• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18 #define ART_COMPILER_OPTIMIZING_NODES_H_
19 
20 #include <algorithm>
21 #include <array>
22 #include <type_traits>
23 
24 #include "art_method.h"
25 #include "base/arena_allocator.h"
26 #include "base/arena_bit_vector.h"
27 #include "base/arena_containers.h"
28 #include "base/arena_object.h"
29 #include "base/array_ref.h"
30 #include "base/intrusive_forward_list.h"
31 #include "base/iteration_range.h"
32 #include "base/macros.h"
33 #include "base/mutex.h"
34 #include "base/quasi_atomic.h"
35 #include "base/stl_util.h"
36 #include "base/transform_array_ref.h"
37 #include "block_namer.h"
38 #include "class_root.h"
39 #include "compilation_kind.h"
40 #include "data_type.h"
41 #include "deoptimization_kind.h"
42 #include "dex/dex_file.h"
43 #include "dex/dex_file_types.h"
44 #include "dex/invoke_type.h"
45 #include "dex/method_reference.h"
46 #include "entrypoints/quick/quick_entrypoints_enum.h"
47 #include "handle.h"
48 #include "handle_cache.h"
49 #include "intrinsics_enum.h"
50 #include "locations.h"
51 #include "mirror/class.h"
52 #include "mirror/method_type.h"
53 #include "offsets.h"
54 #include "reference_type_info.h"
55 
56 namespace art HIDDEN {
57 
58 class ArenaStack;
59 class CodeGenerator;
60 class GraphChecker;
61 class HBasicBlock;
62 class HCondition;
63 class HConstructorFence;
64 class HCurrentMethod;
65 class HDoubleConstant;
66 class HEnvironment;
67 class HFloatConstant;
68 class HGraphBuilder;
69 class HGraphVisitor;
70 class HInstruction;
71 class HIntConstant;
72 class HInvoke;
73 class HLongConstant;
74 class HNullConstant;
75 class HParameterValue;
76 class HPhi;
77 class HSuspendCheck;
78 class HTryBoundary;
79 class HVecCondition;
80 class FieldInfo;
81 class LiveInterval;
82 class LocationSummary;
83 class ProfilingInfo;
84 class SlowPathCode;
85 class SsaBuilder;
86 
87 namespace mirror {
88 class DexCache;
89 }  // namespace mirror
90 
91 static const int kDefaultNumberOfBlocks = 8;
92 static const int kDefaultNumberOfSuccessors = 2;
93 static const int kDefaultNumberOfPredecessors = 2;
94 static const int kDefaultNumberOfExceptionalPredecessors = 0;
95 static const int kDefaultNumberOfDominatedBlocks = 1;
96 static const int kDefaultNumberOfBackEdges = 1;
97 
98 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
99 static constexpr int32_t kMaxIntShiftDistance = 0x1f;
100 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
101 static constexpr int32_t kMaxLongShiftDistance = 0x3f;
102 
103 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
104 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
105 
106 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
107 
108 static constexpr uint32_t kNoDexPc = -1;
109 
IsSameDexFile(const DexFile & lhs,const DexFile & rhs)110 inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
111   // For the purposes of the compiler, the dex files must actually be the same object
112   // if we want to safely treat them as the same. This is especially important for JIT
113   // as custom class loaders can open the same underlying file (or memory) multiple
114   // times and provide different class resolution but no two class loaders should ever
115   // use the same DexFile object - doing so is an unsupported hack that can lead to
116   // all sorts of weird failures.
117   return &lhs == &rhs;
118 }
119 
120 enum IfCondition {
121   // All types.
122   kCondEQ,  // ==
123   kCondNE,  // !=
124   // Signed integers and floating-point numbers.
125   kCondLT,  // <
126   kCondLE,  // <=
127   kCondGT,  // >
128   kCondGE,  // >=
129   // Unsigned integers.
130   kCondB,   // <
131   kCondBE,  // <=
132   kCondA,   // >
133   kCondAE,  // >=
134   // First and last aliases.
135   kCondFirst = kCondEQ,
136   kCondLast = kCondAE,
137 };
138 
139 enum GraphAnalysisResult {
140   kAnalysisSkipped,
141   kAnalysisInvalidBytecode,
142   kAnalysisFailThrowCatchLoop,
143   kAnalysisFailAmbiguousArrayOp,
144   kAnalysisFailIrreducibleLoopAndStringInit,
145   kAnalysisFailPhiEquivalentInOsr,
146   kAnalysisSuccess,
147 };
148 
149 std::ostream& operator<<(std::ostream& os, GraphAnalysisResult ga);
150 
151 template <typename T>
MakeUnsigned(T x)152 static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) {
153   return static_cast<typename std::make_unsigned<T>::type>(x);
154 }
155 
156 class HInstructionList : public ValueObject {
157  public:
HInstructionList()158   HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
159 
160   void AddInstruction(HInstruction* instruction);
161   void RemoveInstruction(HInstruction* instruction);
162 
163   // Insert `instruction` before/after an existing instruction `cursor`.
164   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
165   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
166 
167   // Return true if this list contains `instruction`.
168   bool Contains(HInstruction* instruction) const;
169 
170   // Return true if `instruction1` is found before `instruction2` in
171   // this instruction list and false otherwise.  Abort if none
172   // of these instructions is found.
173   bool FoundBefore(const HInstruction* instruction1,
174                    const HInstruction* instruction2) const;
175 
IsEmpty()176   bool IsEmpty() const { return first_instruction_ == nullptr; }
Clear()177   void Clear() { first_instruction_ = last_instruction_ = nullptr; }
178 
179   // Update the block of all instructions to be `block`.
180   void SetBlockOfInstructions(HBasicBlock* block) const;
181 
182   void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
183   void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
184   void Add(const HInstructionList& instruction_list);
185 
186   // Return the number of instructions in the list. This is an expensive operation.
187   size_t CountSize() const;
188 
189  private:
190   HInstruction* first_instruction_;
191   HInstruction* last_instruction_;
192 
193   friend class HBasicBlock;
194   friend class HGraph;
195   friend class HInstruction;
196   friend class HInstructionIterator;
197   friend class HInstructionIteratorHandleChanges;
198   friend class HBackwardInstructionIterator;
199 
200   DISALLOW_COPY_AND_ASSIGN(HInstructionList);
201 };
202 
203 // Control-flow graph of a method. Contains a list of basic blocks.
204 class HGraph : public ArenaObject<kArenaAllocGraph> {
205  public:
206   HGraph(ArenaAllocator* allocator,
207          ArenaStack* arena_stack,
208          VariableSizedHandleScope* handles,
209          const DexFile& dex_file,
210          uint32_t method_idx,
211          InstructionSet instruction_set,
212          InvokeType invoke_type = kInvalidInvokeType,
213          bool dead_reference_safe = false,
214          bool debuggable = false,
215          CompilationKind compilation_kind = CompilationKind::kOptimized,
216          int start_instruction_id = 0)
allocator_(allocator)217       : allocator_(allocator),
218         arena_stack_(arena_stack),
219         handle_cache_(handles),
220         blocks_(allocator->Adapter(kArenaAllocBlockList)),
221         reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)),
222         linear_order_(allocator->Adapter(kArenaAllocLinearOrder)),
223         entry_block_(nullptr),
224         exit_block_(nullptr),
225         number_of_vregs_(0),
226         number_of_in_vregs_(0),
227         temporaries_vreg_slots_(0),
228         has_bounds_checks_(false),
229         has_try_catch_(false),
230         has_monitor_operations_(false),
231         has_traditional_simd_(false),
232         has_predicated_simd_(false),
233         has_loops_(false),
234         has_irreducible_loops_(false),
235         has_direct_critical_native_call_(false),
236         has_always_throwing_invokes_(false),
237         dead_reference_safe_(dead_reference_safe),
238         debuggable_(debuggable),
239         current_instruction_id_(start_instruction_id),
240         dex_file_(dex_file),
241         method_idx_(method_idx),
242         invoke_type_(invoke_type),
243         in_ssa_form_(false),
244         number_of_cha_guards_(0),
245         instruction_set_(instruction_set),
246         cached_null_constant_(nullptr),
247         cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
248         cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
249         cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
250         cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
251         cached_current_method_(nullptr),
252         art_method_(nullptr),
253         compilation_kind_(compilation_kind),
254         useful_optimizing_(false),
255         cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)) {
256     blocks_.reserve(kDefaultNumberOfBlocks);
257   }
258 
259   std::ostream& Dump(std::ostream& os,
260                      CodeGenerator* codegen,
261                      std::optional<std::reference_wrapper<const BlockNamer>> namer = std::nullopt);
262 
GetAllocator()263   ArenaAllocator* GetAllocator() const { return allocator_; }
GetArenaStack()264   ArenaStack* GetArenaStack() const { return arena_stack_; }
265 
GetHandleCache()266   HandleCache* GetHandleCache() { return &handle_cache_; }
267 
GetBlocks()268   const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
269 
270   // An iterator to only blocks that are still actually in the graph (when
271   // blocks are removed they are replaced with 'nullptr' in GetBlocks to
272   // simplify block-id assignment and avoid memmoves in the block-list).
GetActiveBlocks()273   IterationRange<FilterNull<ArenaVector<HBasicBlock*>::const_iterator>> GetActiveBlocks() const {
274     return FilterOutNull(MakeIterationRange(GetBlocks()));
275   }
276 
IsInSsaForm()277   bool IsInSsaForm() const { return in_ssa_form_; }
SetInSsaForm()278   void SetInSsaForm() { in_ssa_form_ = true; }
279 
GetEntryBlock()280   HBasicBlock* GetEntryBlock() const { return entry_block_; }
GetExitBlock()281   HBasicBlock* GetExitBlock() const { return exit_block_; }
HasExitBlock()282   bool HasExitBlock() const { return exit_block_ != nullptr; }
283 
SetEntryBlock(HBasicBlock * block)284   void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
SetExitBlock(HBasicBlock * block)285   void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
286 
287   void AddBlock(HBasicBlock* block);
288 
289   void ComputeDominanceInformation();
290   void ClearDominanceInformation();
291   void ClearLoopInformation();
292   void FindBackEdges(/*out*/ BitVectorView<size_t> visited);
293   GraphAnalysisResult BuildDominatorTree();
294   GraphAnalysisResult RecomputeDominatorTree();
295   void SimplifyCFG();
296   void SimplifyCatchBlocks();
297 
298   // Analyze all natural loops in this graph. Returns a code specifying that it
299   // was successful or the reason for failure. The method will fail if a loop
300   // is a throw-catch loop, i.e. the header is a catch block.
301   GraphAnalysisResult AnalyzeLoops() const;
302 
303   // Iterate over blocks to compute try block membership. Needs reverse post
304   // order and loop information.
305   void ComputeTryBlockInformation();
306 
307   // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
308   // Returns the instruction to replace the invoke expression or null if the
309   // invoke is for a void method. Note that the caller is responsible for replacing
310   // and removing the invoke instruction.
311   HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
312 
313   // Update the loop and try membership of `block`, which was spawned from `reference`.
314   // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
315   // should be the new back edge.
316   // `has_more_specific_try_catch_info` will be set to true when inlining a try catch.
317   void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
318                                              HBasicBlock* reference,
319                                              bool replace_if_back_edge,
320                                              bool has_more_specific_try_catch_info = false);
321 
322   // Need to add a couple of blocks to test if the loop body is entered and
323   // put deoptimization instructions, etc.
324   void TransformLoopHeaderForBCE(HBasicBlock* header);
325 
326   // Adds a new loop directly after the loop with the given header and exit.
327   // Returns the new preheader.
328   HBasicBlock* TransformLoopForVectorization(HBasicBlock* header,
329                                              HBasicBlock* body,
330                                              HBasicBlock* exit);
331 
332   // Removes `block` from the graph. Assumes `block` has been disconnected from
333   // other blocks and has no instructions or phis.
334   void DeleteDeadEmptyBlock(HBasicBlock* block);
335 
336   // Splits the edge between `block` and `successor` while preserving the
337   // indices in the predecessor/successor lists. If there are multiple edges
338   // between the blocks, the lowest indices are used.
339   // Returns the new block which is empty and has the same dex pc as `successor`.
340   HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
341 
342   void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
343 
344   // Splits the edge between `block` and `successor` and then updates the graph's RPO to keep
345   // consistency without recomputing the whole graph.
346   HBasicBlock* SplitEdgeAndUpdateRPO(HBasicBlock* block, HBasicBlock* successor);
347 
348   void OrderLoopHeaderPredecessors(HBasicBlock* header);
349 
350   // Transform a loop into a format with a single preheader.
351   //
352   // Each phi in the header should be split: original one in the header should only hold
353   // inputs reachable from the back edges and a single input from the preheader. The newly created
354   // phi in the preheader should collate the inputs from the original multiple incoming blocks.
355   //
356   // Loops in the graph typically have a single preheader, so this method is used to "repair" loops
357   // that no longer have this property.
358   void TransformLoopToSinglePreheaderFormat(HBasicBlock* header);
359 
360   void SimplifyLoop(HBasicBlock* header);
361 
362   ALWAYS_INLINE int32_t AllocateInstructionId();
363 
GetCurrentInstructionId()364   int32_t GetCurrentInstructionId() const {
365     return current_instruction_id_;
366   }
367 
SetCurrentInstructionId(int32_t id)368   void SetCurrentInstructionId(int32_t id) {
369     CHECK_GE(id, current_instruction_id_);
370     current_instruction_id_ = id;
371   }
372 
UpdateTemporariesVRegSlots(size_t slots)373   void UpdateTemporariesVRegSlots(size_t slots) {
374     temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
375   }
376 
GetTemporariesVRegSlots()377   size_t GetTemporariesVRegSlots() const {
378     DCHECK(!in_ssa_form_);
379     return temporaries_vreg_slots_;
380   }
381 
SetNumberOfVRegs(uint16_t number_of_vregs)382   void SetNumberOfVRegs(uint16_t number_of_vregs) {
383     number_of_vregs_ = number_of_vregs;
384   }
385 
GetNumberOfVRegs()386   uint16_t GetNumberOfVRegs() const {
387     return number_of_vregs_;
388   }
389 
SetNumberOfInVRegs(uint16_t value)390   void SetNumberOfInVRegs(uint16_t value) {
391     number_of_in_vregs_ = value;
392   }
393 
GetNumberOfInVRegs()394   uint16_t GetNumberOfInVRegs() const {
395     return number_of_in_vregs_;
396   }
397 
GetNumberOfLocalVRegs()398   uint16_t GetNumberOfLocalVRegs() const {
399     DCHECK(!in_ssa_form_);
400     return number_of_vregs_ - number_of_in_vregs_;
401   }
402 
GetReversePostOrder()403   const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
404     return reverse_post_order_;
405   }
406 
GetReversePostOrderSkipEntryBlock()407   ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() const {
408     DCHECK(GetReversePostOrder()[0] == entry_block_);
409     return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1);
410   }
411 
GetPostOrder()412   IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const {
413     return ReverseRange(GetReversePostOrder());
414   }
415 
GetLinearOrder()416   const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
417     return linear_order_;
418   }
419 
GetLinearPostOrder()420   IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const {
421     return ReverseRange(GetLinearOrder());
422   }
423 
HasBoundsChecks()424   bool HasBoundsChecks() const {
425     return has_bounds_checks_;
426   }
427 
SetHasBoundsChecks(bool value)428   void SetHasBoundsChecks(bool value) {
429     has_bounds_checks_ = value;
430   }
431 
432   // Is the code known to be robust against eliminating dead references
433   // and the effects of early finalization?
IsDeadReferenceSafe()434   bool IsDeadReferenceSafe() const { return dead_reference_safe_; }
435 
MarkDeadReferenceUnsafe()436   void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; }
437 
IsDebuggable()438   bool IsDebuggable() const { return debuggable_; }
439 
440   // Returns a constant of the given type and value. If it does not exist
441   // already, it is created and inserted into the graph. This method is only for
442   // integral types.
443   HConstant* GetConstant(DataType::Type type, int64_t value);
444 
445   // TODO: This is problematic for the consistency of reference type propagation
446   // because it can be created anytime after the pass and thus it will be left
447   // with an invalid type.
448   HNullConstant* GetNullConstant();
449 
450   HIntConstant* GetIntConstant(int32_t value);
451   HLongConstant* GetLongConstant(int64_t value);
452   HFloatConstant* GetFloatConstant(float value);
453   HDoubleConstant* GetDoubleConstant(double value);
454 
455   HCurrentMethod* GetCurrentMethod();
456 
GetDexFile()457   const DexFile& GetDexFile() const {
458     return dex_file_;
459   }
460 
GetMethodIdx()461   uint32_t GetMethodIdx() const {
462     return method_idx_;
463   }
464 
465   // Get the method name (without the signature), e.g. "<init>"
466   const char* GetMethodName() const;
467 
468   // Get the pretty method name (class + name + optionally signature).
469   std::string PrettyMethod(bool with_signature = true) const;
470 
GetInvokeType()471   InvokeType GetInvokeType() const {
472     return invoke_type_;
473   }
474 
GetInstructionSet()475   InstructionSet GetInstructionSet() const {
476     return instruction_set_;
477   }
478 
IsCompilingOsr()479   bool IsCompilingOsr() const { return compilation_kind_ == CompilationKind::kOsr; }
480 
IsCompilingBaseline()481   bool IsCompilingBaseline() const { return compilation_kind_ == CompilationKind::kBaseline; }
482 
GetCompilationKind()483   CompilationKind GetCompilationKind() const { return compilation_kind_; }
484 
GetCHASingleImplementationList()485   ArenaSet<ArtMethod*>& GetCHASingleImplementationList() {
486     return cha_single_implementation_list_;
487   }
488 
489   // In case of OSR we intend to use SuspendChecks as an entry point to the
490   // function; for debuggable graphs we might deoptimize to interpreter from
491   // SuspendChecks. In these cases we should always generate code for them.
SuspendChecksAreAllowedToNoOp()492   bool SuspendChecksAreAllowedToNoOp() const {
493     return !IsDebuggable() && !IsCompilingOsr();
494   }
495 
AddCHASingleImplementationDependency(ArtMethod * method)496   void AddCHASingleImplementationDependency(ArtMethod* method) {
497     cha_single_implementation_list_.insert(method);
498   }
499 
HasShouldDeoptimizeFlag()500   bool HasShouldDeoptimizeFlag() const {
501     return number_of_cha_guards_ != 0 || debuggable_;
502   }
503 
HasTryCatch()504   bool HasTryCatch() const { return has_try_catch_; }
SetHasTryCatch(bool value)505   void SetHasTryCatch(bool value) { has_try_catch_ = value; }
506 
HasMonitorOperations()507   bool HasMonitorOperations() const { return has_monitor_operations_; }
SetHasMonitorOperations(bool value)508   void SetHasMonitorOperations(bool value) { has_monitor_operations_ = value; }
509 
HasTraditionalSIMD()510   bool HasTraditionalSIMD() { return has_traditional_simd_; }
SetHasTraditionalSIMD(bool value)511   void SetHasTraditionalSIMD(bool value) { has_traditional_simd_ = value; }
512 
HasPredicatedSIMD()513   bool HasPredicatedSIMD() { return has_predicated_simd_; }
SetHasPredicatedSIMD(bool value)514   void SetHasPredicatedSIMD(bool value) { has_predicated_simd_ = value; }
515 
HasSIMD()516   bool HasSIMD() const { return has_traditional_simd_ || has_predicated_simd_; }
517 
HasLoops()518   bool HasLoops() const { return has_loops_; }
SetHasLoops(bool value)519   void SetHasLoops(bool value) { has_loops_ = value; }
520 
HasIrreducibleLoops()521   bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
SetHasIrreducibleLoops(bool value)522   void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
523 
HasDirectCriticalNativeCall()524   bool HasDirectCriticalNativeCall() const { return has_direct_critical_native_call_; }
SetHasDirectCriticalNativeCall(bool value)525   void SetHasDirectCriticalNativeCall(bool value) { has_direct_critical_native_call_ = value; }
526 
HasAlwaysThrowingInvokes()527   bool HasAlwaysThrowingInvokes() const { return has_always_throwing_invokes_; }
SetHasAlwaysThrowingInvokes(bool value)528   void SetHasAlwaysThrowingInvokes(bool value) { has_always_throwing_invokes_ = value; }
529 
GetArtMethod()530   ArtMethod* GetArtMethod() const { return art_method_; }
SetArtMethod(ArtMethod * method)531   void SetArtMethod(ArtMethod* method) { art_method_ = method; }
532 
SetProfilingInfo(ProfilingInfo * info)533   void SetProfilingInfo(ProfilingInfo* info) { profiling_info_ = info; }
GetProfilingInfo()534   ProfilingInfo* GetProfilingInfo() const { return profiling_info_; }
535 
GetInexactObjectRti()536   ReferenceTypeInfo GetInexactObjectRti() {
537     return ReferenceTypeInfo::Create(handle_cache_.GetObjectClassHandle(), /* is_exact= */ false);
538   }
539 
GetNumberOfCHAGuards()540   uint32_t GetNumberOfCHAGuards() const { return number_of_cha_guards_; }
SetNumberOfCHAGuards(uint32_t num)541   void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; }
IncrementNumberOfCHAGuards()542   void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; }
543 
SetUsefulOptimizing()544   void SetUsefulOptimizing() { useful_optimizing_ = true; }
IsUsefulOptimizing()545   bool IsUsefulOptimizing() const { return useful_optimizing_; }
546 
547  private:
548   void RemoveDeadBlocksInstructionsAsUsersAndDisconnect(BitVectorView<const size_t> visited) const;
549   void RemoveDeadBlocks(BitVectorView<const size_t> visited);
550 
551   template <class InstructionType, typename ValueType>
552   InstructionType* CreateConstant(ValueType value,
553                                   ArenaSafeMap<ValueType, InstructionType*>* cache);
554 
555   void InsertConstant(HConstant* instruction);
556 
557   // Cache a float constant into the graph. This method should only be
558   // called by the SsaBuilder when creating "equivalent" instructions.
559   void CacheFloatConstant(HFloatConstant* constant);
560 
561   // See CacheFloatConstant comment.
562   void CacheDoubleConstant(HDoubleConstant* constant);
563 
564   ArenaAllocator* const allocator_;
565   ArenaStack* const arena_stack_;
566 
567   HandleCache handle_cache_;
568 
569   // List of blocks in insertion order.
570   ArenaVector<HBasicBlock*> blocks_;
571 
572   // List of blocks to perform a reverse post order tree traversal.
573   ArenaVector<HBasicBlock*> reverse_post_order_;
574 
575   // List of blocks to perform a linear order tree traversal. Unlike the reverse
576   // post order, this order is not incrementally kept up-to-date.
577   ArenaVector<HBasicBlock*> linear_order_;
578 
579   HBasicBlock* entry_block_;
580   HBasicBlock* exit_block_;
581 
582   // The number of virtual registers in this method. Contains the parameters.
583   uint16_t number_of_vregs_;
584 
585   // The number of virtual registers used by parameters of this method.
586   uint16_t number_of_in_vregs_;
587 
588   // Number of vreg size slots that the temporaries use (used in baseline compiler).
589   size_t temporaries_vreg_slots_;
590 
591   // Flag whether there are bounds checks in the graph. We can skip
592   // BCE if it's false.
593   bool has_bounds_checks_;
594 
595   // Flag whether there are try/catch blocks in the graph. We will skip
596   // try/catch-related passes if it's false.
597   bool has_try_catch_;
598 
599   // Flag whether there are any HMonitorOperation in the graph. If yes this will mandate
600   // DexRegisterMap to be present to allow deadlock analysis for non-debuggable code.
601   bool has_monitor_operations_;
602 
603   // Flags whether SIMD (traditional or predicated) instructions appear in the graph.
604   // If either is true, the code generators may have to be more careful spilling the wider
605   // contents of SIMD registers.
606   bool has_traditional_simd_;
607   bool has_predicated_simd_;
608 
609   // Flag whether there are any loops in the graph. We can skip loop
610   // optimization if it's false.
611   bool has_loops_;
612 
613   // Flag whether there are any irreducible loops in the graph.
614   bool has_irreducible_loops_;
615 
616   // Flag whether there are any direct calls to native code registered
617   // for @CriticalNative methods.
618   bool has_direct_critical_native_call_;
619 
620   // Flag whether the graph contains invokes that always throw.
621   bool has_always_throwing_invokes_;
622 
623   // Is the code known to be robust against eliminating dead references
624   // and the effects of early finalization? If false, dead reference variables
625   // are kept if they might be visible to the garbage collector.
626   // Currently this means that the class was declared to be dead-reference-safe,
627   // the method accesses no reachability-sensitive fields or data, and the same
628   // is true for any methods that were inlined into the current one.
629   bool dead_reference_safe_;
630 
631   // Indicates whether the graph should be compiled in a way that
632   // ensures full debuggability. If false, we can apply more
633   // aggressive optimizations that may limit the level of debugging.
634   const bool debuggable_;
635 
636   // The current id to assign to a newly added instruction. See HInstruction.id_.
637   int32_t current_instruction_id_;
638 
639   // The dex file from which the method is from.
640   const DexFile& dex_file_;
641 
642   // The method index in the dex file.
643   const uint32_t method_idx_;
644 
645   // If inlined, this encodes how the callee is being invoked.
646   const InvokeType invoke_type_;
647 
648   // Whether the graph has been transformed to SSA form. Only used
649   // in debug mode to ensure we are not using properties only valid
650   // for non-SSA form (like the number of temporaries).
651   bool in_ssa_form_;
652 
653   // Number of CHA guards in the graph. Used to short-circuit the
654   // CHA guard optimization pass when there is no CHA guard left.
655   uint32_t number_of_cha_guards_;
656 
657   const InstructionSet instruction_set_;
658 
659   // Cached constants.
660   HNullConstant* cached_null_constant_;
661   ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
662   ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
663   ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
664   ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
665 
666   HCurrentMethod* cached_current_method_;
667 
668   // The ArtMethod this graph is for. Note that for AOT, it may be null,
669   // for example for methods whose declaring class could not be resolved
670   // (such as when the superclass could not be found).
671   ArtMethod* art_method_;
672 
673   // The `ProfilingInfo` associated with the method being compiled.
674   ProfilingInfo* profiling_info_;
675 
676   // How we are compiling the graph: either optimized, osr, or baseline.
677   // For osr, we will make all loops seen as irreducible and emit special
678   // stack maps to mark compiled code entries which the interpreter can
679   // directly jump to.
680   const CompilationKind compilation_kind_;
681 
682   // Whether after compiling baseline it is still useful re-optimizing this
683   // method.
684   bool useful_optimizing_;
685 
686   // List of methods that are assumed to have single implementation.
687   ArenaSet<ArtMethod*> cha_single_implementation_list_;
688 
689   friend class SsaBuilder;           // For caching constants.
690   friend class SsaLivenessAnalysis;  // For the linear order.
691   friend class HInliner;             // For the reverse post order.
692   ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
693   DISALLOW_COPY_AND_ASSIGN(HGraph);
694 };
695 
696 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
697  public:
HLoopInformation(HBasicBlock * header,HGraph * graph)698   HLoopInformation(HBasicBlock* header, HGraph* graph)
699       : header_(header),
700         suspend_check_(nullptr),
701         irreducible_(false),
702         contains_irreducible_loop_(false),
703         back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)),
704         // Make bit vector growable, as the number of blocks may change.
705         blocks_(graph->GetAllocator(),
706                 graph->GetBlocks().size(),
707                 true,
708                 kArenaAllocLoopInfoBackEdges) {
709     back_edges_.reserve(kDefaultNumberOfBackEdges);
710   }
711 
IsIrreducible()712   bool IsIrreducible() const { return irreducible_; }
ContainsIrreducibleLoop()713   bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
714 
715   void Dump(std::ostream& os);
716 
GetHeader()717   HBasicBlock* GetHeader() const {
718     return header_;
719   }
720 
SetHeader(HBasicBlock * block)721   void SetHeader(HBasicBlock* block) {
722     header_ = block;
723   }
724 
GetSuspendCheck()725   HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
SetSuspendCheck(HSuspendCheck * check)726   void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
HasSuspendCheck()727   bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
728 
AddBackEdge(HBasicBlock * back_edge)729   void AddBackEdge(HBasicBlock* back_edge) {
730     back_edges_.push_back(back_edge);
731   }
732 
RemoveBackEdge(HBasicBlock * back_edge)733   void RemoveBackEdge(HBasicBlock* back_edge) {
734     RemoveElement(back_edges_, back_edge);
735   }
736 
IsBackEdge(const HBasicBlock & block)737   bool IsBackEdge(const HBasicBlock& block) const {
738     return ContainsElement(back_edges_, &block);
739   }
740 
NumberOfBackEdges()741   size_t NumberOfBackEdges() const {
742     return back_edges_.size();
743   }
744 
745   HBasicBlock* GetPreHeader() const;
746 
GetBackEdges()747   const ArenaVector<HBasicBlock*>& GetBackEdges() const {
748     return back_edges_;
749   }
750 
751   // Returns the lifetime position of the back edge that has the
752   // greatest lifetime position.
753   size_t GetLifetimeEnd() const;
754 
ReplaceBackEdge(HBasicBlock * existing,HBasicBlock * new_back_edge)755   void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
756     ReplaceElement(back_edges_, existing, new_back_edge);
757   }
758 
759   // Finds blocks that are part of this loop.
760   void Populate();
761 
762   // Updates blocks population of the loop and all of its outer' ones recursively after the
763   // population of the inner loop is updated.
764   void PopulateInnerLoopUpwards(HLoopInformation* inner_loop);
765 
766   // Returns whether this loop information contains `block`.
767   // Note that this loop information *must* be populated before entering this function.
768   bool Contains(const HBasicBlock& block) const;
769 
770   // Returns whether this loop information is an inner loop of `other`.
771   // Note that `other` *must* be populated before entering this function.
772   bool IsIn(const HLoopInformation& other) const;
773 
774   // Returns true if instruction is not defined within this loop.
775   bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
776 
GetBlocks()777   const ArenaBitVector& GetBlocks() const { return blocks_; }
778 
779   void Add(HBasicBlock* block);
780   void Remove(HBasicBlock* block);
781 
ClearAllBlocks()782   void ClearAllBlocks() {
783     blocks_.ClearAllBits();
784   }
785 
786   bool HasBackEdgeNotDominatedByHeader() const;
787 
IsPopulated()788   bool IsPopulated() const {
789     return blocks_.GetHighestBitSet() != -1;
790   }
791 
792   bool DominatesAllBackEdges(HBasicBlock* block);
793 
794   bool HasExitEdge() const;
795 
796   // Resets back edge and blocks-in-loop data.
ResetBasicBlockData()797   void ResetBasicBlockData() {
798     back_edges_.clear();
799     ClearAllBlocks();
800   }
801 
802  private:
803   // Internal recursive implementation of `Populate`.
804   void PopulateRecursive(HBasicBlock* block);
805   void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
806 
807   HBasicBlock* header_;
808   HSuspendCheck* suspend_check_;
809   bool irreducible_;
810   bool contains_irreducible_loop_;
811   ArenaVector<HBasicBlock*> back_edges_;
812   ArenaBitVector blocks_;
813 
814   DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
815 };
816 
817 // Stores try/catch information for basic blocks.
818 // Note that HGraph is constructed so that catch blocks cannot simultaneously
819 // be try blocks.
820 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
821  public:
822   // Try block information constructor.
TryCatchInformation(const HTryBoundary & try_entry)823   explicit TryCatchInformation(const HTryBoundary& try_entry)
824       : try_entry_(&try_entry),
825         catch_dex_file_(nullptr),
826         catch_type_index_(dex::TypeIndex::Invalid()) {
827     DCHECK(try_entry_ != nullptr);
828   }
829 
830   // Catch block information constructor.
TryCatchInformation(dex::TypeIndex catch_type_index,const DexFile & dex_file)831   TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file)
832       : try_entry_(nullptr),
833         catch_dex_file_(&dex_file),
834         catch_type_index_(catch_type_index) {}
835 
IsTryBlock()836   bool IsTryBlock() const { return try_entry_ != nullptr; }
837 
GetTryEntry()838   const HTryBoundary& GetTryEntry() const {
839     DCHECK(IsTryBlock());
840     return *try_entry_;
841   }
842 
IsCatchBlock()843   bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
844 
IsValidTypeIndex()845   bool IsValidTypeIndex() const {
846     DCHECK(IsCatchBlock());
847     return catch_type_index_.IsValid();
848   }
849 
GetCatchTypeIndex()850   dex::TypeIndex GetCatchTypeIndex() const {
851     DCHECK(IsCatchBlock());
852     return catch_type_index_;
853   }
854 
GetCatchDexFile()855   const DexFile& GetCatchDexFile() const {
856     DCHECK(IsCatchBlock());
857     return *catch_dex_file_;
858   }
859 
SetInvalidTypeIndex()860   void SetInvalidTypeIndex() {
861     catch_type_index_ = dex::TypeIndex::Invalid();
862   }
863 
864  private:
865   // One of possibly several TryBoundary instructions entering the block's try.
866   // Only set for try blocks.
867   const HTryBoundary* try_entry_;
868 
869   // Exception type information. Only set for catch blocks.
870   const DexFile* catch_dex_file_;
871   dex::TypeIndex catch_type_index_;
872 };
873 
874 static constexpr size_t kNoLifetime = -1;
875 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
876 
877 // A block in a method. Contains the list of instructions represented
878 // as a double linked list. Each block knows its predecessors and
879 // successors.
880 
881 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
882  public:
883   explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
graph_(graph)884       : graph_(graph),
885         predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)),
886         successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)),
887         loop_information_(nullptr),
888         dominator_(nullptr),
889         dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)),
890         block_id_(kInvalidBlockId),
891         dex_pc_(dex_pc),
892         lifetime_start_(kNoLifetime),
893         lifetime_end_(kNoLifetime),
894         try_catch_information_(nullptr) {
895     predecessors_.reserve(kDefaultNumberOfPredecessors);
896     successors_.reserve(kDefaultNumberOfSuccessors);
897     dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
898   }
899 
GetPredecessors()900   const ArenaVector<HBasicBlock*>& GetPredecessors() const {
901     return predecessors_;
902   }
903 
GetNumberOfPredecessors()904   size_t GetNumberOfPredecessors() const {
905     return GetPredecessors().size();
906   }
907 
GetSuccessors()908   const ArenaVector<HBasicBlock*>& GetSuccessors() const {
909     return successors_;
910   }
911 
912   ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
913   ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
914 
915   bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
916     return ContainsElement(successors_, block, start_from);
917   }
918 
GetDominatedBlocks()919   const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
920     return dominated_blocks_;
921   }
922 
IsEntryBlock()923   bool IsEntryBlock() const {
924     return graph_->GetEntryBlock() == this;
925   }
926 
IsExitBlock()927   bool IsExitBlock() const {
928     return graph_->GetExitBlock() == this;
929   }
930 
931   bool IsSingleGoto() const;
932   bool IsSingleReturn() const;
933   bool IsSingleReturnOrReturnVoidAllowingPhis() const;
934   bool IsSingleTryBoundary() const;
935 
936   // Returns true if this block emits nothing but a jump.
IsSingleJump()937   bool IsSingleJump() const {
938     HLoopInformation* loop_info = GetLoopInformation();
939     return (IsSingleGoto() || IsSingleTryBoundary())
940            // Back edges generate a suspend check.
941            && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
942   }
943 
AddBackEdge(HBasicBlock * back_edge)944   void AddBackEdge(HBasicBlock* back_edge) {
945     if (loop_information_ == nullptr) {
946       loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
947     }
948     DCHECK_EQ(loop_information_->GetHeader(), this);
949     loop_information_->AddBackEdge(back_edge);
950   }
951 
952   // Registers a back edge; if the block was not a loop header before the call associates a newly
953   // created loop info with it.
954   //
955   // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop
956   // info for all blocks during back edges recalculation.
AddBackEdgeWhileUpdating(HBasicBlock * back_edge)957   void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) {
958     if (loop_information_ == nullptr || loop_information_->GetHeader() != this) {
959       loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
960     }
961     loop_information_->AddBackEdge(back_edge);
962   }
963 
GetGraph()964   HGraph* GetGraph() const { return graph_; }
SetGraph(HGraph * graph)965   void SetGraph(HGraph* graph) { graph_ = graph; }
966 
GetBlockId()967   uint32_t GetBlockId() const { return block_id_; }
SetBlockId(int id)968   void SetBlockId(int id) { block_id_ = id; }
GetDexPc()969   uint32_t GetDexPc() const { return dex_pc_; }
970 
GetDominator()971   HBasicBlock* GetDominator() const { return dominator_; }
SetDominator(HBasicBlock * dominator)972   void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
AddDominatedBlock(HBasicBlock * block)973   void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
974 
RemoveDominatedBlock(HBasicBlock * block)975   void RemoveDominatedBlock(HBasicBlock* block) {
976     RemoveElement(dominated_blocks_, block);
977   }
978 
ReplaceDominatedBlock(HBasicBlock * existing,HBasicBlock * new_block)979   void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
980     ReplaceElement(dominated_blocks_, existing, new_block);
981   }
982 
983   void ClearDominanceInformation();
984 
NumberOfBackEdges()985   int NumberOfBackEdges() const {
986     return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
987   }
988 
GetFirstInstruction()989   HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
GetLastInstruction()990   HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
GetInstructions()991   const HInstructionList& GetInstructions() const { return instructions_; }
GetFirstPhi()992   HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
GetLastPhi()993   HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
GetPhis()994   const HInstructionList& GetPhis() const { return phis_; }
995 
996   HInstruction* GetFirstInstructionDisregardMoves() const;
997 
AddSuccessor(HBasicBlock * block)998   void AddSuccessor(HBasicBlock* block) {
999     successors_.push_back(block);
1000     block->predecessors_.push_back(this);
1001   }
1002 
ReplaceSuccessor(HBasicBlock * existing,HBasicBlock * new_block)1003   void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
1004     size_t successor_index = GetSuccessorIndexOf(existing);
1005     existing->RemovePredecessor(this);
1006     new_block->predecessors_.push_back(this);
1007     successors_[successor_index] = new_block;
1008   }
1009 
ReplacePredecessor(HBasicBlock * existing,HBasicBlock * new_block)1010   void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
1011     size_t predecessor_index = GetPredecessorIndexOf(existing);
1012     existing->RemoveSuccessor(this);
1013     new_block->successors_.push_back(this);
1014     predecessors_[predecessor_index] = new_block;
1015   }
1016 
1017   // Insert `this` between `predecessor` and `successor. This method
1018   // preserves the indices, and will update the first edge found between
1019   // `predecessor` and `successor`.
InsertBetween(HBasicBlock * predecessor,HBasicBlock * successor)1020   void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
1021     size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
1022     size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
1023     successor->predecessors_[predecessor_index] = this;
1024     predecessor->successors_[successor_index] = this;
1025     successors_.push_back(successor);
1026     predecessors_.push_back(predecessor);
1027   }
1028 
RemovePredecessor(HBasicBlock * block)1029   void RemovePredecessor(HBasicBlock* block) {
1030     predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
1031   }
1032 
RemoveSuccessor(HBasicBlock * block)1033   void RemoveSuccessor(HBasicBlock* block) {
1034     successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
1035   }
1036 
ClearAllPredecessors()1037   void ClearAllPredecessors() {
1038     predecessors_.clear();
1039   }
1040 
AddPredecessor(HBasicBlock * block)1041   void AddPredecessor(HBasicBlock* block) {
1042     predecessors_.push_back(block);
1043     block->successors_.push_back(this);
1044   }
1045 
SwapPredecessors()1046   void SwapPredecessors() {
1047     DCHECK_EQ(predecessors_.size(), 2u);
1048     std::swap(predecessors_[0], predecessors_[1]);
1049   }
1050 
SwapSuccessors()1051   void SwapSuccessors() {
1052     DCHECK_EQ(successors_.size(), 2u);
1053     std::swap(successors_[0], successors_[1]);
1054   }
1055 
GetPredecessorIndexOf(HBasicBlock * predecessor)1056   size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
1057     return IndexOfElement(predecessors_, predecessor);
1058   }
1059 
GetSuccessorIndexOf(HBasicBlock * successor)1060   size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
1061     return IndexOfElement(successors_, successor);
1062   }
1063 
GetSinglePredecessor()1064   HBasicBlock* GetSinglePredecessor() const {
1065     DCHECK_EQ(GetPredecessors().size(), 1u);
1066     return GetPredecessors()[0];
1067   }
1068 
GetSingleSuccessor()1069   HBasicBlock* GetSingleSuccessor() const {
1070     DCHECK_EQ(GetSuccessors().size(), 1u);
1071     return GetSuccessors()[0];
1072   }
1073 
1074   // Returns whether the first occurrence of `predecessor` in the list of
1075   // predecessors is at index `idx`.
