callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
5064 break;
5065 case MethodLoadKind::kRuntimeCall:
5066 GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
5067 return; // No code pointer retrieval; the runtime performs the call directly.
5068 case MethodLoadKind::kBootImageLinkTimePcRelative:
5069 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
5070 if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
5071 // Do not materialize the method pointer, load directly the entrypoint.
5072 // Add ADRP with its PC-relative JNI entrypoint patch.
5073 vixl::aarch64::Label* adrp_label =
5074 NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference());
5075 EmitAdrpPlaceholder(adrp_label, lr);
5076 // Add the LDR with its PC-relative method patch.
5077 vixl::aarch64::Label* add_label =
5078 NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference(), adrp_label);
5079 EmitLdrOffsetPlaceholder(add_label, lr, lr);
5080 break;
5081 }
5082 FALLTHROUGH_INTENDED;
5083 default:
5084 LoadMethod(invoke->GetMethodLoadKind(), temp, invoke);
5085 break;
5086 }
5087
5088 auto call_lr = [&]() {
5089 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
5090 ExactAssemblyScope eas(GetVIXLAssembler(),
5091 kInstructionSize,
5092 CodeBufferCheckScope::kExactSize);
5093 // lr()
5094 __ blr(lr);
5095 RecordPcInfo(invoke, slow_path);
5096 };
5097 switch (invoke->GetCodePtrLocation()) {
5098 case CodePtrLocation::kCallSelf:
5099 {
5100 DCHECK(!GetGraph()->HasShouldDeoptimizeFlag());
5101 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
5102 ExactAssemblyScope eas(GetVIXLAssembler(),
5103 kInstructionSize,
5104 CodeBufferCheckScope::kExactSize);
5105 __ bl(&frame_entry_label_);
5106 RecordPcInfo(invoke, slow_path);
5107 }
5108 break;
5109 case CodePtrLocation::kCallCriticalNative: {
5110 size_t out_frame_size =
5111 PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARM64,
5112 kAapcs64StackAlignment,
5113 GetCriticalNativeDirectCallFrameSize>(invoke);
5114 if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) {
5115 call_lr();
5116 } else {
5117 // LR = callee_method->ptr_sized_fields_.data_; // EntryPointFromJni
5118 MemberOffset offset = ArtMethod::EntryPointFromJniOffset(kArm64PointerSize);
5119 __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
5120 // lr()
5121 call_lr();
5122 }
5123 // Zero-/sign-extend the result when needed due to native and managed ABI mismatch.
5124 switch (invoke->GetType()) {
5125 case DataType::Type::kBool:
5126 __ Ubfx(w0, w0, 0, 8);
5127 break;
5128 case DataType::Type::kInt8:
5129 __ Sbfx(w0, w0, 0, 8);
5130 break;
5131 case DataType::Type::kUint16:
5132 __ Ubfx(w0, w0, 0, 16);
5133 break;
5134 case DataType::Type::kInt16:
5135 __ Sbfx(w0, w0, 0, 16);
5136 break;
5137 case DataType::Type::kInt32:
5138 case DataType::Type::kInt64:
5139 case DataType::Type::kFloat32:
5140 case DataType::Type::kFloat64:
5141 case DataType::Type::kVoid:
5142 break;
5143 default:
5144 DCHECK(false) << invoke->GetType();
5145 break;
5146 }
5147 if (out_frame_size != 0u) {
5148 DecreaseFrame(out_frame_size);
5149 }
5150 break;
5151 }
5152 case CodePtrLocation::kCallArtMethod: {
5153 // LR = callee_method->ptr_sized_fields_.entry_point_from_quick_compiled_code_;
5154 MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
5155 __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
5156 // lr()
5157 call_lr();
5158 break;
5159 }
5160 }
5161
5162 DCHECK(!IsLeafMethod());
5163 }
5164
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in,SlowPathCode * slow_path)5165 void CodeGeneratorARM64::GenerateVirtualCall(
5166 HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) {
5167 // Use the calling convention instead of the location of the receiver, as
5168 // intrinsics may have put the receiver in a different register. In the intrinsics
5169 // slow path, the arguments have been moved to the right place, so here we are
5170 // guaranteed that the receiver is the first register of the calling convention.
5171 InvokeDexCallingConvention calling_convention;
5172 Register receiver = calling_convention.GetRegisterAt(0);
5173 Register temp = XRegisterFrom(temp_in);
5174 size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
5175 invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
5176 Offset class_offset = mirror::Object::ClassOffset();
5177 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
5178
5179 DCHECK(receiver.IsRegister());
5180
5181 {
5182 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
5183 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5184 // /* HeapReference<Class> */ temp = receiver->klass_
5185 __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
5186 MaybeRecordImplicitNullCheck(invoke);
5187 }
5188 // Instead of simply (possibly) unpoisoning `temp` here, we should
5189 // emit a read barrier for the previous class reference load.
5190 // However this is not required in practice, as this is an
5191 // intermediate/temporary reference and because the current
5192 // concurrent copying collector keeps the from-space memory
5193 // intact/accessible until the end of the marking phase (the
5194 // concurrent copying collector may not in the future).
5195 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
5196
5197 // If we're compiling baseline, update the inline cache.
5198 MaybeGenerateInlineCacheCheck(invoke, temp);
5199
5200 // temp = temp->GetMethodAt(method_offset);
5201 __ Ldr(temp, MemOperand(temp, method_offset));
5202 // lr = temp->GetEntryPoint();
5203 __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
5204 {
5205 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
5206 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
5207 // lr();
5208 __ blr(lr);
5209 RecordPcInfo(invoke, slow_path);
5210 }
5211 }
5212
MoveFromReturnRegister(Location trg,DataType::Type type)5213 void CodeGeneratorARM64::MoveFromReturnRegister(Location trg, DataType::Type type) {
5214 if (!trg.IsValid()) {
5215 DCHECK(type == DataType::Type::kVoid);
5216 return;
5217 }
5218
5219 DCHECK_NE(type, DataType::Type::kVoid);
5220
5221 if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
5222 Register trg_reg = RegisterFrom(trg, type);
5223 Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type);
5224 __ Mov(trg_reg, res_reg, kDiscardForSameWReg);
5225 } else {
5226 VRegister trg_reg = FPRegisterFrom(trg, type);
5227 VRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type);
5228 __ Fmov(trg_reg, res_reg);
5229 }
5230 }
5231
VisitInvokePolymorphic(HInvokePolymorphic * invoke)5232 void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
5233 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
5234 if (intrinsic.TryDispatch(invoke)) {
5235 return;
5236 }
5237 HandleInvoke(invoke);
5238 }
5239
VisitInvokePolymorphic(HInvokePolymorphic * invoke)5240 void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
5241 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
5242 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5243 return;
5244 }
5245 codegen_->GenerateInvokePolymorphicCall(invoke);
5246 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5247 }
5248
VisitInvokeCustom(HInvokeCustom * invoke)5249 void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
5250 HandleInvoke(invoke);
5251 }
5252
VisitInvokeCustom(HInvokeCustom * invoke)5253 void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
5254 codegen_->GenerateInvokeCustomCall(invoke);
5255 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5256 }
5257
NewBootImageIntrinsicPatch(uint32_t intrinsic_data,vixl::aarch64::Label * adrp_label)5258 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch(
5259 uint32_t intrinsic_data,
5260 vixl::aarch64::Label* adrp_label) {
5261 return NewPcRelativePatch(
5262 /* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_other_patches_);
5263 }
5264
NewBootImageRelRoPatch(uint32_t boot_image_offset,vixl::aarch64::Label * adrp_label)5265 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch(
5266 uint32_t boot_image_offset,
5267 vixl::aarch64::Label* adrp_label) {
5268 return NewPcRelativePatch(
5269 /* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_other_patches_);
5270 }
5271
NewBootImageMethodPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)5272 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch(
5273 MethodReference target_method,
5274 vixl::aarch64::Label* adrp_label) {
5275 return NewPcRelativePatch(
5276 target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_);
5277 }
5278
NewAppImageMethodPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)5279 vixl::aarch64::Label* CodeGeneratorARM64::NewAppImageMethodPatch(
5280 MethodReference target_method,
5281 vixl::aarch64::Label* adrp_label) {
5282 return NewPcRelativePatch(
5283 target_method.dex_file, target_method.index, adrp_label, &app_image_method_patches_);
5284 }
5285
NewMethodBssEntryPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)5286 vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch(
5287 MethodReference target_method,
5288 vixl::aarch64::Label* adrp_label) {
5289 return NewPcRelativePatch(
5290 target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_);
5291 }
5292
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,vixl::aarch64::Label * adrp_label)5293 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch(
5294 const DexFile& dex_file,
5295 dex::TypeIndex type_index,
5296 vixl::aarch64::Label* adrp_label) {
5297 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_);
5298 }
5299
NewAppImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,vixl::aarch64::Label * adrp_label)5300 vixl::aarch64::Label* CodeGeneratorARM64::NewAppImageTypePatch(
5301 const DexFile& dex_file,
5302 dex::TypeIndex type_index,
5303 vixl::aarch64::Label* adrp_label) {
5304 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &app_image_type_patches_);
5305 }
5306
NewBssEntryTypePatch(HLoadClass * load_class,vixl::aarch64::Label * adrp_label)5307 vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch(
5308 HLoadClass* load_class,
5309 vixl::aarch64::Label* adrp_label) {
5310 const DexFile& dex_file = load_class->GetDexFile();
5311 dex::TypeIndex type_index = load_class->GetTypeIndex();
5312 ArenaDeque<PcRelativePatchInfo>* patches = nullptr;
5313 switch (load_class->GetLoadKind()) {
5314 case HLoadClass::LoadKind::kBssEntry:
5315 patches = &type_bss_entry_patches_;
5316 break;
5317 case HLoadClass::LoadKind::kBssEntryPublic:
5318 patches = &public_type_bss_entry_patches_;
5319 break;
5320 case HLoadClass::LoadKind::kBssEntryPackage:
5321 patches = &package_type_bss_entry_patches_;
5322 break;
5323 default:
5324 LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind();
5325 UNREACHABLE();
5326 }
5327 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, patches);
5328 }
5329
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)5330 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch(
5331 const DexFile& dex_file,
5332 dex::StringIndex string_index,
5333 vixl::aarch64::Label* adrp_label) {
5334 return NewPcRelativePatch(
5335 &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_);
5336 }
5337
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)5338 vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch(
5339 const DexFile& dex_file,
5340 dex::StringIndex string_index,
5341 vixl::aarch64::Label* adrp_label) {
5342 return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_);
5343 }
5344
NewMethodTypeBssEntryPatch(HLoadMethodType * load_method_type,vixl::aarch64::Label * adrp_label)5345 vixl::aarch64::Label* CodeGeneratorARM64::NewMethodTypeBssEntryPatch(
5346 HLoadMethodType* load_method_type,
5347 vixl::aarch64::Label* adrp_label) {
5348 return NewPcRelativePatch(&load_method_type->GetDexFile(),
5349 load_method_type->GetProtoIndex().index_,
5350 adrp_label,
5351 &method_type_bss_entry_patches_);
5352 }
5353
NewBootImageJniEntrypointPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)5354 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageJniEntrypointPatch(
5355 MethodReference target_method,
5356 vixl::aarch64::Label* adrp_label) {
5357 return NewPcRelativePatch(
5358 target_method.dex_file, target_method.index, adrp_label, &boot_image_jni_entrypoint_patches_);
5359 }
5360
EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset)5361 void CodeGeneratorARM64::EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset) {
5362 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
5363 DCHECK(!GetCompilerOptions().IsJitCompiler());
5364 call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
5365 vixl::aarch64::Label* bl_label = &call_entrypoint_patches_.back().label;
5366 __ bind(bl_label);
5367 __ bl(static_cast<int64_t>(0)); // Placeholder, patched at link-time.
5368 }
5369
EmitBakerReadBarrierCbnz(uint32_t custom_data)5370 void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) {
5371 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
5372 if (GetCompilerOptions().IsJitCompiler()) {
5373 auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
5374 vixl::aarch64::Label* slow_path_entry = &it->second.label;
5375 __ cbnz(mr, slow_path_entry);
5376 } else {
5377 baker_read_barrier_patches_.emplace_back(custom_data);
5378 vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label;
5379 __ bind(cbnz_label);
5380 __ cbnz(mr, static_cast<int64_t>(0)); // Placeholder, patched at link-time.
