1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_GC_HEAP_H_ 18 #define ART_RUNTIME_GC_HEAP_H_ 19 20 #include <android-base/logging.h> 21 22 #include <iosfwd> 23 #include <string> 24 #include <unordered_set> 25 #include <vector> 26 27 #include "allocator_type.h" 28 #include "base/atomic.h" 29 #include "base/histogram.h" 30 #include "base/macros.h" 31 #include "base/mutex.h" 32 #include "base/os.h" 33 #include "base/runtime_debug.h" 34 #include "base/safe_map.h" 35 #include "base/time_utils.h" 36 #include "gc/collector/gc_type.h" 37 #include "gc/collector/iteration.h" 38 #include "gc/collector/mark_compact.h" 39 #include "gc/collector_type.h" 40 #include "gc/gc_cause.h" 41 #include "gc/space/large_object_space.h" 42 #include "gc/space/space.h" 43 #include "gc/space/zygote_space.h" 44 #include "handle.h" 45 #include "obj_ptr.h" 46 #include "offsets.h" 47 #include "process_state.h" 48 #include "read_barrier_config.h" 49 #include "runtime_globals.h" 50 #include "scoped_thread_state_change.h" 51 #include "verify_object.h" 52 53 namespace art HIDDEN { 54 55 class ConditionVariable; 56 enum class InstructionSet; 57 class IsMarkedVisitor; 58 class Mutex; 59 class ReflectiveValueVisitor; 60 class RootVisitor; 61 class StackVisitor; 62 class Thread; 63 class ThreadPool; 64 class TimingLogger; 65 class VariableSizedHandleScope; 66 67 namespace mirror { 68 class Class; 69 class Object; 70 } // namespace mirror 71 72 namespace gc { 73 74 class AllocationListener; 75 class AllocRecordObjectMap; 76 class GcPauseListener; 77 class HeapTask; 78 class ReferenceProcessor; 79 class TaskProcessor; 80 class Verification; 81 82 namespace accounting { 83 template <typename T> class AtomicStack; 84 using ObjectStack = AtomicStack<mirror::Object>; 85 class CardTable; 86 class HeapBitmap; 87 class ModUnionTable; 88 class ReadBarrierTable; 89 class RememberedSet; 90 } // namespace accounting 91 92 namespace collector { 93 class ConcurrentCopying; 94 class GarbageCollector; 95 class MarkSweep; 96 class SemiSpace; 97 } // namespace collector 98 99 namespace allocator { 100 class RosAlloc; 101 } // namespace allocator 102 103 namespace space { 104 class AllocSpace; 105 class BumpPointerSpace; 106 class ContinuousMemMapAllocSpace; 107 class DiscontinuousSpace; 108 class DlMallocSpace; 109 class ImageSpace; 110 class LargeObjectSpace; 111 class MallocSpace; 112 class RegionSpace; 113 class RosAllocSpace; 114 class Space; 115 class ZygoteSpace; 116 } // namespace space 117 118 enum HomogeneousSpaceCompactResult { 119 // Success. 120 kSuccess, 121 // Reject due to disabled moving GC. 122 kErrorReject, 123 // Unsupported due to the current configuration. 124 kErrorUnsupported, 125 // System is shutting down. 126 kErrorVMShuttingDown, 127 }; 128 129 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace 130 static constexpr bool kUseRosAlloc = true; 131 132 // If true, use thread-local allocation stack. 133 static constexpr bool kUseThreadLocalAllocationStack = false; 134 135 class Heap { 136 public: 137 // How much we grow the TLAB if we can do it. 138 static constexpr size_t kPartialTlabSize = 16 * KB; 139 static constexpr bool kUsePartialTlabs = true; 140 141 static constexpr size_t kDefaultInitialSize = 2 * MB; 142 static constexpr size_t kDefaultMaximumSize = 256 * MB; 143 static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB; 144 static constexpr size_t kDefaultMaxFree = 32 * MB; 145 static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4; 146 static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5); 147 static constexpr size_t kDefaultLongPauseLogThresholdGcStress = MsToNs(50); 148 static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100); 149 static constexpr size_t kDefaultLongGCLogThresholdGcStress = MsToNs(1000); 150 static constexpr size_t kDefaultTLABSize = 32 * KB; 151 static constexpr double kDefaultTargetUtilization = 0.6; 152 static constexpr double kDefaultHeapGrowthMultiplier = 2.0; 153 // Primitive arrays larger than this size are put in the large object space. 154 // TODO: Preliminary experiments suggest this value might be not optimal. 155 // This might benefit from further investigation. 156 static constexpr size_t kMinLargeObjectThreshold = 12 * KB; 157 static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold; 158 // Whether or not parallel GC is enabled. If not, then we never create the thread pool. 159 static constexpr bool kDefaultEnableParallelGC = true; 160 static uint8_t* const kPreferredAllocSpaceBegin; 161 162 // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR 163 // since this means that we have to use the slow msync loop in MemMap::MapAnonymous. 164 static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType = 165 USE_ART_LOW_4G_ALLOCATOR ? 166 space::LargeObjectSpaceType::kFreeList 167 : space::LargeObjectSpaceType::kMap; 168 169 // Used so that we don't overflow the allocation time atomic integer. 170 static constexpr size_t kTimeAdjust = 1024; 171 172 // Client should call NotifyNativeAllocation every kNotifyNativeInterval allocations. 173 // Should be chosen so that time_to_call_mallinfo / kNotifyNativeInterval is on the same order 174 // as object allocation time. time_to_call_mallinfo seems to be on the order of 1 usec 175 // on Android. 176 #ifdef __ANDROID__ 177 static constexpr uint32_t kNotifyNativeInterval = 64; 178 #else 179 // Some host mallinfo() implementations are slow. And memory is less scarce. 180 static constexpr uint32_t kNotifyNativeInterval = 384; 181 #endif 182 183 // RegisterNativeAllocation checks immediately whether GC is needed if size exceeds the 184 // following. kCheckImmediatelyThreshold * kNotifyNativeInterval should be small enough to 185 // make it safe to allocate that many bytes between checks. 186 static constexpr size_t kCheckImmediatelyThreshold = (10'000'000 / kNotifyNativeInterval); 187 188 // How often we allow heap trimming to happen (nanoseconds). 189 static constexpr uint64_t kHeapTrimWait = MsToNs(5000); 190 191 // Starting size of DlMalloc/RosAlloc spaces. GetDefaultStartingSize()192 static size_t GetDefaultStartingSize() { 193 return gPageSize; 194 } 195 196 // Whether the transition-GC heap threshold condition applies or not for non-low memory devices. 197 // Stressing GC will bypass the heap threshold condition. 198 DECLARE_RUNTIME_DEBUG_FLAG(kStressCollectorTransition); 199 200 // Create a heap with the requested sizes. The possible empty 201 // image_file_names names specify Spaces to load based on 202 // ImageWriter output. 203 Heap(size_t initial_size, 204 size_t growth_limit, 205 size_t min_free, 206 size_t max_free, 207 double target_utilization, 208 double foreground_heap_growth_multiplier, 209 size_t stop_for_native_allocs, 210 size_t capacity, 211 size_t non_moving_space_capacity, 212 const std::vector<std::string>& boot_class_path, 213 const std::vector<std::string>& boot_class_path_locations, 214 ArrayRef<File> boot_class_path_files, 215 ArrayRef<File> boot_class_path_image_files, 216 ArrayRef<File> boot_class_path_vdex_files, 217 ArrayRef<File> boot_class_path_oat_files, 218 const std::vector<std::string>& image_file_names, 219 InstructionSet image_instruction_set, 220 CollectorType foreground_collector_type, 221 CollectorType background_collector_type, 222 space::LargeObjectSpaceType large_object_space_type, 223 size_t large_object_threshold, 224 size_t parallel_gc_threads, 225 size_t conc_gc_threads, 226 bool low_memory_mode, 227 size_t long_pause_threshold, 228 size_t long_gc_threshold, 229 bool ignore_target_footprint, 230 bool always_log_explicit_gcs, 231 bool use_tlab, 232 bool verify_pre_gc_heap, 233 bool verify_pre_sweeping_heap, 234 bool verify_post_gc_heap, 235 bool verify_pre_gc_rosalloc, 236 bool verify_pre_sweeping_rosalloc, 237 bool verify_post_gc_rosalloc, 238 bool gc_stress_mode, 239 bool measure_gc_performance, 240 bool use_homogeneous_space_compaction, 241 bool use_generational_gc, 242 uint64_t min_interval_homogeneous_space_compaction_by_oom, 243 bool dump_region_info_before_gc, 244 bool dump_region_info_after_gc); 245 246 ~Heap(); 247 248 // Allocates and initializes storage for an object instance. 249 template <bool kInstrumented = true, typename PreFenceVisitor> AllocObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)250 mirror::Object* AllocObject(Thread* self, 251 ObjPtr<mirror::Class> klass, 252 size_t num_bytes, 253 const PreFenceVisitor& pre_fence_visitor) 254 REQUIRES_SHARED(Locks::mutator_lock_) 255 REQUIRES(!*gc_complete_lock_, 256 !*pending_task_lock_, 257 !*backtrace_lock_, 258 !process_state_update_lock_, 259 !Roles::uninterruptible_) { 260 return AllocObjectWithAllocator<kInstrumented>(self, 261 klass, 262 num_bytes, 263 GetCurrentAllocator(), 264 pre_fence_visitor); 265 } 266 267 template <bool kInstrumented = true, typename PreFenceVisitor> AllocNonMovableObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)268 mirror::Object* AllocNonMovableObject(Thread* self, 269 ObjPtr<mirror::Class> klass, 270 size_t num_bytes, 271 const PreFenceVisitor& pre_fence_visitor) 272 REQUIRES_SHARED(Locks::mutator_lock_) 273 REQUIRES(!*gc_complete_lock_, 274 !*pending_task_lock_, 275 !*backtrace_lock_, 276 !process_state_update_lock_, 277 !Roles::uninterruptible_) { 278 mirror::Object* obj = AllocObjectWithAllocator<kInstrumented>(self, 279 klass, 280 num_bytes, 281 GetCurrentNonMovingAllocator(), 282 pre_fence_visitor); 283 // Java Heap Profiler check and sample allocation. 