IsFirstIndexOfPredecessor(HBasicBlock * predecessor,size_t idx)1076   bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
1077     DCHECK_EQ(GetPredecessors()[idx], predecessor);
1078     return GetPredecessorIndexOf(predecessor) == idx;
1079   }
1080 
1081   // Create a new block between this block and its predecessors. The new block
1082   // is added to the graph, all predecessor edges are relinked to it and an edge
1083   // is created to `this`. Returns the new empty block. Reverse post order or
1084   // loop and try/catch information are not updated.
1085   HBasicBlock* CreateImmediateDominator();
1086 
1087   // Split the block into two blocks just before `cursor`. Returns the newly
1088   // created, latter block. Note that this method will add the block to the
1089   // graph, create a Goto at the end of the former block and will create an edge
1090   // between the blocks. It will not, however, update the reverse post order or
1091   // loop and try/catch information.
1092   HBasicBlock* SplitBefore(HInstruction* cursor, bool require_graph_not_in_ssa_form = true);
1093 
1094   // Split the block into two blocks just before `cursor`. Returns the newly
1095   // created block. Note that this method just updates raw block information,
1096   // like predecessors, successors, dominators, and instruction list. It does not
1097   // update the graph, reverse post order, loop information, nor make sure the
1098   // blocks are consistent (for example ending with a control flow instruction).
1099   HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
1100 
1101   // Similar to `SplitBeforeForInlining` but does it after `cursor`.
1102   HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
1103 
1104   // Merge `other` at the end of `this`. Successors and dominated blocks of
1105   // `other` are changed to be successors and dominated blocks of `this`. Note
1106   // that this method does not update the graph, reverse post order, loop
1107   // information, nor make sure the blocks are consistent (for example ending
1108   // with a control flow instruction).
1109   void MergeWithInlined(HBasicBlock* other);
1110 
1111   // Replace `this` with `other`. Predecessors, successors, and dominated blocks
1112   // of `this` are moved to `other`.
1113   // Note that this method does not update the graph, reverse post order, loop
1114   // information, nor make sure the blocks are consistent (for example ending
1115   // with a control flow instruction).
1116   void ReplaceWith(HBasicBlock* other);
1117 
1118   // Merges the instructions of `other` at the end of `this`.
1119   void MergeInstructionsWith(HBasicBlock* other);
1120 
1121   // Merge `other` at the end of `this`. This method updates loops, reverse post
1122   // order, links to predecessors, successors, dominators and deletes the block
1123   // from the graph. The two blocks must be successive, i.e. `this` the only
1124   // predecessor of `other` and vice versa.
1125   void MergeWith(HBasicBlock* other);
1126 
1127   // Disconnects `this` from all its predecessors, successors and dominator,
1128   // removes it from all loops it is included in and eventually from the graph.
1129   // The block must not dominate any other block. Predecessors and successors
1130   // are safely updated.
1131   void DisconnectAndDelete();
1132 
1133   // Disconnects `this` from all its successors and updates their phis, if the successors have them.
1134   // If `visited` is provided, it will use the information to know if a successor is reachable and
1135   // skip updating those phis.
1136   void DisconnectFromSuccessors(BitVectorView<const size_t> visited = {});
1137 
1138   // Removes the catch phi uses of the instructions in `this`, and then remove the instruction
1139   // itself. If `building_dominator_tree` is true, it will not remove the instruction as user, since
1140   // we do it in a previous step. This is a special case for building up the dominator tree: we want
1141   // to eliminate uses before inputs but we don't have domination information, so we remove all
1142   // connections from input/uses first before removing any instruction.
1143   // This method assumes the instructions have been removed from all users with the exception of
1144   // catch phis because of missing exceptional edges in the graph.
1145   void RemoveCatchPhiUsesAndInstruction(bool building_dominator_tree);
1146 
1147   void AddInstruction(HInstruction* instruction);
1148   // Insert `instruction` before/after an existing instruction `cursor`.
1149   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1150   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1151   // Replace phi `initial` with `replacement` within this block.
1152   void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement);
1153   // Replace instruction `initial` with `replacement` within this block.
1154   void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1155                                        HInstruction* replacement);
1156   void AddPhi(HPhi* phi);
1157   void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1158   // RemoveInstruction and RemovePhi delete a given instruction from the respective
1159   // instruction list. With 'ensure_safety' set to true, it verifies that the
1160   // instruction is not in use and removes it from the use lists of its inputs.
1161   void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1162   void RemovePhi(HPhi* phi, bool ensure_safety = true);
1163   void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1164 
IsLoopHeader()1165   bool IsLoopHeader() const {
1166     return IsInLoop() && (loop_information_->GetHeader() == this);
1167   }
1168 
IsLoopPreHeaderFirstPredecessor()1169   bool IsLoopPreHeaderFirstPredecessor() const {
1170     DCHECK(IsLoopHeader());
1171     return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1172   }
1173 
IsFirstPredecessorBackEdge()1174   bool IsFirstPredecessorBackEdge() const {
1175     DCHECK(IsLoopHeader());
1176     return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1177   }
1178 
GetLoopInformation()1179   HLoopInformation* GetLoopInformation() const {
1180     return loop_information_;
1181   }
1182 
1183   // Set the loop_information_ on this block. Overrides the current
1184   // loop_information if it is an outer loop of the passed loop information.
1185   // Note that this method is called while creating the loop information.
SetInLoop(HLoopInformation * info)1186   void SetInLoop(HLoopInformation* info) {
1187     if (IsLoopHeader()) {
1188       // Nothing to do. This just means `info` is an outer loop.
1189     } else if (!IsInLoop()) {
1190       loop_information_ = info;
1191     } else if (loop_information_->Contains(*info->GetHeader())) {
1192       // Block is currently part of an outer loop. Make it part of this inner loop.
1193       // Note that a non loop header having a loop information means this loop information
1194       // has already been populated
1195       loop_information_ = info;
1196     } else {
1197       // Block is part of an inner loop. Do not update the loop information.
1198       // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1199       // at this point, because this method is being called while populating `info`.
1200     }
1201   }
1202 
1203   // Raw update of the loop information.
SetLoopInformation(HLoopInformation * info)1204   void SetLoopInformation(HLoopInformation* info) {
1205     loop_information_ = info;
1206   }
1207 
IsInLoop()1208   bool IsInLoop() const { return loop_information_ != nullptr; }
1209 
GetTryCatchInformation()1210   TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1211 
SetTryCatchInformation(TryCatchInformation * try_catch_information)1212   void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1213     try_catch_information_ = try_catch_information;
1214   }
1215 
IsTryBlock()1216   bool IsTryBlock() const {
1217     return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1218   }
1219 
IsCatchBlock()1220   bool IsCatchBlock() const {
1221     return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1222   }
1223 
1224   // Returns the try entry that this block's successors should have. They will
1225   // be in the same try, unless the block ends in a try boundary. In that case,
1226   // the appropriate try entry will be returned.
1227   const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1228 
1229   bool HasThrowingInstructions() const;
1230 
1231   // Returns whether this block dominates the blocked passed as parameter.
1232   bool Dominates(const HBasicBlock* block) const;
1233 
GetLifetimeStart()1234   size_t GetLifetimeStart() const { return lifetime_start_; }
GetLifetimeEnd()1235   size_t GetLifetimeEnd() const { return lifetime_end_; }
1236 
SetLifetimeStart(size_t start)1237   void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
SetLifetimeEnd(size_t end)1238   void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1239 
1240   bool EndsWithControlFlowInstruction() const;
1241   bool EndsWithReturn() const;
1242   bool EndsWithIf() const;
1243   bool EndsWithTryBoundary() const;
1244   bool HasSinglePhi() const;
1245 
1246  private:
1247   HGraph* graph_;
1248   ArenaVector<HBasicBlock*> predecessors_;
1249   ArenaVector<HBasicBlock*> successors_;
1250   HInstructionList instructions_;
1251   HInstructionList phis_;
1252   HLoopInformation* loop_information_;
1253   HBasicBlock* dominator_;
1254   ArenaVector<HBasicBlock*> dominated_blocks_;
1255   uint32_t block_id_;
1256   // The dex program counter of the first instruction of this block.
1257   const uint32_t dex_pc_;
1258   size_t lifetime_start_;
1259   size_t lifetime_end_;
1260   TryCatchInformation* try_catch_information_;
1261 
1262   friend class HGraph;
1263   friend class HInstruction;
1264   // Allow manual control of the ordering of predecessors/successors
1265   friend class OptimizingUnitTestHelper;
1266 
1267   DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1268 };
1269 
1270 // Iterates over the LoopInformation of all loops which contain 'block'
1271 // from the innermost to the outermost.
1272 class HLoopInformationOutwardIterator : public ValueObject {
1273  public:
HLoopInformationOutwardIterator(const HBasicBlock & block)1274   explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1275       : current_(block.GetLoopInformation()) {}
1276 
Done()1277   bool Done() const { return current_ == nullptr; }
1278 
Advance()1279   void Advance() {
1280     DCHECK(!Done());
1281     current_ = current_->GetPreHeader()->GetLoopInformation();
1282   }
1283 
Current()1284   HLoopInformation* Current() const {
1285     DCHECK(!Done());
1286     return current_;
1287   }
1288 
1289  private:
1290   HLoopInformation* current_;
1291 
1292   DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1293 };
1294 
1295 #define FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M)                  \
1296   M(Above, Condition)                                                   \
1297   M(AboveOrEqual, Condition)                                            \
1298   M(Abs, UnaryOperation)                                                \
1299   M(Add, BinaryOperation)                                               \
1300   M(And, BinaryOperation)                                               \
1301   M(ArrayGet, Instruction)                                              \
1302   M(ArrayLength, Instruction)                                           \
1303   M(ArraySet, Instruction)                                              \
1304   M(Below, Condition)                                                   \
1305   M(BelowOrEqual, Condition)                                            \
1306   M(BitwiseNegatedRight, BinaryOperation)                               \
1307   M(BooleanNot, UnaryOperation)                                         \
1308   M(BoundsCheck, Instruction)                                           \
1309   M(BoundType, Instruction)                                             \
1310   M(CheckCast, Instruction)                                             \
1311   M(ClassTableGet, Instruction)                                         \
1312   M(ClearException, Instruction)                                        \
1313   M(ClinitCheck, Instruction)                                           \
1314   M(Compare, BinaryOperation)                                           \
1315   M(ConstructorFence, Instruction)                                      \
1316   M(CurrentMethod, Instruction)                                         \
1317   M(ShouldDeoptimizeFlag, Instruction)                                  \
1318   M(Deoptimize, Instruction)                                            \
1319   M(Div, BinaryOperation)                                               \
1320   M(DivZeroCheck, Instruction)                                          \
1321   M(DoubleConstant, Constant)                                           \
1322   M(Equal, Condition)                                                   \
1323   M(Exit, Instruction)                                                  \
1324   M(FloatConstant, Constant)                                            \
1325   M(Goto, Instruction)                                                  \
1326   M(GreaterThan, Condition)                                             \
1327   M(GreaterThanOrEqual, Condition)                                      \
1328   M(If, Instruction)                                                    \
1329   M(InstanceFieldGet, FieldAccess)                                      \
1330   M(InstanceFieldSet, FieldAccess)                                      \
1331   M(InstanceOf, Instruction)                                            \
1332   M(IntConstant, Constant)                                              \
1333   M(IntermediateAddress, Instruction)                                   \
1334   M(InvokeUnresolved, Invoke)                                           \
1335   M(InvokeInterface, Invoke)                                            \
1336   M(InvokeStaticOrDirect, Invoke)                                       \
1337   M(InvokeVirtual, Invoke)                                              \
1338   M(InvokePolymorphic, Invoke)                                          \
1339   M(InvokeCustom, Invoke)                                               \
1340   M(LessThan, Condition)                                                \
1341   M(LessThanOrEqual, Condition)                                         \
1342   M(LoadClass, Instruction)                                             \
1343   M(LoadException, Instruction)                                         \
1344   M(LoadMethodHandle, Instruction)                                      \
1345   M(LoadMethodType, Instruction)                                        \
1346   M(LoadString, Instruction)                                            \
1347   M(LongConstant, Constant)                                             \
1348   M(Max, Instruction)                                                   \
1349   M(MemoryBarrier, Instruction)                                         \
1350   M(MethodEntryHook, Instruction)                                       \
1351   M(MethodExitHook, Instruction)                                        \
1352   M(Min, BinaryOperation)                                               \
1353   M(MonitorOperation, Instruction)                                      \
1354   M(Mul, BinaryOperation)                                               \
1355   M(Neg, UnaryOperation)                                                \
1356   M(NewArray, Instruction)                                              \
1357   M(NewInstance, Instruction)                                           \
1358   M(Nop, Instruction)                                                   \
1359   M(Not, UnaryOperation)                                                \
1360   M(NotEqual, Condition)                                                \
1361   M(NullConstant, Instruction)                                          \
1362   M(NullCheck, Instruction)                                             \
1363   M(Or, BinaryOperation)                                                \
1364   M(PackedSwitch, Instruction)                                          \
1365   M(ParallelMove, Instruction)                                          \
1366   M(ParameterValue, Instruction)                                        \
1367   M(Phi, Instruction)                                                   \
1368   M(Rem, BinaryOperation)                                               \
1369   M(Return, Instruction)                                                \
1370   M(ReturnVoid, Instruction)                                            \
1371   M(Rol, BinaryOperation)                                               \
1372   M(Ror, BinaryOperation)                                               \
1373   M(Shl, BinaryOperation)                                               \
1374   M(Shr, BinaryOperation)                                               \
1375   M(StaticFieldGet, FieldAccess)                                        \
1376   M(StaticFieldSet, FieldAccess)                                        \
1377   M(StringBuilderAppend, Instruction)                                   \
1378   M(UnresolvedInstanceFieldGet, Instruction)                            \
1379   M(UnresolvedInstanceFieldSet, Instruction)                            \
1380   M(UnresolvedStaticFieldGet, Instruction)                              \
1381   M(UnresolvedStaticFieldSet, Instruction)                              \
1382   M(Select, Instruction)                                                \
1383   M(Sub, BinaryOperation)                                               \
1384   M(SuspendCheck, Instruction)                                          \
1385   M(Throw, Instruction)                                                 \
1386   M(TryBoundary, Instruction)                                           \
1387   M(TypeConversion, Instruction)                                        \
1388   M(UShr, BinaryOperation)                                              \
1389   M(Xor, BinaryOperation)
1390 
1391 #define FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M)                  \
1392   M(VecReplicateScalar, VecUnaryOperation)                              \
1393   M(VecExtractScalar, VecUnaryOperation)                                \
1394   M(VecReduce, VecUnaryOperation)                                       \
1395   M(VecCnv, VecUnaryOperation)                                          \
1396   M(VecNeg, VecUnaryOperation)                                          \
1397   M(VecAbs, VecUnaryOperation)                                          \
1398   M(VecNot, VecUnaryOperation)                                          \
1399   M(VecAdd, VecBinaryOperation)                                         \
1400   M(VecHalvingAdd, VecBinaryOperation)                                  \
1401   M(VecSub, VecBinaryOperation)                                         \
1402   M(VecMul, VecBinaryOperation)                                         \
1403   M(VecDiv, VecBinaryOperation)                                         \
1404   M(VecMin, VecBinaryOperation)                                         \
1405   M(VecMax, VecBinaryOperation)                                         \
1406   M(VecAnd, VecBinaryOperation)                                         \
1407   M(VecAndNot, VecBinaryOperation)                                      \
1408   M(VecOr, VecBinaryOperation)                                          \
1409   M(VecXor, VecBinaryOperation)                                         \
1410   M(VecSaturationAdd, VecBinaryOperation)                               \
1411   M(VecSaturationSub, VecBinaryOperation)                               \
1412   M(VecShl, VecBinaryOperation)                                         \
1413   M(VecShr, VecBinaryOperation)                                         \
1414   M(VecUShr, VecBinaryOperation)                                        \
1415   M(VecSetScalars, VecOperation)                                        \
1416   M(VecMultiplyAccumulate, VecOperation)                                \
1417   M(VecSADAccumulate, VecOperation)                                     \
1418   M(VecDotProd, VecOperation)                                           \
1419   M(VecLoad, VecMemoryOperation)                                        \
1420   M(VecStore, VecMemoryOperation)                                       \
1421   M(VecPredSetAll, VecPredSetOperation)                                 \
1422   M(VecPredWhile, VecPredSetOperation)                                  \
1423   M(VecPredToBoolean, VecOperation)                                     \
1424   M(VecEqual, VecCondition)                                             \
1425   M(VecNotEqual, VecCondition)                                          \
1426   M(VecLessThan, VecCondition)                                          \
1427   M(VecLessThanOrEqual, VecCondition)                                   \
1428   M(VecGreaterThan, VecCondition)                                       \
1429   M(VecGreaterThanOrEqual, VecCondition)                                \
1430   M(VecBelow, VecCondition)                                             \
1431   M(VecBelowOrEqual, VecCondition)                                      \
1432   M(VecAbove, VecCondition)                                             \
1433   M(VecAboveOrEqual, VecCondition)                                      \
1434   M(VecPredNot, VecPredSetOperation)
1435 
1436 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1437   FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M)                        \
1438   FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M)
1439 
1440 /*
1441  * Instructions, shared across several (not all) architectures.
1442  */
1443 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
1444 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
1445 #else
1446 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                         \
1447   M(DataProcWithShifterOp, Instruction)                                 \
1448   M(MultiplyAccumulate, Instruction)                                    \
1449   M(IntermediateAddressIndex, Instruction)
1450 #endif
1451 
1452 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1453 
1454 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1455 
1456 #if defined(ART_ENABLE_CODEGEN_riscv64)
1457 #define FOR_EACH_CONCRETE_INSTRUCTION_RISCV64(M) M(Riscv64ShiftAdd, Instruction)
1458 #else
1459 #define FOR_EACH_CONCRETE_INSTRUCTION_RISCV64(M)
1460 #endif
1461 
1462 #ifndef ART_ENABLE_CODEGEN_x86
1463 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1464 #else
1465 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1466   M(X86ComputeBaseMethodAddress, Instruction)                           \
1467   M(X86LoadFromConstantTable, Instruction)                              \
1468   M(X86FPNeg, Instruction)                                              \
1469   M(X86PackedSwitch, Instruction)
1470 #endif
1471 
1472 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
1473 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)                     \
1474   M(X86AndNot, Instruction)                                             \
1475   M(X86MaskOrResetLeastSetBit, Instruction)
1476 #else
1477 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1478 #endif
1479 
1480 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1481 
1482 #define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1483   FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1484   FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                               \
1485   FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1486   FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1487   FOR_EACH_CONCRETE_INSTRUCTION_RISCV64(M)                              \
1488   FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1489   FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)                               \
1490   FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1491 
1492 #define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \
1493   M(Condition, BinaryOperation)                                         \
1494   M(Constant, Instruction)                                              \
1495   M(UnaryOperation, Instruction)                                        \
1496   M(BinaryOperation, Instruction)                                       \
1497   M(FieldAccess, Instruction)                                           \
1498   M(Invoke, Instruction)                                                \
1499   M(VecOperation, Instruction)                                          \
1500   M(VecUnaryOperation, VecOperation)                                    \
1501   M(VecBinaryOperation, VecOperation)                                   \
1502   M(VecMemoryOperation, VecOperation)                                   \
1503   M(VecPredSetOperation, VecOperation)                                  \
1504   M(VecCondition, VecPredSetOperation)
1505 
1506 #define FOR_EACH_INSTRUCTION(M)                                         \
1507   FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1508   FOR_EACH_ABSTRACT_INSTRUCTION(M)
1509 
1510 #define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)1511 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1512 #undef FORWARD_DECLARATION
1513 
1514 #define DECLARE_INSTRUCTION(type)                                         \
1515   private:                                                                \
1516   H##type& operator=(const H##type&) = delete;                            \
1517   public:                                                                 \
1518   const char* DebugName() const override { return #type; }                \
1519   HInstruction* Clone(ArenaAllocator* arena) const override {             \
1520     DCHECK(IsClonable());                                                 \
1521     return new (arena) H##type(*this);                                    \
1522   }                                                                       \
1523   void Accept(HGraphVisitor* visitor) override
1524 
1525 #define DECLARE_ABSTRACT_INSTRUCTION(type)                              \
1526   private:                                                              \
1527   H##type& operator=(const H##type&) = delete;                          \
1528   public:
1529 
1530 #define DEFAULT_COPY_CONSTRUCTOR(type) H##type(const H##type& other) = default;
1531 
1532 template <typename T>
1533 class HUseListNode : public ArenaObject<kArenaAllocUseListNode>,
1534                      public IntrusiveForwardListNode<HUseListNode<T>> {
1535  public:
1536   // Get the instruction which has this use as one of the inputs.
1537   T GetUser() const { return user_; }
1538   // Get the position of the input record that this use corresponds to.
1539   size_t GetIndex() const { return index_; }
1540   // Set the position of the input record that this use corresponds to.
1541   void SetIndex(size_t index) { index_ = index; }
1542 
1543  private:
1544   HUseListNode(T user, size_t index)
1545       : user_(user), index_(index) {}
1546 
1547   T const user_;
1548   size_t index_;
1549 
1550   friend class HInstruction;
1551 
1552   DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1553 };
1554 
1555 template <typename T>
1556 using HUseList = IntrusiveForwardList<HUseListNode<T>>;
1557 
1558 // This class is used by HEnvironment and HInstruction classes to record the
1559 // instructions they use and pointers to the corresponding HUseListNodes kept
1560 // by the used instructions.
1561 template <typename T>
1562 class HUserRecord : public ValueObject {
1563  public:
HUserRecord()1564   HUserRecord() : instruction_(nullptr), before_use_node_() {}
HUserRecord(HInstruction * instruction)1565   explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
1566 
HUserRecord(const HUserRecord<T> & old_record,typename HUseList<T>::iterator before_use_node)1567   HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
1568       : HUserRecord(old_record.instruction_, before_use_node) {}
HUserRecord(HInstruction * instruction,typename HUseList<T>::iterator before_use_node)1569   HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
1570       : instruction_(instruction), before_use_node_(before_use_node) {
1571     DCHECK(instruction_ != nullptr);
1572   }
1573 
GetInstruction()1574   HInstruction* GetInstruction() const { return instruction_; }
GetBeforeUseNode()1575   typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
GetUseNode()1576   typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
1577 
1578  private:
1579   // Instruction used by the user.
1580   HInstruction* instruction_;
1581 
1582   // Iterator before the corresponding entry in the use list kept by 'instruction_'.
1583   typename HUseList<T>::iterator before_use_node_;
1584 };
1585 
1586 // Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
1587 // This is used for HInstruction::GetInputs() to return a container wrapper providing
1588 // HInstruction* values even though the underlying container has HUserRecord<>s.
1589 struct HInputExtractor {
operatorHInputExtractor1590   HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
1591     return record.GetInstruction();
1592   }
operatorHInputExtractor1593   const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
1594     return record.GetInstruction();
1595   }
1596 };
1597 
1598 using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
1599 using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
1600 
1601 /**
1602  * Side-effects representation.
1603  *
1604  * For write/read dependences on fields/arrays, the dependence analysis uses
1605  * type disambiguation (e.g. a float field write cannot modify the value of an
1606  * integer field read) and the access type (e.g.  a reference array write cannot
1607  * modify the value of a reference field read [although it may modify the
1608  * reference fetch prior to reading the field, which is represented by its own
1609  * write/read dependence]). The analysis makes conservative points-to
1610  * assumptions on reference types (e.g. two same typed arrays are assumed to be
1611  * the same, and any reference read depends on any reference read without
1612  * further regard of its type).
1613  *
1614  * kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be
1615  * alive across the point where garbage collection might happen.
1616  *
1617  * Note: Instructions with kCanTriggerGCBit do not depend on each other.
1618  *
1619  * kCanTriggerGCBit must be used for instructions for which GC might happen on the path across
1620  * those instructions from the compiler perspective (between this instruction and the next one
1621  * in the IR).
1622  *
1623  * Note: Instructions which can cause GC only on a fatal slow path do not need
1624  *       kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional
1625  *       one. However the execution may return to compiled code if there is a catch block in the
1626  *       current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit
1627  *       set.
1628  *
1629  * The internal representation uses 38-bit and is described in the table below.
1630  * The first line indicates the side effect, and for field/array accesses the
1631  * second line indicates the type of the access (in the order of the
1632  * DataType::Type enum).
1633  * The two numbered lines below indicate the bit position in the bitfield (read
1634  * vertically).
1635  *
1636  *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1637  *   +-------------+---------+---------+--------------+---------+---------+
1638  *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1639  *   |      3      |333333322|222222221|       1      |111111110|000000000|
1640  *   |      7      |654321098|765432109|       8      |765432109|876543210|
1641  *
1642  * Note that, to ease the implementation, 'changes' bits are least significant
1643  * bits, while 'dependency' bits are most significant bits.
1644  */
1645 class SideEffects : public ValueObject {
1646  public:
SideEffects()1647   SideEffects() : flags_(0) {}
1648 
None()1649   static SideEffects None() {
1650     return SideEffects(0);
1651   }
1652 
All()1653   static SideEffects All() {
1654     return SideEffects(kAllChangeBits | kAllDependOnBits);
1655   }
1656 
AllChanges()1657   static SideEffects AllChanges() {
1658     return SideEffects(kAllChangeBits);
1659   }
1660 
AllDependencies()1661   static SideEffects AllDependencies() {
1662     return SideEffects(kAllDependOnBits);
1663   }
1664 
AllExceptGCDependency()1665   static SideEffects AllExceptGCDependency() {
1666     return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1667   }
1668 
AllWritesAndReads()1669   static SideEffects AllWritesAndReads() {
1670     return SideEffects(kAllWrites | kAllReads);
1671   }
1672 
AllWrites()1673   static SideEffects AllWrites() {
1674     return SideEffects(kAllWrites);
1675   }
1676 
AllReads()1677   static SideEffects AllReads() {
1678     return SideEffects(kAllReads);
1679   }
1680 
FieldWriteOfType(DataType::Type type,bool is_volatile)1681   static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) {
1682     return is_volatile
1683         ? AllWritesAndReads()
1684         : SideEffects(TypeFlag(type, kFieldWriteOffset));
1685   }
1686 
ArrayWriteOfType(DataType::Type type)1687   static SideEffects ArrayWriteOfType(DataType::Type type) {
1688     return SideEffects(TypeFlag(type, kArrayWriteOffset));
1689   }
1690 
FieldReadOfType(DataType::Type type,bool is_volatile)1691   static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) {
1692     return is_volatile
1693         ? AllWritesAndReads()
1694         : SideEffects(TypeFlag(type, kFieldReadOffset));
1695   }
1696 
ArrayReadOfType(DataType::Type type)1697   static SideEffects ArrayReadOfType(DataType::Type type) {
1698     return SideEffects(TypeFlag(type, kArrayReadOffset));
1699   }
1700 
1701   // Returns whether GC might happen across this instruction from the compiler perspective so
1702   // the next instruction in the IR would see that.
1703   //
1704   // See the SideEffect class comments.
CanTriggerGC()1705   static SideEffects CanTriggerGC() {
1706     return SideEffects(1ULL << kCanTriggerGCBit);
1707   }
1708 
1709   // Returns whether the instruction must not be alive across a GC point.
1710   //
1711   // See the SideEffect class comments.
DependsOnGC()1712   static SideEffects DependsOnGC() {
1713     return SideEffects(1ULL << kDependsOnGCBit);
1714   }
1715 
1716   // Combines the side-effects of this and the other.
Union(SideEffects other)1717   SideEffects Union(SideEffects other) const {
1718     return SideEffects(flags_ | other.flags_);
1719   }
1720 
Exclusion(SideEffects other)1721   SideEffects Exclusion(SideEffects other) const {
1722     return SideEffects(flags_ & ~other.flags_);
1723   }
1724 
Add(SideEffects other)1725   void Add(SideEffects other) {
1726     flags_ |= other.flags_;
1727   }
1728 
Includes(SideEffects other)1729   bool Includes(SideEffects other) const {
1730     return (other.flags_ & flags_) == other.flags_;
1731   }
1732 
HasSideEffects()1733   bool HasSideEffects() const {
1734     return (flags_ & kAllChangeBits) != 0u;
1735   }
1736 
HasDependencies()1737   bool HasDependencies() const {
1738     return (flags_ & kAllDependOnBits) != 0u;
1739   }
1740 
1741   // Returns true if there are no side effects or dependencies.
DoesNothing()1742   bool DoesNothing() const {
1743     return flags_ == 0u;
1744   }
1745 
1746   // Returns true if something is written.
DoesAnyWrite()1747   bool DoesAnyWrite() const {
1748     return (flags_ & kAllWrites) != 0u;
1749   }
1750 
1751   // Returns true if something is read.
DoesAnyRead()1752   bool DoesAnyRead() const {
1753     return (flags_ & kAllReads) != 0u;
1754   }
1755 
1756   // Returns true if potentially everything is written and read
1757   // (every type and every kind of access).
DoesAllReadWrite()1758   bool DoesAllReadWrite() const {
1759     return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1760   }
1761 
DoesAll()1762   bool DoesAll() const {
1763     return flags_ == (kAllChangeBits | kAllDependOnBits);
1764   }
1765 
1766   // Returns true if `this` may read something written by `other`.
MayDependOn(SideEffects other)1767   bool MayDependOn(SideEffects other) const {
1768     const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1769     return (other.flags_ & depends_on_flags) != 0u;
1770   }
1771 
1772   // Returns string representation of flags (for debugging only).
1773   // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
ToString()1774   std::string ToString() const {
1775     std::string flags = "|";
1776     for (int s = kLastBit; s >= 0; s--) {
1777       bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1778       if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1779         // This is a bit for the GC side effect.
1780         if (current_bit_is_set) {
1781           flags += "GC";
1782         }
1783         flags += "|";
1784       } else {
1785         // This is a bit for the array/field analysis.
1786         // The underscore character stands for the 'can trigger GC' bit.
1787         static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1788         if (current_bit_is_set) {
1789           flags += kDebug[s];
1790         }
1791         if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1792             (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1793           flags += "|";
1794         }
1795       }
1796     }
1797     return flags;
1798   }
1799 
Equals(const SideEffects & other)1800   bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1801 
1802  private:
1803   static constexpr int kFieldArrayAnalysisBits = 9;
1804 
1805   static constexpr int kFieldWriteOffset = 0;
1806   static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1807   static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1808   static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1809 
1810   static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1811 
1812   static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1813   static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1814   static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1815   static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1816 
1817   static constexpr int kLastBit = kDependsOnGCBit;
1818   static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1819 
1820   // Aliases.
1821 
1822   static_assert(kChangeBits == kDependOnBits,
1823                 "the 'change' bits should match the 'depend on' bits.");
1824 
1825   static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1826   static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1827   static constexpr uint64_t kAllWrites =
1828       ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1829   static constexpr uint64_t kAllReads =
1830       ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1831 
1832   // Translates type to bit flag. The type must correspond to a Java type.
TypeFlag(DataType::Type type,int offset)1833   static uint64_t TypeFlag(DataType::Type type, int offset) {
1834     int shift;
1835     switch (type) {
1836       case DataType::Type::kReference: shift = 0; break;
1837       case DataType::Type::kBool:      shift = 1; break;
1838       case DataType::Type::kInt8:      shift = 2; break;
1839       case DataType::Type::kUint16:    shift = 3; break;
1840       case DataType::Type::kInt16:     shift = 4; break;
1841       case DataType::Type::kInt32:     shift = 5; break;
1842       case DataType::Type::kInt64:     shift = 6; break;
1843       case DataType::Type::kFloat32:   shift = 7; break;
1844       case DataType::Type::kFloat64:   shift = 8; break;
1845       default:
1846         LOG(FATAL) << "Unexpected data type " << type;
1847         UNREACHABLE();
1848     }
1849     DCHECK_LE(kFieldWriteOffset, shift);
1850     DCHECK_LT(shift, kArrayWriteOffset);
1851     return UINT64_C(1) << (shift + offset);
1852   }
1853 
1854   // Private constructor on direct flags value.
SideEffects(uint64_t flags)1855   explicit SideEffects(uint64_t flags) : flags_(flags) {}
1856 
1857   uint64_t flags_;
1858 };
1859 
1860 // A HEnvironment object contains the values of virtual registers at a given location.
1861 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1862  public:
Create(ArenaAllocator * allocator,size_t number_of_vregs,ArtMethod * method,uint32_t dex_pc,HInstruction * holder)1863   static HEnvironment* Create(ArenaAllocator* allocator,
1864                               size_t number_of_vregs,
1865                               ArtMethod* method,
1866                               uint32_t dex_pc,
1867                               HInstruction* holder) {
1868     // The storage for vreg records is allocated right after the `HEnvironment` itself.
1869     static_assert(IsAligned<alignof(HUserRecord<HEnvironment*>)>(sizeof(HEnvironment)));
1870     static_assert(IsAligned<alignof(HUserRecord<HEnvironment*>)>(ArenaAllocator::kAlignment));
1871     size_t alloc_size = sizeof(HEnvironment) + number_of_vregs * sizeof(HUserRecord<HEnvironment*>);
1872     void* storage = allocator->Alloc(alloc_size, kArenaAllocEnvironment);
1873     return new (storage) HEnvironment(number_of_vregs, method, dex_pc, holder);
1874   }
1875 
Create(ArenaAllocator * allocator,const HEnvironment & to_copy,HInstruction * holder)1876   static HEnvironment* Create(ArenaAllocator* allocator,
1877                               const HEnvironment& to_copy,
1878                               HInstruction* holder) {
1879     return Create(allocator, to_copy.Size(), to_copy.GetMethod(), to_copy.GetDexPc(), holder);
1880   }
1881 
AllocateLocations(ArenaAllocator * allocator)1882   void AllocateLocations(ArenaAllocator* allocator) {
1883     DCHECK(locations_ == nullptr);
1884     if (Size() != 0u) {
1885       locations_ = allocator->AllocArray<Location>(Size(), kArenaAllocEnvironmentLocations);
1886     }
1887   }
1888 
SetAndCopyParentChain(ArenaAllocator * allocator,HEnvironment * parent)1889   void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1890     if (parent_ != nullptr) {
1891       parent_->SetAndCopyParentChain(allocator, parent);
1892     } else {
1893       parent_ = Create(allocator, *parent, holder_);
1894       parent_->CopyFrom(allocator, parent);
1895       if (parent->GetParent() != nullptr) {
1896         parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1897       }
1898     }
1899   }
1900 
1901   void CopyFrom(ArenaAllocator* allocator, ArrayRef<HInstruction* const> locals);
1902   void CopyFrom(ArenaAllocator* allocator, const HEnvironment* environment);
1903 
1904   // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1905   // input to the loop phi instead. This is for inserting instructions that
1906   // require an environment (like HDeoptimization) in the loop pre-header.
1907   void CopyFromWithLoopPhiAdjustment(ArenaAllocator* allocator,
1908                                      HEnvironment* env,
1909                                      HBasicBlock* loop_header);
1910 
SetRawEnvAt(size_t index,HInstruction * instruction)1911   void SetRawEnvAt(size_t index, HInstruction* instruction) {
1912     GetVRegs()[index] = HUserRecord<HEnvironment*>(instruction);
1913   }
1914 
GetInstructionAt(size_t index)1915   HInstruction* GetInstructionAt(size_t index) const {
1916     return GetVRegs()[index].GetInstruction();
1917   }
1918 
1919   void RemoveAsUserOfInput(size_t index) const;
1920 
1921   // Replaces the input at the position 'index' with the replacement; the replacement and old
1922   // input instructions' env_uses_ lists are adjusted. The function works similar to
1923   // HInstruction::ReplaceInput.
1924   void ReplaceInput(HInstruction* replacement, size_t index);
1925 
Size()1926   size_t Size() const { return number_of_vregs_; }
1927 
GetParent()1928   HEnvironment* GetParent() const { return parent_; }
1929 
SetLocationAt(size_t index,Location location)1930   void SetLocationAt(size_t index, Location location) {
1931     DCHECK_LT(index, number_of_vregs_);
1932     DCHECK(locations_ != nullptr);
1933     locations_[index] = location;
1934   }
1935 
GetLocationAt(size_t index)1936   Location GetLocationAt(size_t index) const {
1937     DCHECK_LT(index, number_of_vregs_);
1938     DCHECK(locations_ != nullptr);
1939     return locations_[index];
1940   }
1941 
GetDexPc()1942   uint32_t GetDexPc() const {
1943     return dex_pc_;
1944   }
1945 
GetMethod()1946   ArtMethod* GetMethod() const {
1947     return method_;
1948   }
1949 
GetHolder()1950   HInstruction* GetHolder() const {
1951     return holder_;
1952   }
1953 
1954 
IsFromInlinedInvoke()1955   bool IsFromInlinedInvoke() const {
1956     return GetParent() != nullptr;
1957   }
1958 
1959   class EnvInputSelector {
1960    public:
EnvInputSelector(const HEnvironment * e)1961     explicit EnvInputSelector(const HEnvironment* e) : env_(e) {}
operator()1962     HInstruction* operator()(size_t s) const {
1963       return env_->GetInstructionAt(s);
1964     }
1965    private:
1966     const HEnvironment* env_;
1967   };
1968 
1969   using HConstEnvInputRef = TransformIterator<CountIter, EnvInputSelector>;
GetEnvInputs()1970   IterationRange<HConstEnvInputRef> GetEnvInputs() const {
1971     IterationRange<CountIter> range(Range(Size()));
1972     return MakeIterationRange(MakeTransformIterator(range.begin(), EnvInputSelector(this)),
1973                               MakeTransformIterator(range.end(), EnvInputSelector(this)));
1974   }
1975 
1976  private:
HEnvironment(size_t number_of_vregs,ArtMethod * method,uint32_t dex_pc,HInstruction * holder)1977   ALWAYS_INLINE HEnvironment(size_t number_of_vregs,
1978                              ArtMethod* method,
1979                              uint32_t dex_pc,
1980                              HInstruction* holder)
1981       : number_of_vregs_(dchecked_integral_cast<uint32_t>(number_of_vregs)),
1982         dex_pc_(dex_pc),
1983         holder_(holder),
1984         parent_(nullptr),
1985         method_(method),
1986         locations_(nullptr) {
1987   }
1988 
GetVRegs()1989   ArrayRef<HUserRecord<HEnvironment*>> GetVRegs() {
1990     auto* vregs = reinterpret_cast<HUserRecord<HEnvironment*>*>(this + 1);
1991     return ArrayRef<HUserRecord<HEnvironment*>>(vregs, number_of_vregs_);
1992   }
1993 
GetVRegs()1994   ArrayRef<const HUserRecord<HEnvironment*>> GetVRegs() const {
1995     auto* vregs = reinterpret_cast<const HUserRecord<HEnvironment*>*>(this + 1);
1996     return ArrayRef<const HUserRecord<HEnvironment*>>(vregs, number_of_vregs_);
1997   }
1998 
1999   const uint32_t number_of_vregs_;
2000   const uint32_t dex_pc_;
2001 
2002   // The instruction that holds this environment.
