1 // Copyright 2018 The ChromiumOS Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 //! Virtual machine architecture support code.
6
7 pub mod android;
8 pub mod fdt;
9 pub mod pstore;
10 pub mod serial;
11
12 pub mod sys;
13
14 use std::collections::BTreeMap;
15 use std::error::Error as StdError;
16 use std::fs::File;
17 use std::io;
18 use std::ops::Deref;
19 use std::path::PathBuf;
20 use std::str::FromStr;
21 use std::sync::mpsc;
22 use std::sync::mpsc::SendError;
23 use std::sync::Arc;
24
25 use acpi_tables::sdt::SDT;
26 use base::syslog;
27 use base::AsRawDescriptors;
28 use base::FileGetLen;
29 use base::FileReadWriteAtVolatile;
30 use base::RecvTube;
31 use base::SendTube;
32 use base::Tube;
33 use devices::virtio::VirtioDevice;
34 use devices::BarRange;
35 use devices::Bus;
36 use devices::BusDevice;
37 use devices::BusDeviceObj;
38 use devices::BusError;
39 use devices::BusResumeDevice;
40 use devices::FwCfgParameters;
41 use devices::GpeScope;
42 use devices::HotPlugBus;
43 use devices::IrqChip;
44 use devices::IrqEventSource;
45 use devices::PciAddress;
46 use devices::PciBus;
47 use devices::PciDevice;
48 use devices::PciDeviceError;
49 use devices::PciInterruptPin;
50 use devices::PciRoot;
51 use devices::PciRootCommand;
52 use devices::PreferredIrq;
53 #[cfg(any(target_os = "android", target_os = "linux"))]
54 use devices::ProxyDevice;
55 use devices::SerialHardware;
56 use devices::SerialParameters;
57 pub use fdt::apply_device_tree_overlays;
58 pub use fdt::DtbOverlay;
59 #[cfg(feature = "gdb")]
60 use gdbstub::arch::Arch;
61 use hypervisor::MemCacheType;
62 use hypervisor::Vm;
63 #[cfg(windows)]
64 use jail::FakeMinijailStub as Minijail;
65 #[cfg(any(target_os = "android", target_os = "linux"))]
66 use minijail::Minijail;
67 use remain::sorted;
68 use resources::SystemAllocator;
69 use resources::SystemAllocatorConfig;
70 use serde::de::Visitor;
71 use serde::Deserialize;
72 use serde::Serialize;
73 use serde_keyvalue::FromKeyValues;
74 pub use serial::add_serial_devices;
75 pub use serial::get_serial_cmdline;
76 pub use serial::set_default_serial_parameters;
77 pub use serial::GetSerialCmdlineError;
78 pub use serial::SERIAL_ADDR;
79 use sync::Condvar;
80 use sync::Mutex;
81 #[cfg(any(target_os = "android", target_os = "linux"))]
82 pub use sys::linux::PlatformBusResources;
83 use thiserror::Error;
84 use uuid::Uuid;
85 use vm_control::BatControl;
86 use vm_control::BatteryType;
87 use vm_control::PmResource;
88 use vm_memory::GuestAddress;
89 use vm_memory::GuestMemory;
90 use vm_memory::GuestMemoryError;
91 use vm_memory::MemoryRegionInformation;
92 use vm_memory::MemoryRegionOptions;
93
94 cfg_if::cfg_if! {
95 if #[cfg(any(target_arch = "arm", target_arch = "aarch64"))] {
96 pub use devices::IrqChipAArch64 as IrqChipArch;
97 #[cfg(feature = "gdb")]
98 pub use gdbstub_arch::aarch64::AArch64 as GdbArch;
99 pub use hypervisor::CpuConfigAArch64 as CpuConfigArch;
100 pub use hypervisor::Hypervisor as HypervisorArch;
101 pub use hypervisor::VcpuAArch64 as VcpuArch;
102 pub use hypervisor::VcpuInitAArch64 as VcpuInitArch;
103 pub use hypervisor::VmAArch64 as VmArch;
104 } else if #[cfg(target_arch = "riscv64")] {
105 pub use devices::IrqChipRiscv64 as IrqChipArch;
106 #[cfg(feature = "gdb")]
107 pub use gdbstub_arch::riscv::Riscv64 as GdbArch;
108 pub use hypervisor::CpuConfigRiscv64 as CpuConfigArch;
109 pub use hypervisor::Hypervisor as HypervisorArch;
110 pub use hypervisor::VcpuInitRiscv64 as VcpuInitArch;
111 pub use hypervisor::VcpuRiscv64 as VcpuArch;
112 pub use hypervisor::VmRiscv64 as VmArch;
113 } else if #[cfg(target_arch = "x86_64")] {
114 pub use devices::IrqChipX86_64 as IrqChipArch;
115 #[cfg(feature = "gdb")]
116 pub use gdbstub_arch::x86::X86_64_SSE as GdbArch;
117 pub use hypervisor::CpuConfigX86_64 as CpuConfigArch;
118 pub use hypervisor::HypervisorX86_64 as HypervisorArch;
119 pub use hypervisor::VcpuInitX86_64 as VcpuInitArch;
120 pub use hypervisor::VcpuX86_64 as VcpuArch;
121 pub use hypervisor::VmX86_64 as VmArch;
122 }
123 }
124
125 pub enum VmImage {
126 Kernel(File),
127 Bios(File),
128 }
129
130 #[derive(Clone, Debug, Deserialize, Serialize, FromKeyValues, PartialEq, Eq)]
131 #[serde(deny_unknown_fields, rename_all = "kebab-case")]
132 pub struct Pstore {
133 pub path: PathBuf,
134 pub size: u32,
135 }
136
137 #[derive(Clone, Copy, Debug, Serialize, Deserialize, FromKeyValues)]
138 #[serde(deny_unknown_fields, rename_all = "kebab-case")]
139 pub enum FdtPosition {
140 /// At the start of RAM.