284 if (GetHeapSampler().IsEnabled()) { 285 JHPCheckNonTlabSampleAllocation(self, obj, num_bytes); 286 } 287 return obj; 288 } 289 290 template <bool kInstrumented = true, bool kCheckLargeObject = true, typename PreFenceVisitor> 291 ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self, 292 ObjPtr<mirror::Class> klass, 293 size_t byte_count, 294 AllocatorType allocator, 295 const PreFenceVisitor& pre_fence_visitor) 296 REQUIRES_SHARED(Locks::mutator_lock_) 297 REQUIRES(!*gc_complete_lock_, 298 !*pending_task_lock_, 299 !*backtrace_lock_, 300 !process_state_update_lock_, 301 !Roles::uninterruptible_); 302 GetCurrentAllocator()303 AllocatorType GetCurrentAllocator() const { 304 return current_allocator_; 305 } 306 GetCurrentNonMovingAllocator()307 AllocatorType GetCurrentNonMovingAllocator() const { 308 return current_non_moving_allocator_; 309 } 310 GetUpdatedAllocator(AllocatorType old_allocator)311 AllocatorType GetUpdatedAllocator(AllocatorType old_allocator) { 312 return (old_allocator == kAllocatorTypeNonMoving) ? 313 GetCurrentNonMovingAllocator() : GetCurrentAllocator(); 314 } 315 316 // Visit all of the live objects in the heap. 317 template <typename Visitor> 318 ALWAYS_INLINE void VisitObjects(Visitor&& visitor) 319 REQUIRES_SHARED(Locks::mutator_lock_) 320 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); 321 template <typename Visitor> 322 ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor) 323 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 324 325 void VisitReflectiveTargets(ReflectiveValueVisitor* visitor) 326 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 327 328 void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) 329 REQUIRES_SHARED(Locks::mutator_lock_); 330 331 // Inform the garbage collector of a non-malloc allocated native memory that might become 332 // reclaimable in the future as a result of Java garbage collection. 333 void RegisterNativeAllocation(JNIEnv* env, size_t bytes) 334 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 335 void RegisterNativeFree(JNIEnv* env, size_t bytes); 336 337 // Notify the garbage collector of malloc allocations that might be reclaimable 338 // as a result of Java garbage collection. Each such call represents approximately 339 // kNotifyNativeInterval such allocations. 340 void NotifyNativeAllocations(JNIEnv* env) 341 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 342 GetNotifyNativeInterval()343 uint32_t GetNotifyNativeInterval() { 344 return kNotifyNativeInterval; 345 } 346 347 // Change the allocator, updates entrypoints. 348 void ChangeAllocator(AllocatorType allocator) 349 REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_); 350 351 // Change the collector to be one of the possible options (MS, CMS, SS). Only safe when no 352 // concurrent accesses to the heap are possible. 353 void ChangeCollector(CollectorType collector_type) 354 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 355 356 // The given reference is believed to be to an object in the Java heap, check the soundness of it. 357 // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a 358 // proper lock ordering for it. 359 void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS; 360 361 // Consistency check of all live references. 362 void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_); 363 // Returns how many failures occured. 364 size_t VerifyHeapReferences(bool verify_referents = true) 365 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 366 bool VerifyMissingCardMarks() 367 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 368 369 // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock, 370 // and doesn't abort on error, allowing the caller to report more 371 // meaningful diagnostics. 372 bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_); 373 374 // Faster alternative to IsHeapAddress since finding if an object is in the large object space is 375 // very slow. 376 bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const 377 REQUIRES_SHARED(Locks::mutator_lock_); 378 379 // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses). 380 // Requires the heap lock to be held. 381 bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj, 382 bool search_allocation_stack = true, 383 bool search_live_stack = true, 384 bool sorted = false) 385 REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 386 387 // Returns true if there is any chance that the object (obj) will move. 388 bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_); 389 390 // Enables us to compacting GC until objects are released. 391 EXPORT void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); 392 EXPORT void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); 393 394 // Temporarily disable thread flip for JNI critical calls. 395 void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); 396 void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); 397 void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_); 398 void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_); 399 400 // Ensures that the obj doesn't cause userfaultfd in JNI critical calls. 401 void EnsureObjectUserfaulted(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_); 402 403 // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits. 404 // Mutator lock is required for GetContinuousSpaces. 405 void ClearMarkedObjects(bool release_eagerly = true) 406 REQUIRES(Locks::heap_bitmap_lock_) 407 REQUIRES_SHARED(Locks::mutator_lock_); 408 409 // Initiates an explicit garbage collection. Guarantees that a GC started after this call has 410 // completed. 411 EXPORT void CollectGarbage(bool clear_soft_references, GcCause cause = kGcCauseExplicit) 412 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 413 414 // Does a concurrent GC, provided the GC numbered requested_gc_num has not already been 415 // completed. Should only be called by the GC daemon thread through runtime. 416 void ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num) 417 REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, 418 !*pending_task_lock_, !process_state_update_lock_); 419 420 // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount. 421 // The boolean decides whether to use IsAssignableFrom or == when comparing classes. 422 void CountInstances(const std::vector<Handle<mirror::Class>>& classes, 423 bool use_is_assignable_from, 424 uint64_t* counts) 425 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 426 REQUIRES_SHARED(Locks::mutator_lock_); 427 428 // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to 429 // implement dalvik.system.VMRuntime.clearGrowthLimit. 430 void ClearGrowthLimit() REQUIRES(!*gc_complete_lock_); 431 432 // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces 433 // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit. 434 void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_); 435 436 // Target ideal heap utilization ratio, implements 437 // dalvik.system.VMRuntime.getTargetHeapUtilization. GetTargetHeapUtilization()438 double GetTargetHeapUtilization() const { 439 return target_utilization_; 440 } 441 442 // Data structure memory usage tracking. 443 void RegisterGCAllocation(size_t bytes); 444 void RegisterGCDeAllocation(size_t bytes); 445 446 // Set the heap's private space pointers to be the same as the space based on it's type. Public 447 // due to usage by tests. 448 void SetSpaceAsDefault(space::ContinuousSpace* continuous_space) 449 REQUIRES(!Locks::heap_bitmap_lock_); 450 void AddSpace(space::Space* space) 451 REQUIRES(!Locks::heap_bitmap_lock_) 452 REQUIRES(Locks::mutator_lock_); 453 void RemoveSpace(space::Space* space) 454 REQUIRES(!Locks::heap_bitmap_lock_) 455 REQUIRES(Locks::mutator_lock_); 456 GetPreGcWeightedAllocatedBytes()457 double GetPreGcWeightedAllocatedBytes() const { 458 return pre_gc_weighted_allocated_bytes_; 459 } 460 GetPostGcWeightedAllocatedBytes()461 double GetPostGcWeightedAllocatedBytes() const { 462 return post_gc_weighted_allocated_bytes_; 463 } 464 465 void CalculatePreGcWeightedAllocatedBytes(); 466 void CalculatePostGcWeightedAllocatedBytes(); 467 uint64_t GetTotalGcCpuTime(); 468 GetProcessCpuStartTime()469 uint64_t GetProcessCpuStartTime() const { 470 return process_cpu_start_time_ns_; 471 } 472 GetPostGCLastProcessCpuTime()473 uint64_t GetPostGCLastProcessCpuTime() const { 474 return post_gc_last_process_cpu_time_ns_; 475 } 476 477 // Set target ideal heap utilization ratio, implements 478 // dalvik.system.VMRuntime.setTargetHeapUtilization. 479 void SetTargetHeapUtilization(float target); 480 481 // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate 482 // from the system. Doesn't allow the space to exceed its growth limit. 483 // Set while we hold gc_complete_lock or collector_type_running_ != kCollectorTypeNone. 484 void SetIdealFootprint(size_t max_allowed_footprint); 485 486 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 487 // waited for. Only waits for running collections, ignoring a requested but unstarted GC. Only 488 // heuristic, since a new GC may have started by the time we return. However, if we hold the 489 // mutator lock, even in shared mode, a new GC can't get very far, so long as we keep it. 490 EXPORT collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) 491 REQUIRES(!*gc_complete_lock_); 492 493 // Update the heap's process state to a new value, may cause compaction to occur. 