5381 }
5382 }
5383
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,vixl::aarch64::Label * adrp_label,ArenaDeque<PcRelativePatchInfo> * patches)5384 vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch(
5385 const DexFile* dex_file,
5386 uint32_t offset_or_index,
5387 vixl::aarch64::Label* adrp_label,
5388 ArenaDeque<PcRelativePatchInfo>* patches) {
5389 // Add a patch entry and return the label.
5390 patches->emplace_back(dex_file, offset_or_index);
5391 PcRelativePatchInfo* info = &patches->back();
5392 vixl::aarch64::Label* label = &info->label;
5393 // If adrp_label is null, this is the ADRP patch and needs to point to its own label.
5394 info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
5395 return label;
5396 }
5397
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)5398 void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
5399 jit_patches_.EmitJitRootPatches(code, roots_data, *GetCodeGenerationData());
5400 }
5401
EmitAdrpPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register reg)5402 void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label,
5403 vixl::aarch64::Register reg) {
5404 DCHECK(reg.IsX());
5405 SingleEmissionCheckScope guard(GetVIXLAssembler());
5406 __ Bind(fixup_label);
5407 __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0));
5408 }
5409
EmitAddPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)5410 void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label,
5411 vixl::aarch64::Register out,
5412 vixl::aarch64::Register base) {
5413 DCHECK(out.IsX());
5414 DCHECK(base.IsX());
5415 SingleEmissionCheckScope guard(GetVIXLAssembler());
5416 __ Bind(fixup_label);
5417 __ add(out, base, Operand(/* offset placeholder */ 0));
5418 }
5419
EmitLdrOffsetPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)5420 void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label,
5421 vixl::aarch64::Register out,
5422 vixl::aarch64::Register base) {
5423 DCHECK(base.IsX());
5424 SingleEmissionCheckScope guard(GetVIXLAssembler());
5425 __ Bind(fixup_label);
5426 __ ldr(out, MemOperand(base, /* offset placeholder */ 0));
5427 }
5428
LoadBootImageRelRoEntry(vixl::aarch64::Register reg,uint32_t boot_image_offset)5429 void CodeGeneratorARM64::LoadBootImageRelRoEntry(vixl::aarch64::Register reg,
5430 uint32_t boot_image_offset) {
5431 DCHECK(reg.IsW());
5432 // Add ADRP with its PC-relative boot image .data.img.rel.ro patch.
5433 vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset);
5434 EmitAdrpPlaceholder(adrp_label, reg.X());
5435 // Add LDR with its PC-relative boot image .data.img.rel.ro patch.
5436 vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label);
5437 EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X());
5438 }
5439
LoadBootImageAddress(vixl::aarch64::Register reg,uint32_t boot_image_reference)5440 void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg,
5441 uint32_t boot_image_reference) {
5442 if (GetCompilerOptions().IsBootImage()) {
5443 // Add ADRP with its PC-relative type patch.
5444 vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference);
5445 EmitAdrpPlaceholder(adrp_label, reg.X());
5446 // Add ADD with its PC-relative type patch.
5447 vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label);
5448 EmitAddPlaceholder(add_label, reg.X(), reg.X());
5449 } else if (GetCompilerOptions().GetCompilePic()) {
5450 LoadBootImageRelRoEntry(reg, boot_image_reference);
5451 } else {
5452 DCHECK(GetCompilerOptions().IsJitCompiler());
5453 gc::Heap* heap = Runtime::Current()->GetHeap();
5454 DCHECK(!heap->GetBootImageSpaces().empty());
5455 const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
5456 __ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast<uintptr_t>(address)));
5457 }
5458 }
5459
LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg,TypeReference target_type)5460 void CodeGeneratorARM64::LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg,
5461 TypeReference target_type) {
5462 // Load the type the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
5463 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
5464 // Add ADRP with its PC-relative type patch.
5465 vixl::aarch64::Label* adrp_label =
5466 NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex());
5467 EmitAdrpPlaceholder(adrp_label, reg.X());
5468 // Add ADD with its PC-relative type patch.
5469 vixl::aarch64::Label* add_label =
5470 NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex(), adrp_label);
5471 EmitAddPlaceholder(add_label, reg.X(), reg.X());
5472 }
5473
LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg,HInvoke * invoke)5474 void CodeGeneratorARM64::LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg, HInvoke* invoke) {
5475 DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
5476 if (GetCompilerOptions().IsBootImage()) {
5477 MethodReference target_method = invoke->GetResolvedMethodReference();
5478 dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
5479 LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx));
5480 } else {
5481 uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke);
5482 LoadBootImageAddress(reg, boot_image_offset);
5483 }
5484 }
5485
LoadClassRootForIntrinsic(vixl::aarch64::Register reg,ClassRoot class_root)5486 void CodeGeneratorARM64::LoadClassRootForIntrinsic(vixl::aarch64::Register reg,
5487 ClassRoot class_root) {
5488 if (GetCompilerOptions().IsBootImage()) {
5489 ScopedObjectAccess soa(Thread::Current());
5490 ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
5491 TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex());
5492 LoadTypeForBootImageIntrinsic(reg, target_type);
5493 } else {
5494 uint32_t boot_image_offset = GetBootImageOffset(class_root);
5495 LoadBootImageAddress(reg, boot_image_offset);
5496 }
5497 }
5498
5499 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)5500 inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches(
5501 const ArenaDeque<PcRelativePatchInfo>& infos,
5502 ArenaVector<linker::LinkerPatch>* linker_patches) {
5503 for (const PcRelativePatchInfo& info : infos) {
5504 linker_patches->push_back(Factory(info.label.GetLocation(),
5505 info.target_dex_file,
5506 info.pc_insn_label->GetLocation(),
5507 info.offset_or_index));
5508 }
5509 }
5510
5511 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)5512 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
5513 const DexFile* target_dex_file,
5514 uint32_t pc_insn_offset,
5515 uint32_t boot_image_offset) {
5516 DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
5517 return Factory(literal_offset, pc_insn_offset, boot_image_offset);
5518 }
5519
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)5520 void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
5521 DCHECK(linker_patches->empty());
5522 size_t size =
5523 boot_image_method_patches_.size() +
5524 app_image_method_patches_.size() +
5525 method_bss_entry_patches_.size() +
5526 boot_image_type_patches_.size() +
5527 app_image_type_patches_.size() +
5528 type_bss_entry_patches_.size() +
5529 public_type_bss_entry_patches_.size() +
5530 package_type_bss_entry_patches_.size() +
5531 boot_image_string_patches_.size() +
5532 string_bss_entry_patches_.size() +
5533 method_type_bss_entry_patches_.size() +
5534 boot_image_jni_entrypoint_patches_.size() +
5535 boot_image_other_patches_.size() +
5536 call_entrypoint_patches_.size() +
5537 baker_read_barrier_patches_.size();
5538 linker_patches->reserve(size);
5539 if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
5540 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
5541 boot_image_method_patches_, linker_patches);
5542 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
5543 boot_image_type_patches_, linker_patches);
5544 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
5545 boot_image_string_patches_, linker_patches);
5546 } else {
5547 DCHECK(boot_image_method_patches_.empty());
5548 DCHECK(boot_image_type_patches_.empty());
5549 DCHECK(boot_image_string_patches_.empty());
5550 }
5551 DCHECK_IMPLIES(!GetCompilerOptions().IsAppImage(), app_image_method_patches_.empty());
5552 DCHECK_IMPLIES(!GetCompilerOptions().IsAppImage(), app_image_type_patches_.empty());
5553 if (GetCompilerOptions().IsBootImage()) {
5554 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
5555 boot_image_other_patches_, linker_patches);
5556 } else {
5557 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::BootImageRelRoPatch>>(
5558 boot_image_other_patches_, linker_patches);
5559 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodAppImageRelRoPatch>(
5560 app_image_method_patches_, linker_patches);
5561 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeAppImageRelRoPatch>(
5562 app_image_type_patches_, linker_patches);
5563 }
5564 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
5565 method_bss_entry_patches_, linker_patches);
5566 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
5567 type_bss_entry_patches_, linker_patches);
5568 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>(
5569 public_type_bss_entry_patches_, linker_patches);
5570 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>(
5571 package_type_bss_entry_patches_, linker_patches);
5572 EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
5573 string_bss_entry_patches_, linker_patches);
5574 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodTypeBssEntryPatch>(
5575 method_type_bss_entry_patches_, linker_patches);
5576 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>(
5577 boot_image_jni_entrypoint_patches_, linker_patches);
5578 for (const PatchInfo<vixl::aarch64::Label>& info : call_entrypoint_patches_) {
5579 DCHECK(info.target_dex_file == nullptr);
5580 linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
5581 info.label.GetLocation(), info.offset_or_index));
5582 }
5583 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
5584 linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
5585 info.label.GetLocation(), info.custom_data));
5586 }
5587 DCHECK_EQ(size, linker_patches->size());
5588 }
5589
NeedsThunkCode(const linker::LinkerPatch & patch) const5590 bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const {
5591 return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
5592 patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
5593 patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
5594 }
5595
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)5596 void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch,
5597 /*out*/ ArenaVector<uint8_t>* code,
5598 /*out*/ std::string* debug_name) {
5599 Arm64Assembler assembler(GetGraph()->GetAllocator());
5600 switch (patch.GetType()) {
5601 case linker::LinkerPatch::Type::kCallRelative: {
5602 // The thunk just uses the entry point in the ArtMethod. This works even for calls
5603 // to the generic JNI and interpreter trampolines.
5604 Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
5605 kArm64PointerSize).Int32Value());
5606 assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
5607 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
5608 *debug_name = "MethodCallThunk";
5609 }
5610 break;
5611 }
5612 case linker::LinkerPatch::Type::kCallEntrypoint: {
5613 Offset offset(patch.EntrypointOffset());
5614 assembler.JumpTo(ManagedRegister(arm64::TR), offset, ManagedRegister(arm64::IP0));
5615 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
5616 *debug_name = "EntrypointCallThunk_" + std::to_string(offset.Uint32Value());
5617 }
5618 break;
5619 }
5620 case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
5621 DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
5622 CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
5623 break;
5624 }
5625 default:
5626 LOG(FATAL) << "Unexpected patch type " << patch.GetType();
5627 UNREACHABLE();
5628 }
5629
5630 // Ensure we emit the literal pool if any.
5631 assembler.FinalizeCode();
5632 code->resize(assembler.CodeSize());
5633 MemoryRegion code_region(code->data(), code->size());
5634 assembler.CopyInstructions(code_region);
5635 }
5636
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)5637 void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
5638 // Explicit clinit checks triggered by static invokes must have been pruned by
5639 // art::PrepareForRegisterAllocation.