2003   HInstruction* const holder_;
2004 
2005   // The parent environment for inlined code.
2006   HEnvironment* parent_;
2007 
2008   // The environment's method, if resolved.
2009   ArtMethod* method_;
2010 
2011   // Locations assigned by the register allocator.
2012   Location* locations_;
2013 
2014   friend class HInstruction;
2015 
2016   DISALLOW_COPY_AND_ASSIGN(HEnvironment);
2017 };
2018 
2019 std::ostream& operator<<(std::ostream& os, const HInstruction& rhs);
2020 
2021 // Iterates over the Environments
2022 class HEnvironmentIterator : public ValueObject {
2023  public:
2024   using iterator_category = std::forward_iterator_tag;
2025   using value_type = HEnvironment*;
2026   using difference_type = ptrdiff_t;
2027   using pointer = void;
2028   using reference = void;
2029 
HEnvironmentIterator(HEnvironment * cur)2030   explicit HEnvironmentIterator(HEnvironment* cur) : cur_(cur) {}
2031 
2032   HEnvironment* operator*() const {
2033     return cur_;
2034   }
2035 
2036   HEnvironmentIterator& operator++() {
2037     DCHECK(cur_ != nullptr);
2038     cur_ = cur_->GetParent();
2039     return *this;
2040   }
2041 
2042   HEnvironmentIterator operator++(int) {
2043     HEnvironmentIterator prev(*this);
2044     ++(*this);
2045     return prev;
2046   }
2047 
2048   bool operator==(const HEnvironmentIterator& other) const {
2049     return other.cur_ == cur_;
2050   }
2051 
2052   bool operator!=(const HEnvironmentIterator& other) const {
2053     return !(*this == other);
2054   }
2055 
2056  private:
2057   HEnvironment* cur_;
2058 };
2059 
2060 class HInstruction : public ArenaObject<kArenaAllocInstruction> {
2061  public:
2062 #define DECLARE_KIND(type, super) k##type,
2063   enum InstructionKind {  // private marker to avoid generate-operator-out.py from processing.
2064     FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND)
2065     kLastInstructionKind
2066   };
2067 #undef DECLARE_KIND
2068 
HInstruction(InstructionKind kind,SideEffects side_effects,uint32_t dex_pc)2069   HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
2070       : HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {}
2071 
HInstruction(InstructionKind kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc)2072   HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc)
2073       : previous_(nullptr),
2074         next_(nullptr),
2075         block_(nullptr),
2076         dex_pc_(dex_pc),
2077         id_(-1),
2078         ssa_index_(-1),
2079         packed_fields_(0u),
2080         environment_(nullptr),
2081         locations_(nullptr),
2082         live_interval_(nullptr),
2083         lifetime_position_(kNoLifetime),
2084         side_effects_(side_effects),
2085         reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
2086     SetPackedField<InstructionKindField>(kind);
2087     SetPackedField<TypeField>(type);
2088     SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
2089   }
2090 
~HInstruction()2091   virtual ~HInstruction() {}
2092 
2093   std::ostream& Dump(std::ostream& os, bool dump_args = false);
2094 
2095   // Helper for dumping without argument information using operator<<
2096   struct NoArgsDump {
2097     const HInstruction* ins;
2098   };
DumpWithoutArgs()2099   NoArgsDump DumpWithoutArgs() const {
2100     return NoArgsDump{this};
2101   }
2102   // Helper for dumping with argument information using operator<<
2103   struct ArgsDump {
2104     const HInstruction* ins;
2105   };
DumpWithArgs()2106   ArgsDump DumpWithArgs() const {
2107     return ArgsDump{this};
2108   }
2109 
GetNext()2110   HInstruction* GetNext() const { return next_; }
GetPrevious()2111   HInstruction* GetPrevious() const { return previous_; }
2112 
2113   HInstruction* GetNextDisregardingMoves() const;
2114   HInstruction* GetPreviousDisregardingMoves() const;
2115 
GetBlock()2116   HBasicBlock* GetBlock() const { return block_; }
SetBlock(HBasicBlock * block)2117   void SetBlock(HBasicBlock* block) { block_ = block; }
IsInBlock()2118   bool IsInBlock() const { return block_ != nullptr; }
IsInLoop()2119   bool IsInLoop() const { return block_->IsInLoop(); }
IsLoopHeaderPhi()2120   bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
IsIrreducibleLoopHeaderPhi()2121   bool IsIrreducibleLoopHeaderPhi() const {
2122     return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
2123   }
2124 
2125   virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
2126 
GetInputRecords()2127   ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
2128     // One virtual method is enough, just const_cast<> and then re-add the const.
2129     return ArrayRef<const HUserRecord<HInstruction*>>(
2130         const_cast<HInstruction*>(this)->GetInputRecords());
2131   }
2132 
GetInputs()2133   HInputsRef GetInputs() {
2134     return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2135   }
2136 
GetInputs()2137   HConstInputsRef GetInputs() const {
2138     return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2139   }
2140 
InputCount()2141   size_t InputCount() const { return GetInputRecords().size(); }
InputAt(size_t i)2142   HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
2143 
HasInput(HInstruction * input)2144   bool HasInput(HInstruction* input) const {
2145     for (const HInstruction* i : GetInputs()) {
2146       if (i == input) {
2147         return true;
2148       }
2149     }
2150     return false;
2151   }
2152 
SetRawInputAt(size_t index,HInstruction * input)2153   void SetRawInputAt(size_t index, HInstruction* input) {
2154     SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
2155   }
2156 
2157   virtual void Accept(HGraphVisitor* visitor) = 0;
2158   virtual const char* DebugName() const = 0;
2159 
GetType()2160   DataType::Type GetType() const {
2161     return TypeField::Decode(GetPackedFields());
2162   }
2163 
NeedsEnvironment()2164   virtual bool NeedsEnvironment() const { return false; }
NeedsBss()2165   virtual bool NeedsBss() const {
2166     return false;
2167   }
2168 
GetDexPc()2169   uint32_t GetDexPc() const { return dex_pc_; }
2170 
IsControlFlow()2171   virtual bool IsControlFlow() const { return false; }
2172 
2173   // Can the instruction throw?
2174   // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance),
2175   // could throw OOME, but it is still OK to remove them if they are unused.
CanThrow()2176   virtual bool CanThrow() const { return false; }
2177 
2178   // Does the instruction always throw an exception unconditionally?
AlwaysThrows()2179   virtual bool AlwaysThrows() const { return false; }
2180   // Will this instruction only cause async exceptions if it causes any at all?
OnlyThrowsAsyncExceptions()2181   virtual bool OnlyThrowsAsyncExceptions() const {
2182     return false;
2183   }
2184 
CanThrowIntoCatchBlock()2185   bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
2186 
HasSideEffects()2187   bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
DoesAnyWrite()2188   bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
2189 
2190   // Does not apply for all instructions, but having this at top level greatly
2191   // simplifies the null check elimination.
2192   // TODO: Consider merging can_be_null into ReferenceTypeInfo.
CanBeNull()2193   virtual bool CanBeNull() const {
2194     DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types";
2195     return true;
2196   }
2197 
CanDoImplicitNullCheckOn(HInstruction * obj)2198   virtual bool CanDoImplicitNullCheckOn([[maybe_unused]] HInstruction* obj) const { return false; }
2199 
2200   // If this instruction will do an implicit null check, return the `HNullCheck` associated
2201   // with it. Otherwise return null.
GetImplicitNullCheck()2202   HNullCheck* GetImplicitNullCheck() const {
2203     // Go over previous non-move instructions that are emitted at use site.
2204     HInstruction* prev_not_move = GetPreviousDisregardingMoves();
2205     while (prev_not_move != nullptr && prev_not_move->IsEmittedAtUseSite()) {
2206       if (prev_not_move->IsNullCheck()) {
2207         return prev_not_move->AsNullCheck();
2208       }
2209       prev_not_move = prev_not_move->GetPreviousDisregardingMoves();
2210     }
2211     return nullptr;
2212   }
2213 
IsActualObject()2214   virtual bool IsActualObject() const {
2215     return GetType() == DataType::Type::kReference;
2216   }
2217 
2218   // Sets the ReferenceTypeInfo. The RTI must be valid.
2219   void SetReferenceTypeInfo(ReferenceTypeInfo rti);
2220   // Same as above, but we only set it if it's valid. Otherwise, we don't change the current RTI.
2221   void SetReferenceTypeInfoIfValid(ReferenceTypeInfo rti);
2222 
GetReferenceTypeInfo()2223   ReferenceTypeInfo GetReferenceTypeInfo() const {
2224     DCHECK_EQ(GetType(), DataType::Type::kReference);
2225     return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
2226                                               GetPackedFlag<kFlagReferenceTypeIsExact>());
2227   }
2228 
AddUseAt(ArenaAllocator * allocator,HInstruction * user,size_t index)2229   void AddUseAt(ArenaAllocator* allocator, HInstruction* user, size_t index) {
2230     DCHECK(user != nullptr);
2231     HUseListNode<HInstruction*>* new_node =
2232         new (allocator) HUseListNode<HInstruction*>(user, index);
2233     // Note: `old_begin` remains valid across `push_front()`.
2234     auto old_begin = uses_.begin();
2235     uses_.push_front(*new_node);
2236     // To speed up this code, we inline the
2237     //     FixUpUserRecordsAfterUseInsertion(
2238     //         old_begin != uses_.end() ? ++old_begin : old_begin);
2239     // to reduce branching as we know that we're going to fix up either one or two entries.
2240     auto new_begin = uses_.begin();
2241     user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(this, uses_.before_begin()));
2242     if (old_begin != uses_.end()) {
2243       HInstruction* old_begin_user = old_begin->GetUser();
2244       size_t old_begin_index = old_begin->GetIndex();
2245       old_begin_user->SetRawInputRecordAt(
2246           old_begin_index, HUserRecord<HInstruction*>(this, new_begin));
2247     }
2248   }
2249 
AddEnvUseAt(ArenaAllocator * allocator,HEnvironment * user,size_t index)2250   void AddEnvUseAt(ArenaAllocator* allocator, HEnvironment* user, size_t index) {
2251     DCHECK(user != nullptr);
2252     HUseListNode<HEnvironment*>* new_node =
2253         new (allocator) HUseListNode<HEnvironment*>(user, index);
2254     // Note: `old_env_begin` remains valid across `push_front()`.
2255     auto old_env_begin = env_uses_.begin();
2256     env_uses_.push_front(*new_node);
2257     // To speed up this code, we inline the
2258     //     FixUpUserRecordsAfterEnvUseInsertion(
2259     //         old_env_begin != env_uses_.end() ? ++old_env_begin : old_env_begin);
2260     // to reduce branching as we know that we're going to fix up either one or two entries.
2261     auto new_env_begin = env_uses_.begin();
2262     user->GetVRegs()[index] = HUserRecord<HEnvironment*>(this, env_uses_.before_begin());
2263     if (old_env_begin != env_uses_.end()) {
2264       HEnvironment* old_env_begin_user = old_env_begin->GetUser();
2265       size_t old_env_begin_index = old_env_begin->GetIndex();
2266       old_env_begin_user->GetVRegs()[old_env_begin_index] =
2267           HUserRecord<HEnvironment*>(this, new_env_begin);
2268     }
2269   }
2270 
RemoveAsUserOfInput(size_t input)2271   void RemoveAsUserOfInput(size_t input) {
2272     HUserRecord<HInstruction*> input_use = InputRecordAt(input);
2273     HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2274     input_use.GetInstruction()->uses_.erase_after(before_use_node);
2275     input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2276   }
2277 
RemoveAsUserOfAllInputs()2278   void RemoveAsUserOfAllInputs() {
2279     for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
2280       HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2281       input_use.GetInstruction()->uses_.erase_after(before_use_node);
2282       input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2283     }
2284   }
2285 
GetUses()2286   const HUseList<HInstruction*>& GetUses() const { return uses_; }
GetEnvUses()2287   const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
2288 
HasUses()2289   bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
HasEnvironmentUses()2290   bool HasEnvironmentUses() const { return !env_uses_.empty(); }
HasNonEnvironmentUses()2291   bool HasNonEnvironmentUses() const { return !uses_.empty(); }
HasOnlyOneNonEnvironmentUse()2292   bool HasOnlyOneNonEnvironmentUse() const {
2293     return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
2294   }
2295 
IsRemovable()2296   bool IsRemovable() const {
2297     return
2298         !DoesAnyWrite() &&
2299         // TODO(solanes): Merge calls from IsSuspendCheck to IsControlFlow into one that doesn't
2300         // do virtual dispatching.
2301         !IsSuspendCheck() &&
2302         !IsNop() &&
2303         !IsParameterValue() &&
2304         // If we added an explicit barrier then we should keep it.
2305         !IsMemoryBarrier() &&
2306         !IsConstructorFence() &&
2307         !IsControlFlow() &&
2308         !CanThrow();
2309   }
2310 
IsDeadAndRemovable()2311   bool IsDeadAndRemovable() const {
2312     return !HasUses() && IsRemovable();
2313   }
2314 
IsPhiDeadAndRemovable()2315   bool IsPhiDeadAndRemovable() const {
2316     DCHECK(IsPhi());
2317     DCHECK(IsRemovable()) << " phis are always removable";
2318     return !HasUses();
2319   }
2320 
2321   // Does this instruction dominate `other_instruction`?
2322   // Aborts if this instruction and `other_instruction` are different phis.
2323   bool Dominates(HInstruction* other_instruction) const;
2324 
2325   // Same but with `strictly dominates` i.e. returns false if this instruction and
2326   // `other_instruction` are the same.
2327   bool StrictlyDominates(HInstruction* other_instruction) const;
2328 
GetId()2329   int GetId() const { return id_; }
SetId(int id)2330   void SetId(int id) { id_ = id; }
2331 
GetSsaIndex()2332   int GetSsaIndex() const { return ssa_index_; }
SetSsaIndex(int ssa_index)2333   void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
HasSsaIndex()2334   bool HasSsaIndex() const { return ssa_index_ != -1; }
2335 
HasEnvironment()2336   bool HasEnvironment() const { return environment_ != nullptr; }
GetEnvironment()2337   HEnvironment* GetEnvironment() const { return environment_; }
GetAllEnvironments()2338   IterationRange<HEnvironmentIterator> GetAllEnvironments() const {
2339     return MakeIterationRange(HEnvironmentIterator(GetEnvironment()),
2340                               HEnvironmentIterator(nullptr));
2341   }
2342   // Set the `environment_` field. Raw because this method does not
2343   // update the uses lists.
SetRawEnvironment(HEnvironment * environment)2344   void SetRawEnvironment(HEnvironment* environment) {
2345     DCHECK(environment_ == nullptr);
2346     DCHECK_EQ(environment->GetHolder(), this);
2347     environment_ = environment;
2348   }
2349 
InsertRawEnvironment(HEnvironment * environment)2350   void InsertRawEnvironment(HEnvironment* environment) {
2351     DCHECK(environment_ != nullptr);
2352     DCHECK_EQ(environment->GetHolder(), this);
2353     DCHECK(environment->GetParent() == nullptr);
2354     environment->parent_ = environment_;
2355     environment_ = environment;
2356   }
2357 
2358   void RemoveEnvironment();
2359 
2360   // Set the environment of this instruction, copying it from `environment`. While
2361   // copying, the uses lists are being updated.
CopyEnvironmentFrom(HEnvironment * environment)2362   void CopyEnvironmentFrom(HEnvironment* environment) {
2363     DCHECK(environment_ == nullptr);
2364     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2365     environment_ = HEnvironment::Create(allocator, *environment, this);
2366     environment_->CopyFrom(allocator, environment);
2367     if (environment->GetParent() != nullptr) {
2368       environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2369     }
2370   }
2371 
CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment * environment,HBasicBlock * loop_header)2372   void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
2373                                                 HBasicBlock* loop_header) {
2374     DCHECK(environment_ == nullptr);
2375     ArenaAllocator* allocator = loop_header->GetGraph()->GetAllocator();
2376     environment_ = HEnvironment::Create(allocator, *environment, this);
2377     environment_->CopyFromWithLoopPhiAdjustment(allocator, environment, loop_header);
2378     if (environment->GetParent() != nullptr) {
2379       environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2380     }
2381   }
2382 
2383   // Returns the number of entries in the environment. Typically, that is the
2384   // number of dex registers in a method. It could be more in case of inlining.
2385   size_t EnvironmentSize() const;
2386 
GetLocations()2387   LocationSummary* GetLocations() const { return locations_; }
SetLocations(LocationSummary * locations)2388   void SetLocations(LocationSummary* locations) { locations_ = locations; }
2389 
2390   void ReplaceWith(HInstruction* instruction);
2391   void ReplaceUsesDominatedBy(HInstruction* dominator,
2392                               HInstruction* replacement,
2393                               bool strictly_dominated = true);
2394   void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2395   void ReplaceInput(HInstruction* replacement, size_t index);
2396 
2397   // This is almost the same as doing `ReplaceWith()`. But in this helper, the
2398   // uses of this instruction by `other` are *not* updated.
ReplaceWithExceptInReplacementAtIndex(HInstruction * other,size_t use_index)2399   void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
2400     ReplaceWith(other);
2401     other->ReplaceInput(this, use_index);
2402   }
2403 
2404   // Move `this` instruction before `cursor`
2405   void MoveBefore(HInstruction* cursor, bool do_checks = true);
2406 
2407   // Move `this` before its first user and out of any loops. If there is no
2408   // out-of-loop user that dominates all other users, move the instruction
2409   // to the end of the out-of-loop common dominator of the user's blocks.
2410   //
2411   // This can be used only on non-throwing instructions with no side effects that
2412   // have at least one use but no environment uses.
2413   void MoveBeforeFirstUserAndOutOfLoops();
2414 
2415 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
2416   bool Is##type() const;
2417 
2418   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2419 #undef INSTRUCTION_TYPE_CHECK
2420 
2421 #define INSTRUCTION_TYPE_CAST(type, super)                                     \
2422   const H##type* As##type() const;                                             \
2423   H##type* As##type();                                                         \
2424   const H##type* As##type##OrNull() const;                                     \
2425   H##type* As##type##OrNull();
2426 
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)2427   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
2428 #undef INSTRUCTION_TYPE_CAST
2429 
2430   // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy
2431   // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for
2432   // the instruction then the behaviour of this function is undefined.
2433   //
2434   // Note: It is semantically valid to create a clone of the instruction only until
2435   // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not
2436   // copied.
2437   //
2438   // Note: HEnvironment and some other fields are not copied and are set to default values, see
2439   // 'explicit HInstruction(const HInstruction& other)' for details.
2440   virtual HInstruction* Clone([[maybe_unused]] ArenaAllocator* arena) const {
2441     LOG(FATAL) << "Cloning is not implemented for the instruction " <<
2442                   DebugName() << " " << GetId();
2443     UNREACHABLE();
2444   }
2445 
2446   // Return whether instruction can be cloned (copied).
IsClonable()2447   virtual bool IsClonable() const { return false; }
2448 
2449   // Returns whether the instruction can be moved within the graph.
2450   // TODO: this method is used by LICM and GVN with possibly different
2451   //       meanings? split and rename?
CanBeMoved()2452   virtual bool CanBeMoved() const { return false; }
2453 
2454   // Returns whether any data encoded in the two instructions is equal.
2455   // This method does not look at the inputs. Both instructions must be
2456   // of the same type, otherwise the method has undefined behavior.
InstructionDataEquals(const HInstruction * other)2457   virtual bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const {
2458     return false;
2459   }
2460 
2461   // Returns whether two instructions are equal, that is:
2462   // 1) They have the same type and contain the same data (InstructionDataEquals).
2463   // 2) Their inputs are identical.
2464   bool Equals(const HInstruction* other) const;
2465 
GetKind()2466   InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); }
2467 
ComputeHashCode()2468   virtual size_t ComputeHashCode() const {
2469     size_t result = GetKind();
2470     for (const HInstruction* input : GetInputs()) {
2471       result = (result * 31) + input->GetId();
2472     }
2473     return result;
2474   }
2475 
GetSideEffects()2476   SideEffects GetSideEffects() const { return side_effects_; }
SetSideEffects(SideEffects other)2477   void SetSideEffects(SideEffects other) { side_effects_ = other; }
AddSideEffects(SideEffects other)2478   void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2479 
GetLifetimePosition()2480   size_t GetLifetimePosition() const { return lifetime_position_; }
SetLifetimePosition(size_t position)2481   void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
GetLiveInterval()2482   LiveInterval* GetLiveInterval() const { return live_interval_; }
SetLiveInterval(LiveInterval * interval)2483   void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
HasLiveInterval()2484   bool HasLiveInterval() const { return live_interval_ != nullptr; }
2485 
IsSuspendCheckEntry()2486   bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2487 
2488   // Returns whether the code generation of the instruction will require to have access
2489   // to the current method. Such instructions are:
2490   // (1): Instructions that require an environment, as calling the runtime requires
2491   //      to walk the stack and have the current method stored at a specific stack address.
2492   // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
2493   //      to access the dex cache.
NeedsCurrentMethod()2494   bool NeedsCurrentMethod() const {
2495     return NeedsEnvironment() || IsCurrentMethod();
2496   }
2497 
2498   // Does this instruction have any use in an environment before
2499   // control flow hits 'other'?
2500   bool HasAnyEnvironmentUseBefore(HInstruction* other);
2501 
2502   // Remove all references to environment uses of this instruction.
2503   // The caller must ensure that this is safe to do.
2504   void RemoveEnvironmentUsers();
2505 
IsEmittedAtUseSite()2506   bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
MarkEmittedAtUseSite()2507   void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
2508 
2509  protected:
2510   // If set, the machine code for this instruction is assumed to be generated by
2511   // its users. Used by liveness analysis to compute use positions accordingly.
2512   static constexpr size_t kFlagEmittedAtUseSite = 0u;
2513   static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
2514   static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1;
2515   static constexpr size_t kFieldInstructionKindSize =
2516       MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1));
2517   static constexpr size_t kFieldType =
2518       kFieldInstructionKind + kFieldInstructionKindSize;
2519   static constexpr size_t kFieldTypeSize =
2520       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
2521   static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize;
2522   static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
2523 
2524   static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits,
2525                 "Too many generic packed fields");
2526 
2527   using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>;
2528 
InputRecordAt(size_t i)2529   const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
2530     return GetInputRecords()[i];
2531   }
2532 
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)2533   void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
2534     ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
2535     input_records[index] = input;
2536   }
2537 
GetPackedFields()2538   uint32_t GetPackedFields() const {
2539     return packed_fields_;
2540   }
2541 
2542   template <size_t flag>
GetPackedFlag()2543   bool GetPackedFlag() const {
2544     return (packed_fields_ & (1u << flag)) != 0u;
2545   }
2546 
2547   template <size_t flag>
2548   void SetPackedFlag(bool value = true) {
2549     packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
2550   }
2551 
2552   template <typename BitFieldType>
GetPackedField()2553   typename BitFieldType::value_type GetPackedField() const {
2554     return BitFieldType::Decode(packed_fields_);
2555   }
2556 
2557   template <typename BitFieldType>
SetPackedField(typename BitFieldType::value_type value)2558   void SetPackedField(typename BitFieldType::value_type value) {
2559     DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
2560     packed_fields_ = BitFieldType::Update(value, packed_fields_);
2561   }
2562 
2563   // Copy construction for the instruction (used for Clone function).
2564   //
2565   // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from
2566   // prepare_for_register_allocator are not copied (set to default values).
2567   //
2568   // Copy constructors must be provided for every HInstruction type; default copy constructor is
2569   // fine for most of them. However for some of the instructions a custom copy constructor must be
2570   // specified (when instruction has non-trivially copyable fields and must have a special behaviour
2571   // for copying them).
HInstruction(const HInstruction & other)2572   explicit HInstruction(const HInstruction& other)
2573       : previous_(nullptr),
2574         next_(nullptr),
2575         block_(nullptr),
2576         dex_pc_(other.dex_pc_),
2577         id_(-1),
2578         ssa_index_(-1),
2579         packed_fields_(other.packed_fields_),
2580         environment_(nullptr),
2581         locations_(nullptr),
2582         live_interval_(nullptr),
2583         lifetime_position_(kNoLifetime),
2584         side_effects_(other.side_effects_),
2585         reference_type_handle_(other.reference_type_handle_) {
2586   }
2587 
2588  private:
2589   using InstructionKindField =
2590       BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>;
2591 
FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction * >::iterator fixup_end)2592   void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
2593     auto before_use_node = uses_.before_begin();
2594     for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
2595       HInstruction* user = use_node->GetUser();
2596       size_t input_index = use_node->GetIndex();
2597       user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
2598       before_use_node = use_node;
2599     }
2600   }
2601 
FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction * >::iterator before_use_node)2602   void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
2603     auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
2604     if (next != uses_.end()) {
2605       HInstruction* next_user = next->GetUser();
2606       size_t next_index = next->GetIndex();
2607       DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
2608       next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
2609     }
2610   }
2611 
FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment * >::iterator env_fixup_end)2612   void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
2613     auto before_env_use_node = env_uses_.before_begin();
2614     for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
2615       HEnvironment* user = env_use_node->GetUser();
2616       size_t input_index = env_use_node->GetIndex();
2617       user->GetVRegs()[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2618       before_env_use_node = env_use_node;
2619     }
2620   }
2621 
FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment * >::iterator before_env_use_node)2622   void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
2623     auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
2624     if (next != env_uses_.end()) {
2625       HEnvironment* next_user = next->GetUser();
2626       size_t next_index = next->GetIndex();
2627       DCHECK(next_user->GetVRegs()[next_index].GetInstruction() == this);
2628       next_user->GetVRegs()[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2629     }
2630   }
2631 
2632   HInstruction* previous_;
2633   HInstruction* next_;
2634   HBasicBlock* block_;
2635   const uint32_t dex_pc_;
2636 
2637   // An instruction gets an id when it is added to the graph.
2638   // It reflects creation order. A negative id means the instruction
2639   // has not been added to the graph.
2640   int id_;
2641 
2642   // When doing liveness analysis, instructions that have uses get an SSA index.
2643   int ssa_index_;
2644 
2645   // Packed fields.
2646   uint32_t packed_fields_;
2647 
2648   // List of instructions that have this instruction as input.
2649   HUseList<HInstruction*> uses_;
2650 
2651   // List of environments that contain this instruction.
2652   HUseList<HEnvironment*> env_uses_;
2653 
2654   // The environment associated with this instruction. Not null if the instruction
2655   // might jump out of the method.
2656   HEnvironment* environment_;
2657 
2658   // Set by the code generator.
2659   LocationSummary* locations_;
2660 
2661   // Set by the liveness analysis.
2662   LiveInterval* live_interval_;
2663 
2664   // Set by the liveness analysis, this is the position in a linear
2665   // order of blocks where this instruction's live interval start.
2666   size_t lifetime_position_;
2667 
2668   SideEffects side_effects_;
2669 
2670   // The reference handle part of the reference type info.
2671   // The IsExact() flag is stored in packed fields.
2672   // TODO: for primitive types this should be marked as invalid.
2673   ReferenceTypeInfo::TypeHandle reference_type_handle_;
2674 
2675   friend class GraphChecker;
2676   friend class HBasicBlock;
2677   friend class HEnvironment;
2678   friend class HGraph;
2679   friend class HInstructionList;
2680 };
2681 
2682 std::ostream& operator<<(std::ostream& os, HInstruction::InstructionKind rhs);
2683 std::ostream& operator<<(std::ostream& os, const HInstruction::NoArgsDump rhs);
2684 std::ostream& operator<<(std::ostream& os, const HInstruction::ArgsDump rhs);
2685 std::ostream& operator<<(std::ostream& os, const HUseList<HInstruction*>& lst);
2686 std::ostream& operator<<(std::ostream& os, const HUseList<HEnvironment*>& lst);
2687 
2688 // Forward declarations for friends
2689 template <typename InnerIter> struct HSTLInstructionIterator;
2690 
2691 // Iterates over the instructions, while preserving the next instruction
2692 // in case the current instruction gets removed from the list by the user
2693 // of this iterator.
2694 class HInstructionIterator : public ValueObject {
2695  public:
HInstructionIterator(const HInstructionList & instructions)2696   explicit HInstructionIterator(const HInstructionList& instructions)
2697       : instruction_(instructions.first_instruction_) {
2698     next_ = Done() ? nullptr : instruction_->GetNext();
2699   }
2700 
Done()2701   bool Done() const { return instruction_ == nullptr; }
Current()2702   HInstruction* Current() const { return instruction_; }
Advance()2703   void Advance() {
2704     instruction_ = next_;
2705     next_ = Done() ? nullptr : instruction_->GetNext();
2706   }
2707 
2708  private:
HInstructionIterator()2709   HInstructionIterator() : instruction_(nullptr), next_(nullptr) {}
2710 
2711   HInstruction* instruction_;
2712   HInstruction* next_;
2713 
2714   friend struct HSTLInstructionIterator<HInstructionIterator>;
2715 };
2716 
2717 // Iterates over the instructions without saving the next instruction,
2718 // therefore handling changes in the graph potentially made by the user
2719 // of this iterator.
2720 class HInstructionIteratorHandleChanges : public ValueObject {
2721  public:
2722   explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions)
2723       : instruction_(instructions.first_instruction_) {
2724   }
2725 
2726   bool Done() const { return instruction_ == nullptr; }
2727   HInstruction* Current() const { return instruction_; }
2728   void Advance() {
2729     instruction_ = instruction_->GetNext();
2730   }
2731 
2732  private:
2733   HInstructionIteratorHandleChanges() : instruction_(nullptr) {}
2734 
2735   HInstruction* instruction_;
2736 
2737   friend struct HSTLInstructionIterator<HInstructionIteratorHandleChanges>;
2738 };
2739 
2740 
2741 class HBackwardInstructionIterator : public ValueObject {
2742  public:
2743   explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2744       : instruction_(instructions.last_instruction_) {
2745     next_ = Done() ? nullptr : instruction_->GetPrevious();
2746   }
2747 
2748   explicit HBackwardInstructionIterator(HInstruction* instruction) : instruction_(instruction) {
2749     next_ = Done() ? nullptr : instruction_->GetPrevious();
2750   }
2751 
2752   bool Done() const { return instruction_ == nullptr; }
2753   HInstruction* Current() const { return instruction_; }
2754   void Advance() {
2755     instruction_ = next_;
2756     next_ = Done() ? nullptr : instruction_->GetPrevious();
2757   }
2758 
2759  private:
2760   HBackwardInstructionIterator() : instruction_(nullptr), next_(nullptr) {}
2761 
2762   HInstruction* instruction_;
2763   HInstruction* next_;
2764 
2765   friend struct HSTLInstructionIterator<HBackwardInstructionIterator>;
2766 };
2767 
2768 template <typename InnerIter>
2769 struct HSTLInstructionIterator : public ValueObject {
2770  public:
2771   using iterator_category = std::forward_iterator_tag;
2772   using value_type = HInstruction*;
2773   using difference_type = ptrdiff_t;
2774   using pointer = void;
2775   using reference = void;
2776 
2777   static_assert(std::is_same_v<InnerIter, HBackwardInstructionIterator> ||
2778                     std::is_same_v<InnerIter, HInstructionIterator> ||
2779                     std::is_same_v<InnerIter, HInstructionIteratorHandleChanges>,
2780                 "Unknown wrapped iterator!");
2781 
2782   explicit HSTLInstructionIterator(InnerIter inner) : inner_(inner) {}
2783   HInstruction* operator*() const {
2784     DCHECK(inner_.Current() != nullptr);
2785     return inner_.Current();
2786   }
2787 
2788   HSTLInstructionIterator<InnerIter>& operator++() {
2789     DCHECK(*this != HSTLInstructionIterator<InnerIter>::EndIter());
2790     inner_.Advance();
2791     return *this;
2792   }
2793 
2794   HSTLInstructionIterator<InnerIter> operator++(int) {
2795     HSTLInstructionIterator<InnerIter> prev(*this);
2796     ++(*this);
2797     return prev;
2798   }
2799 
2800   bool operator==(const HSTLInstructionIterator<InnerIter>& other) const {
2801     return inner_.Current() == other.inner_.Current();
2802   }
2803 
2804   bool operator!=(const HSTLInstructionIterator<InnerIter>& other) const {
2805     return !(*this == other);
2806   }
2807 
2808   static HSTLInstructionIterator<InnerIter> EndIter() {
2809     return HSTLInstructionIterator<InnerIter>(InnerIter());
2810   }
2811 
2812  private:
2813   InnerIter inner_;
2814 };
2815 
2816 template <typename InnerIter>
2817 IterationRange<HSTLInstructionIterator<InnerIter>> MakeSTLInstructionIteratorRange(InnerIter iter) {
2818   return MakeIterationRange(HSTLInstructionIterator<InnerIter>(iter),
2819                             HSTLInstructionIterator<InnerIter>::EndIter());
2820 }
2821 
2822 class HVariableInputSizeInstruction : public HInstruction {
2823  public:
2824   using HInstruction::GetInputRecords;  // Keep the const version visible.
2825   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
2826     return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2827   }
2828 
2829   void AddInput(HInstruction* input);
2830   void InsertInputAt(size_t index, HInstruction* input);
2831   void RemoveInputAt(size_t index);
2832 
2833   // Removes all the inputs.
2834   // Also removes this instructions from each input's use list
2835   // (for non-environment uses only).
2836   void RemoveAllInputs();
2837 
2838  protected:
2839   HVariableInputSizeInstruction(InstructionKind inst_kind,
2840                                 SideEffects side_effects,
2841                                 uint32_t dex_pc,
2842                                 ArenaAllocator* allocator,
2843                                 size_t number_of_inputs,
2844                                 ArenaAllocKind kind)
2845       : HInstruction(inst_kind, side_effects, dex_pc),
2846         inputs_(number_of_inputs, allocator->Adapter(kind)) {}
2847   HVariableInputSizeInstruction(InstructionKind inst_kind,
2848                                 DataType::Type type,
2849                                 SideEffects side_effects,
2850                                 uint32_t dex_pc,
2851                                 ArenaAllocator* allocator,
2852                                 size_t number_of_inputs,
2853                                 ArenaAllocKind kind)
2854       : HInstruction(inst_kind, type, side_effects, dex_pc),
2855         inputs_(number_of_inputs, allocator->Adapter(kind)) {}
2856 
2857   DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction);
2858 
2859   ArenaVector<HUserRecord<HInstruction*>> inputs_;
2860 };
2861 
2862 template<size_t N, typename Base = HInstruction>
2863 class HExpression : public Base {
2864  public:
2865   template <typename... Args>
2866   explicit HExpression(Args&&... args)
2867       : Base(std::forward<Args>(args)...), inputs_() {}
2868 
2869   virtual ~HExpression() {}
2870 
2871   using HInstruction::GetInputRecords;  // Keep the const version visible.
2872   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2873     return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2874   }
2875 
2876  protected:
2877   DEFAULT_COPY_CONSTRUCTOR(Expression);
2878 
2879  private:
2880   std::array<HUserRecord<HInstruction*>, N> inputs_;
2881 
2882   friend class SsaBuilder;
2883 };
2884 
2885 // HExpression specialization for N=0.
2886 template<typename Base>
2887 class HExpression<0, Base> : public Base {
2888  public:
2889   template <typename... Args>
2890   explicit HExpression(Args&&... args)
2891       : Base(std::forward<Args>(args)...) {}
2892 
2893   virtual ~HExpression() {}
2894 
2895   using HInstruction::GetInputRecords;  // Keep the const version visible.
2896   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2897     return ArrayRef<HUserRecord<HInstruction*>>();
2898   }
2899 
2900  protected:
2901   DEFAULT_COPY_CONSTRUCTOR(Expression);
2902 
2903  private:
2904   friend class SsaBuilder;
2905 };
2906 
2907 class HMethodEntryHook : public HExpression<0> {
2908  public:
2909   explicit HMethodEntryHook(uint32_t dex_pc)
2910       : HExpression(kMethodEntryHook, SideEffects::All(), dex_pc) {}
2911 
2912   bool NeedsEnvironment() const override {
2913     return true;
2914   }
2915 
2916   bool CanThrow() const override { return true; }
2917 
2918   DECLARE_INSTRUCTION(MethodEntryHook);
2919 
2920  protected:
2921   DEFAULT_COPY_CONSTRUCTOR(MethodEntryHook);
2922 };
2923 
2924 class HMethodExitHook : public HExpression<1> {
2925  public:
2926   HMethodExitHook(HInstruction* value, uint32_t dex_pc)
2927       : HExpression(kMethodExitHook, SideEffects::All(), dex_pc) {
2928     SetRawInputAt(0, value);
2929   }
2930 
2931   bool NeedsEnvironment() const override {
2932     return true;
2933   }
2934 
2935   bool CanThrow() const override { return true; }
2936 
2937   DECLARE_INSTRUCTION(MethodExitHook);
2938 
2939  protected:
2940   DEFAULT_COPY_CONSTRUCTOR(MethodExitHook);
2941 };
2942 
2943 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2944 // instruction that branches to the exit block.
2945 class HReturnVoid final : public HExpression<0> {
2946  public:
2947   explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2948       : HExpression(kReturnVoid, SideEffects::None(), dex_pc) {
2949   }
2950 
2951   bool IsControlFlow() const override { return true; }
2952 
2953   DECLARE_INSTRUCTION(ReturnVoid);
2954 
2955  protected:
2956   DEFAULT_COPY_CONSTRUCTOR(ReturnVoid);
2957 };
2958 
2959 // Represents dex's RETURN opcodes. A HReturn is a control flow
2960 // instruction that branches to the exit block.
2961 class HReturn final : public HExpression<1> {
2962  public:
2963   explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2964       : HExpression(kReturn, SideEffects::None(), dex_pc) {
2965     SetRawInputAt(0, value);
2966   }
2967 
2968   bool IsControlFlow() const override { return true; }
2969 
2970   DECLARE_INSTRUCTION(Return);
2971 
2972  protected:
2973   DEFAULT_COPY_CONSTRUCTOR(Return);
2974 };
2975 
2976 class HPhi final : public HVariableInputSizeInstruction {
2977  public:
2978   HPhi(ArenaAllocator* allocator,
2979        uint32_t reg_number,
2980        size_t number_of_inputs,
2981        DataType::Type type,
2982        uint32_t dex_pc = kNoDexPc)
2983       : HVariableInputSizeInstruction(
2984             kPhi,
2985             ToPhiType(type),
2986             SideEffects::None(),
2987             dex_pc,
2988             allocator,
2989             number_of_inputs,
2990             kArenaAllocPhiInputs),
2991         reg_number_(reg_number) {
2992     DCHECK_NE(GetType(), DataType::Type::kVoid);
2993     // Phis are constructed live and marked dead if conflicting or unused.
2994     // Individual steps of SsaBuilder should assume that if a phi has been
2995     // marked dead, it can be ignored and will be removed by SsaPhiElimination.
2996     SetPackedFlag<kFlagIsLive>(true);
2997     SetPackedFlag<kFlagCanBeNull>(true);
2998   }
2999 
3000   bool IsClonable() const override { return true; }
3001 
3002   // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
3003   static DataType::Type ToPhiType(DataType::Type type) {
3004     return DataType::Kind(type);
3005   }
3006 
3007   bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
3008 
3009   void SetType(DataType::Type new_type) {
3010     // Make sure that only valid type changes occur. The following are allowed:
3011     //  (1) int  -> float/ref (primitive type propagation),
3012     //  (2) long -> double (primitive type propagation).