494 void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) 495 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_); 496 HaveContinuousSpaces()497 bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS { 498 // No lock since vector empty is thread safe. 499 return !continuous_spaces_.empty(); 500 } 501 GetContinuousSpaces()502 const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const 503 REQUIRES_SHARED(Locks::mutator_lock_) { 504 return continuous_spaces_; 505 } 506 GetDiscontinuousSpaces()507 const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const 508 REQUIRES_SHARED(Locks::mutator_lock_) { 509 return discontinuous_spaces_; 510 } 511 GetCurrentGcIteration()512 const collector::Iteration* GetCurrentGcIteration() const { 513 return ¤t_gc_iteration_; 514 } GetCurrentGcIteration()515 collector::Iteration* GetCurrentGcIteration() { 516 return ¤t_gc_iteration_; 517 } 518 519 // Enable verification of object references when the runtime is sufficiently initialized. EnableObjectValidation()520 void EnableObjectValidation() { 521 verify_object_mode_ = kVerifyObjectSupport; 522 if (verify_object_mode_ > kVerifyObjectModeDisabled) { 523 VerifyHeap(); 524 } 525 } 526 527 // Disable object reference verification for image writing. DisableObjectValidation()528 void DisableObjectValidation() { 529 verify_object_mode_ = kVerifyObjectModeDisabled; 530 } 531 532 // Other checks may be performed if we know the heap should be in a healthy state. IsObjectValidationEnabled()533 bool IsObjectValidationEnabled() const { 534 return verify_object_mode_ > kVerifyObjectModeDisabled; 535 } 536 537 // Returns true if low memory mode is enabled. IsLowMemoryMode()538 bool IsLowMemoryMode() const { 539 return low_memory_mode_; 540 } 541 542 // Returns the heap growth multiplier, this affects how much we grow the heap after a GC. 543 // Scales heap growth, min free, and max free. 544 double HeapGrowthMultiplier() const; 545 546 // Freed bytes can be negative in cases where we copy objects from a compacted space to a 547 // free-list backed space. 548 void RecordFree(uint64_t freed_objects, int64_t freed_bytes); 549 550 // Record the bytes freed by thread-local buffer revoke. 551 void RecordFreeRevoke(); 552 GetCardTable()553 accounting::CardTable* GetCardTable() const { 554 return card_table_.get(); 555 } 556 GetReadBarrierTable()557 accounting::ReadBarrierTable* GetReadBarrierTable() const { 558 return rb_table_.get(); 559 } 560 561 EXPORT void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object); 562 563 // Returns the number of bytes currently allocated. 564 // The result should be treated as an approximation, if it is being concurrently updated. GetBytesAllocated()565 size_t GetBytesAllocated() const { 566 return num_bytes_allocated_.load(std::memory_order_relaxed); 567 } 568 569 // Returns bytes_allocated before adding 'bytes' to it. AddBytesAllocated(size_t bytes)570 size_t AddBytesAllocated(size_t bytes) { 571 return num_bytes_allocated_.fetch_add(bytes, std::memory_order_relaxed); 572 } 573 GetUseGenerational()574 bool GetUseGenerational() const { return use_generational_gc_; } 575 576 // Returns the number of objects currently allocated. 577 size_t GetObjectsAllocated() const 578 REQUIRES(!Locks::heap_bitmap_lock_); 579 580 // Returns the total number of bytes allocated since the heap was created. 581 uint64_t GetBytesAllocatedEver() const; 582 583 // Returns the total number of bytes freed since the heap was created. 584 // Can decrease over time, and may even be negative, since moving an object to 585 // a space in which it occupies more memory results in negative "freed bytes". 586 // With default memory order, this should be viewed only as a hint. 587 int64_t GetBytesFreedEver(std::memory_order mo = std::memory_order_relaxed) const { 588 return total_bytes_freed_ever_.load(mo); 589 } 590 GetRegionSpace()591 space::RegionSpace* GetRegionSpace() const { 592 return region_space_; 593 } 594 GetBumpPointerSpace()595 space::BumpPointerSpace* GetBumpPointerSpace() const { 596 return bump_pointer_space_; 597 } 598 // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can 599 // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx 600 // were specified. Android apps start with a growth limit (small heap size) which is 601 // cleared/extended for large apps. GetMaxMemory()602 size_t GetMaxMemory() const { 603 // There are some race conditions in the allocation code that can cause bytes allocated to 604 // become larger than growth_limit_ in rare cases. 605 return std::max(GetBytesAllocated(), growth_limit_); 606 } 607 608 // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently 609 // consumed by an application. 610 EXPORT size_t GetTotalMemory() const; 611 612 // Returns approximately how much free memory we have until the next GC happens. GetFreeMemoryUntilGC()613 size_t GetFreeMemoryUntilGC() const { 614 return UnsignedDifference(target_footprint_.load(std::memory_order_relaxed), 615 GetBytesAllocated()); 616 } 617 618 // Returns approximately how much free memory we have until the next OOME happens. GetFreeMemoryUntilOOME()619 size_t GetFreeMemoryUntilOOME() const { 620 return UnsignedDifference(growth_limit_, GetBytesAllocated()); 621 } 622 623 // Returns how much free memory we have until we need to grow the heap to perform an allocation. 624 // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory. GetFreeMemory()625 size_t GetFreeMemory() const { 626 return UnsignedDifference(GetTotalMemory(), 627 num_bytes_allocated_.load(std::memory_order_relaxed)); 628 } 629 630 // Get the space that corresponds to an object's address. Current implementation searches all 631 // spaces in turn. If fail_ok is false then failing to find a space will cause an abort. 632 // TODO: consider using faster data structure like binary tree. 633 EXPORT space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, 634 bool fail_ok) const 635 REQUIRES_SHARED(Locks::mutator_lock_); 636 637 space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const 638 REQUIRES_SHARED(Locks::mutator_lock_); 639 640 space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>, 641 bool fail_ok) const 642 REQUIRES_SHARED(Locks::mutator_lock_); 643 644 EXPORT space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const 645 REQUIRES_SHARED(Locks::mutator_lock_); 646 647 space::Space* FindSpaceFromAddress(const void* ptr) const 648 REQUIRES_SHARED(Locks::mutator_lock_); 649 650 std::string DumpSpaceNameFromAddress(const void* addr) const 651 REQUIRES_SHARED(Locks::mutator_lock_); 652 653 void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_); 654 655 // Do a pending collector transition. 656 void DoPendingCollectorTransition() 657 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 658 659 // Deflate monitors, ... and trim the spaces. 660 EXPORT void Trim(Thread* self) REQUIRES(!*gc_complete_lock_); 661 662 void RevokeThreadLocalBuffers(Thread* thread); 663 void RevokeRosAllocThreadLocalBuffers(Thread* thread); 664 void RevokeAllThreadLocalBuffers(); 665 void AssertThreadLocalBuffersAreRevoked(Thread* thread); 666 void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 667 void RosAllocVerification(TimingLogger* timings, const char* name) 668 REQUIRES(Locks::mutator_lock_); 669 GetLiveBitmap()670 accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 671 return live_bitmap_.get(); 672 } 673 GetMarkBitmap()674 accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 675 return mark_bitmap_.get(); 676 } 677 GetLiveStack()678 accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 679 return live_stack_.get(); 680 } 681 GetAllocationStack()682 accounting::ObjectStack* GetAllocationStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 683 return allocation_stack_.get(); 684 } 685 686 void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS; 687 688 // Mark and empty stack. 689 EXPORT void FlushAllocStack() REQUIRES_SHARED(Locks::mutator_lock_) 690 REQUIRES(Locks::heap_bitmap_lock_); 691 692 // Revoke all the thread-local allocation stacks. 693 EXPORT void RevokeAllThreadLocalAllocationStacks(Thread* self) 694 REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_); 695 696 // Mark all the objects in the allocation stack in the specified bitmap. 697 // TODO: Refactor? 698 void MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1, 699 accounting::ContinuousSpaceBitmap* bitmap2, 700 accounting::LargeObjectBitmap* large_objects, 701 accounting::ObjectStack* stack) 702 REQUIRES_SHARED(Locks::mutator_lock_) 703 REQUIRES(Locks::heap_bitmap_lock_); 704 705 // Mark the specified allocation stack as live. 706 void MarkAllocStackAsLive(accounting::ObjectStack* stack) 707 REQUIRES_SHARED(Locks::mutator_lock_) 708 REQUIRES(Locks::heap_bitmap_lock_); 709 710 // Unbind any bound bitmaps. 711 void UnBindBitmaps() 712 REQUIRES(Locks::heap_bitmap_lock_) 713 REQUIRES_SHARED(Locks::mutator_lock_); 714 715 // Returns the boot image spaces. There may be multiple boot image spaces. GetBootImageSpaces()716 const std::vector<space::ImageSpace*>& GetBootImageSpaces() const { 717 return boot_image_spaces_; 718 } 719 720 // TODO(b/260881207): refactor to only use this function in debug builds and 721 // remove EXPORT. 