5640 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
5641
5642 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
5643 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5644 return;
5645 }
5646
5647 LocationSummary* locations = invoke->GetLocations();
5648 codegen_->GenerateStaticOrDirectCall(
5649 invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
5650
5651 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5652 }
5653
VisitInvokeVirtual(HInvokeVirtual * invoke)5654 void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
5655 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
5656 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5657 return;
5658 }
5659
5660 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
5661 DCHECK(!codegen_->IsLeafMethod());
5662
5663 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5664 }
5665
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)5666 HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind(
5667 HLoadClass::LoadKind desired_class_load_kind) {
5668 switch (desired_class_load_kind) {
5669 case HLoadClass::LoadKind::kInvalid:
5670 LOG(FATAL) << "UNREACHABLE";
5671 UNREACHABLE();
5672 case HLoadClass::LoadKind::kReferrersClass:
5673 break;
5674 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
5675 case HLoadClass::LoadKind::kBootImageRelRo:
5676 case HLoadClass::LoadKind::kAppImageRelRo:
5677 case HLoadClass::LoadKind::kBssEntry:
5678 case HLoadClass::LoadKind::kBssEntryPublic:
5679 case HLoadClass::LoadKind::kBssEntryPackage:
5680 DCHECK(!GetCompilerOptions().IsJitCompiler());
5681 break;
5682 case HLoadClass::LoadKind::kJitBootImageAddress:
5683 case HLoadClass::LoadKind::kJitTableAddress:
5684 DCHECK(GetCompilerOptions().IsJitCompiler());
5685 break;
5686 case HLoadClass::LoadKind::kRuntimeCall:
5687 break;
5688 }
5689 return desired_class_load_kind;
5690 }
5691
VisitLoadClass(HLoadClass * cls)5692 void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
5693 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5694 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
5695 InvokeRuntimeCallingConvention calling_convention;
5696 CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
5697 cls,
5698 LocationFrom(calling_convention.GetRegisterAt(0)),
5699 LocationFrom(vixl::aarch64::x0));
5700 DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0));
5701 return;
5702 }
5703 DCHECK_EQ(cls->NeedsAccessCheck(),
5704 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
5705 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
5706
5707 const bool requires_read_barrier = !cls->IsInImage() && codegen_->EmitReadBarrier();
5708 LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
5709 ? LocationSummary::kCallOnSlowPath
5710 : LocationSummary::kNoCall;
5711 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
5712 if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
5713 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
5714 }
5715
5716 if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
5717 locations->SetInAt(0, Location::RequiresRegister());
5718 }
5719 locations->SetOut(Location::RequiresRegister());
5720 if (load_kind == HLoadClass::LoadKind::kBssEntry ||
5721 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
5722 load_kind == HLoadClass::LoadKind::kBssEntryPackage) {
5723 if (codegen_->EmitNonBakerReadBarrier()) {
5724 // For non-Baker read barrier we have a temp-clobbering call.
5725 } else {
5726 // Rely on the type resolution or initialization and marking to save everything we need.
5727 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5728 }
5729 }
5730 }
5731
5732 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
5733 // move.
VisitLoadClass(HLoadClass * cls)5734 void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
5735 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5736 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
5737 codegen_->GenerateLoadClassRuntimeCall(cls);
5738 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5739 return;
5740 }
5741 DCHECK_EQ(cls->NeedsAccessCheck(),
5742 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
5743 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
5744
5745 Location out_loc = cls->GetLocations()->Out();
5746 Register out = OutputRegister(cls);
5747
5748 const ReadBarrierOption read_barrier_option =
5749 cls->IsInImage() ? kWithoutReadBarrier : codegen_->GetCompilerReadBarrierOption();
5750 bool generate_null_check = false;
5751 switch (load_kind) {
5752 case HLoadClass::LoadKind::kReferrersClass: {
5753 DCHECK(!cls->CanCallRuntime());
5754 DCHECK(!cls->MustGenerateClinitCheck());
5755 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5756 Register current_method = InputRegisterAt(cls, 0);
5757 codegen_->GenerateGcRootFieldLoad(cls,
5758 out_loc,
5759 current_method,
5760 ArtMethod::DeclaringClassOffset().Int32Value(),
5761 /* fixup_label= */ nullptr,
5762 read_barrier_option);
5763 break;
5764 }
5765 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
5766 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
5767 codegen_->GetCompilerOptions().IsBootImageExtension());
5768 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5769 // Add ADRP with its PC-relative type patch.
5770 const DexFile& dex_file = cls->GetDexFile();
5771 dex::TypeIndex type_index = cls->GetTypeIndex();
5772 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index);
5773 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5774 // Add ADD with its PC-relative type patch.
5775 vixl::aarch64::Label* add_label =
5776 codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label);
5777 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
5778 break;
5779 }
5780 case HLoadClass::LoadKind::kBootImageRelRo: {
5781 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5782 uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(cls);
5783 codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset);
5784 break;
5785 }
5786 case HLoadClass::LoadKind::kAppImageRelRo: {
5787 DCHECK(codegen_->GetCompilerOptions().IsAppImage());
5788 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5789 // Add ADRP with its PC-relative type patch.
5790 const DexFile& dex_file = cls->GetDexFile();
5791 dex::TypeIndex type_index = cls->GetTypeIndex();
5792 vixl::aarch64::Label* adrp_label = codegen_->NewAppImageTypePatch(dex_file, type_index);
5793 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5794 // Add LDR with its PC-relative type patch.
5795 vixl::aarch64::Label* ldr_label =
5796 codegen_->NewAppImageTypePatch(dex_file, type_index, adrp_label);
5797 codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X());
5798 break;
5799 }
5800 case HLoadClass::LoadKind::kBssEntry:
5801 case HLoadClass::LoadKind::kBssEntryPublic:
5802 case HLoadClass::LoadKind::kBssEntryPackage: {
5803 // Add ADRP with its PC-relative Class .bss entry patch.
5804 vixl::aarch64::Register temp = XRegisterFrom(out_loc);
5805 vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(cls);
5806 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5807 // Add LDR with its PC-relative Class .bss entry patch.
5808 vixl::aarch64::Label* ldr_label = codegen_->NewBssEntryTypePatch(cls, adrp_label);
5809 // /* GcRoot<mirror::Class> */ out = *(base_address + offset) /* PC-relative */
5810 // All aligned loads are implicitly atomic consume operations on ARM64.
5811 codegen_->GenerateGcRootFieldLoad(cls,
5812 out_loc,
5813 temp,
5814 /* offset placeholder */ 0u,
5815 ldr_label,
5816 read_barrier_option);
5817 generate_null_check = true;
5818 break;
5819 }
5820 case HLoadClass::LoadKind::kJitBootImageAddress: {
5821 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5822 uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
5823 DCHECK_NE(address, 0u);
5824 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
5825 break;
5826 }
5827 case HLoadClass::LoadKind::kJitTableAddress: {
5828 __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
5829 cls->GetTypeIndex(),
5830 cls->GetClass()));
5831 codegen_->GenerateGcRootFieldLoad(cls,
5832 out_loc,
5833 out.X(),
5834 /* offset= */ 0,
5835 /* fixup_label= */ nullptr,
5836 read_barrier_option);
5837 break;
5838 }
5839 case HLoadClass::LoadKind::kRuntimeCall:
5840 case HLoadClass::LoadKind::kInvalid:
5841 LOG(FATAL) << "UNREACHABLE";
5842 UNREACHABLE();
5843 }
5844
5845 bool do_clinit = cls->MustGenerateClinitCheck();
5846 if (generate_null_check || do_clinit) {
5847 DCHECK(cls->CanCallRuntime());
5848 SlowPathCodeARM64* slow_path =
5849 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls);
5850 codegen_->AddSlowPath(slow_path);
5851 if (generate_null_check) {
5852 __ Cbz(out, slow_path->GetEntryLabel());
5853 }
5854 if (cls->MustGenerateClinitCheck()) {
5855 GenerateClassInitializationCheck(slow_path, out);
5856 } else {
5857 __ Bind(slow_path->GetExitLabel());
5858 }
5859 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5860 }
5861 }
5862
VisitLoadMethodHandle(HLoadMethodHandle * load)5863 void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
5864 InvokeRuntimeCallingConvention calling_convention;
5865 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
5866 CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
5867 }
5868
VisitLoadMethodHandle(HLoadMethodHandle * load)5869 void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
5870 codegen_->GenerateLoadMethodHandleRuntimeCall(load);
5871 }
5872
VisitLoadMethodType(HLoadMethodType * load)5873 void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) {
5874 if (load->GetLoadKind() == HLoadMethodType::LoadKind::kRuntimeCall) {
5875 InvokeRuntimeCallingConvention calling_convention;
5876 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
5877 CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
5878 } else {
5879 LocationSummary* locations =
5880 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kCallOnSlowPath);
5881 locations->SetOut(Location::RequiresRegister());
5882 if (load->GetLoadKind() == HLoadMethodType::LoadKind::kBssEntry) {
5883 if (codegen_->EmitNonBakerReadBarrier()) {
5884 // For non-Baker read barrier we have a temp-clobbering call.
5885 } else {
5886 // Rely on the pResolveMethodType to save everything.
5887 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5888 }
5889 }
5890 }
5891 }
5892
VisitLoadMethodType(HLoadMethodType * load)5893 void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) {
5894 Location out_loc = load->GetLocations()->Out();
5895 Register out = OutputRegister(load);
5896
5897 switch (load->GetLoadKind()) {
5898 case HLoadMethodType::LoadKind::kBssEntry: {
5899 // Add ADRP with its PC-relative Class .bss entry patch.
5900 vixl::aarch64::Register temp = XRegisterFrom(out_loc);
5901 vixl::aarch64::Label* adrp_label = codegen_->NewMethodTypeBssEntryPatch(load);
5902 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5903 // Add LDR with its PC-relative MethodType .bss entry patch.
5904 vixl::aarch64::Label* ldr_label = codegen_->NewMethodTypeBssEntryPatch(load, adrp_label);
5905 // /* GcRoot<mirror::MethodType> */ out = *(base_address + offset) /* PC-relative */
5906 // All aligned loads are implicitly atomic consume operations on ARM64.
5907 codegen_->GenerateGcRootFieldLoad(load,
5908 out_loc,
5909 temp,
5910 /* offset placeholder */ 0u,
5911 ldr_label,
5912 codegen_->GetCompilerReadBarrierOption());
5913 SlowPathCodeARM64* slow_path =
5914 new (codegen_->GetScopedAllocator()) LoadMethodTypeSlowPathARM64(load);
5915 codegen_->AddSlowPath(slow_path);
5916 __ Cbz(out, slow_path->GetEntryLabel());
5917 __ Bind(slow_path->GetExitLabel());
5918 codegen_->MaybeGenerateMarkingRegisterCheck(/* code = */ __LINE__);
5919 return;
5920 }
5921 case HLoadMethodType::LoadKind::kJitTableAddress: {
5922 __ Ldr(out, codegen_->DeduplicateJitMethodTypeLiteral(load->GetDexFile(),
5923 load->GetProtoIndex(),
5924 load->GetMethodType()));
5925 codegen_->GenerateGcRootFieldLoad(load,
5926 out_loc,
5927 out.X(),
5928 /* offset= */ 0,
5929 /* fixup_label= */ nullptr,
5930 codegen_->GetCompilerReadBarrierOption());
5931 return;
5932 }
5933 default:
5934 DCHECK_EQ(load->GetLoadKind(), HLoadMethodType::LoadKind::kRuntimeCall);
5935 codegen_->GenerateLoadMethodTypeRuntimeCall(load);
5936 break;
5937 }
5938 }
5939
GetExceptionTlsAddress()5940 static MemOperand GetExceptionTlsAddress() {
5941 return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value());
5942 }
5943
VisitLoadException(HLoadException * load)5944 void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
5945 LocationSummary* locations =
5946 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
5947 locations->SetOut(Location::RequiresRegister());
5948 }
5949
VisitLoadException(HLoadException * instruction)5950 void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
5951 __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
5952 }
5953
VisitClearException(HClearException * clear)5954 void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
5955 new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
5956 }
5957
VisitClearException(HClearException * clear)5958 void InstructionCodeGeneratorARM64::VisitClearException([[maybe_unused]] HClearException* clear) {
5959 __ Str(wzr, GetExceptionTlsAddress());
5960 }
5961
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)5962 HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
5963 HLoadString::LoadKind desired_string_load_kind) {
5964 switch (desired_string_load_kind) {
5965 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5966 case HLoadString::LoadKind::kBootImageRelRo:
5967 case HLoadString::LoadKind::kBssEntry:
5968 DCHECK(!GetCompilerOptions().IsJitCompiler());
5969 break;
5970 case HLoadString::LoadKind::kJitBootImageAddress:
5971 case HLoadString::LoadKind::kJitTableAddress:
5972 DCHECK(GetCompilerOptions().IsJitCompiler());
5973 break;
5974 case HLoadString::LoadKind::kRuntimeCall:
5975 break;
5976 }
5977 return desired_string_load_kind;
5978 }
5979
VisitLoadString(HLoadString * load)5980 void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
5981 LocationSummary::CallKind call_kind = codegen_->GetLoadStringCallKind(load);
5982 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
5983 if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) {
5984 InvokeRuntimeCallingConvention calling_convention;
5985 locations->SetOut(calling_convention.GetReturnLocation(load->GetType()));
5986 } else {
5987 locations->SetOut(Location::RequiresRegister());
5988 if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) {
5989 if (codegen_->EmitNonBakerReadBarrier()) {
5990 // For non-Baker read barrier we have a temp-clobbering call.