3013     DCHECK(GetType() == new_type ||
3014            (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) ||
3015            (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) ||
3016            (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64));
3017     SetPackedField<TypeField>(new_type);
3018   }
3019 
3020   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
3021   void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
3022 
3023   uint32_t GetRegNumber() const { return reg_number_; }
3024 
3025   void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
3026   void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
3027   bool IsDead() const { return !IsLive(); }
3028   bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
3029 
3030   bool IsVRegEquivalentOf(const HInstruction* other) const {
3031     return other != nullptr
3032         && other->IsPhi()
3033         && other->GetBlock() == GetBlock()
3034         && other->AsPhi()->GetRegNumber() == GetRegNumber();
3035   }
3036 
3037   bool HasEquivalentPhi() const {
3038     if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) {
3039       return true;
3040     }
3041     if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) {
3042       return true;
3043     }
3044     return false;
3045   }
3046 
3047   // Returns the next equivalent phi (starting from the current one) or null if there is none.
3048   // An equivalent phi is a phi having the same dex register and type.
3049   // It assumes that phis with the same dex register are adjacent.
3050   HPhi* GetNextEquivalentPhiWithSameType() {
3051     HInstruction* next = GetNext();
3052     while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
3053       if (next->GetType() == GetType()) {
3054         return next->AsPhi();
3055       }
3056       next = next->GetNext();
3057     }
3058     return nullptr;
3059   }
3060 
3061   DECLARE_INSTRUCTION(Phi);
3062 
3063  protected:
3064   DEFAULT_COPY_CONSTRUCTOR(Phi);
3065 
3066  private:
3067   static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits;
3068   static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
3069   static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
3070   static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3071 
3072   const uint32_t reg_number_;
3073 };
3074 
3075 // The exit instruction is the only instruction of the exit block.
3076 // Instructions aborting the method (HThrow and HReturn) must branch to the
3077 // exit block.
3078 class HExit final : public HExpression<0> {
3079  public:
3080   explicit HExit(uint32_t dex_pc = kNoDexPc)
3081       : HExpression(kExit, SideEffects::None(), dex_pc) {
3082   }
3083 
3084   bool IsControlFlow() const override { return true; }
3085 
3086   DECLARE_INSTRUCTION(Exit);
3087 
3088  protected:
3089   DEFAULT_COPY_CONSTRUCTOR(Exit);
3090 };
3091 
3092 // Jumps from one block to another.
3093 class HGoto final : public HExpression<0> {
3094  public:
3095   explicit HGoto(uint32_t dex_pc = kNoDexPc)
3096       : HExpression(kGoto, SideEffects::None(), dex_pc) {
3097   }
3098 
3099   bool IsClonable() const override { return true; }
3100   bool IsControlFlow() const override { return true; }
3101 
3102   HBasicBlock* GetSuccessor() const {
3103     return GetBlock()->GetSingleSuccessor();
3104   }
3105 
3106   DECLARE_INSTRUCTION(Goto);
3107 
3108  protected:
3109   DEFAULT_COPY_CONSTRUCTOR(Goto);
3110 };
3111 
3112 class HConstant : public HExpression<0> {
3113  public:
3114   explicit HConstant(InstructionKind kind, DataType::Type type)
3115       : HExpression(kind, type, SideEffects::None(), kNoDexPc) {
3116   }
3117 
3118   bool CanBeMoved() const override { return true; }
3119 
3120   // Is this constant -1 in the arithmetic sense?
3121   virtual bool IsMinusOne() const { return false; }
3122   // Is this constant 0 in the arithmetic sense?
3123   virtual bool IsArithmeticZero() const { return false; }
3124   // Is this constant a 0-bit pattern?
3125   virtual bool IsZeroBitPattern() const { return false; }
3126   // Is this constant 1 in the arithmetic sense?
3127   virtual bool IsOne() const { return false; }
3128 
3129   virtual uint64_t GetValueAsUint64() const = 0;
3130 
3131   DECLARE_ABSTRACT_INSTRUCTION(Constant);
3132 
3133  protected:
3134   DEFAULT_COPY_CONSTRUCTOR(Constant);
3135 };
3136 
3137 class HNullConstant final : public HConstant {
3138  public:
3139   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
3140     return true;
3141   }
3142 
3143   uint64_t GetValueAsUint64() const override { return 0; }
3144 
3145   size_t ComputeHashCode() const override { return 0; }
3146 
3147   // The null constant representation is a 0-bit pattern.
3148   bool IsZeroBitPattern() const override { return true; }
3149 
3150   DECLARE_INSTRUCTION(NullConstant);
3151 
3152  protected:
3153   DEFAULT_COPY_CONSTRUCTOR(NullConstant);
3154 
3155  private:
3156   explicit HNullConstant()
3157       : HConstant(kNullConstant, DataType::Type::kReference) {
3158   }
3159 
3160   friend class HGraph;
3161 };
3162 
3163 // Constants of the type int. Those can be from Dex instructions, or
3164 // synthesized (for example with the if-eqz instruction).
3165 class HIntConstant final : public HConstant {
3166  public:
3167   int32_t GetValue() const { return value_; }
3168 
3169   uint64_t GetValueAsUint64() const override {
3170     return static_cast<uint64_t>(static_cast<uint32_t>(value_));
3171   }
3172 
3173   bool InstructionDataEquals(const HInstruction* other) const override {
3174     DCHECK(other->IsIntConstant()) << other->DebugName();
3175     return other->AsIntConstant()->value_ == value_;
3176   }
3177 
3178   size_t ComputeHashCode() const override { return GetValue(); }
3179 
3180   bool IsMinusOne() const override { return GetValue() == -1; }
3181   bool IsArithmeticZero() const override { return GetValue() == 0; }
3182   bool IsZeroBitPattern() const override { return GetValue() == 0; }
3183   bool IsOne() const override { return GetValue() == 1; }
3184 
3185   // Integer constants are used to encode Boolean values as well,
3186   // where 1 means true and 0 means false.
3187   bool IsTrue() const { return GetValue() == 1; }
3188   bool IsFalse() const { return GetValue() == 0; }
3189 
3190   explicit HIntConstant(int32_t value)
3191       : HConstant(kIntConstant, DataType::Type::kInt32), value_(value) {
3192   }
3193   explicit HIntConstant(bool value)
3194       : HConstant(kIntConstant, DataType::Type::kInt32),
3195         value_(value ? 1 : 0) {
3196   }
3197 
3198   DECLARE_INSTRUCTION(IntConstant);
3199 
3200  protected:
3201   DEFAULT_COPY_CONSTRUCTOR(IntConstant);
3202 
3203  private:
3204   const int32_t value_;
3205 
3206   friend class HGraph;
3207   ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
3208   ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
3209 };
3210 
3211 class HLongConstant final : public HConstant {
3212  public:
3213   int64_t GetValue() const { return value_; }
3214 
3215   uint64_t GetValueAsUint64() const override { return value_; }
3216 
3217   bool InstructionDataEquals(const HInstruction* other) const override {
3218     DCHECK(other->IsLongConstant()) << other->DebugName();
3219     return other->AsLongConstant()->value_ == value_;
3220   }
3221 
3222   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3223 
3224   bool IsMinusOne() const override { return GetValue() == -1; }
3225   bool IsArithmeticZero() const override { return GetValue() == 0; }
3226   bool IsZeroBitPattern() const override { return GetValue() == 0; }
3227   bool IsOne() const override { return GetValue() == 1; }
3228 
3229   DECLARE_INSTRUCTION(LongConstant);
3230 
3231  protected:
3232   DEFAULT_COPY_CONSTRUCTOR(LongConstant);
3233 
3234  private:
3235   explicit HLongConstant(int64_t value)
3236       : HConstant(kLongConstant, DataType::Type::kInt64),
3237         value_(value) {
3238   }
3239 
3240   const int64_t value_;
3241 
3242   friend class HGraph;
3243 };
3244 
3245 class HFloatConstant final : public HConstant {
3246  public:
3247   float GetValue() const { return value_; }
3248 
3249   uint64_t GetValueAsUint64() const override {
3250     return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3251   }
3252 
3253   bool InstructionDataEquals(const HInstruction* other) const override {
3254     DCHECK(other->IsFloatConstant()) << other->DebugName();
3255     return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3256   }
3257 
3258   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3259 
3260   bool IsMinusOne() const override {
3261     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3262   }
3263   bool IsArithmeticZero() const override {
3264     return std::fpclassify(value_) == FP_ZERO;
3265   }
3266   bool IsArithmeticPositiveZero() const {
3267     return IsArithmeticZero() && !std::signbit(value_);
3268   }
3269   bool IsArithmeticNegativeZero() const {
3270     return IsArithmeticZero() && std::signbit(value_);
3271   }
3272   bool IsZeroBitPattern() const override {
3273     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
3274   }
3275   bool IsOne() const override {
3276     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3277   }
3278   bool IsNaN() const {
3279     return std::isnan(value_);
3280   }
3281 
3282   DECLARE_INSTRUCTION(FloatConstant);
3283 
3284  protected:
3285   DEFAULT_COPY_CONSTRUCTOR(FloatConstant);
3286 
3287  private:
3288   explicit HFloatConstant(float value)
3289       : HConstant(kFloatConstant, DataType::Type::kFloat32),
3290         value_(value) {
3291   }
3292   explicit HFloatConstant(int32_t value)
3293       : HConstant(kFloatConstant, DataType::Type::kFloat32),
3294         value_(bit_cast<float, int32_t>(value)) {
3295   }
3296 
3297   const float value_;
3298 
3299   // Only the SsaBuilder and HGraph can create floating-point constants.
3300   friend class SsaBuilder;
3301   friend class HGraph;
3302 };
3303 
3304 class HDoubleConstant final : public HConstant {
3305  public:
3306   double GetValue() const { return value_; }
3307 
3308   uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); }
3309 
3310   bool InstructionDataEquals(const HInstruction* other) const override {
3311     DCHECK(other->IsDoubleConstant()) << other->DebugName();
3312     return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3313   }
3314 
3315   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3316 
3317   bool IsMinusOne() const override {
3318     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3319   }
3320   bool IsArithmeticZero() const override {
3321     return std::fpclassify(value_) == FP_ZERO;
3322   }
3323   bool IsArithmeticPositiveZero() const {
3324     return IsArithmeticZero() && !std::signbit(value_);
3325   }
3326   bool IsArithmeticNegativeZero() const {
3327     return IsArithmeticZero() && std::signbit(value_);
3328   }
3329   bool IsZeroBitPattern() const override {
3330     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
3331   }
3332   bool IsOne() const override {
3333     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3334   }
3335   bool IsNaN() const {
3336     return std::isnan(value_);
3337   }
3338 
3339   DECLARE_INSTRUCTION(DoubleConstant);
3340 
3341  protected:
3342   DEFAULT_COPY_CONSTRUCTOR(DoubleConstant);
3343 
3344  private:
3345   explicit HDoubleConstant(double value)
3346       : HConstant(kDoubleConstant, DataType::Type::kFloat64),
3347         value_(value) {
3348   }
3349   explicit HDoubleConstant(int64_t value)
3350       : HConstant(kDoubleConstant, DataType::Type::kFloat64),
3351         value_(bit_cast<double, int64_t>(value)) {
3352   }
3353 
3354   const double value_;
3355 
3356   // Only the SsaBuilder and HGraph can create floating-point constants.
3357   friend class SsaBuilder;
3358   friend class HGraph;
3359 };
3360 
3361 // Conditional branch. A block ending with an HIf instruction must have
3362 // two successors.
3363 class HIf final : public HExpression<1> {
3364  public:
3365   explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
3366       : HExpression(kIf, SideEffects::None(), dex_pc),
3367         true_count_(std::numeric_limits<uint16_t>::max()),
3368         false_count_(std::numeric_limits<uint16_t>::max()) {
3369     SetRawInputAt(0, input);
3370   }
3371 
3372   bool IsClonable() const override { return true; }
3373   bool IsControlFlow() const override { return true; }
3374 
3375   HBasicBlock* IfTrueSuccessor() const {
3376     return GetBlock()->GetSuccessors()[0];
3377   }
3378 
3379   HBasicBlock* IfFalseSuccessor() const {
3380     return GetBlock()->GetSuccessors()[1];
3381   }
3382 
3383   void SetTrueCount(uint16_t count) { true_count_ = count; }
3384   uint16_t GetTrueCount() const { return true_count_; }
3385 
3386   void SetFalseCount(uint16_t count) { false_count_ = count; }
3387   uint16_t GetFalseCount() const { return false_count_; }
3388 
3389   DECLARE_INSTRUCTION(If);
3390 
3391  protected:
3392   DEFAULT_COPY_CONSTRUCTOR(If);
3393 
3394  private:
3395   uint16_t true_count_;
3396   uint16_t false_count_;
3397 };
3398 
3399 
3400 // Abstract instruction which marks the beginning and/or end of a try block and
3401 // links it to the respective exception handlers. Behaves the same as a Goto in
3402 // non-exceptional control flow.
3403 // Normal-flow successor is stored at index zero, exception handlers under
3404 // higher indices in no particular order.
3405 class HTryBoundary final : public HExpression<0> {
3406  public:
3407   enum class BoundaryKind {
3408     kEntry,
3409     kExit,
3410     kLast = kExit
3411   };
3412 
3413   // SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive
3414   // across the catch block entering edges as GC might happen during throwing an exception.
3415   // TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no
3416   // HInstruction which a catch block must start from.
3417   explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
3418       : HExpression(kTryBoundary,
3419                     (kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC()
3420                                                   : SideEffects::None(),
3421                     dex_pc) {
3422     SetPackedField<BoundaryKindField>(kind);
3423   }
3424 
3425   bool IsControlFlow() const override { return true; }
3426 
3427   // Returns the block's non-exceptional successor (index zero).
3428   HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
3429 
3430   ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
3431     return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
3432   }
3433 
3434   // Returns whether `handler` is among its exception handlers (non-zero index
3435   // successors).
3436   bool HasExceptionHandler(const HBasicBlock& handler) const {
3437     DCHECK(handler.IsCatchBlock());
3438     return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
3439   }
3440 
3441   // If not present already, adds `handler` to its block's list of exception
3442   // handlers.
3443   void AddExceptionHandler(HBasicBlock* handler) {
3444     if (!HasExceptionHandler(*handler)) {
3445       GetBlock()->AddSuccessor(handler);
3446     }
3447   }
3448 
3449   BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
3450   bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
3451 
3452   bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
3453 
3454   DECLARE_INSTRUCTION(TryBoundary);
3455 
3456  protected:
3457   DEFAULT_COPY_CONSTRUCTOR(TryBoundary);
3458 
3459  private:
3460   static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
3461   static constexpr size_t kFieldBoundaryKindSize =
3462       MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
3463   static constexpr size_t kNumberOfTryBoundaryPackedBits =
3464       kFieldBoundaryKind + kFieldBoundaryKindSize;
3465   static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
3466                 "Too many packed fields.");
3467   using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
3468 };
3469 
3470 // Deoptimize to interpreter, upon checking a condition.
3471 class HDeoptimize final : public HVariableInputSizeInstruction {
3472  public:
3473   // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move
3474   // across.
3475   HDeoptimize(ArenaAllocator* allocator,
3476               HInstruction* cond,
3477               DeoptimizationKind kind,
3478               uint32_t dex_pc)
3479       : HVariableInputSizeInstruction(
3480             kDeoptimize,
3481             SideEffects::All(),
3482             dex_pc,
3483             allocator,
3484             /* number_of_inputs= */ 1,
3485             kArenaAllocMisc) {
3486     SetPackedFlag<kFieldCanBeMoved>(false);
3487     SetPackedField<DeoptimizeKindField>(kind);
3488     SetRawInputAt(0, cond);
3489   }
3490 
3491   bool IsClonable() const override { return true; }
3492 
3493   // Use this constructor when the `HDeoptimize` guards an instruction, and any user
3494   // that relies on the deoptimization to pass should have its input be the `HDeoptimize`
3495   // instead of `guard`.
3496   // We set CanTriggerGC to prevent any intermediate address to be live
3497   // at the point of the `HDeoptimize`.
3498   HDeoptimize(ArenaAllocator* allocator,
3499               HInstruction* cond,
3500               HInstruction* guard,
3501               DeoptimizationKind kind,
3502               uint32_t dex_pc)
3503       : HVariableInputSizeInstruction(
3504             kDeoptimize,
3505             guard->GetType(),
3506             SideEffects::CanTriggerGC(),
3507             dex_pc,
3508             allocator,
3509             /* number_of_inputs= */ 2,
3510             kArenaAllocMisc) {
3511     SetPackedFlag<kFieldCanBeMoved>(true);
3512     SetPackedField<DeoptimizeKindField>(kind);
3513     SetRawInputAt(0, cond);
3514     SetRawInputAt(1, guard);
3515   }
3516 
3517   bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); }
3518 
3519   bool InstructionDataEquals(const HInstruction* other) const override {
3520     return (other->CanBeMoved() == CanBeMoved()) &&
3521            (other->AsDeoptimize()->GetDeoptimizationKind() == GetDeoptimizationKind());
3522   }
3523 
3524   bool NeedsEnvironment() const override { return true; }
3525 
3526   bool CanThrow() const override { return true; }
3527 
3528   DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); }
3529 
3530   bool GuardsAnInput() const {
3531     return InputCount() == 2;
3532   }
3533 
3534   HInstruction* GuardedInput() const {
3535     DCHECK(GuardsAnInput());
3536     return InputAt(1);
3537   }
3538 
3539   void RemoveGuard() {
3540     RemoveInputAt(1);
3541   }
3542 
3543   DECLARE_INSTRUCTION(Deoptimize);
3544 
3545  protected:
3546   DEFAULT_COPY_CONSTRUCTOR(Deoptimize);
3547 
3548  private:
3549   static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits;
3550   static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1;
3551   static constexpr size_t kFieldDeoptimizeKindSize =
3552       MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast));
3553   static constexpr size_t kNumberOfDeoptimizePackedBits =
3554       kFieldDeoptimizeKind + kFieldDeoptimizeKindSize;
3555   static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits,
3556                 "Too many packed fields.");
3557   using DeoptimizeKindField =
3558       BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>;
3559 };
3560 
3561 // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization.
3562 // The compiled code checks this flag value in a guard before devirtualized call and
3563 // if it's true, starts to do deoptimization.
3564 // It has a 4-byte slot on stack.
3565 // TODO: allocate a register for this flag.
3566 class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction {
3567  public:
3568   // CHA guards are only optimized in a separate pass and it has no side effects
3569   // with regard to other passes.
3570   HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc)
3571       : HVariableInputSizeInstruction(kShouldDeoptimizeFlag,
3572                                       DataType::Type::kInt32,
3573                                       SideEffects::None(),
3574                                       dex_pc,
3575                                       allocator,
3576                                       0,
3577                                       kArenaAllocCHA) {
3578   }
3579 
3580   // We do all CHA guard elimination/motion in a single pass, after which there is no
3581   // further guard elimination/motion since a guard might have been used for justification
3582   // of the elimination of another guard. Therefore, we pretend this guard cannot be moved
3583   // to avoid other optimizations trying to move it.
3584   bool CanBeMoved() const override { return false; }
3585 
3586   DECLARE_INSTRUCTION(ShouldDeoptimizeFlag);
3587 
3588  protected:
3589   DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag);
3590 };
3591 
3592 // Represents the ArtMethod that was passed as a first argument to
3593 // the method. It is used by instructions that depend on it, like
3594 // instructions that work with the dex cache.
3595 class HCurrentMethod final : public HExpression<0> {
3596  public:
3597   explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc)
3598       : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) {
3599   }
3600 
3601   DECLARE_INSTRUCTION(CurrentMethod);
3602 
3603  protected:
3604   DEFAULT_COPY_CONSTRUCTOR(CurrentMethod);
3605 };
3606 
3607 // Fetches an ArtMethod from the virtual table or the interface method table
3608 // of a class.
3609 class HClassTableGet final : public HExpression<1> {
3610  public:
3611   enum class TableKind {
3612     kVTable,
3613     kIMTable,
3614     kLast = kIMTable
3615   };
3616   HClassTableGet(HInstruction* cls,
3617                  DataType::Type type,
3618                  TableKind kind,
3619                  size_t index,
3620                  uint32_t dex_pc)
3621       : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc),
3622         index_(index) {
3623     SetPackedField<TableKindField>(kind);
3624     SetRawInputAt(0, cls);
3625   }
3626 
3627   bool IsClonable() const override { return true; }
3628   bool CanBeMoved() const override { return true; }
3629   bool InstructionDataEquals(const HInstruction* other) const override {
3630     return other->AsClassTableGet()->GetIndex() == index_ &&
3631         other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
3632   }
3633 
3634   TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
3635   size_t GetIndex() const { return index_; }
3636 
3637   DECLARE_INSTRUCTION(ClassTableGet);
3638 
3639  protected:
3640   DEFAULT_COPY_CONSTRUCTOR(ClassTableGet);
3641 
3642  private:
3643   static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits;
3644   static constexpr size_t kFieldTableKindSize =
3645       MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
3646   static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
3647   static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
3648                 "Too many packed fields.");
3649   using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKindSize>;
3650 
3651   // The index of the ArtMethod in the table.
3652   const size_t index_;
3653 };
3654 
3655 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
3656 // have one successor for each entry in the switch table, and the final successor
3657 // will be the block containing the next Dex opcode.
3658 class HPackedSwitch final : public HExpression<1> {
3659  public:
3660   HPackedSwitch(int32_t start_value,
3661                 uint32_t num_entries,
3662                 HInstruction* input,
3663                 uint32_t dex_pc = kNoDexPc)
3664     : HExpression(kPackedSwitch, SideEffects::None(), dex_pc),
3665       start_value_(start_value),
3666       num_entries_(num_entries) {
3667     SetRawInputAt(0, input);
3668   }
3669 
3670   bool IsClonable() const override { return true; }
3671 
3672   bool IsControlFlow() const override { return true; }
3673 
3674   int32_t GetStartValue() const { return start_value_; }
3675 
3676   uint32_t GetNumEntries() const { return num_entries_; }
3677 
3678   HBasicBlock* GetDefaultBlock() const {
3679     // Last entry is the default block.
3680     return GetBlock()->GetSuccessors()[num_entries_];
3681   }
3682   DECLARE_INSTRUCTION(PackedSwitch);
3683 
3684  protected:
3685   DEFAULT_COPY_CONSTRUCTOR(PackedSwitch);
3686 
3687  private:
3688   const int32_t start_value_;
3689   const uint32_t num_entries_;
3690 };
3691 
3692 class HUnaryOperation : public HExpression<1> {
3693  public:
3694   HUnaryOperation(InstructionKind kind,
3695                   DataType::Type result_type,
3696                   HInstruction* input,
3697                   uint32_t dex_pc = kNoDexPc)
3698       : HExpression(kind, result_type, SideEffects::None(), dex_pc) {
3699     SetRawInputAt(0, input);
3700   }
3701 
3702   // All of the UnaryOperation instructions are clonable.
3703   bool IsClonable() const override { return true; }
3704 
3705   HInstruction* GetInput() const { return InputAt(0); }
3706   DataType::Type GetResultType() const { return GetType(); }
3707 
3708   bool CanBeMoved() const final { return true; }
3709   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
3710     return true;
3711   }
3712 
3713   // Try to statically evaluate `this` and return a HConstant
3714   // containing the result of this evaluation.  If `this` cannot
3715   // be evaluated as a constant, return null.
3716   HConstant* TryStaticEvaluation() const;
3717 
3718   // Same but for `input` instead of GetInput().
3719   HConstant* TryStaticEvaluation(HInstruction* input) const;
3720 
3721   // Apply this operation to `x`.
3722   virtual HConstant* Evaluate([[maybe_unused]] HIntConstant* x) const {
3723     LOG(FATAL) << DebugName() << " is not defined for int values";
3724     UNREACHABLE();
3725   }
3726   virtual HConstant* Evaluate([[maybe_unused]] HLongConstant* x) const {
3727     LOG(FATAL) << DebugName() << " is not defined for long values";
3728     UNREACHABLE();
3729   }
3730   virtual HConstant* Evaluate([[maybe_unused]] HFloatConstant* x) const {
3731     LOG(FATAL) << DebugName() << " is not defined for float values";
3732     UNREACHABLE();
3733   }
3734   virtual HConstant* Evaluate([[maybe_unused]] HDoubleConstant* x) const {
3735     LOG(FATAL) << DebugName() << " is not defined for double values";
3736     UNREACHABLE();
3737   }
3738 
3739   DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
3740 
3741  protected:
3742   DEFAULT_COPY_CONSTRUCTOR(UnaryOperation);
3743 };
3744 
3745 class HBinaryOperation : public HExpression<2> {
3746  public:
3747   HBinaryOperation(InstructionKind kind,
3748                    DataType::Type result_type,
3749                    HInstruction* left,
3750                    HInstruction* right,
3751                    SideEffects side_effects = SideEffects::None(),
3752                    uint32_t dex_pc = kNoDexPc)
3753       : HExpression(kind, result_type, side_effects, dex_pc) {
3754     SetRawInputAt(0, left);
3755     SetRawInputAt(1, right);
3756   }
3757 
3758   // All of the BinaryOperation instructions are clonable.
3759   bool IsClonable() const override { return true; }
3760 
3761   HInstruction* GetLeft() const { return InputAt(0); }
3762   HInstruction* GetRight() const { return InputAt(1); }
3763   DataType::Type GetResultType() const { return GetType(); }
3764 
3765   virtual bool IsCommutative() const { return false; }
3766 
3767   // Put constant on the right.
3768   // Returns whether order is changed.
3769   bool OrderInputsWithConstantOnTheRight() {
3770     HInstruction* left = InputAt(0);
3771     HInstruction* right = InputAt(1);
3772     if (left->IsConstant() && !right->IsConstant()) {
3773       ReplaceInput(right, 0);
3774       ReplaceInput(left, 1);
3775       return true;
3776     }
3777     return false;
3778   }
3779 
3780   // Order inputs by instruction id, but favor constant on the right side.
3781   // This helps GVN for commutative ops.
3782   void OrderInputs() {
3783     DCHECK(IsCommutative());
3784     HInstruction* left = InputAt(0);
3785     HInstruction* right = InputAt(1);
3786     if (left == right || (!left->IsConstant() && right->IsConstant())) {
3787       return;
3788     }
3789     if (OrderInputsWithConstantOnTheRight()) {
3790       return;
3791     }
3792     // Order according to instruction id.
3793     if (left->GetId() > right->GetId()) {
3794       ReplaceInput(right, 0);
3795       ReplaceInput(left, 1);
3796     }
3797   }
3798 
3799   bool CanBeMoved() const final { return true; }
3800   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
3801     return true;
3802   }
3803 
3804   // Try to statically evaluate `this` and return a HConstant
3805   // containing the result of this evaluation.  If `this` cannot
3806   // be evaluated as a constant, return null.
3807   HConstant* TryStaticEvaluation() const;
3808 
3809   // Same but for `left` and `right` instead of GetLeft() and GetRight().
3810   HConstant* TryStaticEvaluation(HInstruction* left, HInstruction* right) const;
3811 
3812   // Apply this operation to `x` and `y`.
3813   virtual HConstant* Evaluate([[maybe_unused]] HNullConstant* x,
3814                               [[maybe_unused]] HNullConstant* y) const {
3815     LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
3816     UNREACHABLE();
3817   }
3818   virtual HConstant* Evaluate([[maybe_unused]] HIntConstant* x,
3819                               [[maybe_unused]] HIntConstant* y) const {
3820     LOG(FATAL) << DebugName() << " is not defined for the (int, int) case.";
3821     UNREACHABLE();
3822   }
3823   virtual HConstant* Evaluate([[maybe_unused]] HLongConstant* x,
3824                               [[maybe_unused]] HLongConstant* y) const {
3825     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
3826     UNREACHABLE();
3827   }
3828   virtual HConstant* Evaluate([[maybe_unused]] HLongConstant* x,
3829                               [[maybe_unused]] HIntConstant* y) const {
3830     LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
3831     UNREACHABLE();
3832   }
3833   virtual HConstant* Evaluate([[maybe_unused]] HFloatConstant* x,
3834                               [[maybe_unused]] HFloatConstant* y) const {
3835     LOG(FATAL) << DebugName() << " is not defined for float values";
3836     UNREACHABLE();
3837   }
3838   virtual HConstant* Evaluate([[maybe_unused]] HDoubleConstant* x,
3839                               [[maybe_unused]] HDoubleConstant* y) const {
3840     LOG(FATAL) << DebugName() << " is not defined for double values";
3841     UNREACHABLE();
3842   }
3843 
3844   // Returns an input that can legally be used as the right input and is
3845   // constant, or null.
3846   HConstant* GetConstantRight() const;
3847 
3848   // If `GetConstantRight()` returns one of the input, this returns the other
3849   // one. Otherwise it returns null.
3850   HInstruction* GetLeastConstantLeft() const;
3851 
3852   DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
3853 
3854  protected:
3855   DEFAULT_COPY_CONSTRUCTOR(BinaryOperation);
3856 };
3857 
3858 // The comparison bias applies for floating point operations and indicates how NaN
3859 // comparisons are treated:
3860 enum class ComparisonBias {  // private marker to avoid generate-operator-out.py from processing.
3861   kNoBias,  // bias is not applicable (i.e. for long operation)
3862   kGtBias,  // return 1 for NaN comparisons
3863   kLtBias,  // return -1 for NaN comparisons
3864   kLast = kLtBias
3865 };
3866 
3867 std::ostream& operator<<(std::ostream& os, ComparisonBias rhs);
3868 
3869 class HCondition : public HBinaryOperation {
3870  public:
3871   HCondition(InstructionKind kind,
3872              HInstruction* first,
3873              HInstruction* second,
3874              uint32_t dex_pc = kNoDexPc)
3875       : HBinaryOperation(kind,
3876                          DataType::Type::kBool,
3877                          first,
3878                          second,
3879                          SideEffects::None(),
3880                          dex_pc) {
3881     SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
3882   }
3883 
3884   static HCondition* Create(HGraph* graph,
3885                             IfCondition cond,
3886                             HInstruction* lhs,
3887                             HInstruction* rhs,
3888                             uint32_t dex_pc = kNoDexPc);
3889 
3890   // For code generation purposes, returns whether this instruction is just before
3891   // `instruction`, and disregard moves in between.
3892   bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
3893 
3894   DECLARE_ABSTRACT_INSTRUCTION(Condition);
3895 
3896   virtual IfCondition GetCondition() const = 0;
3897 
3898   virtual IfCondition GetOppositeCondition() const = 0;
3899 
3900   bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
3901   bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
3902 
3903   ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
3904   void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
3905 
3906   bool InstructionDataEquals(const HInstruction* other) const override {
3907     return GetPackedFields() == other->AsCondition()->GetPackedFields();
3908   }
3909 
3910   bool IsFPConditionTrueIfNaN() const {
3911     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3912     IfCondition if_cond = GetCondition();
3913     if (if_cond == kCondNE) {
3914       return true;
3915     } else if (if_cond == kCondEQ) {
3916       return false;
3917     }
3918     return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
3919   }
3920 
3921   bool IsFPConditionFalseIfNaN() const {
3922     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3923     IfCondition if_cond = GetCondition();
3924     if (if_cond == kCondEQ) {
3925       return true;
3926     } else if (if_cond == kCondNE) {
3927       return false;
3928     }
3929     return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
3930   }
3931 
3932  protected:
3933   // Needed if we merge a HCompare into a HCondition.
3934   static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
3935   static constexpr size_t kFieldComparisonBiasSize =
3936       MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3937   static constexpr size_t kNumberOfConditionPackedBits =
3938       kFieldComparisonBias + kFieldComparisonBiasSize;
3939   static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3940   using ComparisonBiasField =
3941       BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3942 
3943   template <typename T>
3944   int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3945 
3946   template <typename T>
3947   int32_t CompareFP(T x, T y) const {
3948     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3949     DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3950     // Handle the bias.
3951     return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
3952   }
3953 
3954   // Return an integer constant containing the result of a condition evaluated at compile time.
3955   HIntConstant* MakeConstantCondition(bool value) const {
3956     return GetBlock()->GetGraph()->GetIntConstant(value);
3957   }
3958 
3959   DEFAULT_COPY_CONSTRUCTOR(Condition);
3960 };
3961 
3962 // Instruction to check if two inputs are equal to each other.
3963 class HEqual final : public HCondition {
3964  public:
3965   HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3966       : HCondition(kEqual, first, second, dex_pc) {
3967   }
3968 
3969   bool IsCommutative() const override { return true; }
3970 
3971   HConstant* Evaluate([[maybe_unused]] HNullConstant* x,
3972                       [[maybe_unused]] HNullConstant* y) const override {
3973     return MakeConstantCondition(true);
3974   }
3975   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3976     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
3977   }
3978   // In the following Evaluate methods, a HCompare instruction has
3979   // been merged into this HEqual instruction; evaluate it as
3980   // `Compare(x, y) == 0`.
3981   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3982     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0));
3983   }
3984   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3985     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
3986   }
3987   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3988     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
3989   }
3990 
3991   DECLARE_INSTRUCTION(Equal);
3992 
3993   IfCondition GetCondition() const override {
3994     return kCondEQ;
3995   }
3996 
3997   IfCondition GetOppositeCondition() const override {
3998     return kCondNE;
3999   }
4000 
4001  protected:
4002   DEFAULT_COPY_CONSTRUCTOR(Equal);
4003 
4004  private:
4005   template <typename T> static bool Compute(T x, T y) { return x == y; }
4006 };
4007 
4008 class HNotEqual final : public HCondition {
4009  public:
4010   HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4011       : HCondition(kNotEqual, first, second, dex_pc) {
4012   }
4013 
4014   bool IsCommutative() const override { return true; }
4015 
4016   HConstant* Evaluate([[maybe_unused]] HNullConstant* x,
4017                       [[maybe_unused]] HNullConstant* y) const override {
4018     return MakeConstantCondition(false);
4019   }
4020   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4021     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4022   }
4023   // In the following Evaluate methods, a HCompare instruction has
4024   // been merged into this HNotEqual instruction; evaluate it as
4025   // `Compare(x, y) != 0`.
4026   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4027     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0));
4028   }
4029   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4030     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
4031   }
4032   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4033     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
4034   }
4035 
4036   DECLARE_INSTRUCTION(NotEqual);
4037 
4038   IfCondition GetCondition() const override {
4039     return kCondNE;
4040   }
4041 
4042   IfCondition GetOppositeCondition() const override {
4043     return kCondEQ;
4044   }
4045 
4046  protected:
4047   DEFAULT_COPY_CONSTRUCTOR(NotEqual);
4048 
4049  private:
4050   template <typename T> static bool Compute(T x, T y) { return x != y; }
4051 };
4052 
4053 class HLessThan final : public HCondition {
4054  public:
4055   HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4056       : HCondition(kLessThan, first, second, dex_pc) {
4057   }
4058 
4059   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4060     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4061   }
4062   // In the following Evaluate methods, a HCompare instruction has
4063   // been merged into this HLessThan instruction; evaluate it as
4064   // `Compare(x, y) < 0`.
4065   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4066     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0));
4067   }
4068   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4069     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
4070   }
4071   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4072     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
4073   }
4074 
4075   DECLARE_INSTRUCTION(LessThan);
4076 
4077   IfCondition GetCondition() const override {
4078     return kCondLT;
4079   }
4080 
4081   IfCondition GetOppositeCondition() const override {
4082     return kCondGE;
4083   }
4084 
4085  protected:
4086   DEFAULT_COPY_CONSTRUCTOR(LessThan);
4087 
4088  private:
4089   template <typename T> static bool Compute(T x, T y) { return x < y; }
4090 };
4091 
4092 class HLessThanOrEqual final : public HCondition {
4093  public:
4094   HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4095       : HCondition(kLessThanOrEqual, first, second, dex_pc) {
4096   }
4097 
4098   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4099     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4100   }
4101   // In the following Evaluate methods, a HCompare instruction has
4102   // been merged into this HLessThanOrEqual instruction; evaluate it as
4103   // `Compare(x, y) <= 0`.
4104   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4105     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0));
4106   }
4107   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4108     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
4109   }
4110   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4111     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
4112   }
4113 
4114   DECLARE_INSTRUCTION(LessThanOrEqual);
4115 
4116   IfCondition GetCondition() const override {
4117     return kCondLE;
4118   }
4119 
4120   IfCondition GetOppositeCondition() const override {
4121     return kCondGT;
4122   }
4123 
4124  protected:
4125   DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual);
4126 
4127  private:
4128   template <typename T> static bool Compute(T x, T y) { return x <= y; }
4129 };
4130 
4131 class HGreaterThan final : public HCondition {
4132  public:
4133   HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4134       : HCondition(kGreaterThan, first, second, dex_pc) {
4135   }
4136 
4137   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4138     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4139   }
4140   // In the following Evaluate methods, a HCompare instruction has
4141   // been merged into this HGreaterThan instruction; evaluate it as
4142   // `Compare(x, y) > 0`.
4143   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4144     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0));
4145   }
4146   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4147     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
4148   }
4149   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4150     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
4151   }
4152 
4153   DECLARE_INSTRUCTION(GreaterThan);
4154 
4155   IfCondition GetCondition() const override {
4156     return kCondGT;
4157   }
4158 
4159   IfCondition GetOppositeCondition() const override {
4160     return kCondLE;
4161   }
4162 
4163  protected:
4164   DEFAULT_COPY_CONSTRUCTOR(GreaterThan);
4165 
4166  private:
4167   template <typename T> static bool Compute(T x, T y) { return x > y; }
4168 };
4169 
4170 class HGreaterThanOrEqual final : public HCondition {
4171  public:
4172   HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4173       : HCondition(kGreaterThanOrEqual, first, second, dex_pc) {
4174   }
4175 
4176   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4177     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4178   }
4179   // In the following Evaluate methods, a HCompare instruction has
4180   // been merged into this HGreaterThanOrEqual instruction; evaluate it as
4181   // `Compare(x, y) >= 0`.