141 Start,
142 /// Near the end of RAM.
143 End,
144 /// After the payload, with some padding for alignment.
145 AfterPayload,
146 }
147
148 /// Set of CPU cores.
149 #[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
150 pub struct CpuSet(Vec<usize>);
151
152 impl CpuSet {
new<I: IntoIterator<Item = usize>>(cpus: I) -> Self153 pub fn new<I: IntoIterator<Item = usize>>(cpus: I) -> Self {
154 CpuSet(cpus.into_iter().collect())
155 }
156
iter(&self) -> std::slice::Iter<'_, usize>157 pub fn iter(&self) -> std::slice::Iter<'_, usize> {
158 self.0.iter()
159 }
160 }
161
162 impl FromIterator<usize> for CpuSet {
from_iter<T>(iter: T) -> Self where T: IntoIterator<Item = usize>,163 fn from_iter<T>(iter: T) -> Self
164 where
165 T: IntoIterator<Item = usize>,
166 {
167 CpuSet::new(iter)
168 }
169 }
170
171 /// The SVE config for Vcpus.
172 #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
173 #[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Deserialize, Serialize)]
174 #[serde(deny_unknown_fields, rename_all = "kebab-case")]
175 pub struct SveConfig {
176 /// Use SVE
177 #[serde(default)]
178 pub enable: bool,
179 /// Detect if SVE is available and enable accordingly. `enable` is ignored if auto is true
180 #[serde(default)]
181 pub auto: bool,
182 }
183
parse_cpu_range(s: &str, cpuset: &mut Vec<usize>) -> Result<(), String>184 fn parse_cpu_range(s: &str, cpuset: &mut Vec<usize>) -> Result<(), String> {
185 fn parse_cpu(s: &str) -> Result<usize, String> {
186 s.parse().map_err(|_| {
187 format!(
188 "invalid CPU index {} - index must be a non-negative integer",
189 s
190 )
191 })
192 }
193
194 let (first_cpu, last_cpu) = match s.split_once('-') {
195 Some((first_cpu, last_cpu)) => {
196 let first_cpu = parse_cpu(first_cpu)?;
197 let last_cpu = parse_cpu(last_cpu)?;
198
199 if last_cpu < first_cpu {
200 return Err(format!(
201 "invalid CPU range {} - ranges must be from low to high",
202 s
203 ));
204 }
205 (first_cpu, last_cpu)
206 }
207 None => {
208 let cpu = parse_cpu(s)?;
209 (cpu, cpu)
210 }
211 };
212
213 cpuset.extend(first_cpu..=last_cpu);
214
215 Ok(())
216 }
217
218 impl FromStr for CpuSet {
219 type Err = String;
220
from_str(s: &str) -> Result<Self, Self::Err>221 fn from_str(s: &str) -> Result<Self, Self::Err> {
222 let mut cpuset = Vec::new();
223 for part in s.split(',') {
224 parse_cpu_range(part, &mut cpuset)?;
225 }
226 Ok(CpuSet::new(cpuset))
227 }
228 }
229
230 impl Deref for CpuSet {
231 type Target = Vec<usize>;
232
deref(&self) -> &Self::Target233 fn deref(&self) -> &Self::Target {
234 &self.0
235 }
236 }
237
238 impl IntoIterator for CpuSet {
239 type Item = usize;
240 type IntoIter = std::vec::IntoIter<Self::Item>;
241
into_iter(self) -> Self::IntoIter242 fn into_iter(self) -> Self::IntoIter {
243 self.0.into_iter()
244 }
245 }
246
247 /// Deserializes a `CpuSet` from a sequence which elements can either be integers, or strings
248 /// representing CPU ranges (e.g. `5-8`).