5991 } else {
5992 // Rely on the pResolveString and marking to save everything we need.
5993 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5994 }
5995 }
5996 }
5997 }
5998
5999 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
6000 // move.
VisitLoadString(HLoadString * load)6001 void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
6002 Register out = OutputRegister(load);
6003 Location out_loc = load->GetLocations()->Out();
6004
6005 switch (load->GetLoadKind()) {
6006 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
6007 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
6008 codegen_->GetCompilerOptions().IsBootImageExtension());
6009 // Add ADRP with its PC-relative String patch.
6010 const DexFile& dex_file = load->GetDexFile();
6011 const dex::StringIndex string_index = load->GetStringIndex();
6012 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index);
6013 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
6014 // Add ADD with its PC-relative String patch.
6015 vixl::aarch64::Label* add_label =
6016 codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label);
6017 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
6018 return;
6019 }
6020 case HLoadString::LoadKind::kBootImageRelRo: {
6021 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
6022 uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(load);
6023 codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset);
6024 return;
6025 }
6026 case HLoadString::LoadKind::kBssEntry: {
6027 // Add ADRP with its PC-relative String .bss entry patch.
6028 const DexFile& dex_file = load->GetDexFile();
6029 const dex::StringIndex string_index = load->GetStringIndex();
6030 Register temp = XRegisterFrom(out_loc);
6031 vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index);
6032 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
6033 // Add LDR with its PC-relative String .bss entry patch.
6034 vixl::aarch64::Label* ldr_label =
6035 codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label);
6036 // /* GcRoot<mirror::String> */ out = *(base_address + offset) /* PC-relative */
6037 // All aligned loads are implicitly atomic consume operations on ARM64.
6038 codegen_->GenerateGcRootFieldLoad(load,
6039 out_loc,
6040 temp,
6041 /* offset placeholder */ 0u,
6042 ldr_label,
6043 codegen_->GetCompilerReadBarrierOption());
6044 SlowPathCodeARM64* slow_path =
6045 new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load);
6046 codegen_->AddSlowPath(slow_path);
6047 __ Cbz(out.X(), slow_path->GetEntryLabel());
6048 __ Bind(slow_path->GetExitLabel());
6049 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6050 return;
6051 }
6052 case HLoadString::LoadKind::kJitBootImageAddress: {
6053 uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
6054 DCHECK_NE(address, 0u);
6055 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
6056 return;
6057 }
6058 case HLoadString::LoadKind::kJitTableAddress: {
6059 __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
6060 load->GetStringIndex(),
6061 load->GetString()));
6062 codegen_->GenerateGcRootFieldLoad(load,
6063 out_loc,
6064 out.X(),
6065 /* offset= */ 0,
6066 /* fixup_label= */ nullptr,
6067 codegen_->GetCompilerReadBarrierOption());
6068 return;
6069 }
6070 default:
6071 break;
6072 }
6073
6074 InvokeRuntimeCallingConvention calling_convention;
6075 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode());
6076 __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_);
6077 codegen_->InvokeRuntime(kQuickResolveString, load);
6078 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
6079 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6080 }
6081
VisitLongConstant(HLongConstant * constant)6082 void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
6083 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
6084 locations->SetOut(Location::ConstantLocation(constant));
6085 }
6086
VisitLongConstant(HLongConstant * constant)6087 void InstructionCodeGeneratorARM64::VisitLongConstant([[maybe_unused]] HLongConstant* constant) {
6088 // Will be generated at use site.
6089 }
6090
VisitMonitorOperation(HMonitorOperation * instruction)6091 void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
6092 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6093 instruction, LocationSummary::kCallOnMainOnly);
6094 InvokeRuntimeCallingConvention calling_convention;
6095 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
6096 }
6097
VisitMonitorOperation(HMonitorOperation * instruction)6098 void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
6099 codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
6100 instruction);
6101 if (instruction->IsEnter()) {
6102 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
6103 } else {
6104 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
6105 }
6106 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6107 }
6108
VisitMul(HMul * mul)6109 void LocationsBuilderARM64::VisitMul(HMul* mul) {
6110 LocationSummary* locations =
6111 new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
6112 switch (mul->GetResultType()) {
6113 case DataType::Type::kInt32:
6114 case DataType::Type::kInt64:
6115 locations->SetInAt(0, Location::RequiresRegister());
6116 locations->SetInAt(1, Location::RequiresRegister());
6117 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6118 break;
6119
6120 case DataType::Type::kFloat32:
6121 case DataType::Type::kFloat64:
6122 locations->SetInAt(0, Location::RequiresFpuRegister());
6123 locations->SetInAt(1, Location::RequiresFpuRegister());
6124 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6125 break;
6126
6127 default:
6128 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
6129 }
6130 }
6131
VisitMul(HMul * mul)6132 void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
6133 switch (mul->GetResultType()) {
6134 case DataType::Type::kInt32:
6135 case DataType::Type::kInt64:
6136 __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
6137 break;
6138
6139 case DataType::Type::kFloat32:
6140 case DataType::Type::kFloat64:
6141 __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
6142 break;
6143
6144 default:
6145 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
6146 }
6147 }
6148
VisitNeg(HNeg * neg)6149 void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
6150 LocationSummary* locations =
6151 new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
6152 switch (neg->GetResultType()) {
6153 case DataType::Type::kInt32:
6154 case DataType::Type::kInt64:
6155 locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
6156 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6157 break;
6158
6159 case DataType::Type::kFloat32:
6160 case DataType::Type::kFloat64:
6161 locations->SetInAt(0, Location::RequiresFpuRegister());
6162 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6163 break;
6164
6165 default:
6166 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
6167 }
6168 }
6169
VisitNeg(HNeg * neg)6170 void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
6171 switch (neg->GetResultType()) {
6172 case DataType::Type::kInt32:
6173 case DataType::Type::kInt64:
6174 __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
6175 break;
6176
6177 case DataType::Type::kFloat32:
6178 case DataType::Type::kFloat64:
6179 __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
6180 break;
6181
6182 default:
6183 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
6184 }
6185 }
6186
VisitNewArray(HNewArray * instruction)6187 void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
6188 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6189 instruction, LocationSummary::kCallOnMainOnly);
6190 InvokeRuntimeCallingConvention calling_convention;
6191 locations->SetOut(LocationFrom(x0));
6192 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
6193 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
6194 }
6195
VisitNewArray(HNewArray * instruction)6196 void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
6197 // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
6198 QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
6199 codegen_->InvokeRuntime(entrypoint, instruction);
6200 CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
6201 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6202 }
6203
VisitNewInstance(HNewInstance * instruction)6204 void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
6205 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6206 instruction, LocationSummary::kCallOnMainOnly);
6207 InvokeRuntimeCallingConvention calling_convention;
6208 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
6209 locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
6210 }
6211
VisitNewInstance(HNewInstance * instruction)6212 void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
6213 codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction);
6214 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
6215 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6216 }
6217
VisitNot(HNot * instruction)6218 void LocationsBuilderARM64::VisitNot(HNot* instruction) {
6219 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6220 locations->SetInAt(0, Location::RequiresRegister());
6221 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6222 }
6223
VisitNot(HNot * instruction)6224 void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
6225 switch (instruction->GetResultType()) {
6226 case DataType::Type::kInt32:
6227 case DataType::Type::kInt64:
6228 __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
6229 break;
6230
6231 default:
6232 LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
6233 }
6234 }
6235
VisitBooleanNot(HBooleanNot * instruction)6236 void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
6237 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6238 locations->SetInAt(0, Location::RequiresRegister());
6239 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6240 }
6241
VisitBooleanNot(HBooleanNot * instruction)6242 void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
6243 __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1));
6244 }
6245
VisitNullCheck(HNullCheck * instruction)6246 void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
6247 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
6248 locations->SetInAt(0, Location::RequiresRegister());
6249 }
6250
GenerateImplicitNullCheck(HNullCheck * instruction)6251 void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
6252 if (CanMoveNullCheckToUser(instruction)) {
6253 return;
6254 }
6255 {
6256 // Ensure that between load and RecordPcInfo there are no pools emitted.
6257 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6258 Location obj = instruction->GetLocations()->InAt(0);
6259 __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
6260 RecordPcInfo(instruction);
6261 }
6262 }
6263
GenerateExplicitNullCheck(HNullCheck * instruction)6264 void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
6265 SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction);
6266 AddSlowPath(slow_path);
6267
6268 LocationSummary* locations = instruction->GetLocations();
6269 Location obj = locations->InAt(0);
6270
6271 __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
6272 }
6273
VisitNullCheck(HNullCheck * instruction)6274 void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
6275 codegen_->GenerateNullCheck(instruction);
6276 }
6277
VisitOr(HOr * instruction)6278 void LocationsBuilderARM64::VisitOr(HOr* instruction) {
6279 HandleBinaryOp(instruction);
6280 }
6281
VisitOr(HOr * instruction)6282 void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
6283 HandleBinaryOp(instruction);
6284 }
6285
VisitParallelMove(HParallelMove * instruction)6286 void LocationsBuilderARM64::VisitParallelMove([[maybe_unused]] HParallelMove* instruction) {
6287 LOG(FATAL) << "Unreachable";
6288 }
6289
VisitParallelMove(HParallelMove * instruction)6290 void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
6291 if (instruction->GetNext()->IsSuspendCheck() &&
6292 instruction->GetBlock()->GetLoopInformation() != nullptr) {
6293 HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
6294 // The back edge will generate the suspend check.
6295 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
6296 }
6297
6298 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
6299 }
6300
VisitParameterValue(HParameterValue * instruction)6301 void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
6302 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6303 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
6304 if (location.IsStackSlot()) {
6305 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
6306 } else if (location.IsDoubleStackSlot()) {
6307 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
6308 }
6309 locations->SetOut(location);
6310 }
6311
VisitParameterValue(HParameterValue * instruction)6312 void InstructionCodeGeneratorARM64::VisitParameterValue(
6313 [[maybe_unused]] HParameterValue* instruction) {
6314 // Nothing to do, the parameter is already at its location.
6315 }
6316
VisitCurrentMethod(HCurrentMethod * instruction)6317 void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
6318 LocationSummary* locations =
6319 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6320 locations->SetOut(LocationFrom(kArtMethodRegister));
6321 }
6322
VisitCurrentMethod(HCurrentMethod * instruction)6323 void InstructionCodeGeneratorARM64::VisitCurrentMethod(
6324 [[maybe_unused]] HCurrentMethod* instruction) {
6325 // Nothing to do, the method is already at its location.
6326 }
6327
VisitPhi(HPhi * instruction)6328 void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
6329 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6330 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
6331 locations->SetInAt(i, Location::Any());
6332 }
6333 locations->SetOut(Location::Any());
6334 }
6335
VisitPhi(HPhi * instruction)6336 void InstructionCodeGeneratorARM64::VisitPhi([[maybe_unused]] HPhi* instruction) {
6337 LOG(FATAL) << "Unreachable";
6338 }
6339
VisitRem(HRem * rem)6340 void LocationsBuilderARM64::VisitRem(HRem* rem) {
6341 DataType::Type type = rem->GetResultType();
6342 LocationSummary::CallKind call_kind =
6343 DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly
6344 : LocationSummary::kNoCall;
6345 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
6346
6347 switch (type) {
6348 case DataType::Type::kInt32:
6349 case DataType::Type::kInt64:
6350 locations->SetInAt(0, Location::RequiresRegister());
6351 locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
6352 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6353 break;
6354
6355 case DataType::Type::kFloat32:
6356 case DataType::Type::kFloat64: {
6357 InvokeRuntimeCallingConvention calling_convention;
6358 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
6359 locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
6360 locations->SetOut(calling_convention.GetReturnLocation(type));
6361
6362 break;
6363 }
6364
6365 default:
6366 LOG(FATAL) << "Unexpected rem type " << type;
6367 }
6368 }
6369
GenerateIntRemForPower2Denom(HRem * instruction)6370 void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) {
6371 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
6372 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
6373 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
6374
6375 Register out = OutputRegister(instruction);
6376 Register dividend = InputRegisterAt(instruction, 0);
6377
6378 if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
6379 // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
6380 // NOTE: The generated code for HRem correctly works for the INT32_MIN/INT64_MIN dividends.