4182   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4183     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0));
4184   }
4185   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4186     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
4187   }
4188   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4189     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0));
4190   }
4191 
4192   DECLARE_INSTRUCTION(GreaterThanOrEqual);
4193 
4194   IfCondition GetCondition() const override {
4195     return kCondGE;
4196   }
4197 
4198   IfCondition GetOppositeCondition() const override {
4199     return kCondLT;
4200   }
4201 
4202  protected:
4203   DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual);
4204 
4205  private:
4206   template <typename T> static bool Compute(T x, T y) { return x >= y; }
4207 };
4208 
4209 class HBelow final : public HCondition {
4210  public:
4211   HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4212       : HCondition(kBelow, first, second, dex_pc) {
4213   }
4214 
4215   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4216     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4217   }
4218   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4219     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4220   }
4221 
4222   DECLARE_INSTRUCTION(Below);
4223 
4224   IfCondition GetCondition() const override {
4225     return kCondB;
4226   }
4227 
4228   IfCondition GetOppositeCondition() const override {
4229     return kCondAE;
4230   }
4231 
4232  protected:
4233   DEFAULT_COPY_CONSTRUCTOR(Below);
4234 
4235  private:
4236   template <typename T> static bool Compute(T x, T y) {
4237     return MakeUnsigned(x) < MakeUnsigned(y);
4238   }
4239 };
4240 
4241 class HBelowOrEqual final : public HCondition {
4242  public:
4243   HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4244       : HCondition(kBelowOrEqual, first, second, dex_pc) {
4245   }
4246 
4247   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4248     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4249   }
4250   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4251     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4252   }
4253 
4254   DECLARE_INSTRUCTION(BelowOrEqual);
4255 
4256   IfCondition GetCondition() const override {
4257     return kCondBE;
4258   }
4259 
4260   IfCondition GetOppositeCondition() const override {
4261     return kCondA;
4262   }
4263 
4264  protected:
4265   DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual);
4266 
4267  private:
4268   template <typename T> static bool Compute(T x, T y) {
4269     return MakeUnsigned(x) <= MakeUnsigned(y);
4270   }
4271 };
4272 
4273 class HAbove final : public HCondition {
4274  public:
4275   HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4276       : HCondition(kAbove, first, second, dex_pc) {
4277   }
4278 
4279   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4280     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4281   }
4282   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4283     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4284   }
4285 
4286   DECLARE_INSTRUCTION(Above);
4287 
4288   IfCondition GetCondition() const override {
4289     return kCondA;
4290   }
4291 
4292   IfCondition GetOppositeCondition() const override {
4293     return kCondBE;
4294   }
4295 
4296  protected:
4297   DEFAULT_COPY_CONSTRUCTOR(Above);
4298 
4299  private:
4300   template <typename T> static bool Compute(T x, T y) {
4301     return MakeUnsigned(x) > MakeUnsigned(y);
4302   }
4303 };
4304 
4305 class HAboveOrEqual final : public HCondition {
4306  public:
4307   HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4308       : HCondition(kAboveOrEqual, first, second, dex_pc) {
4309   }
4310 
4311   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4312     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4313   }
4314   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4315     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()));
4316   }
4317 
4318   DECLARE_INSTRUCTION(AboveOrEqual);
4319 
4320   IfCondition GetCondition() const override {
4321     return kCondAE;
4322   }
4323 
4324   IfCondition GetOppositeCondition() const override {
4325     return kCondB;
4326   }
4327 
4328  protected:
4329   DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual);
4330 
4331  private:
4332   template <typename T> static bool Compute(T x, T y) {
4333     return MakeUnsigned(x) >= MakeUnsigned(y);
4334   }
4335 };
4336 
4337 // Instruction to check how two inputs compare to each other.
4338 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
4339 class HCompare final : public HBinaryOperation {
4340  public:
4341   // Note that `comparison_type` is the type of comparison performed
4342   // between the comparison's inputs, not the type of the instantiated
4343   // HCompare instruction (which is always DataType::Type::kInt).
4344   HCompare(DataType::Type comparison_type,
4345            HInstruction* first,
4346            HInstruction* second,
4347            ComparisonBias bias,
4348            uint32_t dex_pc)
4349       : HBinaryOperation(kCompare,
4350                          DataType::Type::kInt32,
4351                          first,
4352                          second,
4353                          SideEffectsForArchRuntimeCalls(comparison_type),
4354                          dex_pc) {
4355     SetPackedField<ComparisonBiasField>(bias);
4356     SetPackedField<ComparisonTypeField>(comparison_type);
4357   }
4358 
4359   template <typename T>
4360   int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
4361 
4362   template <typename T>
4363   int32_t ComputeFP(T x, T y) const {
4364     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4365     DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
4366     // Handle the bias.
4367     return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
4368   }
4369 
4370   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4371     // Note that there is no "cmp-int" Dex instruction so we shouldn't
4372     // reach this code path when processing a freshly built HIR
4373     // graph. However HCompare integer instructions can be synthesized
4374     // by the instruction simplifier to implement IntegerCompare and
4375     // IntegerSignum intrinsics, so we have to handle this case.
4376     const int32_t value = DataType::IsUnsignedType(GetComparisonType()) ?
4377         Compute(x->GetValueAsUint64(), y->GetValueAsUint64()) :
4378         Compute(x->GetValue(), y->GetValue());
4379     return MakeConstantComparison(value);
4380   }
4381   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4382     const int32_t value = DataType::IsUnsignedType(GetComparisonType()) ?
4383         Compute(x->GetValueAsUint64(), y->GetValueAsUint64()) :
4384         Compute(x->GetValue(), y->GetValue());
4385     return MakeConstantComparison(value);
4386   }
4387   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4388     return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()));
4389   }
4390   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4391     return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()));
4392   }
4393 
4394   bool InstructionDataEquals(const HInstruction* other) const override {
4395     return GetPackedFields() == other->AsCompare()->GetPackedFields();
4396   }
4397 
4398   ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
4399 
4400   DataType::Type GetComparisonType() const { return GetPackedField<ComparisonTypeField>(); }
4401 
4402   void SetComparisonType(DataType::Type newType) { SetPackedField<ComparisonTypeField>(newType); }
4403 
4404   // Does this compare instruction have a "gt bias" (vs an "lt bias")?
4405   // Only meaningful for floating-point comparisons.
4406   bool IsGtBias() const {
4407     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4408     return GetBias() == ComparisonBias::kGtBias;
4409   }
4410 
4411   static SideEffects SideEffectsForArchRuntimeCalls([[maybe_unused]] DataType::Type type) {
4412     // Comparisons do not require a runtime call in any back end.
4413     return SideEffects::None();
4414   }
4415 
4416   DECLARE_INSTRUCTION(Compare);
4417 
4418  protected:
4419   static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
4420   static constexpr size_t kFieldComparisonBiasSize =
4421       MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
4422   static constexpr size_t kFieldComparisonType = kFieldComparisonBias + kFieldComparisonBiasSize;
4423   static constexpr size_t kFieldComparisonTypeSize =
4424       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
4425   static constexpr size_t kNumberOfComparePackedBits =
4426       kFieldComparisonType + kFieldComparisonTypeSize;
4427   static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4428   using ComparisonBiasField =
4429       BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
4430   using ComparisonTypeField =
4431       BitField<DataType::Type, kFieldComparisonType, kFieldComparisonTypeSize>;
4432 
4433   // Return an integer constant containing the result of a comparison evaluated at compile time.
4434   HIntConstant* MakeConstantComparison(int32_t value) const {
4435     DCHECK(value == -1 || value == 0 || value == 1) << value;
4436     return GetBlock()->GetGraph()->GetIntConstant(value);
4437   }
4438 
4439   DEFAULT_COPY_CONSTRUCTOR(Compare);
4440 };
4441 
4442 class HNewInstance final : public HExpression<1> {
4443  public:
4444   HNewInstance(HInstruction* cls,
4445                uint32_t dex_pc,
4446                dex::TypeIndex type_index,
4447                const DexFile& dex_file,
4448                bool finalizable,
4449                QuickEntrypointEnum entrypoint)
4450       : HExpression(kNewInstance,
4451                     DataType::Type::kReference,
4452                     SideEffects::CanTriggerGC(),
4453                     dex_pc),
4454         type_index_(type_index),
4455         dex_file_(dex_file),
4456         entrypoint_(entrypoint) {
4457     SetPackedFlag<kFlagFinalizable>(finalizable);
4458     SetPackedFlag<kFlagPartialMaterialization>(false);
4459     SetRawInputAt(0, cls);
4460   }
4461 
4462   bool IsClonable() const override { return true; }
4463 
4464   void SetPartialMaterialization() {
4465     SetPackedFlag<kFlagPartialMaterialization>(true);
4466   }
4467 
4468   dex::TypeIndex GetTypeIndex() const { return type_index_; }
4469   const DexFile& GetDexFile() const { return dex_file_; }
4470 
4471   // Calls runtime so needs an environment.
4472   bool NeedsEnvironment() const override { return true; }
4473 
4474   // Can throw errors when out-of-memory or if it's not instantiable/accessible.
4475   bool CanThrow() const override { return true; }
4476   bool OnlyThrowsAsyncExceptions() const override {
4477     return !IsFinalizable() && !NeedsChecks();
4478   }
4479 
4480   bool NeedsChecks() const {
4481     return entrypoint_ == kQuickAllocObjectWithChecks;
4482   }
4483 
4484   bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
4485 
4486   bool CanBeNull() const override { return false; }
4487 
4488   bool IsPartialMaterialization() const {
4489     return GetPackedFlag<kFlagPartialMaterialization>();
4490   }
4491 
4492   QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
4493 
4494   void SetEntrypoint(QuickEntrypointEnum entrypoint) {
4495     entrypoint_ = entrypoint;
4496   }
4497 
4498   HLoadClass* GetLoadClass() const {
4499     HInstruction* input = InputAt(0);
4500     if (input->IsClinitCheck()) {
4501       input = input->InputAt(0);
4502     }
4503     DCHECK(input->IsLoadClass());
4504     return input->AsLoadClass();
4505   }
4506 
4507   bool IsStringAlloc() const;
4508 
4509   DECLARE_INSTRUCTION(NewInstance);
4510 
4511  protected:
4512   DEFAULT_COPY_CONSTRUCTOR(NewInstance);
4513 
4514  private:
4515   static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits;
4516   static constexpr size_t kFlagPartialMaterialization = kFlagFinalizable + 1;
4517   static constexpr size_t kNumberOfNewInstancePackedBits = kFlagPartialMaterialization + 1;
4518   static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
4519                 "Too many packed fields.");
4520 
4521   const dex::TypeIndex type_index_;
4522   const DexFile& dex_file_;
4523   QuickEntrypointEnum entrypoint_;
4524 };
4525 
4526 enum IntrinsicNeedsEnvironment {
4527   kNoEnvironment,        // Intrinsic does not require an environment.
4528   kNeedsEnvironment      // Intrinsic requires an environment.
4529 };
4530 
4531 enum IntrinsicSideEffects {
4532   kNoSideEffects,     // Intrinsic does not have any heap memory side effects.
4533   kReadSideEffects,   // Intrinsic may read heap memory.
4534   kWriteSideEffects,  // Intrinsic may write heap memory.
4535   kAllSideEffects     // Intrinsic may read or write heap memory, or trigger GC.
4536 };
4537 
4538 enum IntrinsicExceptions {
4539   kNoThrow,  // Intrinsic does not throw any exceptions.
4540   kCanThrow  // Intrinsic may throw exceptions.
4541 };
4542 
4543 // Determines how to load an ArtMethod*.
4544 enum class MethodLoadKind {
4545   // Use a String init ArtMethod* loaded from Thread entrypoints.
4546   kStringInit,
4547 
4548   // Use the method's own ArtMethod* loaded by the register allocator.
4549   kRecursive,
4550 
4551   // Use PC-relative boot image ArtMethod* address that will be known at link time.
4552   // Used for boot image methods referenced by boot image code.
4553   kBootImageLinkTimePcRelative,
4554 
4555   // Load from a boot image entry in the .data.img.rel.ro using a PC-relative load.
4556   // Used for app->boot calls with relocatable image.
4557   kBootImageRelRo,
4558 
4559   // Load from an app image entry in the .data.img.rel.ro using a PC-relative load.
4560   // Used for app image methods referenced by apps in AOT-compiled code.
4561   kAppImageRelRo,
4562 
4563   // Load from an entry in the .bss section using a PC-relative load.
4564   // Used for methods outside boot image referenced by AOT-compiled app and boot image code.
4565   kBssEntry,
4566 
4567   // Use ArtMethod* at a known address, embed the direct address in the code.
4568   // Used for for JIT-compiled calls.
4569   kJitDirectAddress,
4570 
4571   // Make a runtime call to resolve and call the method. This is the last-resort-kind
4572   // used when other kinds are unimplemented on a particular architecture.
4573   kRuntimeCall,
4574 };
4575 
4576 // Determines the location of the code pointer of an invoke.
4577 enum class CodePtrLocation {
4578   // Recursive call, use local PC-relative call instruction.
4579   kCallSelf,
4580 
4581   // Use native pointer from the Artmethod*.
4582   // Used for @CriticalNative to avoid going through the compiled stub. This call goes through
4583   // a special resolution stub if the class is not initialized or no native code is registered.
4584   kCallCriticalNative,
4585 
4586   // Use code pointer from the ArtMethod*.
4587   // Used when we don't know the target code. This is also the last-resort-kind used when
4588   // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
4589   kCallArtMethod,
4590 };
4591 
4592 static inline bool IsPcRelativeMethodLoadKind(MethodLoadKind load_kind) {
4593   return load_kind == MethodLoadKind::kBootImageLinkTimePcRelative ||
4594          load_kind == MethodLoadKind::kBootImageRelRo ||
4595          load_kind == MethodLoadKind::kAppImageRelRo ||
4596          load_kind == MethodLoadKind::kBssEntry;
4597 }
4598 
4599 class HInvoke : public HVariableInputSizeInstruction {
4600  public:
4601   bool NeedsEnvironment() const override;
4602 
4603   void SetArgumentAt(size_t index, HInstruction* argument) {
4604     SetRawInputAt(index, argument);
4605   }
4606 
4607   // Return the number of arguments.  This number can be lower than
4608   // the number of inputs returned by InputCount(), as some invoke
4609   // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
4610   // inputs at the end of their list of inputs.
4611   uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
4612 
4613   // Return the number of outgoing vregs.
4614   uint32_t GetNumberOfOutVRegs() const { return number_of_out_vregs_; }
4615 
4616   InvokeType GetInvokeType() const {
4617     return GetPackedField<InvokeTypeField>();
4618   }
4619 
4620   Intrinsics GetIntrinsic() const {
4621     return intrinsic_;
4622   }
4623 
4624   void SetIntrinsic(Intrinsics intrinsic,
4625                     IntrinsicNeedsEnvironment needs_env,
4626                     IntrinsicSideEffects side_effects,
4627                     IntrinsicExceptions exceptions);
4628 
4629   bool IsFromInlinedInvoke() const {
4630     return GetEnvironment()->IsFromInlinedInvoke();
4631   }
4632 
4633   void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
4634 
4635   bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); }
4636 
4637   void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); }
4638 
4639   bool AlwaysThrows() const override final { return GetPackedFlag<kFlagAlwaysThrows>(); }
4640 
4641   bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); }
4642 
4643   bool CanBeNull() const override;
4644 
4645   bool InstructionDataEquals(const HInstruction* other) const override {
4646     return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
4647   }
4648 
4649   uint32_t* GetIntrinsicOptimizations() {
4650     return &intrinsic_optimizations_;
4651   }
4652 
4653   const uint32_t* GetIntrinsicOptimizations() const {
4654     return &intrinsic_optimizations_;
4655   }
4656 
4657   bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
4658 
4659   ArtMethod* GetResolvedMethod() const { return resolved_method_; }
4660   void SetResolvedMethod(ArtMethod* method, bool enable_intrinsic_opt);
4661 
4662   MethodReference GetMethodReference() const { return method_reference_; }
4663 
4664   const MethodReference GetResolvedMethodReference() const {
4665     return resolved_method_reference_;
4666   }
4667 
4668   DECLARE_ABSTRACT_INSTRUCTION(Invoke);
4669 
4670  protected:
4671   static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
4672   static constexpr size_t kFieldInvokeTypeSize =
4673       MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
4674   static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize;
4675   static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1;
4676   static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1;
4677   static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4678   using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
4679 
4680   HInvoke(InstructionKind kind,
4681           ArenaAllocator* allocator,
4682           uint32_t number_of_arguments,
4683           uint32_t number_of_out_vregs,
4684           uint32_t number_of_other_inputs,
4685           DataType::Type return_type,
4686           uint32_t dex_pc,
4687           MethodReference method_reference,
4688           ArtMethod* resolved_method,
4689           MethodReference resolved_method_reference,
4690           InvokeType invoke_type,
4691           bool enable_intrinsic_opt)
4692     : HVariableInputSizeInstruction(
4693           kind,
4694           return_type,
4695           SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
4696           dex_pc,
4697           allocator,
4698           number_of_arguments + number_of_other_inputs,
4699           kArenaAllocInvokeInputs),
4700       method_reference_(method_reference),
4701       resolved_method_reference_(resolved_method_reference),
4702       number_of_arguments_(dchecked_integral_cast<uint16_t>(number_of_arguments)),
4703       number_of_out_vregs_(dchecked_integral_cast<uint16_t>(number_of_out_vregs)),
4704       intrinsic_(Intrinsics::kNone),
4705       intrinsic_optimizations_(0) {
4706     SetPackedField<InvokeTypeField>(invoke_type);
4707     SetPackedFlag<kFlagCanThrow>(true);
4708     SetResolvedMethod(resolved_method, enable_intrinsic_opt);
4709   }
4710 
4711   DEFAULT_COPY_CONSTRUCTOR(Invoke);
4712 
4713   ArtMethod* resolved_method_;
4714   const MethodReference method_reference_;
4715   // Cached values of the resolved method, to avoid needing the mutator lock.
4716   const MethodReference resolved_method_reference_;
4717 
4718   uint16_t number_of_arguments_;
4719   uint16_t number_of_out_vregs_;
4720 
4721   Intrinsics intrinsic_;
4722 
4723   // A magic word holding optimizations for intrinsics. See intrinsics.h.
4724   uint32_t intrinsic_optimizations_;
4725 };
4726 
4727 class HInvokeUnresolved final : public HInvoke {
4728  public:
4729   HInvokeUnresolved(ArenaAllocator* allocator,
4730                     uint32_t number_of_arguments,
4731                     uint32_t number_of_out_vregs,
4732                     DataType::Type return_type,
4733                     uint32_t dex_pc,
4734                     MethodReference method_reference,
4735                     InvokeType invoke_type)
4736       : HInvoke(kInvokeUnresolved,
4737                 allocator,
4738                 number_of_arguments,
4739                 number_of_out_vregs,
4740                 /* number_of_other_inputs= */ 0u,
4741                 return_type,
4742                 dex_pc,
4743                 method_reference,
4744                 nullptr,
4745                 MethodReference(nullptr, 0u),
4746                 invoke_type,
4747                 /* enable_intrinsic_opt= */ false) {
4748   }
4749 
4750   bool IsClonable() const override { return true; }
4751 
4752   DECLARE_INSTRUCTION(InvokeUnresolved);
4753 
4754  protected:
4755   DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved);
4756 };
4757 
4758 class HInvokePolymorphic final : public HInvoke {
4759  public:
4760   HInvokePolymorphic(ArenaAllocator* allocator,
4761                      uint32_t number_of_arguments,
4762                      uint32_t number_of_out_vregs,
4763                      uint32_t number_of_other_inputs,
4764                      DataType::Type return_type,
4765                      uint32_t dex_pc,
4766                      MethodReference method_reference,
4767                      // resolved_method is the ArtMethod object corresponding to the polymorphic
4768                      // method (e.g. VarHandle.get), resolved using the class linker. It is needed
4769                      // to pass intrinsic information to the HInvokePolymorphic node.
4770                      ArtMethod* resolved_method,
4771                      MethodReference resolved_method_reference,
4772                      dex::ProtoIndex proto_idx)
4773       : HInvoke(kInvokePolymorphic,
4774                 allocator,
4775                 number_of_arguments,
4776                 number_of_out_vregs,
4777                 number_of_other_inputs,
4778                 return_type,
4779                 dex_pc,
4780                 method_reference,
4781                 resolved_method,
4782                 resolved_method_reference,
4783                 kPolymorphic,
4784                 /* enable_intrinsic_opt= */ true),
4785         proto_idx_(proto_idx) {}
4786 
4787   bool IsClonable() const override { return true; }
4788 
4789   dex::ProtoIndex GetProtoIndex() { return proto_idx_; }
4790 
4791   bool IsMethodHandleInvokeExact() const {
4792     return GetIntrinsic() == Intrinsics::kMethodHandleInvokeExact;
4793   }
4794 
4795   bool CanTargetInstanceMethod() const {
4796     DCHECK(IsMethodHandleInvokeExact());
4797     return GetNumberOfArguments() >= 2 &&
4798         InputAt(1)->GetType() == DataType::Type::kReference;
4799   }
4800 
4801   DECLARE_INSTRUCTION(InvokePolymorphic);
4802 
4803  protected:
4804   dex::ProtoIndex proto_idx_;
4805   DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic);
4806 };
4807 
4808 class HInvokeCustom final : public HInvoke {
4809  public:
4810   HInvokeCustom(ArenaAllocator* allocator,
4811                 uint32_t number_of_arguments,
4812                 uint32_t number_of_out_vregs,
4813                 uint32_t call_site_index,
4814                 DataType::Type return_type,
4815                 uint32_t dex_pc,
4816                 MethodReference method_reference,
4817                 bool enable_intrinsic_opt)
4818       : HInvoke(kInvokeCustom,
4819                 allocator,
4820                 number_of_arguments,
4821                 number_of_out_vregs,
4822                 /* number_of_other_inputs= */ 0u,
4823                 return_type,
4824                 dex_pc,
4825                 method_reference,
4826                 /* resolved_method= */ nullptr,
4827                 MethodReference(nullptr, 0u),
4828                 kStatic,
4829                 enable_intrinsic_opt),
4830       call_site_index_(call_site_index) {
4831   }
4832 
4833   uint32_t GetCallSiteIndex() const { return call_site_index_; }
4834 
4835   bool IsClonable() const override { return true; }
4836 
4837   DECLARE_INSTRUCTION(InvokeCustom);
4838 
4839  protected:
4840   DEFAULT_COPY_CONSTRUCTOR(InvokeCustom);
4841 
4842  private:
4843   uint32_t call_site_index_;
4844 };
4845 
4846 class HInvokeStaticOrDirect final : public HInvoke {
4847  public:
4848   // Requirements of this method call regarding the class
4849   // initialization (clinit) check of its declaring class.
4850   enum class ClinitCheckRequirement {  // private marker to avoid generate-operator-out.py from processing.
4851     kNone,      // Class already initialized.
4852     kExplicit,  // Static call having explicit clinit check as last input.
4853     kImplicit,  // Static call implicitly requiring a clinit check.
4854     kLast = kImplicit
4855   };
4856 
4857   struct DispatchInfo {
4858     MethodLoadKind method_load_kind;
4859     CodePtrLocation code_ptr_location;
4860     // The method load data holds
4861     //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
4862     //     Note that there are multiple string init methods, each having its own offset.
4863     //   - the method address for kDirectAddress
4864     uint64_t method_load_data;
4865   };
4866 
4867   HInvokeStaticOrDirect(ArenaAllocator* allocator,
4868                         uint32_t number_of_arguments,
4869                         uint32_t number_of_out_vregs,
4870                         DataType::Type return_type,
4871                         uint32_t dex_pc,
4872                         MethodReference method_reference,
4873                         ArtMethod* resolved_method,
4874                         DispatchInfo dispatch_info,
4875                         InvokeType invoke_type,
4876                         MethodReference resolved_method_reference,
4877                         ClinitCheckRequirement clinit_check_requirement,
4878                         bool enable_intrinsic_opt)
4879       : HInvoke(kInvokeStaticOrDirect,
4880                 allocator,
4881                 number_of_arguments,
4882                 number_of_out_vregs,
4883                 // There is potentially one extra argument for the HCurrentMethod input,
4884                 // and one other if the clinit check is explicit. These can be removed later.
4885                 (NeedsCurrentMethodInput(dispatch_info) ? 1u : 0u) +
4886                     (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
4887                 return_type,
4888                 dex_pc,
4889                 method_reference,
4890                 resolved_method,
4891                 resolved_method_reference,
4892                 invoke_type,
4893                 enable_intrinsic_opt),
4894         dispatch_info_(dispatch_info) {
4895     SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
4896   }
4897 
4898   bool IsClonable() const override { return true; }
4899   bool NeedsBss() const override {
4900     return GetMethodLoadKind() == MethodLoadKind::kBssEntry;
4901   }
4902 
4903   void SetDispatchInfo(DispatchInfo dispatch_info) {
4904     bool had_current_method_input = HasCurrentMethodInput();
4905     bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info);
4906 
4907     // Using the current method is the default and once we find a better
4908     // method load kind, we should not go back to using the current method.
4909     DCHECK(had_current_method_input || !needs_current_method_input);
4910 
4911     if (had_current_method_input && !needs_current_method_input) {
4912       DCHECK_EQ(InputAt(GetCurrentMethodIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
4913       RemoveInputAt(GetCurrentMethodIndex());
4914     }
4915     dispatch_info_ = dispatch_info;
4916   }
4917 
4918   DispatchInfo GetDispatchInfo() const {
4919     return dispatch_info_;
4920   }
4921 
4922   using HInstruction::GetInputRecords;  // Keep the const version visible.
4923   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
4924     ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
4925     if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
4926       DCHECK(!input_records.empty());
4927       DCHECK_GT(input_records.size(), GetNumberOfArguments());
4928       HInstruction* last_input = input_records.back().GetInstruction();
4929       // Note: `last_input` may be null during arguments setup.
4930       if (last_input != nullptr) {
4931         // `last_input` is the last input of a static invoke marked as having
4932         // an explicit clinit check. It must either be:
4933         // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
4934         // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
4935         DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
4936       }
4937     }
4938     return input_records;
4939   }
4940 
4941   bool CanDoImplicitNullCheckOn([[maybe_unused]] HInstruction* obj) const override {
4942     // We do not access the method via object reference, so we cannot do an implicit null check.
4943     // TODO: for intrinsics we can generate implicit null checks.
4944     return false;
4945   }
4946 
4947   bool CanBeNull() const override;
4948 
4949   MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
4950   CodePtrLocation GetCodePtrLocation() const {
4951     // We do CHA analysis after sharpening. When a method has CHA inlining, it
4952     // cannot call itself, as if the CHA optmization is invalid we want to make
4953     // sure the method is never executed again. So, while sharpening can return
4954     // kCallSelf, we bypass it here if there is a CHA optimization.
4955     if (dispatch_info_.code_ptr_location == CodePtrLocation::kCallSelf &&
4956         GetBlock()->GetGraph()->HasShouldDeoptimizeFlag()) {
4957       return CodePtrLocation::kCallArtMethod;
4958     } else {
4959       return dispatch_info_.code_ptr_location;
4960     }
4961   }
4962   bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
4963   bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
4964   bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; }
4965   bool HasPcRelativeMethodLoadKind() const {
4966     return IsPcRelativeMethodLoadKind(GetMethodLoadKind());
4967   }
4968 
4969   QuickEntrypointEnum GetStringInitEntryPoint() const {
4970     DCHECK(IsStringInit());
4971     return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
4972   }
4973 
4974   uint64_t GetMethodAddress() const {
4975     DCHECK(HasMethodAddress());
4976     return dispatch_info_.method_load_data;
4977   }
4978 
4979   const DexFile& GetDexFileForPcRelativeDexCache() const;
4980 
4981   ClinitCheckRequirement GetClinitCheckRequirement() const {
4982     return GetPackedField<ClinitCheckRequirementField>();
4983   }
4984 
4985   // Is this instruction a call to a static method?
4986   bool IsStatic() const {
4987     return GetInvokeType() == kStatic;
4988   }
4989 
4990   // Does this method load kind need the current method as an input?
4991   static bool NeedsCurrentMethodInput(DispatchInfo dispatch_info) {
4992     return dispatch_info.method_load_kind == MethodLoadKind::kRecursive ||
4993            dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall ||
4994            dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative;
4995   }
4996 
4997   // Get the index of the current method input.
4998   size_t GetCurrentMethodIndex() const {
4999     DCHECK(HasCurrentMethodInput());
5000     return GetCurrentMethodIndexUnchecked();
5001   }
5002   size_t GetCurrentMethodIndexUnchecked() const {
5003     return GetNumberOfArguments();
5004   }
5005 
5006   // Check if the method has a current method input.
5007   bool HasCurrentMethodInput() const {
5008     if (NeedsCurrentMethodInput(GetDispatchInfo())) {
5009       DCHECK(InputAt(GetCurrentMethodIndexUnchecked()) == nullptr ||  // During argument setup.
5010              InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod());
5011       return true;
5012     } else {
5013       DCHECK(InputCount() == GetCurrentMethodIndexUnchecked() ||
5014              InputAt(GetCurrentMethodIndexUnchecked()) == nullptr ||  // During argument setup.
5015              !InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod());
5016       return false;
5017     }
5018   }
5019 
5020   // Get the index of the special input.
5021   size_t GetSpecialInputIndex() const {
5022     DCHECK(HasSpecialInput());
5023     return GetSpecialInputIndexUnchecked();
5024   }
5025   size_t GetSpecialInputIndexUnchecked() const {
5026     return GetNumberOfArguments() + (HasCurrentMethodInput() ? 1u : 0u);
5027   }
5028 
5029   // Check if the method has a special input.
5030   bool HasSpecialInput() const {
5031     size_t other_inputs =
5032         GetSpecialInputIndexUnchecked() + (IsStaticWithExplicitClinitCheck() ? 1u : 0u);
5033     size_t input_count = InputCount();
5034     DCHECK_LE(input_count - other_inputs, 1u) << other_inputs << " " << input_count;
5035     return other_inputs != input_count;
5036   }
5037 
5038   void AddSpecialInput(HInstruction* input) {
5039     // We allow only one special input.
5040     DCHECK(!HasSpecialInput());
5041     InsertInputAt(GetSpecialInputIndexUnchecked(), input);
5042   }
5043 
5044   // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
5045   // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
5046   // instruction; only relevant for static calls with explicit clinit check.
5047   void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
5048     DCHECK(IsStaticWithExplicitClinitCheck());
5049     size_t last_input_index = inputs_.size() - 1u;
5050     HInstruction* last_input = inputs_.back().GetInstruction();
5051     DCHECK(last_input != nullptr);
5052     DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
5053     RemoveAsUserOfInput(last_input_index);
5054     inputs_.pop_back();
5055     SetPackedField<ClinitCheckRequirementField>(new_requirement);
5056     DCHECK(!IsStaticWithExplicitClinitCheck());
5057   }
5058 
5059   // Is this a call to a static method whose declaring class has an
5060   // explicit initialization check in the graph?
5061   bool IsStaticWithExplicitClinitCheck() const {
5062     return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
5063   }
5064 
5065   // Is this a call to a static method whose declaring class has an
5066   // implicit intialization check requirement?
5067   bool IsStaticWithImplicitClinitCheck() const {
5068     return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
5069   }
5070 
5071   DECLARE_INSTRUCTION(InvokeStaticOrDirect);
5072 
5073  protected:
5074   DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect);
5075 
5076  private:
5077   static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
5078   static constexpr size_t kFieldClinitCheckRequirementSize =
5079       MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
5080   static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
5081       kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
5082   static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
5083                 "Too many packed fields.");
5084   using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
5085                                                kFieldClinitCheckRequirement,
5086                                                kFieldClinitCheckRequirementSize>;
5087 
5088   DispatchInfo dispatch_info_;
5089 };
5090 std::ostream& operator<<(std::ostream& os, MethodLoadKind rhs);
5091 std::ostream& operator<<(std::ostream& os, CodePtrLocation rhs);
5092 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
5093 
5094 class HInvokeVirtual final : public HInvoke {
5095  public:
5096   HInvokeVirtual(ArenaAllocator* allocator,
5097                  uint32_t number_of_arguments,
5098                  uint32_t number_of_out_vregs,
5099                  DataType::Type return_type,
5100                  uint32_t dex_pc,
5101                  MethodReference method_reference,
5102                  ArtMethod* resolved_method,
5103                  MethodReference resolved_method_reference,
5104                  uint32_t vtable_index,
5105                  bool enable_intrinsic_opt)
5106       : HInvoke(kInvokeVirtual,
5107                 allocator,
5108                 number_of_arguments,
5109                 number_of_out_vregs,
5110                 0u,
5111                 return_type,
5112                 dex_pc,
5113                 method_reference,
5114                 resolved_method,
5115                 resolved_method_reference,
5116                 kVirtual,
5117                 enable_intrinsic_opt),
5118         vtable_index_(vtable_index) {
5119   }
5120 
5121   bool IsClonable() const override { return true; }
5122 
5123   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override;
5124 
5125   uint32_t GetVTableIndex() const { return vtable_index_; }
5126 
5127   DECLARE_INSTRUCTION(InvokeVirtual);
5128 
5129  protected:
5130   DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual);
5131 
5132  private:
5133   // Cached value of the resolved method, to avoid needing the mutator lock.
5134   const uint32_t vtable_index_;
5135 };
5136 
5137 class HInvokeInterface final : public HInvoke {
5138  public:
5139   HInvokeInterface(ArenaAllocator* allocator,
5140                    uint32_t number_of_arguments,
5141                    uint32_t number_of_out_vregs,
5142                    DataType::Type return_type,
5143                    uint32_t dex_pc,
5144                    MethodReference method_reference,
5145                    ArtMethod* resolved_method,
5146                    MethodReference resolved_method_reference,
5147                    uint32_t imt_index,
5148                    MethodLoadKind load_kind,
5149                    bool enable_intrinsic_opt)
5150       : HInvoke(kInvokeInterface,
5151                 allocator,
5152                 number_of_arguments + (NeedsCurrentMethod(load_kind) ? 1 : 0),
5153                 number_of_out_vregs,
5154                 0u,
5155                 return_type,
5156                 dex_pc,
5157                 method_reference,
5158                 resolved_method,
5159                 resolved_method_reference,
5160                 kInterface,
5161                 enable_intrinsic_opt),
5162         imt_index_(imt_index),
5163         hidden_argument_load_kind_(load_kind) {
5164   }
5165 
5166   static bool NeedsCurrentMethod(MethodLoadKind load_kind) {
5167     return load_kind == MethodLoadKind::kRecursive;
5168   }
5169 
5170   bool IsClonable() const override { return true; }
5171   bool NeedsBss() const override {
5172     return GetHiddenArgumentLoadKind() == MethodLoadKind::kBssEntry;
5173   }
5174 
5175   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
5176     // TODO: Add implicit null checks in intrinsics.
5177     return (obj == InputAt(0)) && !IsIntrinsic();
5178   }
5179 
5180   size_t GetSpecialInputIndex() const {
5181     return GetNumberOfArguments();
5182   }
5183 
5184   void AddSpecialInput(HInstruction* input) {
5185     InsertInputAt(GetSpecialInputIndex(), input);
5186   }
5187 
5188   uint32_t GetImtIndex() const { return imt_index_; }
5189   MethodLoadKind GetHiddenArgumentLoadKind() const { return hidden_argument_load_kind_; }
5190 
5191   DECLARE_INSTRUCTION(InvokeInterface);
5192 
5193  protected:
5194   DEFAULT_COPY_CONSTRUCTOR(InvokeInterface);
5195 
5196  private:
5197   // Cached value of the resolved method, to avoid needing the mutator lock.
5198   const uint32_t imt_index_;
5199 
5200   // How the hidden argument (the interface method) is being loaded.
5201   const MethodLoadKind hidden_argument_load_kind_;
5202 };
5203 
5204 class HNeg final : public HUnaryOperation {
5205  public:
5206   HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
5207       : HUnaryOperation(kNeg, result_type, input, dex_pc) {
5208     DCHECK_EQ(result_type, DataType::Kind(input->GetType()));
5209   }
5210 
5211   template <typename T> static T Compute(T x) { return -x; }
5212 
5213   HConstant* Evaluate(HIntConstant* x) const override {
5214     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()));
5215   }
5216   HConstant* Evaluate(HLongConstant* x) const override {
5217     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()));
5218   }
5219   HConstant* Evaluate(HFloatConstant* x) const override {
5220     return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()));
5221   }
5222   HConstant* Evaluate(HDoubleConstant* x) const override {
5223     return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()));
5224   }
5225 
5226   DECLARE_INSTRUCTION(Neg);
5227 
5228  protected:
5229   DEFAULT_COPY_CONSTRUCTOR(Neg);
5230 };
5231 
5232 class HNewArray final : public HExpression<2> {
5233  public:
5234   HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift)
5235       : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) {
5236     SetRawInputAt(0, cls);
5237     SetRawInputAt(1, length);
5238     SetPackedField<ComponentSizeShiftField>(component_size_shift);
5239   }
5240 
5241   bool IsClonable() const override { return true; }
5242 
5243   // Calls runtime so needs an environment.
5244   bool NeedsEnvironment() const override { return true; }
5245 
5246   // May throw NegativeArraySizeException, OutOfMemoryError, etc.
5247   bool CanThrow() const override { return true; }
5248 
5249   bool CanBeNull() const override { return false; }
5250 
5251   HLoadClass* GetLoadClass() const {
5252     DCHECK(InputAt(0)->IsLoadClass());
5253     return InputAt(0)->AsLoadClass();
5254   }
5255 
5256   HInstruction* GetLength() const {
5257     return InputAt(1);
5258   }
5259 
5260   size_t GetComponentSizeShift() {
5261     return GetPackedField<ComponentSizeShiftField>();
5262   }
5263 
5264   DECLARE_INSTRUCTION(NewArray);
5265 
5266  protected:
5267   DEFAULT_COPY_CONSTRUCTOR(NewArray);
5268 
5269  private:
5270   static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits;
5271   static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u);
5272   static constexpr size_t kNumberOfNewArrayPackedBits =
5273       kFieldComponentSizeShift + kFieldComponentSizeShiftSize;
5274   static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5275   using ComponentSizeShiftField =
5276       BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShiftSize>;
5277 };
5278 
5279 class HAdd final : public HBinaryOperation {
5280  public:
5281   HAdd(DataType::Type result_type,
5282        HInstruction* left,
5283        HInstruction* right,
5284        uint32_t dex_pc = kNoDexPc)
5285       : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) {
5286   }
5287 
5288   bool IsCommutative() const override { return true; }
5289 
5290   template <typename T> static T Compute(T x, T y) { return x + y; }
5291 
5292   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5293     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
5294   }
5295   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5296     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
5297   }
5298   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5299     return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue(), y->GetValue()));
5300   }
5301   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5302     return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue(), y->GetValue()));
5303   }
5304 
5305   DECLARE_INSTRUCTION(Add);
5306 
5307  protected:
5308   DEFAULT_COPY_CONSTRUCTOR(Add);
5309 };
5310 
5311 class HSub final : public HBinaryOperation {
5312  public:
5313   HSub(DataType::Type result_type,
5314        HInstruction* left,
5315        HInstruction* right,
5316        uint32_t dex_pc = kNoDexPc)
5317       : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) {
5318   }
5319 
5320   template <typename T> static T Compute(T x, T y) { return x - y; }
5321 
5322   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5323     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
5324   }
5325   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5326     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
5327   }
5328   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5329     return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue(), y->GetValue()));
5330   }
5331   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5332     return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue(), y->GetValue()));
5333   }
5334 
5335   DECLARE_INSTRUCTION(Sub);
5336 
5337  protected:
5338   DEFAULT_COPY_CONSTRUCTOR(Sub);
5339 };
5340 
5341 class HMul final : public HBinaryOperation {
5342  public:
5343   HMul(DataType::Type result_type,
5344        HInstruction* left,
5345        HInstruction* right,
5346        uint32_t dex_pc = kNoDexPc)
5347       : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) {
5348   }
5349 
5350   bool IsCommutative() const override { return true; }
5351 
5352   template <typename T> static T Compute(T x, T y) { return x * y; }
5353 
5354   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5355     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
5356   }
5357   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5358     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
5359   }
5360   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5361     return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue(), y->GetValue()));
5362   }
5363   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5364     return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue(), y->GetValue()));
5365   }
5366 
5367   DECLARE_INSTRUCTION(Mul);
5368 
5369  protected:
5370   DEFAULT_COPY_CONSTRUCTOR(Mul);
5371 };
5372 
5373 class HDiv final : public HBinaryOperation {
5374  public:
5375   HDiv(DataType::Type result_type,
5376        HInstruction* left,
5377        HInstruction* right,
5378        uint32_t dex_pc)
5379       : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) {
5380   }
5381 
5382   template <typename T>
5383   T ComputeIntegral(T x, T y) const {
5384     DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5385     // Our graph structure ensures we never have 0 for `y` during
5386     // constant folding.
5387     DCHECK_NE(y, 0);
5388     // Special case -1 to avoid getting a SIGFPE on x86(_64).