722 EXPORT bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const 723 REQUIRES_SHARED(Locks::mutator_lock_); 724 725 bool IsInBootImageOatFile(const void* p) const; 726 727 // Get the start address of the boot images if any; otherwise returns 0. GetBootImagesStartAddress()728 uint32_t GetBootImagesStartAddress() const { 729 return boot_images_start_address_; 730 } 731 732 // Get the size of all boot images, including the heap and oat areas. GetBootImagesSize()733 uint32_t GetBootImagesSize() const { 734 return boot_images_size_; 735 } 736 737 // Check if a pointer points to a boot image. IsBootImageAddress(const void * p)738 bool IsBootImageAddress(const void* p) const { 739 return reinterpret_cast<uintptr_t>(p) - boot_images_start_address_ < boot_images_size_; 740 } 741 GetDlMallocSpace()742 space::DlMallocSpace* GetDlMallocSpace() const { 743 return dlmalloc_space_; 744 } 745 GetRosAllocSpace()746 space::RosAllocSpace* GetRosAllocSpace() const { 747 return rosalloc_space_; 748 } 749 750 // Return the corresponding rosalloc space. 751 space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const 752 REQUIRES_SHARED(Locks::mutator_lock_); 753 GetNonMovingSpace()754 space::MallocSpace* GetNonMovingSpace() const { 755 return non_moving_space_; 756 } 757 GetLargeObjectsSpace()758 space::LargeObjectSpace* GetLargeObjectsSpace() const { 759 return large_object_space_; 760 } 761 762 // Returns the free list space that may contain movable objects (the 763 // one that's not the non-moving space), either rosalloc_space_ or 764 // dlmalloc_space_. GetPrimaryFreeListSpace()765 space::MallocSpace* GetPrimaryFreeListSpace() { 766 if (kUseRosAlloc) { 767 DCHECK(rosalloc_space_ != nullptr); 768 // reinterpret_cast is necessary as the space class hierarchy 769 // isn't known (#included) yet here. 770 return reinterpret_cast<space::MallocSpace*>(rosalloc_space_); 771 } else { 772 DCHECK(dlmalloc_space_ != nullptr); 773 return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_); 774 } 775 } 776 777 void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_); 778 EXPORT std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_); 779 780 // GC performance measuring 781 void DumpGcPerformanceInfo(std::ostream& os) 782 REQUIRES(!*gc_complete_lock_); 783 void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_); 784 785 // Thread pool. Create either the given number of threads, or as per the 786 // values of conc_gc_threads_ and parallel_gc_threads_. 787 void CreateThreadPool(size_t num_threads = 0); 788 void WaitForWorkersToBeCreated(); 789 void DeleteThreadPool(); GetThreadPool()790 ThreadPool* GetThreadPool() { 791 return thread_pool_.get(); 792 } GetParallelGCThreadCount()793 size_t GetParallelGCThreadCount() const { 794 return parallel_gc_threads_; 795 } GetConcGCThreadCount()796 size_t GetConcGCThreadCount() const { 797 return conc_gc_threads_; 798 } 799 accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space); 800 void AddModUnionTable(accounting::ModUnionTable* mod_union_table); 801 802 accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space); 803 void AddRememberedSet(accounting::RememberedSet* remembered_set); 804 // Also deletes the remebered set. 805 void RemoveRememberedSet(space::Space* space); 806 807 bool IsCompilingBoot() const; HasBootImageSpace()808 bool HasBootImageSpace() const { 809 return !boot_image_spaces_.empty(); 810 } 811 bool HasAppImageSpaceFor(const std::string& dex_location) const; 812 GetReferenceProcessor()813 ReferenceProcessor* GetReferenceProcessor() { 814 return reference_processor_.get(); 815 } GetTaskProcessor()816 TaskProcessor* GetTaskProcessor() { 817 return task_processor_.get(); 818 } 819 HasZygoteSpace()820 bool HasZygoteSpace() const { 821 return zygote_space_ != nullptr; 822 } 823 IsInZygoteSpace(const mirror::Object * obj)824 bool IsInZygoteSpace(const mirror::Object* obj) const { 825 return zygote_space_ != nullptr && zygote_space_->Contains(obj); 826 } 827 828 // Returns the active concurrent copying collector. ConcurrentCopyingCollector()829 collector::ConcurrentCopying* ConcurrentCopyingCollector() { 830 DCHECK(gUseReadBarrier); 831 collector::ConcurrentCopying* active_collector = 832 active_concurrent_copying_collector_.load(std::memory_order_relaxed); 833 if (use_generational_gc_) { 834 DCHECK((active_collector == concurrent_copying_collector_) || 835 (active_collector == young_concurrent_copying_collector_)) 836 << "active_concurrent_copying_collector: " << active_collector 837 << " young_concurrent_copying_collector: " << young_concurrent_copying_collector_ 838 << " concurrent_copying_collector: " << concurrent_copying_collector_; 839 } else { 840 DCHECK_EQ(active_collector, concurrent_copying_collector_); 841 } 842 return active_collector; 843 } 844 MarkCompactCollector()845 collector::MarkCompact* MarkCompactCollector() { 846 DCHECK(!gUseUserfaultfd || mark_compact_ != nullptr); 847 return mark_compact_; 848 } 849 IsPerformingUffdCompaction()850 bool IsPerformingUffdCompaction() { return gUseUserfaultfd && mark_compact_->IsCompacting(); } 851 CurrentCollectorType()852 CollectorType CurrentCollectorType() const { 853 DCHECK(!gUseUserfaultfd || collector_type_ == kCollectorTypeCMC); 854 return collector_type_; 855 } 856 IsMovingGc()857 bool IsMovingGc() const { return IsMovingGc(CurrentCollectorType()); } 858 GetForegroundCollectorType()859 CollectorType GetForegroundCollectorType() const { return foreground_collector_type_; } 860 // EXPORT is needed to make this method visible for libartservice. 861 EXPORT std::string GetForegroundCollectorName(); 862 IsGcConcurrentAndMoving()863 bool IsGcConcurrentAndMoving() const { 864 if (IsGcConcurrent() && IsMovingGc(collector_type_)) { 865 // Assume no transition when a concurrent moving collector is used. 866 DCHECK_EQ(collector_type_, foreground_collector_type_); 867 return true; 868 } 869 return false; 870 } 871 IsMovingGCDisabled(Thread * self)872 bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) { 873 MutexLock mu(self, *gc_complete_lock_); 874 return disable_moving_gc_count_ > 0; 875 } 876 877 // Request an asynchronous trim. 878 void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_); 879 880 // Retrieve the current GC number, i.e. the number n such that we completed n GCs so far. 881 // Provides acquire ordering, so that if we read this first, and then check whether a GC is 882 // required, we know that the GC number read actually preceded the test. GetCurrentGcNum()883 uint32_t GetCurrentGcNum() { 884 return gcs_completed_.load(std::memory_order_acquire); 885 } 886 887 // Request asynchronous GC. Observed_gc_num is the value of GetCurrentGcNum() when we started to 888 // evaluate the GC triggering condition. If a GC has been completed since then, we consider our 889 // job done. If we return true, then we ensured that gcs_completed_ will eventually be 890 // incremented beyond observed_gc_num. We return false only in corner cases in which we cannot 891 // ensure that. 892 bool RequestConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t observed_gc_num) 893 REQUIRES(!*pending_task_lock_); 894 895 // Whether or not we may use a garbage collector, used so that we only create collectors we need. 896 bool MayUseCollector(CollectorType type) const; 897 898 // Used by tests to reduce timinig-dependent flakiness in OOME behavior. SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval)899 void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) { 900 min_interval_homogeneous_space_compaction_by_oom_ = interval; 901 } 902 903 // Helpers for android.os.Debug.getRuntimeStat(). 904 uint64_t GetGcCount() const; 905 uint64_t GetGcTime() const; 906 uint64_t GetBlockingGcCount() const; 907 uint64_t GetBlockingGcTime() const; 908 void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); 909 void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); GetTotalTimeWaitingForGC()910 uint64_t GetTotalTimeWaitingForGC() const { 911 return total_wait_time_; 912 } 913 uint64_t GetPreOomeGcCount() const; 914 915 // Perfetto Art Heap Profiler Support. GetHeapSampler()916 HeapSampler& GetHeapSampler() { 917 return heap_sampler_; 918 } 919 920 void InitPerfettoJavaHeapProf(); 921 // In NonTlab case: Check whether we should report a sample allocation and if so report it. 922 // Also update state (bytes_until_sample). 923 // By calling JHPCheckNonTlabSampleAllocation from different functions for Large allocations and 924 // non-moving allocations we are able to use the stack to identify these allocations separately. 925 EXPORT void JHPCheckNonTlabSampleAllocation(Thread* self, mirror::Object* ret, size_t alloc_size); 926 // In Tlab case: Calculate the next tlab size (location of next sample point) and whether 927 // a sample should be taken. 928 size_t JHPCalculateNextTlabSize(Thread* self, 929 size_t jhp_def_tlab_size, 930 size_t alloc_size, 931 bool* take_sample, 932 size_t* bytes_until_sample); 933 // Reduce the number of bytes to the next sample position by this adjustment. 934 void AdjustSampleOffset(size_t adjustment); 935 936 // Allocation tracking support 937 // Callers to this function use double-checked locking to ensure safety on allocation_records_ IsAllocTrackingEnabled()938 bool IsAllocTrackingEnabled() const { 939 return alloc_tracking_enabled_.load(std::memory_order_relaxed); 940 } 941 SetAllocTrackingEnabled(bool enabled)942 void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) { 943 alloc_tracking_enabled_.store(enabled, std::memory_order_relaxed); 944 } 945 946 // Return the current stack depth of allocation records. GetAllocTrackerStackDepth()947 size_t GetAllocTrackerStackDepth() const { 948 return alloc_record_depth_; 949 } 950 951 // Return the current stack depth of allocation records. SetAllocTrackerStackDepth(size_t alloc_record_depth)952 void SetAllocTrackerStackDepth(size_t alloc_record_depth) { 953 alloc_record_depth_ = alloc_record_depth; 954 } 955 GetAllocationRecords()956 AllocRecordObjectMap* GetAllocationRecords() const REQUIRES(Locks::alloc_tracker_lock_) { 957 return allocation_records_.get(); 958 } 959 960 void SetAllocationRecords(AllocRecordObjectMap* records) 961 REQUIRES(Locks::alloc_tracker_lock_); 962 963 void VisitAllocationRecords(RootVisitor* visitor) const 964 REQUIRES_SHARED(Locks::mutator_lock_) 965 REQUIRES(!Locks::alloc_tracker_lock_); 966 967 void SweepAllocationRecords(IsMarkedVisitor* visitor) const 968 REQUIRES_SHARED(Locks::mutator_lock_) 969 REQUIRES(!Locks::alloc_tracker_lock_); 970 971 void DisallowNewAllocationRecords() const 972 REQUIRES_SHARED(Locks::mutator_lock_) 973 REQUIRES(!Locks::alloc_tracker_lock_); 974 975 void AllowNewAllocationRecords() const 976 REQUIRES_SHARED(Locks::mutator_lock_) 977 REQUIRES(!Locks::alloc_tracker_lock_); 978 979 void BroadcastForNewAllocationRecords() const 980 REQUIRES(!Locks::alloc_tracker_lock_); 981 982 void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_); 983 bool IsGCDisabledForShutdown() const REQUIRES(!