6381 // INT*_MIN % imm must be 0 for any imm of power 2. 'and' works only with bits
6382 // 0..30 (Int32 case)/0..62 (Int64 case) of a dividend. For INT32_MIN/INT64_MIN they are zeros.
6383 // So 'and' always produces zero.
6384 __ And(out, dividend, abs_imm - 1);
6385 } else {
6386 if (abs_imm == 2) {
6387 __ Cmp(dividend, 0);
6388 __ And(out, dividend, 1);
6389 __ Csneg(out, out, out, ge);
6390 } else {
6391 UseScratchRegisterScope temps(GetVIXLAssembler());
6392 Register temp = temps.AcquireSameSizeAs(out);
6393
6394 __ Negs(temp, dividend);
6395 __ And(out, dividend, abs_imm - 1);
6396 __ And(temp, temp, abs_imm - 1);
6397 __ Csneg(out, out, temp, mi);
6398 }
6399 }
6400 }
6401
GenerateIntRemForConstDenom(HRem * instruction)6402 void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) {
6403 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
6404
6405 if (imm == 0) {
6406 // Do not generate anything.
6407 // DivZeroCheck would prevent any code to be executed.
6408 return;
6409 }
6410
6411 if (IsPowerOfTwo(AbsOrMin(imm))) {
6412 // Cases imm == -1 or imm == 1 are handled in constant folding by
6413 // InstructionWithAbsorbingInputSimplifier.
6414 // If the cases have survided till code generation they are handled in
6415 // GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0).
6416 // The correct code is generated for them, just more instructions.
6417 GenerateIntRemForPower2Denom(instruction);
6418 } else {
6419 DCHECK(imm < -2 || imm > 2) << imm;
6420 GenerateDivRemWithAnyConstant(instruction, imm);
6421 }
6422 }
6423
GenerateIntRem(HRem * instruction)6424 void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) {
6425 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
6426 << instruction->GetResultType();
6427
6428 if (instruction->GetLocations()->InAt(1).IsConstant()) {
6429 GenerateIntRemForConstDenom(instruction);
6430 } else {
6431 Register out = OutputRegister(instruction);
6432 Register dividend = InputRegisterAt(instruction, 0);
6433 Register divisor = InputRegisterAt(instruction, 1);
6434 UseScratchRegisterScope temps(GetVIXLAssembler());
6435 Register temp = temps.AcquireSameSizeAs(out);
6436 __ Sdiv(temp, dividend, divisor);
6437 __ Msub(out, temp, divisor, dividend);
6438 }
6439 }
6440
VisitRem(HRem * rem)6441 void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
6442 DataType::Type type = rem->GetResultType();
6443
6444 switch (type) {
6445 case DataType::Type::kInt32:
6446 case DataType::Type::kInt64: {
6447 GenerateIntRem(rem);
6448 break;
6449 }
6450
6451 case DataType::Type::kFloat32:
6452 case DataType::Type::kFloat64: {
6453 QuickEntrypointEnum entrypoint =
6454 (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod;
6455 codegen_->InvokeRuntime(entrypoint, rem);
6456 if (type == DataType::Type::kFloat32) {
6457 CheckEntrypointTypes<kQuickFmodf, float, float, float>();
6458 } else {
6459 CheckEntrypointTypes<kQuickFmod, double, double, double>();
6460 }
6461 break;
6462 }
6463
6464 default:
6465 LOG(FATAL) << "Unexpected rem type " << type;
6466 UNREACHABLE();
6467 }
6468 }
6469
VisitMin(HMin * min)6470 void LocationsBuilderARM64::VisitMin(HMin* min) {
6471 HandleBinaryOp(min);
6472 }
6473
VisitMin(HMin * min)6474 void InstructionCodeGeneratorARM64::VisitMin(HMin* min) {
6475 HandleBinaryOp(min);
6476 }
6477
VisitMax(HMax * max)6478 void LocationsBuilderARM64::VisitMax(HMax* max) {
6479 HandleBinaryOp(max);
6480 }
6481
VisitMax(HMax * max)6482 void InstructionCodeGeneratorARM64::VisitMax(HMax* max) {
6483 HandleBinaryOp(max);
6484 }
6485
VisitAbs(HAbs * abs)6486 void LocationsBuilderARM64::VisitAbs(HAbs* abs) {
6487 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
6488 switch (abs->GetResultType()) {
6489 case DataType::Type::kInt32:
6490 case DataType::Type::kInt64:
6491 locations->SetInAt(0, Location::RequiresRegister());
6492 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6493 break;
6494 case DataType::Type::kFloat32:
6495 case DataType::Type::kFloat64:
6496 locations->SetInAt(0, Location::RequiresFpuRegister());
6497 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6498 break;
6499 default:
6500 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
6501 }
6502 }
6503
VisitAbs(HAbs * abs)6504 void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) {
6505 switch (abs->GetResultType()) {
6506 case DataType::Type::kInt32:
6507 case DataType::Type::kInt64: {
6508 Register in_reg = InputRegisterAt(abs, 0);
6509 Register out_reg = OutputRegister(abs);
6510 __ Cmp(in_reg, Operand(0));
6511 __ Cneg(out_reg, in_reg, lt);
6512 break;
6513 }
6514 case DataType::Type::kFloat32:
6515 case DataType::Type::kFloat64: {
6516 VRegister in_reg = InputFPRegisterAt(abs, 0);
6517 VRegister out_reg = OutputFPRegister(abs);
6518 __ Fabs(out_reg, in_reg);
6519 break;
6520 }
6521 default:
6522 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
6523 }
6524 }
6525
VisitConstructorFence(HConstructorFence * constructor_fence)6526 void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) {
6527 constructor_fence->SetLocations(nullptr);
6528 }
6529
VisitConstructorFence(HConstructorFence * constructor_fence)6530 void InstructionCodeGeneratorARM64::VisitConstructorFence(
6531 [[maybe_unused]] HConstructorFence* constructor_fence) {
6532 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
6533 }
6534
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)6535 void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
6536 memory_barrier->SetLocations(nullptr);
6537 }
6538
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)6539 void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
6540 codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
6541 }
6542
VisitReturn(HReturn * instruction)6543 void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
6544 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6545 DataType::Type return_type = instruction->InputAt(0)->GetType();
6546 locations->SetInAt(0, ARM64ReturnLocation(return_type));
6547 }
6548
VisitReturn(HReturn * ret)6549 void InstructionCodeGeneratorARM64::VisitReturn(HReturn* ret) {
6550 if (GetGraph()->IsCompilingOsr()) {
6551 // To simplify callers of an OSR method, we put the return value in both
6552 // floating point and core register.
6553 switch (ret->InputAt(0)->GetType()) {
6554 case DataType::Type::kFloat32:
6555 __ Fmov(w0, s0);
6556 break;
6557 case DataType::Type::kFloat64:
6558 __ Fmov(x0, d0);
6559 break;
6560 default:
6561 break;
6562 }
6563 }
6564 codegen_->GenerateFrameExit();
6565 }
6566
VisitReturnVoid(HReturnVoid * instruction)6567 void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
6568 instruction->SetLocations(nullptr);
6569 }
6570
VisitReturnVoid(HReturnVoid * instruction)6571 void InstructionCodeGeneratorARM64::VisitReturnVoid([[maybe_unused]] HReturnVoid* instruction) {
6572 codegen_->GenerateFrameExit();
6573 }
6574
VisitRol(HRol * rol)6575 void LocationsBuilderARM64::VisitRol(HRol* rol) {
6576 HandleBinaryOp(rol);
6577 }
6578
VisitRol(HRol * rol)6579 void InstructionCodeGeneratorARM64::VisitRol(HRol* rol) {
6580 HandleBinaryOp(rol);
6581 }
6582
VisitRor(HRor * ror)6583 void LocationsBuilderARM64::VisitRor(HRor* ror) {
6584 HandleBinaryOp(ror);
6585 }
6586
VisitRor(HRor * ror)6587 void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
6588 HandleBinaryOp(ror);
6589 }
6590
VisitShl(HShl * shl)6591 void LocationsBuilderARM64::VisitShl(HShl* shl) {
6592 HandleShift(shl);
6593 }
6594
VisitShl(HShl * shl)6595 void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
6596 HandleShift(shl);
6597 }
6598
VisitShr(HShr * shr)6599 void LocationsBuilderARM64::VisitShr(HShr* shr) {
6600 HandleShift(shr);
6601 }
6602
VisitShr(HShr * shr)6603 void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
6604 HandleShift(shr);
6605 }
6606
VisitSub(HSub * instruction)6607 void LocationsBuilderARM64::VisitSub(HSub* instruction) {
6608 HandleBinaryOp(instruction);
6609 }
6610
VisitSub(HSub * instruction)6611 void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
6612 HandleBinaryOp(instruction);
6613 }
6614
VisitStaticFieldGet(HStaticFieldGet * instruction)6615 void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6616 HandleFieldGet(instruction, instruction->GetFieldInfo());
6617 }
6618
VisitStaticFieldGet(HStaticFieldGet * instruction)6619 void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6620 HandleFieldGet(instruction, instruction->GetFieldInfo());
6621 }
6622
VisitStaticFieldSet(HStaticFieldSet * instruction)6623 void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6624 HandleFieldSet(instruction);
6625 }
6626
VisitStaticFieldSet(HStaticFieldSet * instruction)6627 void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6628 HandleFieldSet(instruction,
6629 instruction->GetFieldInfo(),
6630 instruction->GetValueCanBeNull(),
6631 instruction->GetWriteBarrierKind());
6632 }
6633
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6634 void LocationsBuilderARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6635 codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(x0));
6636 }
6637
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6638 void InstructionCodeGeneratorARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6639 __ Mov(w0, instruction->GetFormat()->GetValue());
6640 codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction);
6641 }
6642
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6643 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
6644 HUnresolvedInstanceFieldGet* instruction) {
6645 FieldAccessCallingConventionARM64 calling_convention;
6646 codegen_->CreateUnresolvedFieldLocationSummary(
6647 instruction, instruction->GetFieldType(), calling_convention);
6648 }
6649
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6650 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
6651 HUnresolvedInstanceFieldGet* instruction) {
6652 FieldAccessCallingConventionARM64 calling_convention;
6653 codegen_->GenerateUnresolvedFieldAccess(instruction,
6654 instruction->GetFieldType(),
6655 instruction->GetFieldIndex(),
6656 calling_convention);
6657 }
6658
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6659 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
6660 HUnresolvedInstanceFieldSet* instruction) {
6661 FieldAccessCallingConventionARM64 calling_convention;
6662 codegen_->CreateUnresolvedFieldLocationSummary(
6663 instruction, instruction->GetFieldType(), calling_convention);
6664 }
6665
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6666 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
6667 HUnresolvedInstanceFieldSet* instruction) {
6668 FieldAccessCallingConventionARM64 calling_convention;
6669 codegen_->GenerateUnresolvedFieldAccess(instruction,
6670 instruction->GetFieldType(),
6671 instruction->GetFieldIndex(),
6672 calling_convention);
6673 }
6674
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6675 void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
6676 HUnresolvedStaticFieldGet* instruction) {
6677 FieldAccessCallingConventionARM64 calling_convention;
6678 codegen_->CreateUnresolvedFieldLocationSummary(
6679 instruction, instruction->GetFieldType(), calling_convention);
6680 }
6681
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6682 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
6683 HUnresolvedStaticFieldGet* instruction) {
6684 FieldAccessCallingConventionARM64 calling_convention;
6685 codegen_->GenerateUnresolvedFieldAccess(instruction,
6686 instruction->GetFieldType(),
6687 instruction->GetFieldIndex(),
6688 calling_convention);
6689 }
6690
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6691 void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
6692 HUnresolvedStaticFieldSet* instruction) {
6693 FieldAccessCallingConventionARM64 calling_convention;
6694 codegen_->CreateUnresolvedFieldLocationSummary(
6695 instruction, instruction->GetFieldType(), calling_convention);
6696 }
6697
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6698 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
6699 HUnresolvedStaticFieldSet* instruction) {
6700 FieldAccessCallingConventionARM64 calling_convention;
6701 codegen_->GenerateUnresolvedFieldAccess(instruction,
6702 instruction->GetFieldType(),
6703 instruction->GetFieldIndex(),
6704 calling_convention);
6705 }
6706
VisitSuspendCheck(HSuspendCheck * instruction)6707 void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
6708 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6709 instruction, LocationSummary::kCallOnSlowPath);
6710 // In suspend check slow path, usually there are no caller-save registers at all.