5389     return (y == -1) ? -x : x / y;
5390   }
5391 
5392   template <typename T>
5393   T ComputeFP(T x, T y) const {
5394     DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5395     return x / y;
5396   }
5397 
5398   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5399     return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue(), y->GetValue()));
5400   }
5401   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5402     return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue(), y->GetValue()));
5403   }
5404   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5405     return GetBlock()->GetGraph()->GetFloatConstant(ComputeFP(x->GetValue(), y->GetValue()));
5406   }
5407   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5408     return GetBlock()->GetGraph()->GetDoubleConstant(ComputeFP(x->GetValue(), y->GetValue()));
5409   }
5410 
5411   DECLARE_INSTRUCTION(Div);
5412 
5413  protected:
5414   DEFAULT_COPY_CONSTRUCTOR(Div);
5415 };
5416 
5417 class HRem final : public HBinaryOperation {
5418  public:
5419   HRem(DataType::Type result_type,
5420        HInstruction* left,
5421        HInstruction* right,
5422        uint32_t dex_pc)
5423       : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) {
5424   }
5425 
5426   template <typename T>
5427   T ComputeIntegral(T x, T y) const {
5428     DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5429     // Our graph structure ensures we never have 0 for `y` during
5430     // constant folding.
5431     DCHECK_NE(y, 0);
5432     // Special case -1 to avoid getting a SIGFPE on x86(_64).
5433     return (y == -1) ? 0 : x % y;
5434   }
5435 
5436   template <typename T>
5437   T ComputeFP(T x, T y) const {
5438     DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5439     return std::fmod(x, y);
5440   }
5441 
5442   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5443     return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue(), y->GetValue()));
5444   }
5445   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5446     return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue(), y->GetValue()));
5447   }
5448   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5449     return GetBlock()->GetGraph()->GetFloatConstant(ComputeFP(x->GetValue(), y->GetValue()));
5450   }
5451   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5452     return GetBlock()->GetGraph()->GetDoubleConstant(ComputeFP(x->GetValue(), y->GetValue()));
5453   }
5454 
5455   DECLARE_INSTRUCTION(Rem);
5456 
5457  protected:
5458   DEFAULT_COPY_CONSTRUCTOR(Rem);
5459 };
5460 
5461 class HMin final : public HBinaryOperation {
5462  public:
5463   HMin(DataType::Type result_type,
5464        HInstruction* left,
5465        HInstruction* right,
5466        uint32_t dex_pc)
5467       : HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {}
5468 
5469   bool IsCommutative() const override { return true; }
5470 
5471   // Evaluation for integral values.
5472   template <typename T> static T ComputeIntegral(T x, T y) {
5473     return (x <= y) ? x : y;
5474   }
5475 
5476   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5477     return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue(), y->GetValue()));
5478   }
5479   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5480     return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue(), y->GetValue()));
5481   }
5482   // TODO: Evaluation for floating-point values.
5483   HConstant* Evaluate([[maybe_unused]] HFloatConstant* x,
5484                       [[maybe_unused]] HFloatConstant* y) const override {
5485     return nullptr;
5486   }
5487   HConstant* Evaluate([[maybe_unused]] HDoubleConstant* x,
5488                       [[maybe_unused]] HDoubleConstant* y) const override {
5489     return nullptr;
5490   }
5491 
5492   DECLARE_INSTRUCTION(Min);
5493 
5494  protected:
5495   DEFAULT_COPY_CONSTRUCTOR(Min);
5496 };
5497 
5498 class HMax final : public HBinaryOperation {
5499  public:
5500   HMax(DataType::Type result_type,
5501        HInstruction* left,
5502        HInstruction* right,
5503        uint32_t dex_pc)
5504       : HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {}
5505 
5506   bool IsCommutative() const override { return true; }
5507 
5508   // Evaluation for integral values.
5509   template <typename T> static T ComputeIntegral(T x, T y) {
5510     return (x >= y) ? x : y;
5511   }
5512 
5513   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5514     return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue(), y->GetValue()));
5515   }
5516   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5517     return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue(), y->GetValue()));
5518   }
5519   // TODO: Evaluation for floating-point values.
5520   HConstant* Evaluate([[maybe_unused]] HFloatConstant* x,
5521                       [[maybe_unused]] HFloatConstant* y) const override {
5522     return nullptr;
5523   }
5524   HConstant* Evaluate([[maybe_unused]] HDoubleConstant* x,
5525                       [[maybe_unused]] HDoubleConstant* y) const override {
5526     return nullptr;
5527   }
5528 
5529   DECLARE_INSTRUCTION(Max);
5530 
5531  protected:
5532   DEFAULT_COPY_CONSTRUCTOR(Max);
5533 };
5534 
5535 class HAbs final : public HUnaryOperation {
5536  public:
5537   HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
5538       : HUnaryOperation(kAbs, result_type, input, dex_pc) {}
5539 
5540   // Evaluation for integral values.
5541   template <typename T> static T ComputeIntegral(T x) {
5542     return x < 0 ? -x : x;
5543   }
5544 
5545   // Evaluation for floating-point values.
5546   // Note, as a "quality of implementation", rather than pure "spec compliance",
5547   // we require that Math.abs() clears the sign bit (but changes nothing else)
5548   // for all floating-point numbers, including NaN (signaling NaN may become quiet though).
5549   // http://b/30758343
5550   template <typename T, typename S> static T ComputeFP(T x) {
5551     S bits = bit_cast<S, T>(x);
5552     return bit_cast<T, S>(bits & std::numeric_limits<S>::max());
5553   }
5554 
5555   HConstant* Evaluate(HIntConstant* x) const override {
5556     return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()));
5557   }
5558   HConstant* Evaluate(HLongConstant* x) const override {
5559     return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()));
5560   }
5561   HConstant* Evaluate(HFloatConstant* x) const override {
5562     return GetBlock()->GetGraph()->GetFloatConstant(ComputeFP<float, int32_t>(x->GetValue()));
5563   }
5564   HConstant* Evaluate(HDoubleConstant* x) const override {
5565     return GetBlock()->GetGraph()->GetDoubleConstant(ComputeFP<double, int64_t>(x->GetValue()));
5566   }
5567 
5568   DECLARE_INSTRUCTION(Abs);
5569 
5570  protected:
5571   DEFAULT_COPY_CONSTRUCTOR(Abs);
5572 };
5573 
5574 class HDivZeroCheck final : public HExpression<1> {
5575  public:
5576   // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
5577   // constructor. However it can only do it on a fatal slow path so execution never returns to the
5578   // instruction following the current one; thus 'SideEffects::None()' is used.
5579   HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
5580       : HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) {
5581     SetRawInputAt(0, value);
5582   }
5583 
5584   bool IsClonable() const override { return true; }
5585   bool CanBeMoved() const override { return true; }
5586 
5587   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
5588     return true;
5589   }
5590 
5591   bool NeedsEnvironment() const override { return true; }
5592   bool CanThrow() const override { return true; }
5593 
5594   DECLARE_INSTRUCTION(DivZeroCheck);
5595 
5596  protected:
5597   DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck);
5598 };
5599 
5600 class HShl final : public HBinaryOperation {
5601  public:
5602   HShl(DataType::Type result_type,
5603        HInstruction* value,
5604        HInstruction* distance,
5605        uint32_t dex_pc = kNoDexPc)
5606       : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) {
5607     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5608     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5609   }
5610 
5611   template <typename T>
5612   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5613     return value << (distance & max_shift_distance);
5614   }
5615 
5616   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5617     return GetBlock()->GetGraph()->GetIntConstant(
5618         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance));
5619   }
5620   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5621     return GetBlock()->GetGraph()->GetLongConstant(
5622         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance));
5623   }
5624 
5625   DECLARE_INSTRUCTION(Shl);
5626 
5627  protected:
5628   DEFAULT_COPY_CONSTRUCTOR(Shl);
5629 };
5630 
5631 class HShr final : public HBinaryOperation {
5632  public:
5633   HShr(DataType::Type result_type,
5634        HInstruction* value,
5635        HInstruction* distance,
5636        uint32_t dex_pc = kNoDexPc)
5637       : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5638     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5639     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5640   }
5641 
5642   template <typename T>
5643   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5644     return value >> (distance & max_shift_distance);
5645   }
5646 
5647   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5648     return GetBlock()->GetGraph()->GetIntConstant(
5649         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance));
5650   }
5651   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5652     return GetBlock()->GetGraph()->GetLongConstant(
5653         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance));
5654   }
5655 
5656   DECLARE_INSTRUCTION(Shr);
5657 
5658  protected:
5659   DEFAULT_COPY_CONSTRUCTOR(Shr);
5660 };
5661 
5662 class HUShr final : public HBinaryOperation {
5663  public:
5664   HUShr(DataType::Type result_type,
5665         HInstruction* value,
5666         HInstruction* distance,
5667         uint32_t dex_pc = kNoDexPc)
5668       : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5669     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5670     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5671   }
5672 
5673   template <typename T>
5674   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5675     using V = std::make_unsigned_t<T>;
5676     V ux = static_cast<V>(value);
5677     return static_cast<T>(ux >> (distance & max_shift_distance));
5678   }
5679 
5680   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5681     return GetBlock()->GetGraph()->GetIntConstant(
5682         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance));
5683   }
5684   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5685     return GetBlock()->GetGraph()->GetLongConstant(
5686         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance));
5687   }
5688 
5689   DECLARE_INSTRUCTION(UShr);
5690 
5691  protected:
5692   DEFAULT_COPY_CONSTRUCTOR(UShr);
5693 };
5694 
5695 class HAnd final : public HBinaryOperation {
5696  public:
5697   HAnd(DataType::Type result_type,
5698        HInstruction* left,
5699        HInstruction* right,
5700        uint32_t dex_pc = kNoDexPc)
5701       : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) {
5702   }
5703 
5704   bool IsCommutative() const override { return true; }
5705 
5706   template <typename T> static T Compute(T x, T y) { return x & y; }
5707 
5708   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5709     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
5710   }
5711   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5712     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
5713   }
5714 
5715   DECLARE_INSTRUCTION(And);
5716 
5717  protected:
5718   DEFAULT_COPY_CONSTRUCTOR(And);
5719 };
5720 
5721 class HOr final : public HBinaryOperation {
5722  public:
5723   HOr(DataType::Type result_type,
5724       HInstruction* left,
5725       HInstruction* right,
5726       uint32_t dex_pc = kNoDexPc)
5727       : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) {
5728   }
5729 
5730   bool IsCommutative() const override { return true; }
5731 
5732   template <typename T> static T Compute(T x, T y) { return x | y; }
5733 
5734   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5735     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
5736   }
5737   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5738     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
5739   }
5740 
5741   DECLARE_INSTRUCTION(Or);
5742 
5743  protected:
5744   DEFAULT_COPY_CONSTRUCTOR(Or);
5745 };
5746 
5747 class HXor final : public HBinaryOperation {
5748  public:
5749   HXor(DataType::Type result_type,
5750        HInstruction* left,
5751        HInstruction* right,
5752        uint32_t dex_pc = kNoDexPc)
5753       : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) {
5754   }
5755 
5756   bool IsCommutative() const override { return true; }
5757 
5758   template <typename T> static T Compute(T x, T y) { return x ^ y; }
5759 
5760   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5761     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
5762   }
5763   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5764     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
5765   }
5766 
5767   DECLARE_INSTRUCTION(Xor);
5768 
5769  protected:
5770   DEFAULT_COPY_CONSTRUCTOR(Xor);
5771 };
5772 
5773 class HRor final : public HBinaryOperation {
5774  public:
5775   HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance)
5776       : HBinaryOperation(kRor, result_type, value, distance) {
5777   }
5778 
5779   template <typename T>
5780   static T Compute(T value, int32_t distance, int32_t max_shift_value) {
5781     using V = std::make_unsigned_t<T>;
5782     V ux = static_cast<V>(value);
5783     if ((distance & max_shift_value) == 0) {
5784       return static_cast<T>(ux);
5785     } else {
5786       const V reg_bits = sizeof(T) * 8;
5787       return static_cast<T>(ux >> (distance & max_shift_value)) |
5788                            (value << (reg_bits - (distance & max_shift_value)));
5789     }
5790   }
5791 
5792   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5793     return GetBlock()->GetGraph()->GetIntConstant(
5794         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance));
5795   }
5796   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5797     return GetBlock()->GetGraph()->GetLongConstant(
5798         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance));
5799   }
5800 
5801   DECLARE_INSTRUCTION(Ror);
5802 
5803  protected:
5804   DEFAULT_COPY_CONSTRUCTOR(Ror);
5805 };
5806 
5807 class HRol final : public HBinaryOperation {
5808  public:
5809   HRol(DataType::Type result_type, HInstruction* value, HInstruction* distance)
5810       : HBinaryOperation(kRol, result_type, value, distance) {}
5811 
5812   template <typename T>
5813   static T Compute(T value, int32_t distance, int32_t max_shift_value) {
5814     return HRor::Compute(value, -distance, max_shift_value);
5815   }
5816 
5817   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5818     return GetBlock()->GetGraph()->GetIntConstant(
5819         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance));
5820   }
5821   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5822     return GetBlock()->GetGraph()->GetLongConstant(
5823         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance));
5824   }
5825 
5826   DECLARE_INSTRUCTION(Rol);
5827 
5828  protected:
5829   DEFAULT_COPY_CONSTRUCTOR(Rol);
5830 };
5831 
5832 // The value of a parameter in this method. Its location depends on
5833 // the calling convention.
5834 class HParameterValue final : public HExpression<0> {
5835  public:
5836   HParameterValue(const DexFile& dex_file,
5837                   dex::TypeIndex type_index,
5838                   uint8_t index,
5839                   DataType::Type parameter_type,
5840                   bool is_this = false)
5841       : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc),
5842         dex_file_(dex_file),
5843         type_index_(type_index),
5844         index_(index) {
5845     SetPackedFlag<kFlagIsThis>(is_this);
5846     SetPackedFlag<kFlagCanBeNull>(!is_this);
5847   }
5848 
5849   const DexFile& GetDexFile() const { return dex_file_; }
5850   dex::TypeIndex GetTypeIndex() const { return type_index_; }
5851   uint8_t GetIndex() const { return index_; }
5852   bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
5853 
5854   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
5855   void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
5856 
5857   DECLARE_INSTRUCTION(ParameterValue);
5858 
5859  protected:
5860   DEFAULT_COPY_CONSTRUCTOR(ParameterValue);
5861 
5862  private:
5863   // Whether or not the parameter value corresponds to 'this' argument.
5864   static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits;
5865   static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
5866   static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
5867   static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
5868                 "Too many packed fields.");
5869 
5870   const DexFile& dex_file_;
5871   const dex::TypeIndex type_index_;
5872   // The index of this parameter in the parameters list. Must be less
5873   // than HGraph::number_of_in_vregs_.
5874   const uint8_t index_;
5875 };
5876 
5877 class HNot final : public HUnaryOperation {
5878  public:
5879   HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
5880       : HUnaryOperation(kNot, result_type, input, dex_pc) {
5881   }
5882 
5883   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
5884     return true;
5885   }
5886 
5887   template <typename T> static T Compute(T x) { return ~x; }
5888 
5889   HConstant* Evaluate(HIntConstant* x) const override {
5890     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()));
5891   }
5892   HConstant* Evaluate(HLongConstant* x) const override {
5893     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()));
5894   }
5895 
5896   DECLARE_INSTRUCTION(Not);
5897 
5898  protected:
5899   DEFAULT_COPY_CONSTRUCTOR(Not);
5900 };
5901 
5902 class HBooleanNot final : public HUnaryOperation {
5903  public:
5904   explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
5905       : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) {
5906   }
5907 
5908   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
5909     return true;
5910   }
5911 
5912   template <typename T> static bool Compute(T x) {
5913     DCHECK(IsUint<1>(x)) << x;
5914     return !x;
5915   }
5916 
5917   HConstant* Evaluate(HIntConstant* x) const override {
5918     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()));
5919   }
5920 
5921   DECLARE_INSTRUCTION(BooleanNot);
5922 
5923  protected:
5924   DEFAULT_COPY_CONSTRUCTOR(BooleanNot);
5925 };
5926 
5927 class HTypeConversion final : public HExpression<1> {
5928  public:
5929   // Instantiate a type conversion of `input` to `result_type`.
5930   HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
5931       : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) {
5932     SetRawInputAt(0, input);
5933     // Invariant: We should never generate a conversion to a Boolean value.
5934     DCHECK_NE(DataType::Type::kBool, result_type);
5935   }
5936 
5937   HInstruction* GetInput() const { return InputAt(0); }
5938   DataType::Type GetInputType() const { return GetInput()->GetType(); }
5939   DataType::Type GetResultType() const { return GetType(); }
5940 
5941   bool IsClonable() const override { return true; }
5942   bool CanBeMoved() const override { return true; }
5943   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
5944     return true;
5945   }
5946   // Return whether the conversion is implicit. This includes conversion to the same type.
5947   bool IsImplicitConversion() const {
5948     return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType());
5949   }
5950 
5951   // Try to statically evaluate the conversion and return a HConstant
5952   // containing the result.  If the input cannot be converted, return nullptr.
5953   HConstant* TryStaticEvaluation() const;
5954 
5955   // Same but for `input` instead of GetInput().
5956   HConstant* TryStaticEvaluation(HInstruction* input) const;
5957 
5958   DECLARE_INSTRUCTION(TypeConversion);
5959 
5960  protected:
5961   DEFAULT_COPY_CONSTRUCTOR(TypeConversion);
5962 };
5963 
5964 static constexpr uint32_t kNoRegNumber = -1;
5965 
5966 class HNullCheck final : public HExpression<1> {
5967  public:
5968   // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
5969   // constructor. However it can only do it on a fatal slow path so execution never returns to the
5970   // instruction following the current one; thus 'SideEffects::None()' is used.
5971   HNullCheck(HInstruction* value, uint32_t dex_pc)
5972       : HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) {
5973     SetRawInputAt(0, value);
5974   }
5975 
5976   bool IsClonable() const override { return true; }
5977   bool CanBeMoved() const override { return true; }
5978   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
5979     return true;
5980   }
5981 
5982   bool NeedsEnvironment() const override { return true; }
5983 
5984   bool CanThrow() const override { return true; }
5985 
5986   bool CanBeNull() const override { return false; }
5987 
5988   DECLARE_INSTRUCTION(NullCheck);
5989 
5990  protected:
5991   DEFAULT_COPY_CONSTRUCTOR(NullCheck);
5992 };
5993 
5994 // Embeds an ArtField and all the information required by the compiler. We cache
5995 // that information to avoid requiring the mutator lock every time we need it.
5996 class FieldInfo : public ValueObject {
5997  public:
5998   FieldInfo(ArtField* field,
5999             MemberOffset field_offset,
6000             DataType::Type field_type,
6001             bool is_volatile,
6002             uint32_t index,
6003             uint16_t declaring_class_def_index,
6004             const DexFile& dex_file)
6005       : field_(field),
6006         field_offset_(field_offset),
6007         field_type_(field_type),
6008         is_volatile_(is_volatile),
6009         index_(index),
6010         declaring_class_def_index_(declaring_class_def_index),
6011         dex_file_(dex_file) {}
6012 
6013   ArtField* GetField() const { return field_; }
6014   MemberOffset GetFieldOffset() const { return field_offset_; }
6015   DataType::Type GetFieldType() const { return field_type_; }
6016   uint32_t GetFieldIndex() const { return index_; }
6017   uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
6018   const DexFile& GetDexFile() const { return dex_file_; }
6019   bool IsVolatile() const { return is_volatile_; }
6020 
6021   bool Equals(const FieldInfo& other) const {
6022     return field_ == other.field_ &&
6023            field_offset_ == other.field_offset_ &&
6024            field_type_ == other.field_type_ &&
6025            is_volatile_ == other.is_volatile_ &&
6026            index_ == other.index_ &&
6027            declaring_class_def_index_ == other.declaring_class_def_index_ &&
6028            &dex_file_ == &other.dex_file_;
6029   }
6030 
6031   std::ostream& Dump(std::ostream& os) const {
6032     os << field_ << ", off: " << field_offset_ << ", type: " << field_type_
6033        << ", volatile: " << std::boolalpha << is_volatile_ << ", index_: " << std::dec << index_
6034        << ", declaring_class: " << declaring_class_def_index_ << ", dex: " << dex_file_;
6035     return os;
6036   }
6037 
6038  private:
6039   ArtField* const field_;
6040   const MemberOffset field_offset_;
6041   const DataType::Type field_type_;
6042   const bool is_volatile_;
6043   const uint32_t index_;
6044   const uint16_t declaring_class_def_index_;
6045   const DexFile& dex_file_;
6046 };
6047 
6048 inline bool operator==(const FieldInfo& a, const FieldInfo& b) {
6049   return a.Equals(b);
6050 }
6051 
6052 inline std::ostream& operator<<(std::ostream& os, const FieldInfo& a) {
6053   return a.Dump(os);
6054 }
6055 
6056 class HFieldAccess : public HInstruction {
6057  public:
6058   HFieldAccess(InstructionKind kind,
6059                SideEffects side_effects,
6060                ArtField* field,
6061                DataType::Type field_type,
6062                MemberOffset field_offset,
6063                bool is_volatile,
6064                uint32_t field_idx,
6065                uint16_t declaring_class_def_index,
6066                const DexFile& dex_file,
6067                uint32_t dex_pc)
6068       : HInstruction(kind, field_type, side_effects, dex_pc),
6069         field_info_(field,
6070                     field_offset,
6071                     field_type,
6072                     is_volatile,
6073                     field_idx,
6074                     declaring_class_def_index,
6075                     dex_file) {}
6076 
6077   const FieldInfo& GetFieldInfo() const { return field_info_; }
6078   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
6079   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
6080   bool IsVolatile() const { return field_info_.IsVolatile(); }
6081 
6082   DECLARE_ABSTRACT_INSTRUCTION(FieldAccess);
6083 
6084  protected:
6085   DEFAULT_COPY_CONSTRUCTOR(FieldAccess);
6086 
6087  private:
6088   const FieldInfo field_info_;
6089 };
6090 
6091 class HInstanceFieldGet final : public HExpression<1, HFieldAccess> {
6092  public:
6093   HInstanceFieldGet(HInstruction* object,
6094                     ArtField* field,
6095                     DataType::Type field_type,
6096                     MemberOffset field_offset,
6097                     bool is_volatile,
6098                     uint32_t field_idx,
6099                     uint16_t declaring_class_def_index,
6100                     const DexFile& dex_file,
6101                     uint32_t dex_pc)
6102       : HExpression(kInstanceFieldGet,
6103                     SideEffects::FieldReadOfType(field_type, is_volatile),
6104                     field,
6105                     field_type,
6106                     field_offset,
6107                     is_volatile,
6108                     field_idx,
6109                     declaring_class_def_index,
6110                     dex_file,
6111                     dex_pc) {
6112     SetRawInputAt(0, object);
6113   }
6114 
6115   bool IsClonable() const override { return true; }
6116   bool CanBeMoved() const override { return !IsVolatile(); }
6117 
6118   bool InstructionDataEquals(const HInstruction* other) const override {
6119     const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
6120     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
6121   }
6122 
6123   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6124     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
6125   }
6126 
6127   size_t ComputeHashCode() const override {
6128     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
6129   }
6130 
6131   void SetType(DataType::Type new_type) {
6132     DCHECK(DataType::IsIntegralType(GetType()));
6133     DCHECK(DataType::IsIntegralType(new_type));
6134     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
6135     SetPackedField<TypeField>(new_type);
6136   }
6137 
6138   DECLARE_INSTRUCTION(InstanceFieldGet);
6139 
6140  protected:
6141   DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet);
6142 };
6143 
6144 enum class WriteBarrierKind {
6145   // Emit the write barrier. This write barrier is not being relied on so e.g. codegen can decide to
6146   // skip it if the value stored is null. This is the default behavior.
6147   kEmitNotBeingReliedOn,
6148   // Emit the write barrier. This write barrier is being relied on and must be emitted.
6149   kEmitBeingReliedOn,
6150   // Skip emitting the write barrier. This could be set because:
6151   //  A) The write barrier is not needed (i.e. it is not a reference, or the value is the null
6152   //  constant)
6153   //  B) This write barrier was coalesced into another one so there's no need to emit it.
6154   kDontEmit,
6155   kLast = kDontEmit
6156 };
6157 std::ostream& operator<<(std::ostream& os, WriteBarrierKind rhs);
6158 
6159 class HInstanceFieldSet final : public HExpression<2, HFieldAccess> {
6160  public:
6161   HInstanceFieldSet(HInstruction* object,
6162                     HInstruction* value,
6163                     ArtField* field,
6164                     DataType::Type field_type,
6165                     MemberOffset field_offset,
6166                     bool is_volatile,
6167                     uint32_t field_idx,
6168                     uint16_t declaring_class_def_index,
6169                     const DexFile& dex_file,
6170                     uint32_t dex_pc)
6171       : HExpression(kInstanceFieldSet,
6172                     SideEffects::FieldWriteOfType(field_type, is_volatile),
6173                     field,
6174                     field_type,
6175                     field_offset,
6176                     is_volatile,
6177                     field_idx,
6178                     declaring_class_def_index,
6179                     dex_file,
6180                     dex_pc) {
6181     SetPackedFlag<kFlagValueCanBeNull>(true);
6182     SetPackedField<WriteBarrierKindField>(
6183         field_type == DataType::Type::kReference
6184             ? WriteBarrierKind::kEmitNotBeingReliedOn
6185             : WriteBarrierKind::kDontEmit);
6186     SetRawInputAt(0, object);
6187     SetRawInputAt(1, value);
6188   }
6189 
6190   bool IsClonable() const override { return true; }
6191 
6192   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6193     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
6194   }
6195 
6196   HInstruction* GetValue() const { return InputAt(1); }
6197   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
6198   void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
6199   WriteBarrierKind GetWriteBarrierKind() { return GetPackedField<WriteBarrierKindField>(); }
6200   void SetWriteBarrierKind(WriteBarrierKind kind) {
6201     DCHECK(kind != WriteBarrierKind::kEmitNotBeingReliedOn)
6202         << "We shouldn't go back to the original value.";
6203     DCHECK_IMPLIES(kind == WriteBarrierKind::kDontEmit,
6204                    GetWriteBarrierKind() != WriteBarrierKind::kEmitBeingReliedOn)
6205         << "If a write barrier was relied on by other write barriers, we cannot skip emitting it.";
6206     SetPackedField<WriteBarrierKindField>(kind);
6207   }
6208 
6209   DECLARE_INSTRUCTION(InstanceFieldSet);
6210 
6211  protected:
6212   DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet);
6213 
6214  private:
6215   static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
6216   static constexpr size_t kWriteBarrierKind = kFlagValueCanBeNull + 1;
6217   static constexpr size_t kWriteBarrierKindSize =
6218       MinimumBitsToStore(static_cast<size_t>(WriteBarrierKind::kLast));
6219   static constexpr size_t kNumberOfInstanceFieldSetPackedBits =
6220       kWriteBarrierKind + kWriteBarrierKindSize;
6221   static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
6222                 "Too many packed fields.");
6223 
6224   using WriteBarrierKindField =
6225       BitField<WriteBarrierKind, kWriteBarrierKind, kWriteBarrierKindSize>;
6226 };
6227 
6228 class HArrayGet final : public HExpression<2> {
6229  public:
6230   HArrayGet(HInstruction* array,
6231             HInstruction* index,
6232             DataType::Type type,
6233             uint32_t dex_pc)
6234       : HArrayGet(array,
6235                   index,
6236                   type,
6237                   SideEffects::ArrayReadOfType(type),
6238                   dex_pc,
6239                   /* is_string_char_at= */ false) {
6240   }
6241 
6242   HArrayGet(HInstruction* array,
6243             HInstruction* index,
6244             DataType::Type type,
6245             SideEffects side_effects,
6246             uint32_t dex_pc,
6247             bool is_string_char_at)
6248       : HExpression(kArrayGet, type, side_effects, dex_pc) {
6249     SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
6250     SetRawInputAt(0, array);
6251     SetRawInputAt(1, index);
6252   }
6253 
6254   bool IsClonable() const override { return true; }
6255   bool CanBeMoved() const override { return true; }
6256   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
6257     return true;
6258   }
6259   bool CanDoImplicitNullCheckOn([[maybe_unused]] HInstruction* obj) const override {
6260     // TODO: We can be smarter here.
6261     // Currently, unless the array is the result of NewArray, the array access is always
6262     // preceded by some form of null NullCheck necessary for the bounds check, usually
6263     // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for
6264     // dynamic BCE. There are cases when these could be removed to produce better code.
6265     // If we ever add optimizations to do so we should allow an implicit check here
6266     // (as long as the address falls in the first page).
6267     //
6268     // As an example of such fancy optimization, we could eliminate BoundsCheck for
6269     //     a = cond ? new int[1] : null;
6270     //     a[0];  // The Phi does not need bounds check for either input.
6271     return false;
6272   }
6273 
6274   bool IsEquivalentOf(HArrayGet* other) const {
6275     bool result = (GetDexPc() == other->GetDexPc());
6276     if (kIsDebugBuild && result) {
6277       DCHECK_EQ(GetBlock(), other->GetBlock());
6278       DCHECK_EQ(GetArray(), other->GetArray());
6279       DCHECK_EQ(GetIndex(), other->GetIndex());
6280       if (DataType::IsIntOrLongType(GetType())) {
6281         DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType();
6282       } else {
6283         DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
6284         DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType();
6285       }
6286     }
6287     return result;
6288   }
6289 
6290   bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
6291 
6292   HInstruction* GetArray() const { return InputAt(0); }
6293   HInstruction* GetIndex() const { return InputAt(1); }
6294 
6295   void SetType(DataType::Type new_type) {
6296     DCHECK(DataType::IsIntegralType(GetType()));
6297     DCHECK(DataType::IsIntegralType(new_type));
6298     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
6299     SetPackedField<TypeField>(new_type);
6300   }
6301 
6302   DECLARE_INSTRUCTION(ArrayGet);
6303 
6304  protected:
6305   DEFAULT_COPY_CONSTRUCTOR(ArrayGet);
6306 
6307  private:
6308   // We treat a String as an array, creating the HArrayGet from String.charAt()
6309   // intrinsic in the instruction simplifier. We can always determine whether
6310   // a particular HArrayGet is actually a String.charAt() by looking at the type
6311   // of the input but that requires holding the mutator lock, so we prefer to use
6312   // a flag, so that code generators don't need to do the locking.
6313   static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6314   static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
6315   static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6316                 "Too many packed fields.");
6317 };
6318 
6319 class HArraySet final : public HExpression<3> {
6320  public:
6321   HArraySet(HInstruction* array,
6322             HInstruction* index,
6323             HInstruction* value,
6324             DataType::Type expected_component_type,
6325             uint32_t dex_pc)
6326       : HArraySet(array,
6327                   index,
6328                   value,
6329                   expected_component_type,
6330                   // Make a best guess for side effects now, may be refined during SSA building.
6331                   ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)),
6332                   dex_pc) {
6333   }
6334 
6335   HArraySet(HInstruction* array,
6336             HInstruction* index,
6337             HInstruction* value,
6338             DataType::Type expected_component_type,
6339             SideEffects side_effects,
6340             uint32_t dex_pc)
6341       : HExpression(kArraySet, side_effects, dex_pc) {
6342     SetPackedField<ExpectedComponentTypeField>(expected_component_type);
6343     SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference);
6344     SetPackedFlag<kFlagValueCanBeNull>(true);
6345     SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
6346     SetPackedField<WriteBarrierKindField>(
6347         value->GetType() == DataType::Type::kReference
6348             ? WriteBarrierKind::kEmitNotBeingReliedOn
6349             : WriteBarrierKind::kDontEmit);
6350     SetRawInputAt(0, array);
6351     SetRawInputAt(1, index);
6352     SetRawInputAt(2, value);
6353   }
6354 
6355   bool IsClonable() const override { return true; }
6356 
6357   bool NeedsEnvironment() const override {
6358     // We call a runtime method to throw ArrayStoreException.
6359     return NeedsTypeCheck();
6360   }
6361 
6362   // Can throw ArrayStoreException.
6363   bool CanThrow() const override { return NeedsTypeCheck(); }
6364 
6365   bool CanDoImplicitNullCheckOn([[maybe_unused]] HInstruction* obj) const override {
6366     // TODO: Same as for ArrayGet.
6367     return false;
6368   }
6369 
6370   void ClearTypeCheck() {
6371     SetPackedFlag<kFlagNeedsTypeCheck>(false);
6372     // Clear the `CanTriggerGC` flag too as we can only trigger a GC when doing a type check.
6373     SetSideEffects(GetSideEffects().Exclusion(SideEffects::CanTriggerGC()));
6374     // Clear the environment too as we can only throw if we need a type check.
6375     RemoveEnvironment();
6376   }
6377 
6378   void ClearValueCanBeNull() {
6379     SetPackedFlag<kFlagValueCanBeNull>(false);
6380   }
6381 
6382   void SetStaticTypeOfArrayIsObjectArray() {
6383     SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
6384   }
6385 
6386   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
6387   bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
6388   bool StaticTypeOfArrayIsObjectArray() const {
6389     return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
6390   }
6391 
6392   HInstruction* GetArray() const { return InputAt(0); }
6393   HInstruction* GetIndex() const { return InputAt(1); }
6394   HInstruction* GetValue() const { return InputAt(2); }
6395 
6396   DataType::Type GetComponentType() const {
6397     return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType());
6398   }
6399 
6400   static DataType::Type GetComponentType(DataType::Type value_type,
6401                                          DataType::Type expected_component_type) {
6402     // The Dex format does not type floating point index operations. Since the
6403     // `expected_component_type` comes from SSA building and can therefore not
6404     // be correct, we also check what is the value type. If it is a floating
6405     // point type, we must use that type.
6406     return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64))
6407         ? value_type
6408         : expected_component_type;
6409   }
6410 
6411   DataType::Type GetRawExpectedComponentType() const {
6412     return GetPackedField<ExpectedComponentTypeField>();
6413   }
6414 
6415   static SideEffects ComputeSideEffects(DataType::Type type) {
6416     return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type));
6417   }
6418 
6419   static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) {
6420     return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC()
6421                                                       : SideEffects::None();
6422   }
6423 
6424   WriteBarrierKind GetWriteBarrierKind() { return GetPackedField<WriteBarrierKindField>(); }
6425 
6426   void SetWriteBarrierKind(WriteBarrierKind kind) {
6427     DCHECK(kind != WriteBarrierKind::kEmitNotBeingReliedOn)
6428         << "We shouldn't go back to the original value.";
6429     DCHECK_IMPLIES(kind == WriteBarrierKind::kDontEmit,
6430                    GetWriteBarrierKind() != WriteBarrierKind::kEmitBeingReliedOn)
6431         << "If a write barrier was relied on by other write barriers, we cannot skip emitting it.";
6432     SetPackedField<WriteBarrierKindField>(kind);
6433   }
6434 
6435   DECLARE_INSTRUCTION(ArraySet);
6436 
6437  protected:
6438   DEFAULT_COPY_CONSTRUCTOR(ArraySet);
6439 
6440  private:
6441   static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
6442   static constexpr size_t kFieldExpectedComponentTypeSize =
6443       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
6444   static constexpr size_t kFlagNeedsTypeCheck =
6445       kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
6446   static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
6447   // Cached information for the reference_type_info_ so that codegen
6448   // does not need to inspect the static type.
6449   static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
6450   static constexpr size_t kWriteBarrierKind = kFlagStaticTypeOfArrayIsObjectArray + 1;
6451   static constexpr size_t kWriteBarrierKindSize =
6452       MinimumBitsToStore(static_cast<size_t>(WriteBarrierKind::kLast));
6453   static constexpr size_t kNumberOfArraySetPackedBits = kWriteBarrierKind + kWriteBarrierKindSize;
6454   static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6455   using ExpectedComponentTypeField =
6456       BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
6457 
6458   using WriteBarrierKindField =
6459       BitField<WriteBarrierKind, kWriteBarrierKind, kWriteBarrierKindSize>;
6460 };
6461 
6462 class HArrayLength final : public HExpression<1> {
6463  public:
6464   HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
6465       : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) {
6466     SetPackedFlag<kFlagIsStringLength>(is_string_length);
6467     // Note that arrays do not change length, so the instruction does not
6468     // depend on any write.
6469     SetRawInputAt(0, array);
6470   }
6471 
6472   bool IsClonable() const override { return true; }
6473   bool CanBeMoved() const override { return true; }
6474   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
6475     return true;
6476   }
6477   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6478     return obj == InputAt(0);
6479   }
6480 
6481   bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
6482 
6483   DECLARE_INSTRUCTION(ArrayLength);
6484 
6485  protected:
6486   DEFAULT_COPY_CONSTRUCTOR(ArrayLength);
6487 
6488  private:
6489   // We treat a String as an array, creating the HArrayLength from String.length()
6490   // or String.isEmpty() intrinsic in the instruction simplifier. We can always
6491   // determine whether a particular HArrayLength is actually a String.length() by
6492   // looking at the type of the input but that requires holding the mutator lock, so
6493   // we prefer to use a flag, so that code generators don't need to do the locking.
6494   static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits;
6495   static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
6496   static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6497                 "Too many packed fields.");
6498 };
6499 
6500 class HBoundsCheck final : public HExpression<2> {
6501  public:
6502   // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
6503   // constructor. However it can only do it on a fatal slow path so execution never returns to the
6504   // instruction following the current one; thus 'SideEffects::None()' is used.
6505   HBoundsCheck(HInstruction* index,
6506                HInstruction* length,
6507                uint32_t dex_pc,
6508                bool is_string_char_at = false)
6509       : HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) {
6510     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType()));
6511     SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
6512     SetRawInputAt(0, index);
6513     SetRawInputAt(1, length);
6514   }
6515 
6516   bool IsClonable() const override { return true; }
6517   bool CanBeMoved() const override { return true; }
6518   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
6519     return true;
6520   }
6521 
6522   bool NeedsEnvironment() const override { return true; }
6523 
6524   bool CanThrow() const override { return true; }
6525 
6526   bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
6527 
6528   HInstruction* GetIndex() const { return InputAt(0); }
6529 
6530   DECLARE_INSTRUCTION(BoundsCheck);
6531 
6532  protected:
6533   DEFAULT_COPY_CONSTRUCTOR(BoundsCheck);
6534 
6535  private:
6536   static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6537   static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1;
6538   static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6539                 "Too many packed fields.");
6540 };
6541 
6542 class HSuspendCheck final : public HExpression<0> {
6543  public:
6544   explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc, bool is_no_op = false)
6545       : HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc),
6546         slow_path_(nullptr) {
6547     SetPackedFlag<kFlagIsNoOp>(is_no_op);
6548   }
6549 
6550   bool IsClonable() const override { return true; }
6551 
6552   bool NeedsEnvironment() const override {
6553     return true;
6554   }
6555 
6556   void SetIsNoOp(bool is_no_op) { SetPackedFlag<kFlagIsNoOp>(is_no_op); }
6557   bool IsNoOp() const { return GetPackedFlag<kFlagIsNoOp>(); }
6558 
6559 
6560   void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
6561   SlowPathCode* GetSlowPath() const { return slow_path_; }
6562 
6563   DECLARE_INSTRUCTION(SuspendCheck);
6564 
6565  protected:
6566   DEFAULT_COPY_CONSTRUCTOR(SuspendCheck);
6567 
6568   // True if the HSuspendCheck should not emit any code during codegen. It is
6569   // not possible to simply remove this instruction to disable codegen, as
6570   // other optimizations (e.g: CHAGuardVisitor::HoistGuard) depend on
6571   // HSuspendCheck being present in every loop.