*gc_complete_lock_); 984 985 // Create a new alloc space and compact default alloc space to it. 986 EXPORT HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() 987 REQUIRES(!*gc_complete_lock_, !process_state_update_lock_); 988 EXPORT bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const; 989 990 // Install an allocation listener. 991 EXPORT void SetAllocationListener(AllocationListener* l); 992 // Remove an allocation listener. Note: the listener must not be deleted, as for performance 993 // reasons, we assume it stays valid when we read it (so that we don't require a lock). 994 EXPORT void RemoveAllocationListener(); 995 996 // Install a gc pause listener. 997 EXPORT void SetGcPauseListener(GcPauseListener* l); 998 // Get the currently installed gc pause listener, or null. GetGcPauseListener()999 GcPauseListener* GetGcPauseListener() { 1000 return gc_pause_listener_.load(std::memory_order_acquire); 1001 } 1002 // Remove a gc pause listener. Note: the listener must not be deleted, as for performance 1003 // reasons, we assume it stays valid when we read it (so that we don't require a lock). 1004 EXPORT void RemoveGcPauseListener(); 1005 1006 EXPORT const Verification* GetVerification() const; 1007 1008 void PostForkChildAction(Thread* self) REQUIRES(!*gc_complete_lock_); 1009 1010 EXPORT void TraceHeapSize(size_t heap_size); 1011 1012 bool AddHeapTask(gc::HeapTask* task); 1013 1014 // TODO: Kernels for arm and x86 in both, 32-bit and 64-bit modes use 512 entries per page-table 1015 // page. Find a way to confirm that in userspace. 1016 // Address range covered by 1 Page Middle Directory (PMD) entry in the page table GetPMDSize()1017 static inline ALWAYS_INLINE size_t GetPMDSize() { 1018 return (gPageSize / sizeof(uint64_t)) * gPageSize; 1019 } 1020 // Address range covered by 1 Page Upper Directory (PUD) entry in the page table GetPUDSize()1021 static inline ALWAYS_INLINE size_t GetPUDSize() { 1022 return (gPageSize / sizeof(uint64_t)) * GetPMDSize(); 1023 } 1024 1025 // Returns the ideal alignment corresponding to page-table levels for the 1026 // given size. BestPageTableAlignment(size_t size)1027 static inline size_t BestPageTableAlignment(size_t size) { 1028 const size_t pud_size = GetPUDSize(); 1029 const size_t pmd_size = GetPMDSize(); 1030 return size < pud_size ? pmd_size : pud_size; 1031 } 1032 1033 private: 1034 class ConcurrentGCTask; 1035 class CollectorTransitionTask; 1036 class HeapTrimTask; 1037 class TriggerPostForkCCGcTask; 1038 class ReduceTargetFootprintTask; 1039 1040 // Compact source space to target space. Returns the collector used. 1041 collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space, 1042 space::ContinuousMemMapAllocSpace* source_space, 1043 GcCause gc_cause) 1044 REQUIRES(Locks::mutator_lock_); 1045 1046 void LogGC(GcCause gc_cause, collector::GarbageCollector* collector); 1047 void StartGC(Thread* self, GcCause cause, CollectorType collector_type) 1048 REQUIRES(!*gc_complete_lock_); 1049 void StartGCRunnable(Thread* self, GcCause cause, CollectorType collector_type) 1050 REQUIRES(!*gc_complete_lock_) REQUIRES_SHARED(Locks::mutator_lock_); 1051 void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_); 1052 1053 double CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns, 1054 uint64_t current_process_cpu_time) const; 1055 1056 // Called only from the constructor. 1057 void CreateGarbageCollectors(bool measure_gc_performance); 1058 // Create a mem map with a preferred base address. 1059 static MemMap MapAnonymousPreferredAddress(const char* name, 1060 uint8_t* request_begin, 1061 size_t capacity, 1062 std::string* out_error_str); 1063 SupportHSpaceCompaction()1064 bool SupportHSpaceCompaction() const { 1065 // Returns true if we can do hspace compaction 1066 return main_space_backup_ != nullptr; 1067 } 1068 1069 // Size_t saturating arithmetic UnsignedDifference(size_t x,size_t y)1070 static ALWAYS_INLINE size_t UnsignedDifference(size_t x, size_t y) { 1071 return x > y ? x - y : 0; 1072 } UnsignedSum(size_t x,size_t y)1073 static ALWAYS_INLINE size_t UnsignedSum(size_t x, size_t y) { 1074 return x + y >= x ? x + y : std::numeric_limits<size_t>::max(); 1075 } 1076 AllocatorHasAllocationStack(AllocatorType allocator_type)1077 static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) { 1078 return 1079 allocator_type != kAllocatorTypeRegionTLAB && 1080 allocator_type != kAllocatorTypeBumpPointer && 1081 allocator_type != kAllocatorTypeTLAB && 1082 allocator_type != kAllocatorTypeRegion; 1083 } IsMovingGc(CollectorType collector_type)1084 static bool IsMovingGc(CollectorType collector_type) { 1085 return 1086 collector_type == kCollectorTypeCC || 1087 collector_type == kCollectorTypeSS || 1088 collector_type == kCollectorTypeCMC || 1089 collector_type == kCollectorTypeCCBackground || 1090 collector_type == kCollectorTypeCMCBackground || 1091 collector_type == kCollectorTypeHomogeneousSpaceCompact; 1092 } 1093 bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const 1094 REQUIRES_SHARED(Locks::mutator_lock_); 1095 1096 // Checks whether we should garbage collect: 1097 ALWAYS_INLINE bool ShouldConcurrentGCForJava(size_t new_num_bytes_allocated); 1098 float NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent); 1099 void CheckGCForNative(Thread* self) 1100 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_); 1101 GetMarkStack()1102 accounting::ObjectStack* GetMarkStack() { 1103 return mark_stack_.get(); 1104 } 1105 1106 // We don't force this to be inlined since it is a slow path. 1107 template <bool kInstrumented, typename PreFenceVisitor> 1108 mirror::Object* AllocLargeObject(Thread* self, 1109 ObjPtr<mirror::Class>* klass, 1110 size_t byte_count, 1111 const PreFenceVisitor& pre_fence_visitor) 1112 REQUIRES_SHARED(Locks::mutator_lock_) 1113 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, 1114 !*backtrace_lock_, !process_state_update_lock_); 1115 1116 // Handles Allocate()'s slow allocation path with GC involved after an initial allocation 1117 // attempt failed. 1118 // Called with thread suspension disallowed, but re-enables it, and may suspend, internally. 1119 // Returns null if instrumentation or the allocator changed. 1120 EXPORT mirror::Object* AllocateInternalWithGc(Thread* self, 1121 AllocatorType allocator, 1122 bool instrumented, 1123 size_t num_bytes, 1124 size_t* bytes_allocated, 1125 size_t* usable_size, 1126 size_t* bytes_tl_bulk_allocated, 1127 ObjPtr<mirror::Class>* klass) 1128 REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_) 1129 REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_); 1130 1131 // Allocate into a specific space. 1132 mirror::Object* AllocateInto(Thread* self, 1133 space::AllocSpace* space, 1134 ObjPtr<mirror::Class> c, 1135 size_t bytes) 1136 REQUIRES_SHARED(Locks::mutator_lock_); 1137 1138 // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the 1139 // wrong space. 1140 void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_); 1141 1142 // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so 1143 // that the switch statement is constant optimized in the entrypoints. 1144 template <const bool kInstrumented, const bool kGrow> 1145 ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, 1146 AllocatorType allocator_type, 1147 size_t alloc_size, 1148 size_t* bytes_allocated, 1149 size_t* usable_size, 1150 size_t* bytes_tl_bulk_allocated) 1151 REQUIRES_SHARED(Locks::mutator_lock_); 1152 1153 EXPORT mirror::Object* AllocWithNewTLAB(Thread* self, 1154 AllocatorType allocator_type, 1155 size_t alloc_size, 1156 bool grow, 1157 size_t* bytes_allocated, 1158 size_t* usable_size, 1159 size_t* bytes_tl_bulk_allocated) 1160 REQUIRES_SHARED(Locks::mutator_lock_); 1161 1162 void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) 1163 REQUIRES_SHARED(Locks::mutator_lock_); 1164 1165 // Are we out of memory, and thus should force a GC or fail? 1166 // For concurrent collectors, out of memory is defined by growth_limit_. 1167 // For nonconcurrent collectors it is defined by target_footprint_ unless grow is 1168 // set. If grow is set, the limit is growth_limit_ and we adjust target_footprint_ 1169 // to accomodate the allocation. 1170 ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, 1171 size_t alloc_size, 1172 bool grow); 1173 1174 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 1175 // waited for. If only_one is true, we only wait for the currently running GC, and may return 1176 // while a new GC is again running. 1177 collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self, bool only_one = false) 1178 REQUIRES(gc_complete_lock_); 1179 1180 void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) 1181 REQUIRES(!