6711 // If SIMD instructions are present, however, we force spilling all live SIMD
6712 // registers in full width (since the runtime only saves/restores lower part).
6713 // Note that only a suspend check can see live SIMD registers. In the
6714 // loop optimization, we make sure this does not happen for any other slow
6715 // path.
6716 locations->SetCustomSlowPathCallerSaves(
6717 GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
6718 }
6719
VisitSuspendCheck(HSuspendCheck * instruction)6720 void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
6721 HBasicBlock* block = instruction->GetBlock();
6722 if (block->GetLoopInformation() != nullptr) {
6723 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
6724 // The back edge will generate the suspend check.
6725 return;
6726 }
6727 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
6728 // The goto will generate the suspend check.
6729 return;
6730 }
6731 GenerateSuspendCheck(instruction, nullptr);
6732 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6733 }
6734
VisitThrow(HThrow * instruction)6735 void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
6736 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6737 instruction, LocationSummary::kCallOnMainOnly);
6738 InvokeRuntimeCallingConvention calling_convention;
6739 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
6740 }
6741
VisitThrow(HThrow * instruction)6742 void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
6743 codegen_->InvokeRuntime(kQuickDeliverException, instruction);
6744 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
6745 }
6746
VisitTypeConversion(HTypeConversion * conversion)6747 void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
6748 LocationSummary* locations =
6749 new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall);
6750 DataType::Type input_type = conversion->GetInputType();
6751 DataType::Type result_type = conversion->GetResultType();
6752 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
6753 << input_type << " -> " << result_type;
6754 if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
6755 (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
6756 LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
6757 }
6758
6759 if (DataType::IsFloatingPointType(input_type)) {
6760 locations->SetInAt(0, Location::RequiresFpuRegister());
6761 } else {
6762 locations->SetInAt(0, Location::RequiresRegister());
6763 }
6764
6765 if (DataType::IsFloatingPointType(result_type)) {
6766 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6767 } else {
6768 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6769 }
6770 }
6771
VisitTypeConversion(HTypeConversion * conversion)6772 void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
6773 DataType::Type result_type = conversion->GetResultType();
6774 DataType::Type input_type = conversion->GetInputType();
6775
6776 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
6777 << input_type << " -> " << result_type;
6778
6779 if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
6780 int result_size = DataType::Size(result_type);
6781 int input_size = DataType::Size(input_type);
6782 int min_size = std::min(result_size, input_size);
6783 Register output = OutputRegister(conversion);
6784 Register source = InputRegisterAt(conversion, 0);
6785 if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) {
6786 // 'int' values are used directly as W registers, discarding the top
6787 // bits, so we don't need to sign-extend and can just perform a move.
6788 // We do not pass the `kDiscardForSameWReg` argument to force clearing the
6789 // top 32 bits of the target register. We theoretically could leave those
6790 // bits unchanged, but we would have to make sure that no code uses a
6791 // 32bit input value as a 64bit value assuming that the top 32 bits are
6792 // zero.
6793 __ Mov(output.W(), source.W());
6794 } else if (DataType::IsUnsignedType(result_type) ||
6795 (DataType::IsUnsignedType(input_type) && input_size < result_size)) {
6796 __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte);
6797 } else {
6798 __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
6799 }
6800 } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
6801 __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
6802 } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
6803 CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
6804 __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
6805 } else if (DataType::IsFloatingPointType(result_type) &&
6806 DataType::IsFloatingPointType(input_type)) {
6807 __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
6808 } else {
6809 LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
6810 << " to " << result_type;
6811 }
6812 }
6813
VisitUShr(HUShr * ushr)6814 void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
6815 HandleShift(ushr);
6816 }
6817
VisitUShr(HUShr * ushr)6818 void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
6819 HandleShift(ushr);
6820 }
6821
VisitXor(HXor * instruction)6822 void LocationsBuilderARM64::VisitXor(HXor* instruction) {
6823 HandleBinaryOp(instruction);
6824 }
6825
VisitXor(HXor * instruction)6826 void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
6827 HandleBinaryOp(instruction);
6828 }
6829
VisitBoundType(HBoundType * instruction)6830 void LocationsBuilderARM64::VisitBoundType([[maybe_unused]] HBoundType* instruction) {
6831 // Nothing to do, this should be removed during prepare for register allocator.
6832 LOG(FATAL) << "Unreachable";
6833 }
6834
VisitBoundType(HBoundType * instruction)6835 void InstructionCodeGeneratorARM64::VisitBoundType([[maybe_unused]] HBoundType* instruction) {
6836 // Nothing to do, this should be removed during prepare for register allocator.
6837 LOG(FATAL) << "Unreachable";
6838 }
6839
6840 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)6841 void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6842 LocationSummary* locations =
6843 new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
6844 locations->SetInAt(0, Location::RequiresRegister());
6845 }
6846
VisitPackedSwitch(HPackedSwitch * switch_instr)6847 void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6848 int32_t lower_bound = switch_instr->GetStartValue();
6849 uint32_t num_entries = switch_instr->GetNumEntries();
6850 Register value_reg = InputRegisterAt(switch_instr, 0);
6851 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
6852
6853 if (num_entries <= kPackedSwitchCompareJumpThreshold) {
6854 // Create a series of compare/jumps.
6855 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
6856 Register temp = temps.AcquireW();
6857 __ Subs(temp, value_reg, Operand(lower_bound));
6858
6859 const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
6860 // Jump to successors[0] if value == lower_bound.
6861 __ B(eq, codegen_->GetLabelOf(successors[0]));
6862 int32_t last_index = 0;
6863 for (; num_entries - last_index > 2; last_index += 2) {
6864 __ Subs(temp, temp, Operand(2));
6865 // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
6866 __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
6867 // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
6868 __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
6869 }
6870 if (num_entries - last_index == 2) {
6871 // The last missing case_value.
6872 __ Cmp(temp, Operand(1));
6873 __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
6874 }
6875
6876 // And the default for any other value.
6877 if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
6878 __ B(codegen_->GetLabelOf(default_block));
6879 }
6880 } else {
6881 JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
6882
6883 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
6884
6885 // Below instructions should use at most one blocked register. Since there are two blocked
6886 // registers, we are free to block one.
6887 Register temp_w = temps.AcquireW();
6888 Register index;
6889 // Remove the bias.
6890 if (lower_bound != 0) {
6891 index = temp_w;
6892 __ Sub(index, value_reg, Operand(lower_bound));
6893 } else {
6894 index = value_reg;
6895 }
6896
6897 // Jump to default block if index is out of the range.
6898 __ Cmp(index, Operand(num_entries));
6899 __ B(hs, codegen_->GetLabelOf(default_block));
6900
6901 // In current VIXL implementation, it won't require any blocked registers to encode the
6902 // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
6903 // register pressure.
6904 Register table_base = temps.AcquireX();
6905
6906 const size_t jump_size = switch_instr->GetNumEntries() * sizeof(int32_t);
6907 ExactAssemblyScope scope(codegen_->GetVIXLAssembler(),
6908 kInstructionSize * 4 + jump_size,
6909 CodeBufferCheckScope::kExactSize);
6910
6911 // Load jump offset from the table.
6912 // Note: the table start address is always in range as the table is emitted immediately
6913 // after these 4 instructions.
6914 __ adr(table_base, jump_table->GetTableStartLabel());
6915 Register jump_offset = temp_w;
6916 __ ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
6917
6918 // Jump to target block by branching to table_base(pc related) + offset.
6919 Register target_address = table_base;
6920 __ add(target_address, table_base, Operand(jump_offset, SXTW));
6921 __ br(target_address);
6922
6923 jump_table->EmitTable(codegen_);
6924 }
6925 }
6926
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6927 void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(
6928 HInstruction* instruction,
6929 Location out,
6930 uint32_t offset,
6931 Location maybe_temp,
6932 ReadBarrierOption read_barrier_option) {
6933 DataType::Type type = DataType::Type::kReference;
6934 Register out_reg = RegisterFrom(out, type);
6935 if (read_barrier_option == kWithReadBarrier) {
6936 DCHECK(codegen_->EmitReadBarrier());
6937 if (kUseBakerReadBarrier) {
6938 // Load with fast path based Baker's read barrier.
6939 // /* HeapReference<Object> */ out = *(out + offset)
6940 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6941 out,
6942 out_reg,
6943 offset,
6944 maybe_temp,
6945 /* needs_null_check= */ false,
6946 /* use_load_acquire= */ false);
6947 } else {
6948 // Load with slow path based read barrier.
6949 // Save the value of `out` into `maybe_temp` before overwriting it
6950 // in the following move operation, as we will need it for the
6951 // read barrier below.
6952 Register temp_reg = RegisterFrom(maybe_temp, type);
6953 __ Mov(temp_reg, out_reg);
6954 // /* HeapReference<Object> */ out = *(out + offset)
6955 __ Ldr(out_reg, HeapOperand(out_reg, offset));
6956 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6957 }
6958 } else {
6959 // Plain load with no read barrier.
6960 // /* HeapReference<Object> */ out = *(out + offset)
6961 __ Ldr(out_reg, HeapOperand(out_reg, offset));
6962 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
6963 }
6964 }
6965
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6966 void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(
6967 HInstruction* instruction,
6968 Location out,
6969 Location obj,
6970 uint32_t offset,
6971 Location maybe_temp,
6972 ReadBarrierOption read_barrier_option) {
6973 DataType::Type type = DataType::Type::kReference;
6974 Register out_reg = RegisterFrom(out, type);
6975 Register obj_reg = RegisterFrom(obj, type);
6976 if (read_barrier_option == kWithReadBarrier) {
6977 DCHECK(codegen_->EmitReadBarrier());
6978 if (kUseBakerReadBarrier) {
6979 // Load with fast path based Baker's read barrier.
6980 // /* HeapReference<Object> */ out = *(obj + offset)
6981 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6982 out,
6983 obj_reg,
6984 offset,
6985 maybe_temp,
6986 /* needs_null_check= */ false,
6987 /* use_load_acquire= */ false);
6988 } else {
6989 // Load with slow path based read barrier.
6990 // /* HeapReference<Object> */ out = *(obj + offset)
6991 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
6992 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6993 }
6994 } else {
6995 // Plain load with no read barrier.
6996 // /* HeapReference<Object> */ out = *(obj + offset)
6997 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
6998 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
6999 }
7000 }
7001
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,Register obj,uint32_t offset,vixl::aarch64::Label * fixup_label,ReadBarrierOption read_barrier_option)7002 void CodeGeneratorARM64::GenerateGcRootFieldLoad(
7003 HInstruction* instruction,
7004 Location root,
7005 Register obj,
7006 uint32_t offset,
7007 vixl::aarch64::Label* fixup_label,
7008 ReadBarrierOption read_barrier_option) {
7009 DCHECK(fixup_label == nullptr || offset == 0u);
7010 Register root_reg = RegisterFrom(root, DataType::Type::kReference);
7011 if (read_barrier_option == kWithReadBarrier) {
7012 DCHECK(EmitReadBarrier());
7013 if (kUseBakerReadBarrier) {
7014 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
7015 // Baker's read barrier are used.
7016
7017 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
7018 // the Marking Register) to decide whether we need to enter
7019 // the slow path to mark the GC root.
7020 //
7021 // We use shared thunks for the slow path; shared within the method
7022 // for JIT, across methods for AOT. That thunk checks the reference
7023 // and jumps to the entrypoint if needed.