6572   static constexpr size_t kFlagIsNoOp = kNumberOfGenericPackedBits;
6573   static constexpr size_t kNumberOfSuspendCheckPackedBits = kFlagIsNoOp + 1;
6574   static_assert(kNumberOfSuspendCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6575                 "Too many packed fields.");
6576 
6577  private:
6578   // Only used for code generation, in order to share the same slow path between back edges
6579   // of a same loop.
6580   SlowPathCode* slow_path_;
6581 };
6582 
6583 // Pseudo-instruction which doesn't generate any code.
6584 // If `emit_environment` is true, it can be used to generate an environment. It is used, for
6585 // example, to provide the native debugger with mapping information. It ensures that we can generate
6586 // line number and local variables at this point.
6587 class HNop : public HExpression<0> {
6588  public:
6589   explicit HNop(uint32_t dex_pc, bool needs_environment)
6590       : HExpression<0>(kNop, SideEffects::None(), dex_pc), needs_environment_(needs_environment) {
6591   }
6592 
6593   bool NeedsEnvironment() const override {
6594     return needs_environment_;
6595   }
6596 
6597   DECLARE_INSTRUCTION(Nop);
6598 
6599  protected:
6600   DEFAULT_COPY_CONSTRUCTOR(Nop);
6601 
6602  private:
6603   bool needs_environment_;
6604 };
6605 
6606 /**
6607  * Instruction to load a Class object.
6608  */
6609 class HLoadClass final : public HInstruction {
6610  public:
6611   // Determines how to load the Class.
6612   enum class LoadKind {
6613     // We cannot load this class. See HSharpening::SharpenLoadClass.
6614     kInvalid = -1,
6615 
6616     // Use the Class* from the method's own ArtMethod*.
6617     kReferrersClass,
6618 
6619     // Use PC-relative boot image Class* address that will be known at link time.
6620     // Used for boot image classes referenced by boot image code.
6621     kBootImageLinkTimePcRelative,
6622 
6623     // Load from a boot image entry in the .data.img.rel.ro using a PC-relative load.
6624     // Used for boot image classes referenced by apps in AOT-compiled code.
6625     kBootImageRelRo,
6626 
6627     // Load from an app image entry in the .data.img.rel.ro using a PC-relative load.
6628     // Used for app image classes referenced by apps in AOT-compiled code.
6629     kAppImageRelRo,
6630 
6631     // Load from an entry in the .bss section using a PC-relative load.
6632     // Used for classes outside boot image referenced by AOT-compiled app and boot image code.
6633     kBssEntry,
6634 
6635     // Load from an entry for public class in the .bss section using a PC-relative load.
6636     // Used for classes that were unresolved during AOT-compilation outside the literal
6637     // package of the compiling class. Such classes are accessible only if they are public
6638     // and the .bss entry shall therefore be filled only if the resolved class is public.
6639     kBssEntryPublic,
6640 
6641     // Load from an entry for package class in the .bss section using a PC-relative load.
6642     // Used for classes that were unresolved during AOT-compilation but within the literal
6643     // package of the compiling class. Such classes are accessible if they are public or
6644     // in the same package which, given the literal package match, requires only matching
6645     // defining class loader and the .bss entry shall therefore be filled only if at least
6646     // one of those conditions holds. Note that all code in an oat file belongs to classes
6647     // with the same defining class loader.
6648     kBssEntryPackage,
6649 
6650     // Use a known boot image Class* address, embedded in the code by the codegen.
6651     // Used for boot image classes referenced by apps in JIT-compiled code.
6652     kJitBootImageAddress,
6653 
6654     // Load from the root table associated with the JIT compiled method.
6655     kJitTableAddress,
6656 
6657     // Load using a simple runtime call. This is the fall-back load kind when
6658     // the codegen is unable to use another appropriate kind.
6659     kRuntimeCall,
6660 
6661     kLast = kRuntimeCall
6662   };
6663 
6664   HLoadClass(HCurrentMethod* current_method,
6665              dex::TypeIndex type_index,
6666              const DexFile& dex_file,
6667              Handle<mirror::Class> klass,
6668              bool is_referrers_class,
6669              uint32_t dex_pc,
6670              bool needs_access_check)
6671       : HInstruction(kLoadClass,
6672                      DataType::Type::kReference,
6673                      SideEffectsForArchRuntimeCalls(),
6674                      dex_pc),
6675         special_input_(HUserRecord<HInstruction*>(current_method)),
6676         type_index_(type_index),
6677         dex_file_(dex_file),
6678         klass_(klass) {
6679     // Referrers class should not need access check. We never inline unverified
6680     // methods so we can't possibly end up in this situation.
6681     DCHECK_IMPLIES(is_referrers_class, !needs_access_check);
6682 
6683     SetPackedField<LoadKindField>(
6684         is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall);
6685     SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
6686     SetPackedFlag<kFlagIsInImage>(false);
6687     SetPackedFlag<kFlagGenerateClInitCheck>(false);
6688     SetPackedFlag<kFlagValidLoadedClassRTI>(false);
6689   }
6690 
6691   bool IsClonable() const override { return true; }
6692 
6693   void SetLoadKind(LoadKind load_kind);
6694 
6695   LoadKind GetLoadKind() const {
6696     return GetPackedField<LoadKindField>();
6697   }
6698 
6699   bool HasPcRelativeLoadKind() const {
6700     return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6701            GetLoadKind() == LoadKind::kBootImageRelRo ||
6702            GetLoadKind() == LoadKind::kAppImageRelRo ||
6703            GetLoadKind() == LoadKind::kBssEntry ||
6704            GetLoadKind() == LoadKind::kBssEntryPublic ||
6705            GetLoadKind() == LoadKind::kBssEntryPackage;
6706   }
6707 
6708   bool CanBeMoved() const override { return true; }
6709 
6710   bool InstructionDataEquals(const HInstruction* other) const override;
6711 
6712   size_t ComputeHashCode() const override { return type_index_.index_; }
6713 
6714   bool CanBeNull() const override { return false; }
6715 
6716   bool NeedsEnvironment() const override {
6717     return CanCallRuntime();
6718   }
6719   bool NeedsBss() const override {
6720     LoadKind load_kind = GetLoadKind();
6721     return load_kind == LoadKind::kBssEntry ||
6722            load_kind == LoadKind::kBssEntryPublic ||
6723            load_kind == LoadKind::kBssEntryPackage;
6724   }
6725 
6726   void SetMustGenerateClinitCheck(bool generate_clinit_check) {
6727     SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
6728   }
6729 
6730   bool CanCallRuntime() const {
6731     return NeedsAccessCheck() ||
6732            MustGenerateClinitCheck() ||
6733            NeedsBss() ||
6734            GetLoadKind() == LoadKind::kRuntimeCall;
6735   }
6736 
6737   bool CanThrow() const override {
6738     return NeedsAccessCheck() ||
6739            MustGenerateClinitCheck() ||
6740            // If the class is in the boot or app image, the lookup in the runtime call cannot throw.
6741            ((GetLoadKind() == LoadKind::kRuntimeCall || NeedsBss()) && !IsInImage());
6742   }
6743 
6744   ReferenceTypeInfo GetLoadedClassRTI() {
6745     if (GetPackedFlag<kFlagValidLoadedClassRTI>()) {
6746       // Note: The is_exact flag from the return value should not be used.
6747       return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
6748     } else {
6749       return ReferenceTypeInfo::CreateInvalid();
6750     }
6751   }
6752 
6753   // Loaded class RTI is marked as valid by RTP if the klass_ is admissible.
6754   void SetValidLoadedClassRTI() {
6755     DCHECK(klass_ != nullptr);
6756     SetPackedFlag<kFlagValidLoadedClassRTI>(true);
6757   }
6758 
6759   dex::TypeIndex GetTypeIndex() const { return type_index_; }
6760   const DexFile& GetDexFile() const { return dex_file_; }
6761 
6762   static SideEffects SideEffectsForArchRuntimeCalls() {
6763     return SideEffects::CanTriggerGC();
6764   }
6765 
6766   bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
6767   bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
6768   bool IsInImage() const { return GetPackedFlag<kFlagIsInImage>(); }
6769   bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
6770 
6771   bool MustResolveTypeOnSlowPath() const {
6772     // Check that this instruction has a slow path.
6773     LoadKind load_kind = GetLoadKind();
6774     DCHECK(load_kind != LoadKind::kRuntimeCall);  // kRuntimeCall calls on main path.
6775     bool must_resolve_type_on_slow_path =
6776        load_kind == LoadKind::kBssEntry ||
6777        load_kind == LoadKind::kBssEntryPublic ||
6778        load_kind == LoadKind::kBssEntryPackage;
6779     DCHECK(must_resolve_type_on_slow_path || MustGenerateClinitCheck());
6780     return must_resolve_type_on_slow_path;
6781   }
6782 
6783   void MarkInImage() {
6784     SetPackedFlag<kFlagIsInImage>(true);
6785   }
6786 
6787   void AddSpecialInput(HInstruction* special_input);
6788 
6789   using HInstruction::GetInputRecords;  // Keep the const version visible.
6790   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6791     return ArrayRef<HUserRecord<HInstruction*>>(
6792         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6793   }
6794 
6795   Handle<mirror::Class> GetClass() const {
6796     return klass_;
6797   }
6798 
6799   DECLARE_INSTRUCTION(LoadClass);
6800 
6801  protected:
6802   DEFAULT_COPY_CONSTRUCTOR(LoadClass);
6803 
6804  private:
6805   static constexpr size_t kFlagNeedsAccessCheck    = kNumberOfGenericPackedBits;
6806   // Whether the type is in an image (boot image or app image).
6807   static constexpr size_t kFlagIsInImage           = kFlagNeedsAccessCheck + 1;
6808   // Whether this instruction must generate the initialization check.
6809   // Used for code generation.
6810   static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInImage + 1;
6811   static constexpr size_t kFieldLoadKind           = kFlagGenerateClInitCheck + 1;
6812   static constexpr size_t kFieldLoadKindSize =
6813       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
6814   static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize;
6815   static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1;
6816   static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
6817   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
6818 
6819   static bool HasTypeReference(LoadKind load_kind) {
6820     return load_kind == LoadKind::kReferrersClass ||
6821         load_kind == LoadKind::kBootImageLinkTimePcRelative ||
6822         load_kind == LoadKind::kAppImageRelRo ||
6823         load_kind == LoadKind::kBssEntry ||
6824         load_kind == LoadKind::kBssEntryPublic ||
6825         load_kind == LoadKind::kBssEntryPackage ||
6826         load_kind == LoadKind::kRuntimeCall;
6827   }
6828 
6829   void SetLoadKindInternal(LoadKind load_kind);
6830 
6831   // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass.
6832   // For other load kinds it's empty or possibly some architecture-specific instruction
6833   // for PC-relative loads, i.e. kBssEntry* or kBootImageLinkTimePcRelative.
6834   HUserRecord<HInstruction*> special_input_;
6835 
6836   // A type index and dex file where the class can be accessed. The dex file can be:
6837   // - The compiling method's dex file if the class is defined there too.
6838   // - The compiling method's dex file if the class is referenced there.
6839   // - The dex file where the class is defined. When the load kind can only be
6840   //   kBssEntry* or kRuntimeCall, we cannot emit code for this `HLoadClass`.
6841   const dex::TypeIndex type_index_;
6842   const DexFile& dex_file_;
6843 
6844   Handle<mirror::Class> klass_;
6845 };
6846 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
6847 
6848 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
6849 inline void HLoadClass::SetLoadKind(LoadKind load_kind) {
6850   // The load kind should be determined before inserting the instruction to the graph.
6851   DCHECK(GetBlock() == nullptr);
6852   DCHECK(GetEnvironment() == nullptr);
6853   SetPackedField<LoadKindField>(load_kind);
6854   if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) {
6855     special_input_ = HUserRecord<HInstruction*>(nullptr);
6856   }
6857   if (!NeedsEnvironment()) {
6858     SetSideEffects(SideEffects::None());
6859   }
6860 }
6861 
6862 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
6863 inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
6864   // The special input is used for PC-relative loads on some architectures,
6865   // including literal pool loads, which are PC-relative too.
6866   DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6867          GetLoadKind() == LoadKind::kBootImageRelRo ||
6868          GetLoadKind() == LoadKind::kAppImageRelRo ||
6869          GetLoadKind() == LoadKind::kBssEntry ||
6870          GetLoadKind() == LoadKind::kBssEntryPublic ||
6871          GetLoadKind() == LoadKind::kBssEntryPackage ||
6872          GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
6873   DCHECK(special_input_.GetInstruction() == nullptr);
6874   special_input_ = HUserRecord<HInstruction*>(special_input);
6875   special_input->AddUseAt(GetBlock()->GetGraph()->GetAllocator(), this, 0);
6876 }
6877 
6878 class HLoadString final : public HInstruction {
6879  public:
6880   // Determines how to load the String.
6881   enum class LoadKind {
6882     // Use PC-relative boot image String* address that will be known at link time.
6883     // Used for boot image strings referenced by boot image code.
6884     kBootImageLinkTimePcRelative,
6885 
6886     // Load from a boot image entry in the .data.img.rel.ro using a PC-relative load.
6887     // Used for boot image strings referenced by apps in AOT-compiled code.
6888     kBootImageRelRo,
6889 
6890     // Load from an entry in the .bss section using a PC-relative load.
6891     // Used for strings outside boot image referenced by AOT-compiled app and boot image code.
6892     kBssEntry,
6893 
6894     // Use a known boot image String* address, embedded in the code by the codegen.
6895     // Used for boot image strings referenced by apps in JIT-compiled code.
6896     kJitBootImageAddress,
6897 
6898     // Load from the root table associated with the JIT compiled method.
6899     kJitTableAddress,
6900 
6901     // Load using a simple runtime call. This is the fall-back load kind when
6902     // the codegen is unable to use another appropriate kind.
6903     kRuntimeCall,
6904 
6905     kLast = kRuntimeCall,
6906   };
6907 
6908   HLoadString(HCurrentMethod* current_method,
6909               dex::StringIndex string_index,
6910               const DexFile& dex_file,
6911               uint32_t dex_pc)
6912       : HInstruction(kLoadString,
6913                      DataType::Type::kReference,
6914                      SideEffectsForArchRuntimeCalls(),
6915                      dex_pc),
6916         special_input_(HUserRecord<HInstruction*>(current_method)),
6917         string_index_(string_index),
6918         dex_file_(dex_file) {
6919     SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
6920   }
6921 
6922   bool IsClonable() const override { return true; }
6923   bool NeedsBss() const override {
6924     return GetLoadKind() == LoadKind::kBssEntry;
6925   }
6926 
6927   void SetLoadKind(LoadKind load_kind);
6928 
6929   LoadKind GetLoadKind() const {
6930     return GetPackedField<LoadKindField>();
6931   }
6932 
6933   bool HasPcRelativeLoadKind() const {
6934     return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6935            GetLoadKind() == LoadKind::kBootImageRelRo ||
6936            GetLoadKind() == LoadKind::kBssEntry;
6937   }
6938 
6939   const DexFile& GetDexFile() const {
6940     return dex_file_;
6941   }
6942 
6943   dex::StringIndex GetStringIndex() const {
6944     return string_index_;
6945   }
6946 
6947   Handle<mirror::String> GetString() const {
6948     return string_;
6949   }
6950 
6951   void SetString(Handle<mirror::String> str) {
6952     string_ = str;
6953   }
6954 
6955   bool CanBeMoved() const override { return true; }
6956 
6957   bool InstructionDataEquals(const HInstruction* other) const override;
6958 
6959   size_t ComputeHashCode() const override { return string_index_.index_; }
6960 
6961   // Will call the runtime if we need to load the string through
6962   // the dex cache and the string is not guaranteed to be there yet.
6963   bool NeedsEnvironment() const override {
6964     LoadKind load_kind = GetLoadKind();
6965     if (load_kind == LoadKind::kBootImageLinkTimePcRelative ||
6966         load_kind == LoadKind::kBootImageRelRo ||
6967         load_kind == LoadKind::kJitBootImageAddress ||
6968         load_kind == LoadKind::kJitTableAddress) {
6969       return false;
6970     }
6971     return true;
6972   }
6973 
6974   bool CanBeNull() const override { return false; }
6975   bool CanThrow() const override { return NeedsEnvironment(); }
6976 
6977   static SideEffects SideEffectsForArchRuntimeCalls() {
6978     return SideEffects::CanTriggerGC();
6979   }
6980 
6981   void AddSpecialInput(HInstruction* special_input);
6982 
6983   using HInstruction::GetInputRecords;  // Keep the const version visible.
6984   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6985     return ArrayRef<HUserRecord<HInstruction*>>(
6986         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6987   }
6988 
6989   DECLARE_INSTRUCTION(LoadString);
6990 
6991  protected:
6992   DEFAULT_COPY_CONSTRUCTOR(LoadString);
6993 
6994  private:
6995   static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
6996   static constexpr size_t kFieldLoadKindSize =
6997       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
6998   static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
6999   static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7000   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
7001 
7002   void SetLoadKindInternal(LoadKind load_kind);
7003 
7004   // The special input is the HCurrentMethod for kRuntimeCall.
7005   // For other load kinds it's empty or possibly some architecture-specific instruction
7006   // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
7007   HUserRecord<HInstruction*> special_input_;
7008 
7009   dex::StringIndex string_index_;
7010   const DexFile& dex_file_;
7011 
7012   Handle<mirror::String> string_;
7013 };
7014 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
7015 
7016 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
7017 inline void HLoadString::SetLoadKind(LoadKind load_kind) {
7018   // The load kind should be determined before inserting the instruction to the graph.
7019   DCHECK(GetBlock() == nullptr);
7020   DCHECK(GetEnvironment() == nullptr);
7021   DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
7022   SetPackedField<LoadKindField>(load_kind);
7023   if (load_kind != LoadKind::kRuntimeCall) {
7024     special_input_ = HUserRecord<HInstruction*>(nullptr);
7025   }
7026   if (!NeedsEnvironment()) {
7027     SetSideEffects(SideEffects::None());
7028   }
7029 }
7030 
7031 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
7032 inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
7033   // The special input is used for PC-relative loads on some architectures,
7034   // including literal pool loads, which are PC-relative too.
7035   DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
7036          GetLoadKind() == LoadKind::kBootImageRelRo ||
7037          GetLoadKind() == LoadKind::kBssEntry ||
7038          GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
7039   // HLoadString::GetInputRecords() returns an empty array at this point,
7040   // so use the GetInputRecords() from the base class to set the input record.
7041   DCHECK(special_input_.GetInstruction() == nullptr);
7042   special_input_ = HUserRecord<HInstruction*>(special_input);
7043   special_input->AddUseAt(GetBlock()->GetGraph()->GetAllocator(), this, 0);
7044 }
7045 
7046 class HLoadMethodHandle final : public HInstruction {
7047  public:
7048   HLoadMethodHandle(HCurrentMethod* current_method,
7049                     uint16_t method_handle_idx,
7050                     const DexFile& dex_file,
7051                     uint32_t dex_pc)
7052       : HInstruction(kLoadMethodHandle,
7053                      DataType::Type::kReference,
7054                      SideEffectsForArchRuntimeCalls(),
7055                      dex_pc),
7056         special_input_(HUserRecord<HInstruction*>(current_method)),
7057         method_handle_idx_(method_handle_idx),
7058         dex_file_(dex_file) {
7059   }
7060 
7061   using HInstruction::GetInputRecords;  // Keep the const version visible.
7062   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
7063     return ArrayRef<HUserRecord<HInstruction*>>(
7064         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
7065   }
7066 
7067   bool IsClonable() const override { return true; }
7068 
7069   uint16_t GetMethodHandleIndex() const { return method_handle_idx_; }
7070 
7071   const DexFile& GetDexFile() const { return dex_file_; }
7072 
7073   static SideEffects SideEffectsForArchRuntimeCalls() {
7074     return SideEffects::CanTriggerGC();
7075   }
7076 
7077   bool CanThrow() const override { return true; }
7078 
7079   bool NeedsEnvironment() const override { return true; }
7080 
7081   DECLARE_INSTRUCTION(LoadMethodHandle);
7082 
7083  protected:
7084   DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle);
7085 
7086  private:
7087   // The special input is the HCurrentMethod for kRuntimeCall.
7088   HUserRecord<HInstruction*> special_input_;
7089 
7090   const uint16_t method_handle_idx_;
7091   const DexFile& dex_file_;
7092 };
7093 
7094 class HLoadMethodType final : public HInstruction {
7095  public:
7096   // Determines how to load the MethodType.
7097   enum class LoadKind {
7098     // Load from an entry in the .bss section using a PC-relative load.
7099     kBssEntry,
7100     // Load from the root table associated with the JIT compiled method.
7101     kJitTableAddress,
7102     // Load using a single runtime call.
7103     kRuntimeCall,
7104 
7105     kLast = kRuntimeCall,
7106   };
7107 
7108   HLoadMethodType(HCurrentMethod* current_method,
7109                   dex::ProtoIndex proto_index,
7110                   const DexFile& dex_file,
7111                   uint32_t dex_pc)
7112       : HInstruction(kLoadMethodType,
7113                      DataType::Type::kReference,
7114                      SideEffectsForArchRuntimeCalls(),
7115                      dex_pc),
7116         special_input_(HUserRecord<HInstruction*>(current_method)),
7117         proto_index_(proto_index),
7118         dex_file_(dex_file) {
7119     SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
7120   }
7121 
7122   using HInstruction::GetInputRecords;  // Keep the const version visible.
7123   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
7124     return ArrayRef<HUserRecord<HInstruction*>>(
7125         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
7126   }
7127 
7128   bool IsClonable() const override { return true; }
7129 
7130   void SetLoadKind(LoadKind load_kind);
7131 
7132   LoadKind GetLoadKind() const {
7133     return GetPackedField<LoadKindField>();
7134   }
7135 
7136   dex::ProtoIndex GetProtoIndex() const { return proto_index_; }
7137 
7138   Handle<mirror::MethodType> GetMethodType() const { return method_type_; }
7139 
7140   void SetMethodType(Handle<mirror::MethodType> method_type) { method_type_ = method_type; }
7141 
7142   const DexFile& GetDexFile() const { return dex_file_; }
7143 
7144   static SideEffects SideEffectsForArchRuntimeCalls() {
7145     return SideEffects::CanTriggerGC();
7146   }
7147 
7148   bool CanThrow() const override { return true; }
7149 
7150   bool NeedsEnvironment() const override { return true; }
7151 
7152   DECLARE_INSTRUCTION(LoadMethodType);
7153 
7154  protected:
7155   DEFAULT_COPY_CONSTRUCTOR(LoadMethodType);
7156 
7157  private:
7158   static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
7159   static constexpr size_t kFieldLoadKindSize =
7160       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
7161   static constexpr size_t kNumberOfLoadMethodTypePackedBits = kFieldLoadKind + kFieldLoadKindSize;
7162   static_assert(kNumberOfLoadMethodTypePackedBits <= kMaxNumberOfPackedBits,
7163       "Too many packed fields.");
7164   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
7165 
7166   // The special input is the HCurrentMethod for kRuntimeCall.
7167   HUserRecord<HInstruction*> special_input_;
7168 
7169   const dex::ProtoIndex proto_index_;
7170   const DexFile& dex_file_;
7171 
7172   Handle<mirror::MethodType> method_type_;
7173 };
7174 
7175 std::ostream& operator<<(std::ostream& os, HLoadMethodType::LoadKind rhs);
7176 
7177 // Note: defined outside class to see operator<<(., HLoadMethodType::LoadKind).
7178 inline void HLoadMethodType::SetLoadKind(LoadKind load_kind) {
7179   // The load kind should be determined before inserting the instruction to the graph.
7180   DCHECK(GetBlock() == nullptr);
7181   DCHECK(GetEnvironment() == nullptr);
7182   DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
7183   DCHECK_IMPLIES(GetLoadKind() == LoadKind::kJitTableAddress, GetMethodType() != nullptr);
7184   SetPackedField<LoadKindField>(load_kind);
7185 }
7186 
7187 /**
7188  * Performs an initialization check on its Class object input.
7189  */
7190 class HClinitCheck final : public HExpression<1> {
7191  public:
7192   HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
7193       : HExpression(
7194             kClinitCheck,
7195             DataType::Type::kReference,
7196             SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
7197             dex_pc) {
7198     SetRawInputAt(0, constant);
7199   }
7200   // TODO: Make ClinitCheck clonable.
7201   bool CanBeMoved() const override { return true; }
7202   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
7203     return true;
7204   }
7205 
7206   bool NeedsEnvironment() const override {
7207     // May call runtime to initialize the class.
7208     return true;
7209   }
7210 
7211   bool CanThrow() const override { return true; }
7212 
7213   HLoadClass* GetLoadClass() const {
7214     DCHECK(InputAt(0)->IsLoadClass());
7215     return InputAt(0)->AsLoadClass();
7216   }
7217 
7218   DECLARE_INSTRUCTION(ClinitCheck);
7219 
7220 
7221  protected:
7222   DEFAULT_COPY_CONSTRUCTOR(ClinitCheck);
7223 };
7224 
7225 class HStaticFieldGet final : public HExpression<1, HFieldAccess> {
7226  public:
7227   HStaticFieldGet(HInstruction* cls,
7228                   ArtField* field,
7229                   DataType::Type field_type,
7230                   MemberOffset field_offset,
7231                   bool is_volatile,
7232                   uint32_t field_idx,
7233                   uint16_t declaring_class_def_index,
7234                   const DexFile& dex_file,
7235                   uint32_t dex_pc)
7236       : HExpression(kStaticFieldGet,
7237                     SideEffects::FieldReadOfType(field_type, is_volatile),
7238                     field,
7239                     field_type,
7240                     field_offset,
7241                     is_volatile,
7242                     field_idx,
7243                     declaring_class_def_index,
7244                     dex_file,
7245                     dex_pc) {
7246     SetRawInputAt(0, cls);
7247   }
7248 
7249 
7250   bool IsClonable() const override { return true; }
7251   bool CanBeMoved() const override { return !IsVolatile(); }
7252 
7253   bool InstructionDataEquals(const HInstruction* other) const override {
7254     const HStaticFieldGet* other_get = other->AsStaticFieldGet();
7255     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
7256   }
7257 
7258   size_t ComputeHashCode() const override {
7259     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
7260   }
7261 
7262   void SetType(DataType::Type new_type) {
7263     DCHECK(DataType::IsIntegralType(GetType()));
7264     DCHECK(DataType::IsIntegralType(new_type));
7265     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
7266     SetPackedField<TypeField>(new_type);
7267   }
7268 
7269   DECLARE_INSTRUCTION(StaticFieldGet);
7270 
7271  protected:
7272   DEFAULT_COPY_CONSTRUCTOR(StaticFieldGet);
7273 };
7274 
7275 class HStaticFieldSet final : public HExpression<2, HFieldAccess> {
7276  public:
7277   HStaticFieldSet(HInstruction* cls,
7278                   HInstruction* value,
7279                   ArtField* field,
7280                   DataType::Type field_type,
7281                   MemberOffset field_offset,
7282                   bool is_volatile,
7283                   uint32_t field_idx,
7284                   uint16_t declaring_class_def_index,
7285                   const DexFile& dex_file,
7286                   uint32_t dex_pc)
7287       : HExpression(kStaticFieldSet,
7288                     SideEffects::FieldWriteOfType(field_type, is_volatile),
7289                     field,
7290                     field_type,
7291                     field_offset,
7292                     is_volatile,
7293                     field_idx,
7294                     declaring_class_def_index,
7295                     dex_file,
7296                     dex_pc) {
7297     SetPackedFlag<kFlagValueCanBeNull>(true);
7298     SetPackedField<WriteBarrierKindField>(
7299         field_type == DataType::Type::kReference
7300             ? WriteBarrierKind::kEmitNotBeingReliedOn
7301             : WriteBarrierKind::kDontEmit);
7302     SetRawInputAt(0, cls);
7303     SetRawInputAt(1, value);
7304   }
7305 
7306   bool IsClonable() const override { return true; }
7307 
7308   HInstruction* GetValue() const { return InputAt(1); }
7309   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
7310   void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
7311 
7312   WriteBarrierKind GetWriteBarrierKind() { return GetPackedField<WriteBarrierKindField>(); }
7313   void SetWriteBarrierKind(WriteBarrierKind kind) {
7314     DCHECK(kind != WriteBarrierKind::kEmitNotBeingReliedOn)
7315         << "We shouldn't go back to the original value.";
7316     DCHECK_IMPLIES(kind == WriteBarrierKind::kDontEmit,
7317                    GetWriteBarrierKind() != WriteBarrierKind::kEmitBeingReliedOn)
7318         << "If a write barrier was relied on by other write barriers, we cannot skip emitting it.";
7319     SetPackedField<WriteBarrierKindField>(kind);
7320   }
7321 
7322   DECLARE_INSTRUCTION(StaticFieldSet);
7323 
7324  protected:
7325   DEFAULT_COPY_CONSTRUCTOR(StaticFieldSet);
7326 
7327  private:
7328   static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
7329   static constexpr size_t kWriteBarrierKind = kFlagValueCanBeNull + 1;
7330   static constexpr size_t kWriteBarrierKindSize =
7331       MinimumBitsToStore(static_cast<size_t>(WriteBarrierKind::kLast));
7332   static constexpr size_t kNumberOfStaticFieldSetPackedBits =
7333       kWriteBarrierKind + kWriteBarrierKindSize;
7334   static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
7335                 "Too many packed fields.");
7336 
7337   using WriteBarrierKindField =
7338       BitField<WriteBarrierKind, kWriteBarrierKind, kWriteBarrierKindSize>;
7339 };
7340 
7341 class HStringBuilderAppend final : public HVariableInputSizeInstruction {
7342  public:
7343   HStringBuilderAppend(HIntConstant* format,
7344                        uint32_t number_of_arguments,
7345                        uint32_t number_of_out_vregs,
7346                        bool has_fp_args,
7347                        ArenaAllocator* allocator,
7348                        uint32_t dex_pc)
7349       : HVariableInputSizeInstruction(
7350             kStringBuilderAppend,
7351             DataType::Type::kReference,
7352             SideEffects::CanTriggerGC().Union(
7353                 // The runtime call may read memory from inputs. It never writes outside
7354                 // of the newly allocated result object or newly allocated helper objects,
7355                 // except for float/double arguments where we reuse thread-local helper objects.
7356                 has_fp_args ? SideEffects::AllWritesAndReads() : SideEffects::AllReads()),
7357             dex_pc,
7358             allocator,
7359             number_of_arguments + /* format */ 1u,
7360             kArenaAllocInvokeInputs),
7361         number_of_out_vregs_(number_of_out_vregs) {
7362     DCHECK_GE(number_of_arguments, 1u);  // There must be something to append.
7363     SetRawInputAt(FormatIndex(), format);
7364   }
7365 
7366   void SetArgumentAt(size_t index, HInstruction* argument) {
7367     DCHECK_LE(index, GetNumberOfArguments());
7368     SetRawInputAt(index, argument);
7369   }
7370 
7371   // Return the number of arguments, excluding the format.
7372   size_t GetNumberOfArguments() const {
7373     DCHECK_GE(InputCount(), 1u);
7374     return InputCount() - 1u;
7375   }
7376 
7377   // Return the number of outgoing vregs.
7378   uint32_t GetNumberOfOutVRegs() const { return number_of_out_vregs_; }
7379 
7380   size_t FormatIndex() const {
7381     return GetNumberOfArguments();
7382   }
7383 
7384   HIntConstant* GetFormat() {
7385     return InputAt(FormatIndex())->AsIntConstant();
7386   }
7387 
7388   bool NeedsEnvironment() const override { return true; }
7389 
7390   bool CanThrow() const override { return true; }
7391 
7392   bool CanBeNull() const override { return false; }
7393 
7394   DECLARE_INSTRUCTION(StringBuilderAppend);
7395 
7396  protected:
7397   DEFAULT_COPY_CONSTRUCTOR(StringBuilderAppend);
7398 
7399  private:
7400   uint32_t number_of_out_vregs_;
7401 };
7402 
7403 class HUnresolvedInstanceFieldGet final : public HExpression<1> {
7404  public:
7405   HUnresolvedInstanceFieldGet(HInstruction* obj,
7406                               DataType::Type field_type,
7407                               uint32_t field_index,
7408                               uint32_t dex_pc)
7409       : HExpression(kUnresolvedInstanceFieldGet,
7410                     field_type,
7411                     SideEffects::AllExceptGCDependency(),
7412                     dex_pc),
7413         field_index_(field_index) {
7414     SetRawInputAt(0, obj);
7415   }
7416 
7417   bool IsClonable() const override { return true; }
7418   bool NeedsEnvironment() const override { return true; }
7419   bool CanThrow() const override { return true; }
7420 
7421   DataType::Type GetFieldType() const { return GetType(); }
7422   uint32_t GetFieldIndex() const { return field_index_; }
7423 
7424   DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
7425 
7426  protected:
7427   DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldGet);
7428 
7429  private:
7430   const uint32_t field_index_;
7431 };
7432 
7433 class HUnresolvedInstanceFieldSet final : public HExpression<2> {
7434  public:
7435   HUnresolvedInstanceFieldSet(HInstruction* obj,
7436                               HInstruction* value,
7437                               DataType::Type field_type,
7438                               uint32_t field_index,
7439                               uint32_t dex_pc)
7440       : HExpression(kUnresolvedInstanceFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
7441         field_index_(field_index) {
7442     SetPackedField<FieldTypeField>(field_type);
7443     DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
7444     SetRawInputAt(0, obj);
7445     SetRawInputAt(1, value);
7446   }
7447 
7448   bool IsClonable() const override { return true; }
7449   bool NeedsEnvironment() const override { return true; }
7450   bool CanThrow() const override { return true; }
7451 
7452   DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
7453   uint32_t GetFieldIndex() const { return field_index_; }
7454 
7455   DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
7456 
7457  protected:
7458   DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldSet);
7459 
7460  private:
7461   static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
7462   static constexpr size_t kFieldFieldTypeSize =
7463       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
7464   static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
7465       kFieldFieldType + kFieldFieldTypeSize;
7466   static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
7467                 "Too many packed fields.");
7468   using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
7469 
7470   const uint32_t field_index_;
7471 };
7472 
7473 class HUnresolvedStaticFieldGet final : public HExpression<0> {
7474  public:
7475   HUnresolvedStaticFieldGet(DataType::Type field_type,
7476                             uint32_t field_index,
7477                             uint32_t dex_pc)
7478       : HExpression(kUnresolvedStaticFieldGet,
7479                     field_type,
7480                     SideEffects::AllExceptGCDependency(),
7481                     dex_pc),
7482         field_index_(field_index) {
7483   }
7484 
7485   bool IsClonable() const override { return true; }
7486   bool NeedsEnvironment() const override { return true; }
7487   bool CanThrow() const override { return true; }
7488 
7489   DataType::Type GetFieldType() const { return GetType(); }
7490   uint32_t GetFieldIndex() const { return field_index_; }
7491 
7492   DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
7493 
7494  protected:
7495   DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldGet);
7496 
7497  private:
7498   const uint32_t field_index_;
7499 };
7500 
7501 class HUnresolvedStaticFieldSet final : public HExpression<1> {
7502  public:
7503   HUnresolvedStaticFieldSet(HInstruction* value,
7504                             DataType::Type field_type,
7505                             uint32_t field_index,
7506                             uint32_t dex_pc)
7507       : HExpression(kUnresolvedStaticFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
7508         field_index_(field_index) {
7509     SetPackedField<FieldTypeField>(field_type);
7510     DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
7511     SetRawInputAt(0, value);
7512   }
7513 
7514   bool IsClonable() const override { return true; }
7515   bool NeedsEnvironment() const override { return true; }
7516   bool CanThrow() const override { return true; }
7517 
7518   DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
7519   uint32_t GetFieldIndex() const { return field_index_; }
7520 
7521   DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
7522 
7523  protected:
7524   DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldSet);
7525 
7526  private:
7527   static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
7528   static constexpr size_t kFieldFieldTypeSize =
7529       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
7530   static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
7531       kFieldFieldType + kFieldFieldTypeSize;
7532   static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
7533                 "Too many packed fields.");
7534   using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
7535 
7536   const uint32_t field_index_;
7537 };
7538 
7539 // Implement the move-exception DEX instruction.
7540 class HLoadException final : public HExpression<0> {
7541  public:
7542   explicit HLoadException(uint32_t dex_pc = kNoDexPc)
7543       : HExpression(kLoadException, DataType::Type::kReference, SideEffects::None(), dex_pc) {
7544   }
7545 
7546   bool CanBeNull() const override { return false; }
7547 
7548   DECLARE_INSTRUCTION(LoadException);
7549 
7550  protected:
7551   DEFAULT_COPY_CONSTRUCTOR(LoadException);
7552 };
7553 
7554 // Implicit part of move-exception which clears thread-local exception storage.
7555 // Must not be removed because the runtime expects the TLS to get cleared.
7556 class HClearException final : public HExpression<0> {
7557  public:
7558   explicit HClearException(uint32_t dex_pc = kNoDexPc)
7559       : HExpression(kClearException, SideEffects::AllWrites(), dex_pc) {
7560   }
7561 
7562   DECLARE_INSTRUCTION(ClearException);
7563 
7564  protected:
7565   DEFAULT_COPY_CONSTRUCTOR(ClearException);
7566 };
7567 
7568 class HThrow final : public HExpression<1> {
7569  public:
7570   HThrow(HInstruction* exception, uint32_t dex_pc)
7571       : HExpression(kThrow, SideEffects::CanTriggerGC(), dex_pc) {
7572     SetRawInputAt(0, exception);
7573   }
7574 
7575   bool IsControlFlow() const override { return true; }
7576 
7577   bool NeedsEnvironment() const override { return true; }
7578 
7579   bool CanThrow() const override { return true; }
7580 
7581   bool AlwaysThrows() const override { return true; }
7582 
7583   DECLARE_INSTRUCTION(Throw);
7584 
7585  protected:
7586   DEFAULT_COPY_CONSTRUCTOR(Throw);
7587 };
7588 
7589 /**
7590  * Implementation strategies for the code generator of a HInstanceOf
7591  * or `HCheckCast`.
7592  */
7593 enum class TypeCheckKind {  // private marker to avoid generate-operator-out.py from processing.
7594   kUnresolvedCheck,       // Check against an unresolved type.
7595   kExactCheck,            // Can do a single class compare.
7596   kClassHierarchyCheck,   // Can just walk the super class chain.
7597   kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
7598   kInterfaceCheck,        // No optimization yet when checking against an interface.
7599   kArrayObjectCheck,      // Can just check if the array is not primitive.
7600   kArrayCheck,            // No optimization yet when checking against a generic array.
7601   kBitstringCheck,        // Compare the type check bitstring.
7602   kLast = kArrayCheck
7603 };
7604 
7605 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs);
7606 
7607 // Note: HTypeCheckInstruction is just a helper class, not an abstract instruction with an
7608 // `IsTypeCheckInstruction()`. (New virtual methods in the HInstruction class have a high cost.)