*pending_task_lock_); 1182 1183 EXPORT void RequestConcurrentGCAndSaveObject(Thread* self, 1184 bool force_full, 1185 uint32_t observed_gc_num, 1186 ObjPtr<mirror::Object>* obj) 1187 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!*pending_task_lock_); 1188 1189 static constexpr uint32_t GC_NUM_ANY = std::numeric_limits<uint32_t>::max(); 1190 1191 // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns 1192 // which type of Gc was actually run. 1193 // We pass in the intended GC sequence number to ensure that multiple approximately concurrent 1194 // requests result in a single GC; clearly redundant request will be pruned. A requested_gc_num 1195 // of GC_NUM_ANY indicates that we should not prune redundant requests. (In the unlikely case 1196 // that gcs_completed_ gets this big, we just accept a potential extra GC or two.) 1197 collector::GcType CollectGarbageInternal(collector::GcType gc_plan, 1198 GcCause gc_cause, 1199 bool clear_soft_references, 1200 uint32_t requested_gc_num) 1201 REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_, 1202 !*pending_task_lock_, !process_state_update_lock_); 1203 1204 void PreGcVerification(collector::GarbageCollector* gc) 1205 REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); 1206 void PreGcVerificationPaused(collector::GarbageCollector* gc) 1207 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 1208 void PrePauseRosAllocVerification(collector::GarbageCollector* gc) 1209 REQUIRES(Locks::mutator_lock_); 1210 void PreSweepingGcVerification(collector::GarbageCollector* gc) 1211 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1212 void PostGcVerification(collector::GarbageCollector* gc) 1213 REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); 1214 void PostGcVerificationPaused(collector::GarbageCollector* gc) 1215 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 1216 1217 // Find a collector based on GC type. 1218 collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type); 1219 1220 // Create the main free list malloc space, either a RosAlloc space or DlMalloc space. 1221 void CreateMainMallocSpace(MemMap&& mem_map, 1222 size_t initial_size, 1223 size_t growth_limit, 1224 size_t capacity); 1225 1226 // Create a malloc space based on a mem map. Does not set the space as default. 1227 space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap&& mem_map, 1228 size_t initial_size, 1229 size_t growth_limit, 1230 size_t capacity, 1231 const char* name, 1232 bool can_move_objects); 1233 1234 // Given the current contents of the alloc space, increase the allowed heap footprint to match 1235 // the target utilization ratio. This should only be called immediately after a full garbage 1236 // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which 1237 // the GC was run. 1238 // This is only called by the thread that set collector_type_running_ to a value other than 1239 // kCollectorTypeNone, or while holding gc_complete_lock, and ensuring that 1240 // collector_type_running_ is kCollectorTypeNone. 1241 void GrowForUtilization(collector::GarbageCollector* collector_ran, 1242 size_t bytes_allocated_before_gc = 0) 1243 REQUIRES(!process_state_update_lock_); 1244 1245 size_t GetPercentFree(); 1246 1247 // Swap the allocation stack with the live stack. 1248 void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_); 1249 1250 // Clear cards and update the mod union table. When process_alloc_space_cards is true, 1251 // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do 1252 // not process the alloc space if process_alloc_space_cards is false. 1253 void ProcessCards(TimingLogger* timings, 1254 bool use_rem_sets, 1255 bool process_alloc_space_cards, 1256 bool clear_alloc_space_cards) 1257 REQUIRES_SHARED(Locks::mutator_lock_); 1258 1259 // Push an object onto the allocation stack. 1260 void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj) 1261 REQUIRES_SHARED(Locks::mutator_lock_) 1262 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 1263 EXPORT void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) 1264 REQUIRES_SHARED(Locks::mutator_lock_) 1265 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 1266 EXPORT void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, 1267 ObjPtr<mirror::Object>* obj) 1268 REQUIRES_SHARED(Locks::mutator_lock_) 1269 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 1270 1271 void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_); 1272 void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_); 1273 1274 // What kind of concurrency behavior is the runtime after? IsGcConcurrent()1275 bool IsGcConcurrent() const ALWAYS_INLINE { 1276 return collector_type_ == kCollectorTypeCC || 1277 collector_type_ == kCollectorTypeCMC || 1278 collector_type_ == kCollectorTypeCMS || 1279 collector_type_ == kCollectorTypeCCBackground || 1280 collector_type_ == kCollectorTypeCMCBackground; 1281 } 1282 1283 // Trim the managed and native spaces by releasing unused memory back to the OS. 1284 void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_); 1285 1286 // Trim 0 pages at the end of reference tables. 1287 void TrimIndirectReferenceTables(Thread* self); 1288 1289 template <typename Visitor> 1290 ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor) 1291 REQUIRES_SHARED(Locks::mutator_lock_) 1292 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1293 template <typename Visitor> 1294 ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor) 1295 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1296 1297 void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_); 1298 1299 // GC stress mode attempts to do one GC per unique backtrace. 1300 EXPORT void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) 1301 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!*gc_complete_lock_, 1302 !*pending_task_lock_, 1303 !*backtrace_lock_, 1304 !process_state_update_lock_); 1305 NonStickyGcType()1306 collector::GcType NonStickyGcType() const { 1307 return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; 1308 } 1309 1310 // Return the amount of space we allow for native memory when deciding whether to 1311 // collect. We collect when a weighted sum of Java memory plus native memory exceeds 1312 // the similarly weighted sum of the Java heap size target and this value. NativeAllocationGcWatermark()1313 ALWAYS_INLINE size_t NativeAllocationGcWatermark() const { 1314 // We keep the traditional limit of max_free_ in place for small heaps, 1315 // but allow it to be adjusted upward for large heaps to limit GC overhead. 1316 return target_footprint_.load(std::memory_order_relaxed) / 8 + max_free_; 1317 } 1318 1319 ALWAYS_INLINE void IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke); 1320 1321 // On switching app from background to foreground, grow the heap size 1322 // to incorporate foreground heap growth multiplier. 1323 void GrowHeapOnJankPerceptibleSwitch() REQUIRES(!process_state_update_lock_); 1324 1325 // Update *_freed_ever_ counters to reflect current GC values. 1326 void IncrementFreedEver(); 1327 1328 // Remove a vlog code from heap-inl.h which is transitively included in half the world. 1329 EXPORT static void VlogHeapGrowth(size_t max_allowed_footprint, 1330 size_t new_footprint, 1331 size_t alloc_size); 1332 1333 // Return our best approximation of the number of bytes of native memory that 1334 // are currently in use, and could possibly be reclaimed as an indirect result 1335 // of a garbage collection. 1336 size_t GetNativeBytes(); 1337 1338 // Set concurrent_start_bytes_ to a reasonable guess, given target_footprint_ . 1339 void SetDefaultConcurrentStartBytes() REQUIRES(!*gc_complete_lock_); 1340 // This version assumes no concurrent updaters. 1341 void SetDefaultConcurrentStartBytesLocked(); 1342 1343 // All-known continuous spaces, where objects lie within fixed bounds. 1344 std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_); 1345 1346 // All-known discontinuous spaces, where objects may be placed throughout virtual memory. 1347 std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_); 1348 1349 // All-known alloc spaces, where objects may be or have been allocated. 1350 std::vector<space::AllocSpace*> alloc_spaces_; 1351 1352 // A space where non-movable objects are allocated, when compaction is enabled it contains 1353 // Classes, ArtMethods, ArtFields, and non moving objects. 1354 space::MallocSpace* non_moving_space_; 1355 1356 // Space which we use for the kAllocatorTypeROSAlloc. 1357 space::RosAllocSpace* rosalloc_space_; 1358 1359 // Space which we use for the kAllocatorTypeDlMalloc. 1360 space::DlMallocSpace* dlmalloc_space_; 1361 1362 // The main space is the space which the GC copies to and from on process state updates. This 1363 // space is typically either the dlmalloc_space_ or the rosalloc_space_. 1364 space::MallocSpace* main_space_; 1365 1366 // The large object space we are currently allocating into. 1367 space::LargeObjectSpace* large_object_space_; 1368 1369 // The card table, dirtied by the write barrier. 1370 std::unique_ptr<accounting::CardTable> card_table_; 1371 1372 std::unique_ptr<accounting::ReadBarrierTable> rb_table_; 1373 1374 // A mod-union table remembers all of the references from the it's space to other spaces. 1375 AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap> 1376 mod_union_tables_; 1377 1378 // A remembered set remembers all of the references from the it's space to the target space. 