7024 //
7025 // lr = &return_address;
7026 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
7027 // if (mr) { // Thread::Current()->GetIsGcMarking()
7028 // goto gc_root_thunk<root_reg>(lr)
7029 // }
7030 // return_address:
7031
7032 UseScratchRegisterScope temps(GetVIXLAssembler());
7033 DCHECK(temps.IsAvailable(ip0));
7034 DCHECK(temps.IsAvailable(ip1));
7035 temps.Exclude(ip0, ip1);
7036 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode());
7037
7038 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
7039 vixl::aarch64::Label return_address;
7040 __ adr(lr, &return_address);
7041 if (fixup_label != nullptr) {
7042 __ bind(fixup_label);
7043 }
7044 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
7045 "GC root LDR must be 2 instructions (8B) before the return address label.");
7046 __ ldr(root_reg, MemOperand(obj.X(), offset));
7047 EmitBakerReadBarrierCbnz(custom_data);
7048 __ bind(&return_address);
7049 } else {
7050 // GC root loaded through a slow path for read barriers other
7051 // than Baker's.
7052 // /* GcRoot<mirror::Object>* */ root = obj + offset
7053 if (fixup_label == nullptr) {
7054 __ Add(root_reg.X(), obj.X(), offset);
7055 } else {
7056 EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X());
7057 }
7058 // /* mirror::Object* */ root = root->Read()
7059 GenerateReadBarrierForRootSlow(instruction, root, root);
7060 }
7061 } else {
7062 // Plain GC root load with no read barrier.
7063 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
7064 if (fixup_label == nullptr) {
7065 __ Ldr(root_reg, MemOperand(obj, offset));
7066 } else {
7067 EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X());
7068 }
7069 // Note that GC roots are not affected by heap poisoning, thus we
7070 // do not have to unpoison `root_reg` here.
7071 }
7072 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
7073 }
7074
GenerateIntrinsicMoveWithBakerReadBarrier(vixl::aarch64::Register marked_old_value,vixl::aarch64::Register old_value)7075 void CodeGeneratorARM64::GenerateIntrinsicMoveWithBakerReadBarrier(
7076 vixl::aarch64::Register marked_old_value,
7077 vixl::aarch64::Register old_value) {
7078 DCHECK(EmitBakerReadBarrier());
7079
7080 // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR.
7081 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode());
7082
7083 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
7084 vixl::aarch64::Label return_address;
7085 __ adr(lr, &return_address);
7086 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
7087 "GC root LDR must be 2 instructions (8B) before the return address label.");
7088 __ mov(marked_old_value, old_value);
7089 EmitBakerReadBarrierCbnz(custom_data);
7090 __ bind(&return_address);
7091 }
7092
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl::aarch64::Register obj,const vixl::aarch64::MemOperand & src,bool needs_null_check,bool use_load_acquire)7093 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
7094 Location ref,
7095 vixl::aarch64::Register obj,
7096 const vixl::aarch64::MemOperand& src,
7097 bool needs_null_check,
7098 bool use_load_acquire) {
7099 DCHECK(EmitBakerReadBarrier());
7100
7101 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
7102 // Marking Register) to decide whether we need to enter the slow
7103 // path to mark the reference. Then, in the slow path, check the
7104 // gray bit in the lock word of the reference's holder (`obj`) to
7105 // decide whether to mark `ref` or not.
7106 //
7107 // We use shared thunks for the slow path; shared within the method
7108 // for JIT, across methods for AOT. That thunk checks the holder
7109 // and jumps to the entrypoint if needed. If the holder is not gray,
7110 // it creates a fake dependency and returns to the LDR instruction.
7111 //
7112 // lr = &gray_return_address;
7113 // if (mr) { // Thread::Current()->GetIsGcMarking()
7114 // goto field_thunk<holder_reg, base_reg, use_load_acquire>(lr)
7115 // }
7116 // not_gray_return_address:
7117 // // Original reference load. If the offset is too large to fit
7118 // // into LDR, we use an adjusted base register here.
7119 // HeapReference<mirror::Object> reference = *(obj+offset);
7120 // gray_return_address:
7121
7122 DCHECK(src.GetAddrMode() == vixl::aarch64::Offset);
7123 DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference<mirror::Object>));
7124
7125 UseScratchRegisterScope temps(GetVIXLAssembler());
7126 DCHECK(temps.IsAvailable(ip0));
7127 DCHECK(temps.IsAvailable(ip1));
7128 temps.Exclude(ip0, ip1);
7129 uint32_t custom_data = use_load_acquire
7130 ? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode())
7131 : EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode());
7132
7133 {
7134 ExactAssemblyScope guard(GetVIXLAssembler(),
7135 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
7136 vixl::aarch64::Label return_address;
7137 __ adr(lr, &return_address);
7138 EmitBakerReadBarrierCbnz(custom_data);
7139 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
7140 "Field LDR must be 1 instruction (4B) before the return address label; "
7141 " 2 instructions (8B) for heap poisoning.");
7142 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
7143 if (use_load_acquire) {
7144 DCHECK_EQ(src.GetOffset(), 0);
7145 __ ldar(ref_reg, src);
7146 } else {
7147 __ ldr(ref_reg, src);
7148 }
7149 if (needs_null_check) {
7150 MaybeRecordImplicitNullCheck(instruction);
7151 }
7152 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
7153 // macro instructions disallowed in ExactAssemblyScope.
7154 if (kPoisonHeapReferences) {
7155 __ neg(ref_reg, Operand(ref_reg));
7156 }
7157 __ bind(&return_address);
7158 }
7159 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
7160 }
7161
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location maybe_temp,bool needs_null_check,bool use_load_acquire)7162 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
7163 Location ref,
7164 Register obj,
7165 uint32_t offset,
7166 Location maybe_temp,
7167 bool needs_null_check,
7168 bool use_load_acquire) {
7169 DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
7170 Register base = obj;
7171 if (use_load_acquire) {
7172 DCHECK(maybe_temp.IsRegister());
7173 base = WRegisterFrom(maybe_temp);
7174 __ Add(base, obj, offset);
7175 offset = 0u;
7176 } else if (offset >= kReferenceLoadMinFarOffset) {
7177 DCHECK(maybe_temp.IsRegister());
7178 base = WRegisterFrom(maybe_temp);
7179 static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
7180 __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
7181 offset &= (kReferenceLoadMinFarOffset - 1u);
7182 }
7183 MemOperand src(base.X(), offset);
7184 GenerateFieldLoadWithBakerReadBarrier(
7185 instruction, ref, obj, src, needs_null_check, use_load_acquire);
7186 }
7187
GenerateArrayLoadWithBakerReadBarrier(HArrayGet * instruction,Location ref,Register obj,uint32_t data_offset,Location index,bool needs_null_check)7188 void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction,
7189 Location ref,
7190 Register obj,
7191 uint32_t data_offset,
7192 Location index,
7193 bool needs_null_check) {
7194 DCHECK(EmitBakerReadBarrier());
7195
7196 static_assert(
7197 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
7198 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
7199 size_t scale_factor = DataType::SizeShift(DataType::Type::kReference);
7200
7201 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
7202 // Marking Register) to decide whether we need to enter the slow
7203 // path to mark the reference. Then, in the slow path, check the
7204 // gray bit in the lock word of the reference's holder (`obj`) to
7205 // decide whether to mark `ref` or not.
7206 //
7207 // We use shared thunks for the slow path; shared within the method
7208 // for JIT, across methods for AOT. That thunk checks the holder
7209 // and jumps to the entrypoint if needed. If the holder is not gray,
7210 // it creates a fake dependency and returns to the LDR instruction.
7211 //
7212 // lr = &gray_return_address;
7213 // if (mr) { // Thread::Current()->GetIsGcMarking()
7214 // goto array_thunk<base_reg>(lr)
7215 // }
7216 // not_gray_return_address:
7217 // // Original reference load. If the offset is too large to fit
7218 // // into LDR, we use an adjusted base register here.
7219 // HeapReference<mirror::Object> reference = data[index];
7220 // gray_return_address:
7221
7222 DCHECK(index.IsValid());
7223 Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
7224 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
7225
7226 UseScratchRegisterScope temps(GetVIXLAssembler());
7227 DCHECK(temps.IsAvailable(ip0));
7228 DCHECK(temps.IsAvailable(ip1));
7229 temps.Exclude(ip0, ip1);
7230
7231 Register temp;
7232 if (instruction->GetArray()->IsIntermediateAddress()) {
7233 // We do not need to compute the intermediate address from the array: the
7234 // input instruction has done it already. See the comment in
7235 // `TryExtractArrayAccessAddress()`.
7236 if (kIsDebugBuild) {
7237 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
7238 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
7239 }
7240 temp = obj;
7241 } else {
7242 temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0));
7243 __ Add(temp.X(), obj.X(), Operand(data_offset));
7244 }
7245
7246 uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode());
7247
7248 {
7249 ExactAssemblyScope guard(GetVIXLAssembler(),
7250 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
7251 vixl::aarch64::Label return_address;
7252 __ adr(lr, &return_address);
7253 EmitBakerReadBarrierCbnz(custom_data);
7254 static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
7255 "Array LDR must be 1 instruction (4B) before the return address label; "
7256 " 2 instructions (8B) for heap poisoning.");
7257 __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor));
7258 DCHECK(!needs_null_check); // The thunk cannot handle the null check.
7259 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
7260 // macro instructions disallowed in ExactAssemblyScope.
7261 if (kPoisonHeapReferences) {
7262 __ neg(ref_reg, Operand(ref_reg));
7263 }
7264 __ bind(&return_address);
7265 }
7266 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
7267 }
7268
MaybeGenerateMarkingRegisterCheck(int code,Location temp_loc)7269 void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
7270 // The following condition is a compile-time one, so it does not have a run-time cost.
7271 if (kIsDebugBuild && EmitBakerReadBarrier()) {
7272 // The following condition is a run-time one; it is executed after the
7273 // previous compile-time test, to avoid penalizing non-debug builds.
7274 if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
7275 UseScratchRegisterScope temps(GetVIXLAssembler());
7276 Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW();
7277 GetAssembler()->GenerateMarkingRegisterCheck(temp, code);
7278 }
7279 }
7280 }
7281
AddReadBarrierSlowPath(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)7282 SlowPathCodeARM64* CodeGeneratorARM64::AddReadBarrierSlowPath(HInstruction* instruction,
7283 Location out,
7284 Location ref,
7285 Location obj,
7286 uint32_t offset,
7287 Location index) {
7288 SlowPathCodeARM64* slow_path = new (GetScopedAllocator())
7289 ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
7290 AddSlowPath(slow_path);
7291 return slow_path;
7292 }
7293
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)7294 void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
7295 Location out,
7296 Location ref,
7297 Location obj,
7298 uint32_t offset,
7299 Location index) {
7300 DCHECK(EmitReadBarrier());
7301
7302 // Insert a slow path based read barrier *after* the reference load.
7303 //
7304 // If heap poisoning is enabled, the unpoisoning of the loaded
7305 // reference will be carried out by the runtime within the slow
7306 // path.
7307 //
7308 // Note that `ref` currently does not get unpoisoned (when heap
7309 // poisoning is enabled), which is alright as the `ref` argument is
7310 // not used by the artReadBarrierSlow entry point.
7311 //
7312 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
7313 SlowPathCodeARM64* slow_path = AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index);
7314
7315 __ B(slow_path->GetEntryLabel());
7316 __ Bind(slow_path->GetExitLabel());
7317 }
7318
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)7319 void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
7320 Location out,
7321 Location ref,
7322 Location obj,
7323 uint32_t offset,
7324 Location index) {
7325 if (EmitReadBarrier()) {
7326 // Baker's read barriers shall be handled by the fast path
7327 // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
7328 DCHECK(!kUseBakerReadBarrier);
7329 // If heap poisoning is enabled, unpoisoning will be taken care of
7330 // by the runtime within the slow path.
7331 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
7332 } else if (kPoisonHeapReferences) {
7333 GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
7334 }
7335 }
7336
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)7337 void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
7338 Location out,
7339 Location root) {
7340 DCHECK(EmitReadBarrier());
7341
7342 // Insert a slow path based read barrier *after* the GC root load.
7343 //
7344 // Note that GC roots are not affected by heap poisoning, so we do
7345 // not need to do anything special for this here.