7609 class HTypeCheckInstruction : public HVariableInputSizeInstruction {
7610  public:
7611   HTypeCheckInstruction(InstructionKind kind,
7612                         DataType::Type type,
7613                         HInstruction* object,
7614                         HInstruction* target_class_or_null,
7615                         TypeCheckKind check_kind,
7616                         Handle<mirror::Class> klass,
7617                         uint32_t dex_pc,
7618                         ArenaAllocator* allocator,
7619                         HIntConstant* bitstring_path_to_root,
7620                         HIntConstant* bitstring_mask,
7621                         SideEffects side_effects)
7622       : HVariableInputSizeInstruction(
7623           kind,
7624           type,
7625           side_effects,
7626           dex_pc,
7627           allocator,
7628           /* number_of_inputs= */ check_kind == TypeCheckKind::kBitstringCheck ? 4u : 2u,
7629           kArenaAllocTypeCheckInputs),
7630         klass_(klass) {
7631     SetPackedField<TypeCheckKindField>(check_kind);
7632     SetPackedFlag<kFlagMustDoNullCheck>(true);
7633     SetPackedFlag<kFlagValidTargetClassRTI>(false);
7634     SetRawInputAt(0, object);
7635     SetRawInputAt(1, target_class_or_null);
7636     DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_path_to_root != nullptr);
7637     DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_mask != nullptr);
7638     if (check_kind == TypeCheckKind::kBitstringCheck) {
7639       DCHECK(target_class_or_null->IsNullConstant());
7640       SetRawInputAt(2, bitstring_path_to_root);
7641       SetRawInputAt(3, bitstring_mask);
7642     } else {
7643       DCHECK(target_class_or_null->IsLoadClass());
7644     }
7645   }
7646 
7647   HLoadClass* GetTargetClass() const {
7648     DCHECK_NE(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7649     HInstruction* load_class = InputAt(1);
7650     DCHECK(load_class->IsLoadClass());
7651     return load_class->AsLoadClass();
7652   }
7653 
7654   uint32_t GetBitstringPathToRoot() const {
7655     DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7656     HInstruction* path_to_root = InputAt(2);
7657     DCHECK(path_to_root->IsIntConstant());
7658     return static_cast<uint32_t>(path_to_root->AsIntConstant()->GetValue());
7659   }
7660 
7661   uint32_t GetBitstringMask() const {
7662     DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7663     HInstruction* mask = InputAt(3);
7664     DCHECK(mask->IsIntConstant());
7665     return static_cast<uint32_t>(mask->AsIntConstant()->GetValue());
7666   }
7667 
7668   bool IsClonable() const override { return true; }
7669   bool CanBeMoved() const override { return true; }
7670 
7671   bool InstructionDataEquals(const HInstruction* other) const override {
7672     DCHECK(other->IsInstanceOf() || other->IsCheckCast()) << other->DebugName();
7673     return GetPackedFields() == down_cast<const HTypeCheckInstruction*>(other)->GetPackedFields();
7674   }
7675 
7676   bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
7677   void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
7678   TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
7679   bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
7680 
7681   ReferenceTypeInfo GetTargetClassRTI() {
7682     if (GetPackedFlag<kFlagValidTargetClassRTI>()) {
7683       // Note: The is_exact flag from the return value should not be used.
7684       return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
7685     } else {
7686       return ReferenceTypeInfo::CreateInvalid();
7687     }
7688   }
7689 
7690   // Target class RTI is marked as valid by RTP if the klass_ is admissible.
7691   void SetValidTargetClassRTI() {
7692     DCHECK(klass_ != nullptr);
7693     SetPackedFlag<kFlagValidTargetClassRTI>(true);
7694   }
7695 
7696   Handle<mirror::Class> GetClass() const {
7697     return klass_;
7698   }
7699 
7700  protected:
7701   DEFAULT_COPY_CONSTRUCTOR(TypeCheckInstruction);
7702 
7703  private:
7704   static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits;
7705   static constexpr size_t kFieldTypeCheckKindSize =
7706       MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
7707   static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
7708   static constexpr size_t kFlagValidTargetClassRTI = kFlagMustDoNullCheck + 1;
7709   static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagValidTargetClassRTI + 1;
7710   static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7711   using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
7712 
7713   Handle<mirror::Class> klass_;
7714 };
7715 
7716 class HInstanceOf final : public HTypeCheckInstruction {
7717  public:
7718   HInstanceOf(HInstruction* object,
7719               HInstruction* target_class_or_null,
7720               TypeCheckKind check_kind,
7721               Handle<mirror::Class> klass,
7722               uint32_t dex_pc,
7723               ArenaAllocator* allocator,
7724               HIntConstant* bitstring_path_to_root,
7725               HIntConstant* bitstring_mask)
7726       : HTypeCheckInstruction(kInstanceOf,
7727                               DataType::Type::kBool,
7728                               object,
7729                               target_class_or_null,
7730                               check_kind,
7731                               klass,
7732                               dex_pc,
7733                               allocator,
7734                               bitstring_path_to_root,
7735                               bitstring_mask,
7736                               SideEffectsForArchRuntimeCalls(check_kind)) {}
7737 
7738   bool IsClonable() const override { return true; }
7739 
7740   bool NeedsEnvironment() const override {
7741     return CanCallRuntime(GetTypeCheckKind());
7742   }
7743 
7744   static bool CanCallRuntime(TypeCheckKind check_kind) {
7745     // TODO: Re-evaluate now that mips codegen has been removed.
7746     return check_kind != TypeCheckKind::kExactCheck;
7747   }
7748 
7749   static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
7750     return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None();
7751   }
7752 
7753   DECLARE_INSTRUCTION(InstanceOf);
7754 
7755  protected:
7756   DEFAULT_COPY_CONSTRUCTOR(InstanceOf);
7757 };
7758 
7759 class HBoundType final : public HExpression<1> {
7760  public:
7761   explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc)
7762       : HExpression(kBoundType, DataType::Type::kReference, SideEffects::None(), dex_pc),
7763         upper_bound_(ReferenceTypeInfo::CreateInvalid()) {
7764     SetPackedFlag<kFlagUpperCanBeNull>(true);
7765     SetPackedFlag<kFlagCanBeNull>(true);
7766     DCHECK_EQ(input->GetType(), DataType::Type::kReference);
7767     SetRawInputAt(0, input);
7768   }
7769 
7770   bool InstructionDataEquals(const HInstruction* other) const override;
7771   bool IsClonable() const override { return true; }
7772 
7773   // {Get,Set}Upper* should only be used in reference type propagation.
7774   const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
7775   bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); }
7776   void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null);
7777 
7778   void SetCanBeNull(bool can_be_null) {
7779     DCHECK(GetUpperCanBeNull() || !can_be_null);
7780     SetPackedFlag<kFlagCanBeNull>(can_be_null);
7781   }
7782 
7783   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
7784 
7785   DECLARE_INSTRUCTION(BoundType);
7786 
7787  protected:
7788   DEFAULT_COPY_CONSTRUCTOR(BoundType);
7789 
7790  private:
7791   // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
7792   // is false then CanBeNull() cannot be true).
7793   static constexpr size_t kFlagUpperCanBeNull = kNumberOfGenericPackedBits;
7794   static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1;
7795   static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1;
7796   static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7797 
7798   // Encodes the most upper class that this instruction can have. In other words
7799   // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
7800   // It is used to bound the type in cases like:
7801   //   if (x instanceof ClassX) {
7802   //     // uper_bound_ will be ClassX
7803   //   }
7804   ReferenceTypeInfo upper_bound_;
7805 };
7806 
7807 class HCheckCast final : public HTypeCheckInstruction {
7808  public:
7809   HCheckCast(HInstruction* object,
7810              HInstruction* target_class_or_null,
7811              TypeCheckKind check_kind,
7812              Handle<mirror::Class> klass,
7813              uint32_t dex_pc,
7814              ArenaAllocator* allocator,
7815              HIntConstant* bitstring_path_to_root,
7816              HIntConstant* bitstring_mask)
7817       : HTypeCheckInstruction(kCheckCast,
7818                               DataType::Type::kVoid,
7819                               object,
7820                               target_class_or_null,
7821                               check_kind,
7822                               klass,
7823                               dex_pc,
7824                               allocator,
7825                               bitstring_path_to_root,
7826                               bitstring_mask,
7827                               SideEffects::CanTriggerGC()) {}
7828 
7829   bool IsClonable() const override { return true; }
7830   bool NeedsEnvironment() const override {
7831     // Instruction may throw a CheckCastError.
7832     return true;
7833   }
7834 
7835   bool CanThrow() const override { return true; }
7836 
7837   DECLARE_INSTRUCTION(CheckCast);
7838 
7839  protected:
7840   DEFAULT_COPY_CONSTRUCTOR(CheckCast);
7841 };
7842 
7843 /**
7844  * @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers").
7845  * @details We define the combined barrier types that are actually required
7846  * by the Java Memory Model, rather than using exactly the terminology from
7847  * the JSR-133 cookbook.  These should, in many cases, be replaced by acquire/release
7848  * primitives.  Note that the JSR-133 cookbook generally does not deal with
7849  * store atomicity issues, and the recipes there are not always entirely sufficient.
7850  * The current recipe is as follows:
7851  * -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store.
7852  * -# Use AnyAny barrier after volatile store.  (StoreLoad is as expensive.)
7853  * -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load.
7854  * -# Use StoreStore barrier after all stores but before return from any constructor whose
7855  *    class has final fields.
7856  * -# Use NTStoreStore to order non-temporal stores with respect to all later
7857  *    store-to-memory instructions.  Only generated together with non-temporal stores.
7858  */
7859 enum MemBarrierKind {
7860   kAnyStore,
7861   kLoadAny,
7862   kStoreStore,
7863   kAnyAny,
7864   kNTStoreStore,
7865   kLastBarrierKind = kNTStoreStore
7866 };
7867 std::ostream& operator<<(std::ostream& os, MemBarrierKind kind);
7868 
7869 class HMemoryBarrier final : public HExpression<0> {
7870  public:
7871   explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
7872       : HExpression(kMemoryBarrier,
7873                     SideEffects::AllWritesAndReads(),  // Assume write/read on all fields/arrays.
7874                     dex_pc) {
7875     SetPackedField<BarrierKindField>(barrier_kind);
7876   }
7877 
7878   bool IsClonable() const override { return true; }
7879 
7880   MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); }
7881 
7882   DECLARE_INSTRUCTION(MemoryBarrier);
7883 
7884  protected:
7885   DEFAULT_COPY_CONSTRUCTOR(MemoryBarrier);
7886 
7887  private:
7888   static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits;
7889   static constexpr size_t kFieldBarrierKindSize =
7890       MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind));
7891   static constexpr size_t kNumberOfMemoryBarrierPackedBits =
7892       kFieldBarrierKind + kFieldBarrierKindSize;
7893   static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits,
7894                 "Too many packed fields.");
7895   using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>;
7896 };
7897 
7898 // A constructor fence orders all prior stores to fields that could be accessed via a final field of
7899 // the specified object(s), with respect to any subsequent store that might "publish"
7900 // (i.e. make visible) the specified object to another thread.
7901 //
7902 // JLS 17.5.1 "Semantics of final fields" states that a freeze action happens
7903 // for all final fields (that were set) at the end of the invoked constructor.
7904 //
7905 // The constructor fence models the freeze actions for the final fields of an object
7906 // being constructed (semantically at the end of the constructor). Constructor fences
7907 // have a per-object affinity; two separate objects being constructed get two separate
7908 // constructor fences.
7909 //
7910 // (Note: that if calling a super-constructor or forwarding to another constructor,
7911 // the freezes would happen at the end of *that* constructor being invoked).
7912 //
7913 // The memory model guarantees that when the object being constructed is "published" after
7914 // constructor completion (i.e. escapes the current thread via a store), then any final field
7915 // writes must be observable on other threads (once they observe that publication).
7916 //
7917 // Further, anything written before the freeze, and read by dereferencing through the final field,
7918 // must also be visible (so final object field could itself have an object with non-final fields;
7919 // yet the freeze must also extend to them).
7920 //
7921 // Constructor example:
7922 //
7923 //     class HasFinal {
7924 //        final int field;                              Optimizing IR for <init>()V:
7925 //        HasFinal() {
7926 //          field = 123;                                HInstanceFieldSet(this, HasFinal.field, 123)
7927 //          // freeze(this.field);                      HConstructorFence(this)
7928 //        }                                             HReturn
7929 //     }
7930 //
7931 // HConstructorFence can serve double duty as a fence for new-instance/new-array allocations of
7932 // already-initialized classes; in that case the allocation must act as a "default-initializer"
7933 // of the object which effectively writes the class pointer "final field".
7934 //
7935 // For example, we can model default-initialiation as roughly the equivalent of the following:
7936 //
7937 //     class Object {
7938 //       private final Class header;
7939 //     }
7940 //
7941 //  Java code:                                           Optimizing IR:
7942 //
7943 //     T new_instance<T>() {
7944 //       Object obj = allocate_memory(T.class.size);     obj = HInvoke(art_quick_alloc_object, T)
7945 //       obj.header = T.class;                           // header write is done by above call.
7946 //       // freeze(obj.header)                           HConstructorFence(obj)
7947 //       return (T)obj;
7948 //     }
7949 //
7950 // See also:
7951 // * DexCompilationUnit::RequiresConstructorBarrier
7952 // * QuasiAtomic::ThreadFenceForConstructor
7953 //
7954 class HConstructorFence final : public HVariableInputSizeInstruction {
7955                                   // A fence has variable inputs because the inputs can be removed
7956                                   // after prepare_for_register_allocation phase.
7957                                   // (TODO: In the future a fence could freeze multiple objects
7958                                   //        after merging two fences together.)
7959  public:
7960   // `fence_object` is the reference that needs to be protected for correct publication.
7961   //
7962   // It makes sense in the following situations:
7963   // * <init> constructors, it's the "this" parameter (i.e. HParameterValue, s.t. IsThis() == true).
7964   // * new-instance-like instructions, it's the return value (i.e. HNewInstance).
7965   //
7966   // After construction the `fence_object` becomes the 0th input.
7967   // This is not an input in a real sense, but just a convenient place to stash the information
7968   // about the associated object.
7969   HConstructorFence(HInstruction* fence_object,
7970                     uint32_t dex_pc,
7971                     ArenaAllocator* allocator)
7972     // We strongly suspect there is not a more accurate way to describe the fine-grained reordering
7973     // constraints described in the class header. We claim that these SideEffects constraints
7974     // enforce a superset of the real constraints.
7975     //
7976     // The ordering described above is conservatively modeled with SideEffects as follows:
7977     //
7978     // * To prevent reordering of the publication stores:
7979     // ----> "Reads of objects" is the initial SideEffect.
7980     // * For every primitive final field store in the constructor:
7981     // ----> Union that field's type as a read (e.g. "Read of T") into the SideEffect.
7982     // * If there are any stores to reference final fields in the constructor:
7983     // ----> Use a more conservative "AllReads" SideEffect because any stores to any references
7984     //       that are reachable from `fence_object` also need to be prevented for reordering
7985     //       (and we do not want to do alias analysis to figure out what those stores are).
7986     //
7987     // In the implementation, this initially starts out as an "all reads" side effect; this is an
7988     // even more conservative approach than the one described above, and prevents all of the
7989     // above reordering without analyzing any of the instructions in the constructor.
7990     //
7991     // If in a later phase we discover that there are no writes to reference final fields,
7992     // we can refine the side effect to a smaller set of type reads (see above constraints).
7993       : HVariableInputSizeInstruction(kConstructorFence,
7994                                       SideEffects::AllReads(),
7995                                       dex_pc,
7996                                       allocator,
7997                                       /* number_of_inputs= */ 1,
7998                                       kArenaAllocConstructorFenceInputs) {
7999     DCHECK(fence_object != nullptr);
8000     SetRawInputAt(0, fence_object);
8001   }
8002 
8003   // The object associated with this constructor fence.
8004   //
8005   // (Note: This will be null after the prepare_for_register_allocation phase,
8006   // as all constructor fence inputs are removed there).
8007   HInstruction* GetFenceObject() const {
8008     return InputAt(0);
8009   }
8010 
8011   // Find all the HConstructorFence uses (`fence_use`) for `this` and:
8012   // - Delete `fence_use` from `this`'s use list.
8013   // - Delete `this` from `fence_use`'s inputs list.
8014   // - If the `fence_use` is dead, remove it from the graph.
8015   //
8016   // A fence is considered dead once it no longer has any uses
8017   // and all of the inputs are dead.
8018   //
8019   // This must *not* be called during/after prepare_for_register_allocation,
8020   // because that removes all the inputs to the fences but the fence is actually
8021   // still considered live.
8022   //
8023   // Returns how many HConstructorFence instructions were removed from graph.
8024   static size_t RemoveConstructorFences(HInstruction* instruction);
8025 
8026   // Combine all inputs of `this` and `other` instruction and remove
8027   // `other` from the graph.
8028   //
8029   // Inputs are unique after the merge.
8030   //
8031   // Requirement: `this` must not be the same as `other.
8032   void Merge(HConstructorFence* other);
8033 
8034   // Check if this constructor fence is protecting
8035   // an HNewInstance or HNewArray that is also the immediate
8036   // predecessor of `this`.
8037   //
8038   // If `ignore_inputs` is true, then the immediate predecessor doesn't need
8039   // to be one of the inputs of `this`.
8040   //
8041   // Returns the associated HNewArray or HNewInstance,
8042   // or null otherwise.
8043   HInstruction* GetAssociatedAllocation(bool ignore_inputs = false);
8044 
8045   DECLARE_INSTRUCTION(ConstructorFence);
8046 
8047  protected:
8048   DEFAULT_COPY_CONSTRUCTOR(ConstructorFence);
8049 };
8050 
8051 class HMonitorOperation final : public HExpression<1> {
8052  public:
8053   enum class OperationKind {
8054     kEnter,
8055     kExit,
8056     kLast = kExit
8057   };
8058 
8059   HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
8060     : HExpression(kMonitorOperation,
8061                   SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
8062                   dex_pc) {
8063     SetPackedField<OperationKindField>(kind);
8064     SetRawInputAt(0, object);
8065   }
8066 
8067   // Instruction may go into runtime, so we need an environment.
8068   bool NeedsEnvironment() const override { return true; }
8069 
8070   bool CanThrow() const override {
8071     // Verifier guarantees that monitor-exit cannot throw.
8072     // This is important because it allows the HGraphBuilder to remove
8073     // a dead throw-catch loop generated for `synchronized` blocks/methods.
8074     return IsEnter();
8075   }
8076 
8077   OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); }
8078   bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; }
8079 
8080   DECLARE_INSTRUCTION(MonitorOperation);
8081 
8082  protected:
8083   DEFAULT_COPY_CONSTRUCTOR(MonitorOperation);
8084 
8085  private:
8086   static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits;
8087   static constexpr size_t kFieldOperationKindSize =
8088       MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast));
8089   static constexpr size_t kNumberOfMonitorOperationPackedBits =
8090       kFieldOperationKind + kFieldOperationKindSize;
8091   static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits,
8092                 "Too many packed fields.");
8093   using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>;
8094 };
8095 
8096 class HSelect final : public HExpression<3> {
8097  public:
8098   HSelect(HInstruction* condition,
8099           HInstruction* true_value,
8100           HInstruction* false_value,
8101           uint32_t dex_pc)
8102       : HExpression(kSelect, HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) {
8103     DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType()));
8104 
8105     // First input must be `true_value` or `false_value` to allow codegens to
8106     // use the SameAsFirstInput allocation policy. We make it `false_value`, so
8107     // that architectures which implement HSelect as a conditional move also
8108     // will not need to invert the condition.
8109     SetRawInputAt(0, false_value);
8110     SetRawInputAt(1, true_value);
8111     SetRawInputAt(2, condition);
8112   }
8113 
8114   bool IsClonable() const override { return true; }
8115   HInstruction* GetFalseValue() const { return InputAt(0); }
8116   HInstruction* GetTrueValue() const { return InputAt(1); }
8117   HInstruction* GetCondition() const { return InputAt(2); }
8118 
8119   bool CanBeMoved() const override { return true; }
8120   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
8121     return true;
8122   }
8123 
8124   bool CanBeNull() const override {
8125     return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull();
8126   }
8127 
8128   void UpdateType() {
8129     DCHECK_EQ(HPhi::ToPhiType(GetTrueValue()->GetType()),
8130               HPhi::ToPhiType(GetFalseValue()->GetType()));
8131     SetPackedField<TypeField>(HPhi::ToPhiType(GetTrueValue()->GetType()));
8132   }
8133 
8134   DECLARE_INSTRUCTION(Select);
8135 
8136  protected:
8137   DEFAULT_COPY_CONSTRUCTOR(Select);
8138 };
8139 
8140 class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
8141  public:
8142   MoveOperands(Location source,
8143                Location destination,
8144                DataType::Type type,
8145                HInstruction* instruction)
8146       : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
8147 
8148   Location GetSource() const { return source_; }
8149   Location GetDestination() const { return destination_; }
8150 
8151   void SetSource(Location value) { source_ = value; }
8152   void SetDestination(Location value) { destination_ = value; }
8153 
8154   // The parallel move resolver marks moves as "in-progress" by clearing the
8155   // destination (but not the source).
8156   Location MarkPending() {
8157     DCHECK(!IsPending());
8158     Location dest = destination_;
8159     destination_ = Location::NoLocation();
8160     return dest;
8161   }
8162 
8163   void ClearPending(Location dest) {
8164     DCHECK(IsPending());
8165     destination_ = dest;
8166   }
8167 
8168   bool IsPending() const {
8169     DCHECK(source_.IsValid() || destination_.IsInvalid());
8170     return destination_.IsInvalid() && source_.IsValid();
8171   }
8172 
8173   // True if this blocks a move from the given location.
8174   bool Blocks(Location loc) const {
8175     return !IsEliminated() && source_.OverlapsWith(loc);
8176   }
8177 
8178   // A move is redundant if it's been eliminated, if its source and
8179   // destination are the same, or if its destination is unneeded.
8180   bool IsRedundant() const {
8181     return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
8182   }
8183 
8184   // We clear both operands to indicate move that's been eliminated.
8185   void Eliminate() {
8186     source_ = destination_ = Location::NoLocation();
8187   }
8188 
8189   bool IsEliminated() const {
8190     DCHECK_IMPLIES(source_.IsInvalid(), destination_.IsInvalid());
8191     return source_.IsInvalid();
8192   }
8193 
8194   DataType::Type GetType() const { return type_; }
8195 
8196   bool Is64BitMove() const {
8197     return DataType::Is64BitType(type_);
8198   }
8199 
8200   HInstruction* GetInstruction() const { return instruction_; }
8201 
8202  private:
8203   Location source_;
8204   Location destination_;
8205   // The type this move is for.
8206   DataType::Type type_;
8207   // The instruction this move is assocatied with. Null when this move is
8208   // for moving an input in the expected locations of user (including a phi user).
8209   // This is only used in debug mode, to ensure we do not connect interval siblings
8210   // in the same parallel move.
8211   HInstruction* instruction_;
8212 };
8213 
8214 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs);
8215 
8216 static constexpr size_t kDefaultNumberOfMoves = 4;
8217 
8218 class HParallelMove final : public HExpression<0> {
8219  public:
8220   explicit HParallelMove(ArenaAllocator* allocator, uint32_t dex_pc = kNoDexPc)
8221       : HExpression(kParallelMove, SideEffects::None(), dex_pc),
8222         moves_(allocator->Adapter(kArenaAllocMoveOperands)) {
8223     moves_.reserve(kDefaultNumberOfMoves);
8224   }
8225 
8226   void AddMove(Location source,
8227                Location destination,
8228                DataType::Type type,
8229                HInstruction* instruction) {
8230     DCHECK(source.IsValid());
8231     DCHECK(destination.IsValid());
8232     if (kIsDebugBuild) {
8233       if (instruction != nullptr) {
8234         for (const MoveOperands& move : moves_) {
8235           if (move.GetInstruction() == instruction) {
8236             // Special case the situation where the move is for the spill slot
8237             // of the instruction.
8238             if ((GetPrevious() == instruction)
8239                 || ((GetPrevious() == nullptr)
8240                     && instruction->IsPhi()
8241                     && instruction->GetBlock() == GetBlock())) {
8242               DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
8243                   << "Doing parallel moves for the same instruction.";
8244             } else {
8245               DCHECK(false) << "Doing parallel moves for the same instruction.";
8246             }
8247           }
8248         }
8249       }
8250       for (const MoveOperands& move : moves_) {
8251         DCHECK(!destination.OverlapsWith(move.GetDestination()))
8252             << "Overlapped destination for two moves in a parallel move: "
8253             << move.GetSource() << " ==> " << move.GetDestination() << " and "
8254             << source << " ==> " << destination << " for " << SafePrint(instruction);
8255       }
8256     }
8257     moves_.emplace_back(source, destination, type, instruction);
8258   }
8259 
8260   MoveOperands* MoveOperandsAt(size_t index) {
8261     return &moves_[index];
8262   }
8263 
8264   size_t NumMoves() const { return moves_.size(); }
8265 
8266   DECLARE_INSTRUCTION(ParallelMove);
8267 
8268  protected:
8269   DEFAULT_COPY_CONSTRUCTOR(ParallelMove);
8270 
8271  private:
8272   ArenaVector<MoveOperands> moves_;
8273 };
8274 
8275 class HBitwiseNegatedRight final : public HBinaryOperation {
8276  public:
8277   HBitwiseNegatedRight(DataType::Type result_type,
8278                        InstructionKind op,
8279                        HInstruction* left,
8280                        HInstruction* right,
8281                        uint32_t dex_pc = kNoDexPc)
8282       : HBinaryOperation(
8283             kBitwiseNegatedRight, result_type, left, right, SideEffects::None(), dex_pc),
8284         op_kind_(op) {
8285     DCHECK(op == HInstruction::kAnd || op == HInstruction::kOr || op == HInstruction::kXor) << op;
8286   }
8287 
8288   template <typename T, typename U>
8289   auto Compute(T x, U y) const -> decltype(x & ~y) {
8290     static_assert(std::is_same<decltype(x & ~y), decltype(x | ~y)>::value &&
8291                       std::is_same<decltype(x & ~y), decltype(x ^ ~y)>::value,
8292                   "Inconsistent negated bitwise types");
8293     switch (op_kind_) {
8294       case HInstruction::kAnd:
8295         return x & ~y;
8296       case HInstruction::kOr:
8297         return x | ~y;
8298       case HInstruction::kXor:
8299         return x ^ ~y;
8300       default:
8301         LOG(FATAL) << "Unreachable";
8302         UNREACHABLE();
8303     }
8304   }
8305 
8306   bool InstructionDataEquals(const HInstruction* other) const override {
8307     return op_kind_ == other->AsBitwiseNegatedRight()->op_kind_;
8308   }
8309 
8310   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
8311     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
8312   }
8313 
8314   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
8315     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
8316   }
8317 
8318   InstructionKind GetOpKind() const { return op_kind_; }
8319 
8320   DECLARE_INSTRUCTION(BitwiseNegatedRight);
8321 
8322  protected:
8323   DEFAULT_COPY_CONSTRUCTOR(BitwiseNegatedRight);
8324 
8325  private:
8326   // Specifies the bitwise operation, which will be then negated.
8327   const InstructionKind op_kind_;
8328 };
8329 
8330 // This instruction computes an intermediate address pointing in the 'middle' of an object. The
8331 // result pointer cannot be handled by GC, so extra care is taken to make sure that this value is
8332 // never used across anything that can trigger GC.
8333 // The result of this instruction is not a pointer in the sense of `DataType::Type::kreference`.
8334 // So we represent it by the type `DataType::Type::kInt`.
8335 class HIntermediateAddress final : public HExpression<2> {
8336  public:
8337   HIntermediateAddress(HInstruction* base_address, HInstruction* offset, uint32_t dex_pc)
8338       : HExpression(kIntermediateAddress,
8339                     DataType::Type::kInt32,
8340                     SideEffects::DependsOnGC(),
8341                     dex_pc) {
8342         DCHECK_EQ(DataType::Size(DataType::Type::kInt32),
8343                   DataType::Size(DataType::Type::kReference))
8344             << "kPrimInt and kPrimNot have different sizes.";
8345     SetRawInputAt(0, base_address);
8346     SetRawInputAt(1, offset);
8347   }
8348 
8349   bool IsClonable() const override { return true; }
8350   bool CanBeMoved() const override { return true; }
8351   bool InstructionDataEquals([[maybe_unused]] const HInstruction* other) const override {
8352     return true;
8353   }
8354   bool IsActualObject() const override { return false; }
8355 
8356   HInstruction* GetBaseAddress() const { return InputAt(0); }
8357   HInstruction* GetOffset() const { return InputAt(1); }
8358 
8359   DECLARE_INSTRUCTION(IntermediateAddress);
8360 
8361  protected:
8362   DEFAULT_COPY_CONSTRUCTOR(IntermediateAddress);
8363 };
8364 
8365 
8366 }  // namespace art
8367 
8368 #include "nodes_vector.h"
8369 
8370 #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64)
8371 #include "nodes_shared.h"
8372 #endif
8373 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
8374 #include "nodes_x86.h"
8375 #endif
8376 #if defined(ART_ENABLE_CODEGEN_riscv64)
8377 #include "nodes_riscv64.h"
8378 #endif
8379 
8380 namespace art HIDDEN {
8381 
8382 class OptimizingCompilerStats;
8383 
8384 class HGraphVisitor : public ValueObject {
8385  public:
8386   explicit HGraphVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
8387       : stats_(stats),
8388         graph_(graph) {}
8389   virtual ~HGraphVisitor() {}
8390 
8391   virtual void VisitInstruction([[maybe_unused]] HInstruction* instruction) {}
8392   virtual void VisitBasicBlock(HBasicBlock* block);
8393 
8394   // Visit the graph following basic block insertion order.
8395   void VisitInsertionOrder();
8396 
8397   // Visit the graph following dominator tree reverse post-order.
8398   void VisitReversePostOrder();
8399 
8400   HGraph* GetGraph() const { return graph_; }
8401 
8402   // Visit functions for instruction classes.
8403 #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
8404   virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
8405 
8406   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
8407 
8408 #undef DECLARE_VISIT_INSTRUCTION
8409 
8410  protected:
8411   void VisitPhis(HBasicBlock* block);
8412   void VisitNonPhiInstructions(HBasicBlock* block);
8413   void VisitNonPhiInstructionsHandleChanges(HBasicBlock* block);
8414 
8415   OptimizingCompilerStats* stats_;
8416 
8417  private:
8418   HGraph* const graph_;
8419 
8420   DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
8421 };
8422 
8423 class HGraphDelegateVisitor : public HGraphVisitor {
8424  public:
8425   explicit HGraphDelegateVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
8426       : HGraphVisitor(graph, stats) {}
8427   virtual ~HGraphDelegateVisitor() {}
8428 
8429   // Visit functions that delegate to to super class.
8430 #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
8431   void Visit##name(H##name* instr) override { Visit##super(instr); }
8432 
8433   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
8434 
8435 #undef DECLARE_VISIT_INSTRUCTION
8436 
8437  private:
8438   DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
8439 };
8440 
8441 // Create a clone of the instruction, insert it into the graph; replace the old one with a new
8442 // and remove the old instruction.
8443 HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr);
8444 
8445 // Create a clone for each clonable instructions/phis and replace the original with the clone.
8446 //
8447 // Used for testing individual instruction cloner.
8448 class CloneAndReplaceInstructionVisitor final : public HGraphDelegateVisitor {
8449  public:
8450   explicit CloneAndReplaceInstructionVisitor(HGraph* graph)
8451       : HGraphDelegateVisitor(graph), instr_replaced_by_clones_count_(0) {}
8452 
8453   void VisitInstruction(HInstruction* instruction) override {
8454     if (instruction->IsClonable()) {
8455       ReplaceInstrOrPhiByClone(instruction);
8456       instr_replaced_by_clones_count_++;
8457     }
8458   }
8459 
8460   size_t GetInstrReplacedByClonesCount() const { return instr_replaced_by_clones_count_; }
8461 
8462  private:
8463   size_t instr_replaced_by_clones_count_;
8464 
8465   DISALLOW_COPY_AND_ASSIGN(CloneAndReplaceInstructionVisitor);
8466 };
8467 
8468 // Iterator over the blocks that are part of the loop; includes blocks which are part
8469 // of an inner loop. The order in which the blocks are iterated is on their
8470 // block id.
8471 class HBlocksInLoopIterator : public ValueObject {
8472  public:
8473   explicit HBlocksInLoopIterator(const HLoopInformation& info)
8474       : blocks_in_loop_(info.GetBlocks()),
8475         blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
8476         index_(0) {
8477     if (!blocks_in_loop_.IsBitSet(index_)) {
8478       Advance();
8479     }
8480   }
8481 
8482   bool Done() const { return index_ == blocks_.size(); }
8483   HBasicBlock* Current() const { return blocks_[index_]; }
8484   void Advance() {
8485     ++index_;
8486     for (size_t e = blocks_.size(); index_ < e; ++index_) {
8487       if (blocks_in_loop_.IsBitSet(index_)) {
8488         break;
8489       }
8490     }
8491   }
8492 
8493  private:
8494   const BitVector& blocks_in_loop_;
8495   const ArenaVector<HBasicBlock*>& blocks_;
8496   size_t index_;
8497 
8498   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
8499 };
8500 
8501 // Iterator over the blocks that are part of the loop; includes blocks which are part
8502 // of an inner loop. The order in which the blocks are iterated is reverse
8503 // post order.
8504 class HBlocksInLoopReversePostOrderIterator : public ValueObject {
8505  public:
8506   explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
8507       : blocks_in_loop_(info.GetBlocks()),
8508         blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
8509         index_(0) {
8510     if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
8511       Advance();
8512     }
8513   }
8514 
8515   bool Done() const { return index_ == blocks_.size(); }
8516   HBasicBlock* Current() const { return blocks_[index_]; }
8517   void Advance() {
8518     ++index_;
8519     for (size_t e = blocks_.size(); index_ < e; ++index_) {
8520       if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
8521         break;
8522       }
8523     }
8524   }
8525 
8526  private:
8527   const BitVector& blocks_in_loop_;
8528   const ArenaVector<HBasicBlock*>& blocks_;
8529   size_t index_;
8530 
8531   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
8532 };
8533 
8534 // Iterator over the blocks that are part of the loop; includes blocks which are part
8535 // of an inner loop. The order in which the blocks are iterated is post order.
8536 class HBlocksInLoopPostOrderIterator : public ValueObject {
8537  public:
8538   explicit HBlocksInLoopPostOrderIterator(const HLoopInformation& info)
8539       : blocks_in_loop_(info.GetBlocks()),
8540         blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
8541         index_(blocks_.size() - 1) {
8542     if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
8543       Advance();
8544     }
8545   }
8546 
8547   bool Done() const { return index_ < 0; }
8548   HBasicBlock* Current() const { return blocks_[index_]; }
8549   void Advance() {
8550     --index_;
8551     for (; index_ >= 0; --index_) {
8552       if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
8553         break;
8554       }
8555     }
8556   }
8557 
8558  private:
8559   const BitVector& blocks_in_loop_;
8560   const ArenaVector<HBasicBlock*>& blocks_;
8561 
8562   int32_t index_;
8563 
8564   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopPostOrderIterator);
8565 };
8566 
8567 // Returns int64_t value of a properly typed constant.
8568 inline int64_t Int64FromConstant(HConstant* constant) {
8569   if (constant->IsIntConstant()) {
8570     return constant->AsIntConstant()->GetValue();
8571   } else if (constant->IsLongConstant()) {
8572     return constant->AsLongConstant()->GetValue();
8573   } else {
8574     DCHECK(constant->IsNullConstant()) << constant->DebugName();
8575     return 0;
8576   }
8577 }
8578 
8579 // Returns true iff instruction is an integral constant (and sets value on success).
8580 inline bool IsInt64AndGet(HInstruction* instruction, /*out*/ int64_t* value) {
8581   if (instruction->IsIntConstant()) {
8582     *value = instruction->AsIntConstant()->GetValue();
8583     return true;
8584   } else if (instruction->IsLongConstant()) {
8585     *value = instruction->AsLongConstant()->GetValue();
8586     return true;
8587   } else if (instruction->IsNullConstant()) {
8588     *value = 0;
8589     return true;
8590   }
8591   return false;
8592 }
8593 
8594 // Returns true iff instruction is the given integral constant.
8595 inline bool IsInt64Value(HInstruction* instruction, int64_t value) {
8596   int64_t val = 0;
8597   return IsInt64AndGet(instruction, &val) && val == value;
8598 }
8599 
8600 // Returns true iff instruction is a zero bit pattern.
8601 inline bool IsZeroBitPattern(HInstruction* instruction) {
8602   return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern();
8603 }
8604 
8605 // Implement HInstruction::Is##type() for concrete instructions.
8606 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
8607   inline bool HInstruction::Is##type() const { return GetKind() == k##type; }
8608   FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
8609 #undef INSTRUCTION_TYPE_CHECK
8610 
8611 // Implement HInstruction::Is##type() for abstract instructions.
8612 #define INSTRUCTION_TYPE_CHECK_RESULT(type, super)                             \
8613   std::is_base_of<BaseType, H##type>::value,
8614 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
8615   inline bool HInstruction::Is##type() const {                                 \
8616     DCHECK_LT(GetKind(), kLastInstructionKind);                                \
8617     using BaseType = H##type;                                                  \
8618     static constexpr bool results[] = {                                        \
8619         FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK_RESULT)           \
8620     };                                                                         \
8621     return results[static_cast<size_t>(GetKind())];                            \
8622   }
8623 
8624   FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
8625 #undef INSTRUCTION_TYPE_CHECK
8626 #undef INSTRUCTION_TYPE_CHECK_RESULT
8627 
8628 #define INSTRUCTION_TYPE_CAST(type, super)                                     \
8629   inline const H##type* HInstruction::As##type() const {                       \
8630     DCHECK(Is##type());                                                        \
8631     return down_cast<const H##type*>(this);                                    \
8632   }                                                                            \
8633   inline H##type* HInstruction::As##type() {                                   \
8634     DCHECK(Is##type());                                                        \
8635     return down_cast<H##type*>(this);                                          \
8636   }                                                                            \
8637   inline const H##type* HInstruction::As##type##OrNull() const {               \
8638     return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \
8639   }                                                                            \
8640   inline H##type* HInstruction::As##type##OrNull() {                           \
8641     return Is##type() ? down_cast<H##type*>(this) : nullptr;                   \
8642   }
8643 
8644   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
8645 #undef INSTRUCTION_TYPE_CAST
8646 
8647 
8648 // Create space in `blocks` for adding `number_of_new_blocks` entries
8649 // starting at location `at`. Blocks after `at` are moved accordingly.
8650 inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks,
8651                         size_t number_of_new_blocks,
8652                         size_t after) {
8653   DCHECK_LT(after, blocks->size());
8654   size_t old_size = blocks->size();
8655   size_t new_size = old_size + number_of_new_blocks;
8656   blocks->resize(new_size);
8657   std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end());
8658 }
8659 
8660 /*
8661  * Hunt "under the hood" of array lengths (leading to array references),
8662  * null checks (also leading to array references), and new arrays
8663  * (leading to the actual length). This makes it more likely related
8664  * instructions become actually comparable.
8665  */
8666 inline HInstruction* HuntForDeclaration(HInstruction* instruction) {
8667   while (instruction->IsArrayLength() ||
8668          instruction->IsNullCheck() ||
8669          instruction->IsNewArray()) {
8670     instruction = instruction->IsNewArray()
8671         ? instruction->AsNewArray()->GetLength()
8672         : instruction->InputAt(0);
8673   }
8674   return instruction;
8675 }
8676 
8677 inline bool IsAddOrSub(const HInstruction* instruction) {
8678   return instruction->IsAdd() || instruction->IsSub();
8679 }
8680 
8681 void RemoveEnvironmentUses(HInstruction* instruction);
8682 bool HasEnvironmentUsedByOthers(HInstruction* instruction);
8683 void ResetEnvironmentInputRecords(HInstruction* instruction);
8684 
8685 // Detects an instruction that is >= 0. As long as the value is carried by
8686 // a single instruction, arithmetic wrap-around cannot occur.
8687 bool IsGEZero(HInstruction* instruction);
8688 
8689 }  // namespace art
8690 
8691 #endif  // ART_COMPILER_OPTIMIZING_NODES_H_
8692