1379 AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap> 1380 remembered_sets_; 1381 1382 // The current collector type. 1383 CollectorType collector_type_; 1384 // Which collector we use when the app is in the foreground. 1385 const CollectorType foreground_collector_type_; 1386 // Which collector we will use when the app is notified of a transition to background. 1387 CollectorType background_collector_type_; 1388 // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_. 1389 CollectorType desired_collector_type_; 1390 1391 // Lock which guards pending tasks. 1392 Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1393 1394 // How many GC threads we may use for paused parts of garbage collection. 1395 const size_t parallel_gc_threads_; 1396 1397 // How many GC threads we may use for unpaused parts of garbage collection. 1398 const size_t conc_gc_threads_; 1399 1400 // Boolean for if we are in low memory mode. 1401 const bool low_memory_mode_; 1402 1403 // If we get a pause longer than long pause log threshold, then we print out the GC after it 1404 // finishes. 1405 const size_t long_pause_log_threshold_; 1406 1407 // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes. 1408 const size_t long_gc_log_threshold_; 1409 1410 // Starting time of the new process; meant to be used for measuring total process CPU time. 1411 uint64_t process_cpu_start_time_ns_; 1412 1413 // Last time (before and after) GC started; meant to be used to measure the 1414 // duration between two GCs. 1415 uint64_t pre_gc_last_process_cpu_time_ns_; 1416 uint64_t post_gc_last_process_cpu_time_ns_; 1417 1418 // allocated_bytes * (current_process_cpu_time - [pre|post]_gc_last_process_cpu_time) 1419 double pre_gc_weighted_allocated_bytes_; 1420 double post_gc_weighted_allocated_bytes_; 1421 1422 // If we ignore the target footprint it lets the heap grow until it hits the heap capacity, this 1423 // is useful for benchmarking since it reduces time spent in GC to a low %. 1424 const bool ignore_target_footprint_; 1425 1426 // If we are running tests or some other configurations we might not actually 1427 // want logs for explicit gcs since they can get spammy. 1428 const bool always_log_explicit_gcs_; 1429 1430 // Lock which guards zygote space creation. 1431 Mutex zygote_creation_lock_; 1432 1433 // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before 1434 // zygote space creation. 1435 space::ZygoteSpace* zygote_space_; 1436 1437 // Minimum allocation size of large object. 1438 size_t large_object_threshold_; 1439 1440 // Guards access to the state of GC, associated conditional variable is used to signal when a GC 1441 // completes. 1442 Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1443 std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_); 1444 1445 // Used to synchronize between JNI critical calls and the thread flip of the CC collector. 1446 Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1447 std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_); 1448 // This counter keeps track of how many threads are currently in a JNI critical section. This is 1449 // incremented once per thread even with nested enters. 1450 size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_); 1451 bool thread_flip_running_ GUARDED_BY(thread_flip_lock_); 1452 1453 // Reference processor; 1454 std::unique_ptr<ReferenceProcessor> reference_processor_; 1455 1456 // Task processor, proxies heap trim requests to the daemon threads. 1457 std::unique_ptr<TaskProcessor> task_processor_; 1458 1459 // The following are declared volatile only for debugging purposes; it shouldn't otherwise 1460 // matter. 1461 1462 // Collector type of the running GC. 1463 CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_); 1464 1465 // Cause of the last running or attempted GC or GC-like action. 1466 GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_); 1467 1468 // The thread currently running the GC. 1469 Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_); 1470 1471 // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on. 1472 collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_); 1473 collector::GcType next_gc_type_; 1474 1475 // Maximum size that the heap can reach. 1476 size_t capacity_; 1477 1478 // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap 1479 // programs it is "cleared" making it the same as capacity. 1480 // Only weakly enforced for simultaneous allocations. 1481 size_t growth_limit_; 1482 1483 // Requested initial heap size. Temporarily ignored after a fork, but then reestablished after 1484 // a while to usually trigger the initial GC. 1485 size_t initial_heap_size_; 1486 1487 // Target size (as in maximum allocatable bytes) for the heap. Weakly enforced as a limit for 1488 // non-concurrent GC. Used as a guideline for computing concurrent_start_bytes_ in the 1489 // concurrent GC case. Updates normally occur while collector_type_running_ is not none. 1490 Atomic<size_t> target_footprint_; 1491 1492 Mutex process_state_update_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1493 1494 // Computed with foreground-multiplier in GrowForUtilization() when run in 1495 // jank non-perceptible state. On update to process state from background to 1496 // foreground we set target_footprint_ and concurrent_start_bytes_ to the corresponding value. 1497 size_t min_foreground_target_footprint_ GUARDED_BY(process_state_update_lock_); 1498 size_t min_foreground_concurrent_start_bytes_ GUARDED_BY(process_state_update_lock_); 1499 1500 // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that 1501 // it completes ahead of an allocation failing. 1502 // A multiple of this is also used to determine when to trigger a GC in response to native 1503 // allocation. 1504 // After initialization, this is only updated by the thread that set collector_type_running_ to 1505 // a value other than kCollectorTypeNone, or while holding gc_complete_lock, and ensuring that 1506 // collector_type_running_ is kCollectorTypeNone. 1507 size_t concurrent_start_bytes_; 1508 1509 // Since the heap was created, how many bytes have been freed. 1510 std::atomic<int64_t> total_bytes_freed_ever_; 1511 1512 // Since the heap was created, how many objects have been freed. 1513 std::atomic<uint64_t> total_objects_freed_ever_; 1514 1515 // Number of bytes currently allocated and not yet reclaimed. Includes active 1516 // TLABS in their entirety, even if they have not yet been parceled out. 1517 Atomic<size_t> num_bytes_allocated_; 1518 1519 // Number of registered native bytes allocated. Adjusted after each RegisterNativeAllocation and 1520 // RegisterNativeFree. Used to help determine when to trigger GC for native allocations. Should 1521 // not include bytes allocated through the system malloc, since those are implicitly included. 1522 Atomic<size_t> native_bytes_registered_; 1523 1524 // Approximately the smallest value of GetNativeBytes() we've seen since the last GC. 1525 Atomic<size_t> old_native_bytes_allocated_; 1526 1527 // Total number of native objects of which we were notified since the beginning of time, mod 2^32. 1528 // Allows us to check for GC only roughly every kNotifyNativeInterval allocations. 1529 Atomic<uint32_t> native_objects_notified_; 1530 1531 // Number of bytes freed by thread local buffer revokes. This will 1532 // cancel out the ahead-of-time bulk counting of bytes allocated in 1533 // rosalloc thread-local buffers. It is temporarily accumulated 1534 // here to be subtracted from num_bytes_allocated_ later at the next 1535 // GC. 1536 Atomic<size_t> num_bytes_freed_revoke_; 1537 1538 // Records the number of bytes allocated at the time of GC, which is used later to calculate 1539 // how many bytes have been allocated since the last GC 1540 size_t num_bytes_alive_after_gc_; 1541 1542 // Info related to the current or previous GC iteration. 1543 collector::Iteration current_gc_iteration_; 1544 1545 // Heap verification flags. 1546 const bool verify_missing_card_marks_; 1547 const bool verify_system_weaks_; 1548 const bool verify_pre_gc_heap_; 1549 const bool verify_pre_sweeping_heap_; 1550 const bool verify_post_gc_heap_; 1551 const bool verify_mod_union_table_; 1552 bool verify_pre_gc_rosalloc_; 1553 bool verify_pre_sweeping_rosalloc_; 1554 bool verify_post_gc_rosalloc_; 1555 const bool gc_stress_mode_; 1556 1557 // RAII that temporarily disables the rosalloc verification during 1558 // the zygote fork. 1559 class ScopedDisableRosAllocVerification { 1560 private: 1561 Heap* const heap_; 1562 const bool orig_verify_pre_gc_; 1563 const bool orig_verify_pre_sweeping_; 1564 const bool orig_verify_post_gc_; 1565 1566 public: ScopedDisableRosAllocVerification(Heap * heap)1567 explicit ScopedDisableRosAllocVerification(Heap* heap) 1568 : heap_(heap), 1569 orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_), 1570 orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_), 1571 orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) { 1572 heap_->verify_pre_gc_rosalloc_ = false; 1573 heap_->verify_pre_sweeping_rosalloc_ = false; 1574 heap_->verify_post_gc_rosalloc_ = false; 1575 } ~ScopedDisableRosAllocVerification()1576 ~ScopedDisableRosAllocVerification() { 1577 heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_; 1578 heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_; 1579 heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_; 1580 } 1581 }; 1582 1583 // Parallel GC data structures. 1584 std::unique_ptr<ThreadPool> thread_pool_; 1585 1586 // A bitmap that is set corresponding to the known live objects since the last GC cycle. 