7346 SlowPathCodeARM64* slow_path =
7347 new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
7348 AddSlowPath(slow_path);
7349
7350 __ B(slow_path->GetEntryLabel());
7351 __ Bind(slow_path->GetExitLabel());
7352 }
7353
VisitClassTableGet(HClassTableGet * instruction)7354 void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
7355 LocationSummary* locations =
7356 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
7357 locations->SetInAt(0, Location::RequiresRegister());
7358 locations->SetOut(Location::RequiresRegister());
7359 }
7360
VisitClassTableGet(HClassTableGet * instruction)7361 void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
7362 LocationSummary* locations = instruction->GetLocations();
7363 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
7364 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
7365 instruction->GetIndex(), kArm64PointerSize).SizeValue();
7366 __ Ldr(XRegisterFrom(locations->Out()),
7367 MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
7368 } else {
7369 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
7370 instruction->GetIndex(), kArm64PointerSize));
7371 __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
7372 mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
7373 __ Ldr(XRegisterFrom(locations->Out()),
7374 MemOperand(XRegisterFrom(locations->Out()), method_offset));
7375 }
7376 }
7377
VecNEONAddress(HVecMemoryOperation * instruction,UseScratchRegisterScope * temps_scope,size_t size,bool is_string_char_at,Register * scratch)7378 MemOperand InstructionCodeGeneratorARM64::VecNEONAddress(
7379 HVecMemoryOperation* instruction,
7380 UseScratchRegisterScope* temps_scope,
7381 size_t size,
7382 bool is_string_char_at,
7383 /*out*/ Register* scratch) {
7384 LocationSummary* locations = instruction->GetLocations();
7385 Register base = InputRegisterAt(instruction, 0);
7386
7387 if (instruction->InputAt(1)->IsIntermediateAddressIndex()) {
7388 DCHECK(!is_string_char_at);
7389 return MemOperand(base.X(), InputRegisterAt(instruction, 1).X());
7390 }
7391
7392 Location index = locations->InAt(1);
7393 uint32_t offset = is_string_char_at
7394 ? mirror::String::ValueOffset().Uint32Value()
7395 : mirror::Array::DataOffset(size).Uint32Value();
7396 size_t shift = ComponentSizeShiftWidth(size);
7397
7398 // HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet.
7399 DCHECK(!instruction->InputAt(0)->IsIntermediateAddress());
7400
7401 if (index.IsConstant()) {
7402 offset += Int64FromLocation(index) << shift;
7403 return HeapOperand(base, offset);
7404 } else {
7405 *scratch = temps_scope->AcquireSameSizeAs(base);
7406 __ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift));
7407 return HeapOperand(*scratch, offset);
7408 }
7409 }
7410
VecSVEAddress(HVecMemoryOperation * instruction,UseScratchRegisterScope * temps_scope,size_t size,bool is_string_char_at,Register * scratch)7411 SVEMemOperand InstructionCodeGeneratorARM64::VecSVEAddress(
7412 HVecMemoryOperation* instruction,
7413 UseScratchRegisterScope* temps_scope,
7414 size_t size,
7415 bool is_string_char_at,
7416 /*out*/ Register* scratch) {
7417 LocationSummary* locations = instruction->GetLocations();
7418 Register base = InputRegisterAt(instruction, 0);
7419 Location index = locations->InAt(1);
7420
7421 DCHECK(!instruction->InputAt(1)->IsIntermediateAddressIndex());
7422 DCHECK(!index.IsConstant());
7423
7424 uint32_t offset = is_string_char_at
7425 ? mirror::String::ValueOffset().Uint32Value()
7426 : mirror::Array::DataOffset(size).Uint32Value();
7427 size_t shift = ComponentSizeShiftWidth(size);
7428
7429 if (instruction->InputAt(0)->IsIntermediateAddress()) {
7430 return SVEMemOperand(base.X(), XRegisterFrom(index), LSL, shift);
7431 }
7432
7433 *scratch = temps_scope->AcquireSameSizeAs(base);
7434 __ Add(*scratch, base, offset);
7435 return SVEMemOperand(scratch->X(), XRegisterFrom(index), LSL, shift);
7436 }
7437
7438 #undef __
7439 #undef QUICK_ENTRY_POINT
7440
7441 #define __ assembler.GetVIXLAssembler()->
7442
EmitGrayCheckAndFastPath(arm64::Arm64Assembler & assembler,vixl::aarch64::Register base_reg,vixl::aarch64::MemOperand & lock_word,vixl::aarch64::Label * slow_path,vixl::aarch64::Label * throw_npe=nullptr)7443 static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
7444 vixl::aarch64::Register base_reg,
7445 vixl::aarch64::MemOperand& lock_word,
7446 vixl::aarch64::Label* slow_path,
7447 vixl::aarch64::Label* throw_npe = nullptr) {
7448 vixl::aarch64::Label throw_npe_cont;
7449 // Load the lock word containing the rb_state.
7450 __ Ldr(ip0.W(), lock_word);
7451 // Given the numeric representation, it's enough to check the low bit of the rb_state.
7452 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
7453 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
7454 __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
7455 static_assert(
7456 BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
7457 "Field and array LDR offsets must be the same to reuse the same code.");
7458 // To throw NPE, we return to the fast path; the artificial dependence below does not matter.
7459 if (throw_npe != nullptr) {
7460 __ Bind(&throw_npe_cont);
7461 }
7462 // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
7463 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
7464 "Field LDR must be 1 instruction (4B) before the return address label; "
7465 " 2 instructions (8B) for heap poisoning.");
7466 __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
7467 // Introduce a dependency on the lock_word including rb_state,
7468 // to prevent load-load reordering, and without using
7469 // a memory barrier (which would be more expensive).
7470 __ Add(base_reg, base_reg, Operand(ip0, LSR, 32));
7471 __ Br(lr); // And return back to the function.
7472 if (throw_npe != nullptr) {
7473 // Clear IP0 before returning to the fast path.
7474 __ Bind(throw_npe);
7475 __ Mov(ip0.X(), xzr);
7476 __ B(&throw_npe_cont);
7477 }
7478 // Note: The fake dependency is unnecessary for the slow path.
7479 }
7480
7481 // Load the read barrier introspection entrypoint in register `entrypoint`.
LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler & assembler,vixl::aarch64::Register entrypoint)7482 static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler,
7483 vixl::aarch64::Register entrypoint) {
7484 // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection.
7485 DCHECK_EQ(ip0.GetCode(), 16u);
7486 const int32_t entry_point_offset =
7487 Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode());
7488 __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
7489 }
7490
CompileBakerReadBarrierThunk(Arm64Assembler & assembler,uint32_t encoded_data,std::string * debug_name)7491 void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler,
7492 uint32_t encoded_data,
7493 /*out*/ std::string* debug_name) {
7494 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
7495 switch (kind) {
7496 case BakerReadBarrierKind::kField:
7497 case BakerReadBarrierKind::kAcquire: {
7498 Register base_reg =
7499 vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7500 CheckValidReg(base_reg.GetCode());
7501 Register holder_reg =
7502 vixl::aarch64::XRegister(BakerReadBarrierSecondRegField::Decode(encoded_data));
7503 CheckValidReg(holder_reg.GetCode());
7504 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7505 temps.Exclude(ip0, ip1);
7506 // In the case of a field load (with relaxed semantic), if `base_reg` differs from
7507 // `holder_reg`, the offset was too large and we must have emitted (during the construction
7508 // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
7509 // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
7510 // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
7511 // not necessarily do that check before going to the thunk.
7512 //
7513 // In the case of a field load with load-acquire semantics (where `base_reg` always differs
7514 // from `holder_reg`), we also need an explicit null check when implicit null checks are
7515 // allowed, as we do not emit one before going to the thunk.
7516 vixl::aarch64::Label throw_npe_label;
7517 vixl::aarch64::Label* throw_npe = nullptr;
7518 if (GetCompilerOptions().GetImplicitNullChecks() &&
7519 (holder_reg.Is(base_reg) || (kind == BakerReadBarrierKind::kAcquire))) {
7520 throw_npe = &throw_npe_label;
7521 __ Cbz(holder_reg.W(), throw_npe);
7522 }
7523 // Check if the holder is gray and, if not, add fake dependency to the base register
7524 // and return to the LDR instruction to load the reference. Otherwise, use introspection
7525 // to load the reference and call the entrypoint that performs further checks on the
7526 // reference and marks it if needed.
7527 vixl::aarch64::Label slow_path;
7528 MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
7529 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe);
7530 __ Bind(&slow_path);
7531 if (kind == BakerReadBarrierKind::kField) {
7532 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
7533 __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset.
7534 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7535 __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset.
7536 __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference.
7537 } else {
7538 DCHECK(kind == BakerReadBarrierKind::kAcquire);
7539 DCHECK(!base_reg.Is(holder_reg));
7540 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7541 __ Ldar(ip0.W(), MemOperand(base_reg));
7542 }
7543 // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
7544 __ Br(ip1); // Jump to the entrypoint.
7545 break;
7546 }
7547 case BakerReadBarrierKind::kArray: {
7548 Register base_reg =
7549 vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7550 CheckValidReg(base_reg.GetCode());
7551 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7552 BakerReadBarrierSecondRegField::Decode(encoded_data));
7553 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7554 temps.Exclude(ip0, ip1);
7555 vixl::aarch64::Label slow_path;
7556 int32_t data_offset =
7557 mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
7558 MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
7559 DCHECK_LT(lock_word.GetOffset(), 0);
7560 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
7561 __ Bind(&slow_path);
7562 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
7563 __ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset.
7564 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7565 __ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set).
7566 __ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create
7567 // a switch case target based on the index register.
7568 __ Mov(ip0, base_reg); // Move the base register to ip0.
7569 __ Br(ip1); // Jump to the entrypoint's array switch case.
7570 break;
7571 }
7572 case BakerReadBarrierKind::kGcRoot: {
7573 // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
7574 // and it does not have a forwarding address), call the correct introspection entrypoint;
7575 // otherwise return the reference (or the extracted forwarding address).
7576 // There is no gray bit check for GC roots.
7577 Register root_reg =
7578 vixl::aarch64::WRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7579 CheckValidReg(root_reg.GetCode());
7580 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7581 BakerReadBarrierSecondRegField::Decode(encoded_data));
7582 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7583 temps.Exclude(ip0, ip1);
7584 vixl::aarch64::Label return_label, not_marked, forwarding_address;
7585 __ Cbz(root_reg, &return_label);
7586 MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
7587 __ Ldr(ip0.W(), lock_word);
7588 __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked);
7589 __ Bind(&return_label);
7590 __ Br(lr);
7591 __ Bind(¬_marked);
7592 __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
7593 __ B(&forwarding_address, mi);
7594 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7595 // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
7596 // art_quick_read_barrier_mark_introspection_gc_roots.
7597 __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
7598 __ Mov(ip0.W(), root_reg);
7599 __ Br(ip1);
7600 __ Bind(&forwarding_address);
7601 __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
7602 __ Br(lr);
7603 break;
7604 }
7605 default:
7606 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
7607 UNREACHABLE();
7608 }
7609
7610 // For JIT, the slow path is considered part of the compiled method,
7611 // so JIT should pass null as `debug_name`.
7612 DCHECK_IMPLIES(GetCompilerOptions().IsJitCompiler(), debug_name == nullptr);
7613 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
7614 std::ostringstream oss;
7615 oss << "BakerReadBarrierThunk";
7616 switch (kind) {
7617 case BakerReadBarrierKind::kField:
7618 oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
7619 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
7620 break;
7621 case BakerReadBarrierKind::kAcquire:
7622 oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
7623 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
7624 break;
7625 case BakerReadBarrierKind::kArray:
7626 oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
7627 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7628 BakerReadBarrierSecondRegField::Decode(encoded_data));
7629 break;
7630 case BakerReadBarrierKind::kGcRoot:
7631 oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
7632 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7633 BakerReadBarrierSecondRegField::Decode(encoded_data));
7634 break;
7635 }
7636 *debug_name = oss.str();
7637 }
7638 }
7639
7640 #undef __
7641
7642 } // namespace arm64
7643 } // namespace art
7644