1587 std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1588 // A bitmap that is set corresponding to the marked objects in the current GC cycle. 1589 std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1590 1591 // Mark stack that we reuse to avoid re-allocating the mark stack. 1592 std::unique_ptr<accounting::ObjectStack> mark_stack_; 1593 1594 // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us 1595 // to use the live bitmap as the old mark bitmap. 1596 const size_t max_allocation_stack_size_; 1597 std::unique_ptr<accounting::ObjectStack> allocation_stack_; 1598 1599 // Second allocation stack so that we can process allocation with the heap unlocked. 1600 std::unique_ptr<accounting::ObjectStack> live_stack_; 1601 1602 // Allocator type. 1603 AllocatorType current_allocator_; 1604 const AllocatorType current_non_moving_allocator_; 1605 1606 // Which GCs we run in order when an allocation fails. 1607 std::vector<collector::GcType> gc_plan_; 1608 1609 // Bump pointer spaces. 1610 space::BumpPointerSpace* bump_pointer_space_; 1611 // Temp space is the space which the semispace collector copies to. 1612 space::BumpPointerSpace* temp_space_; 1613 1614 // Region space, used by the concurrent collector. 1615 space::RegionSpace* region_space_; 1616 1617 // Minimum free guarantees that you always have at least min_free_ free bytes after growing for 1618 // utilization, regardless of target utilization ratio. 1619 const size_t min_free_; 1620 1621 // The ideal maximum free size, when we grow the heap for utilization. 1622 const size_t max_free_; 1623 1624 // Target ideal heap utilization ratio. 1625 double target_utilization_; 1626 1627 // How much more we grow the heap when we are a foreground app instead of background. 1628 double foreground_heap_growth_multiplier_; 1629 1630 // The amount of native memory allocation since the last GC required to cause us to wait for a 1631 // collection as a result of native allocation. Very large values can cause the device to run 1632 // out of memory, due to lack of finalization to reclaim native memory. Making it too small can 1633 // cause jank in apps like launcher that intentionally allocate large amounts of memory in rapid 1634 // succession. (b/122099093) 1/4 to 1/3 of physical memory seems to be a good number. 1635 const size_t stop_for_native_allocs_; 1636 1637 // Total time which mutators are paused or waiting for GC to complete. 1638 uint64_t total_wait_time_; 1639 1640 // The current state of heap verification, may be enabled or disabled. 1641 VerifyObjectMode verify_object_mode_; 1642 1643 // Compacting GC disable count, prevents compacting GC from running iff > 0. 1644 size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_); 1645 1646 std::vector<collector::GarbageCollector*> garbage_collectors_; 1647 collector::SemiSpace* semi_space_collector_; 1648 Atomic<collector::ConcurrentCopying*> active_concurrent_copying_collector_; 1649 union { 1650 collector::ConcurrentCopying* young_concurrent_copying_collector_; 1651 collector::YoungMarkCompact* young_mark_compact_; 1652 }; 1653 union { 1654 collector::ConcurrentCopying* concurrent_copying_collector_; 1655 collector::MarkCompact* mark_compact_; 1656 }; 1657 1658 const bool is_running_on_memory_tool_; 1659 const bool use_tlab_; 1660 1661 // Pointer to the space which becomes the new main space when we do homogeneous space compaction. 1662 // Use unique_ptr since the space is only added during the homogeneous compaction phase. 1663 std::unique_ptr<space::MallocSpace> main_space_backup_; 1664 1665 // Minimal interval allowed between two homogeneous space compactions caused by OOM. 1666 uint64_t min_interval_homogeneous_space_compaction_by_oom_; 1667 1668 // Times of the last homogeneous space compaction caused by OOM. 1669 uint64_t last_time_homogeneous_space_compaction_by_oom_; 1670 1671 // Saved OOMs by homogeneous space compaction. 1672 Atomic<size_t> count_delayed_oom_; 1673 1674 // Count for requested homogeneous space compaction. 1675 Atomic<size_t> count_requested_homogeneous_space_compaction_; 1676 1677 // Count for ignored homogeneous space compaction. 1678 Atomic<size_t> count_ignored_homogeneous_space_compaction_; 1679 1680 // Count for performed homogeneous space compaction. 1681 Atomic<size_t> count_performed_homogeneous_space_compaction_; 1682 1683 // The number of garbage collections (either young or full, not trims or the like) we have 1684 // completed since heap creation. We include requests that turned out to be impossible 1685 // because they were disabled. We guard against wrapping, though that's unlikely. 1686 // Increment is guarded by gc_complete_lock_. 1687 Atomic<uint32_t> gcs_completed_; 1688 1689 // The number of the last garbage collection that has been requested. A value of gcs_completed 1690 // + 1 indicates that another collection is needed or in progress. A value of gcs_completed_ or 1691 // (logically) less means that no new GC has been requested. 1692 Atomic<uint32_t> max_gc_requested_; 1693 1694 // Active tasks which we can modify (change target time, desired collector type, etc..). 1695 CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_); 1696 HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_); 1697 1698 // Whether or not we use homogeneous space compaction to avoid OOM errors. 1699 bool use_homogeneous_space_compaction_for_oom_; 1700 1701 // If true, enable generational collection when using a concurrent collector 1702 // like Concurrent Copying (CC) or Concurrent Mark Compact (CMC) collectors, 1703 // i.e. use sticky-bit for minor collections and full heap for major collections. 1704 // Set in Heap constructor. 1705 const bool use_generational_gc_; 1706 1707 // True if the currently running collection has made some thread wait. 1708 bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_); 1709 // The number of blocking GC runs. 1710 uint64_t blocking_gc_count_; 1711 // The total duration of blocking GC runs. 1712 uint64_t blocking_gc_time_; 1713 // The duration of the window for the GC count rate histograms. 1714 static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000); // 10s. 1715 // Maximum number of missed histogram windows for which statistics will be collected. 1716 static constexpr uint64_t kGcCountRateHistogramMaxNumMissedWindows = 100; 1717 // The last time when the GC count rate histograms were updated. 1718 // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s). 1719 uint64_t last_update_time_gc_count_rate_histograms_; 1720 // The running count of GC runs in the last window. 1721 uint64_t gc_count_last_window_; 1722 // The running count of blocking GC runs in the last window. 1723 uint64_t blocking_gc_count_last_window_; 1724 // The maximum number of buckets in the GC count rate histograms. 1725 static constexpr size_t kGcCountRateMaxBucketCount = 200; 1726 // The histogram of the number of GC invocations per window duration. 1727 Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1728 // The histogram of the number of blocking GC invocations per window duration. 1729 Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1730 1731 // Allocation tracking support 1732 Atomic<bool> alloc_tracking_enabled_; 1733 std::unique_ptr<AllocRecordObjectMap> allocation_records_; 1734 size_t alloc_record_depth_; 1735 1736 // Perfetto Java Heap Profiler support. 1737 HeapSampler heap_sampler_; 1738 1739 // GC stress related data structures. 1740 Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1741 // Debugging variables, seen backtraces vs unique backtraces. 1742 Atomic<uint64_t> seen_backtrace_count_; 1743 Atomic<uint64_t> unique_backtrace_count_; 1744 // Stack trace hashes that we already saw, 1745 std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_); 1746 1747 // We disable GC when we are shutting down the runtime in case there are daemon threads still 1748 // allocating. 1749 bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_); 1750 1751 // Turned on by -XX:DumpRegionInfoBeforeGC and -XX:DumpRegionInfoAfterGC to 1752 // emit region info before and after each GC cycle. 1753 bool dump_region_info_before_gc_; 1754 bool dump_region_info_after_gc_; 1755 1756 // Boot image spaces. 1757 std::vector<space::ImageSpace*> boot_image_spaces_; 1758 1759 // Boot image address range. Includes images and oat files. 1760 uint32_t boot_images_start_address_; 1761 uint32_t boot_images_size_; 1762 1763 // The number of times we initiated a GC of last resort to try to avoid an OOME. 1764 Atomic<uint64_t> pre_oome_gc_count_; 1765 1766 // An installed allocation listener. 1767 Atomic<AllocationListener*> alloc_listener_; 1768 // An installed GC Pause listener. 1769 Atomic<GcPauseListener*> gc_pause_listener_; 1770 1771 std::unique_ptr<Verification> verification_; 1772 1773 friend class CollectorTransitionTask; 1774 friend class collector::GarbageCollector; 1775 friend class collector::ConcurrentCopying; 1776 friend class collector::MarkCompact; 1777 friend class collector::MarkSweep; 1778 friend class collector::SemiSpace; 1779 friend class GCCriticalSection; 1780 friend class ReferenceQueue; 1781 friend class ScopedGCCriticalSection; 1782 friend class ScopedInterruptibleGCCriticalSection; 1783 friend class VerifyReferenceCardVisitor; 1784 friend class VerifyReferenceVisitor; 1785 friend class VerifyObjectVisitor; 1786 1787 DISALLOW_IMPLICIT_CONSTRUCTORS(Heap); 1788 }; 1789 1790 } // namespace gc 1791 } // namespace art 1792 1793 #endif // ART_RUNTIME_GC_HEAP_H_ 1794