249 impl<'de> Deserialize<'de> for CpuSet {
deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: serde::Deserializer<'de>,250 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
251 where
252 D: serde::Deserializer<'de>,
253 {
254 struct CpuSetVisitor;
255 impl<'de> Visitor<'de> for CpuSetVisitor {
256 type Value = CpuSet;
257
258 fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
259 formatter.write_str("CpuSet")
260 }
261
262 fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
263 where
264 A: serde::de::SeqAccess<'de>,
265 {
266 #[derive(Deserialize)]
267 #[serde(untagged)]
268 enum CpuSetValue<'a> {
269 Single(usize),
270 Range(&'a str),
271 }
272
273 let mut cpus = Vec::new();
274 while let Some(cpuset) = seq.next_element::<CpuSetValue>()? {
275 match cpuset {
276 CpuSetValue::Single(cpu) => cpus.push(cpu),
277 CpuSetValue::Range(range) => {
278 parse_cpu_range(range, &mut cpus).map_err(serde::de::Error::custom)?;
279 }
280 }
281 }
282
283 Ok(CpuSet::new(cpus))
284 }
285 }
286
287 deserializer.deserialize_seq(CpuSetVisitor)
288 }
289 }
290
291 /// Serializes a `CpuSet` into a sequence of integers and strings representing CPU ranges.
292 impl Serialize for CpuSet {
serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::Serializer,293 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
294 where
295 S: serde::Serializer,
296 {
297 use serde::ser::SerializeSeq;
298
299 let mut seq = serializer.serialize_seq(None)?;
300
301 // Factorize ranges into "a-b" strings.
302 let mut serialize_range = |start: usize, end: usize| -> Result<(), S::Error> {
303 if start == end {
304 seq.serialize_element(&start)?;
305 } else {
306 seq.serialize_element(&format!("{}-{}", start, end))?;
307 }
308
309 Ok(())
310 };
311
312 // Current range.
313 let mut range = None;
314 for core in &self.0 {
315 range = match range {
316 None => Some((core, core)),
317 Some((start, end)) if *end == *core - 1 => Some((start, core)),
318 Some((start, end)) => {
319 serialize_range(*start, *end)?;
320 Some((core, core))
321 }
322 };
323 }
324
325 if let Some((start, end)) = range {
326 serialize_range(*start, *end)?;
327 }
328
329 seq.end()
330 }
331 }
332
333 /// Mapping of guest VCPU threads to host CPU cores.
334 #[derive(Clone, Debug, Deserialize, PartialEq, Eq, Serialize)]
335 pub enum VcpuAffinity {
336 /// All VCPU threads will be pinned to the same set of host CPU cores.
337 Global(CpuSet),
338 /// Each VCPU may be pinned to a set of host CPU cores.
339 /// The map key is a guest VCPU index, and the corresponding value is the set of
340 /// host CPU indices that the VCPU thread will be allowed to run on.
341 /// If a VCPU index is not present in the map, its affinity will not be set.
342 PerVcpu(BTreeMap<usize, CpuSet>),
343 }
344
345 /// Memory region with optional size.
346 #[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize, FromKeyValues)]
347 pub struct MemoryRegionConfig {
348 pub start: u64,
349 pub size: Option<u64>,
350 }
351
352 /// General PCI config.
353 #[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Serialize, Deserialize, FromKeyValues)]
354 pub struct PciConfig {
355 /// region for PCI Configuration Access Mechanism
356 #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
357 pub cam: Option<MemoryRegionConfig>,
358 /// region for PCIe Enhanced Configuration Access Mechanism
359 #[cfg(target_arch = "x86_64")]
360 pub ecam: Option<MemoryRegionConfig>,
361 /// region for non-prefetchable PCI device memory below 4G
362 pub mem: Option<MemoryRegionConfig>,
363 }
364
365 /// Holds the pieces needed to build a VM. Passed to `build_vm` in the `LinuxArch` trait below to
366 /// create a `RunnableLinuxVm`.
367 #[sorted]
368 pub struct VmComponents {
369 #[cfg(all(target_arch = "x86_64", unix))]
370 pub ac_adapter: bool,
371 pub acpi_sdts: Vec<SDT>,
372 pub android_fstab: Option<File>,
373 pub boot_cpu: usize,
374 pub bootorder_fw_cfg_blob: Vec<u8>,
375 #[cfg(target_arch = "x86_64")]
376 pub break_linux_pci_config_io: bool,
377 pub cpu_capacity: BTreeMap<usize, u32>,
378 pub cpu_clusters: Vec<CpuSet>,
379 #[cfg(all(
380 any(target_arch = "arm", target_arch = "aarch64"),
381 any(target_os = "android", target_os = "linux")
382 ))]
383 pub cpu_frequencies: BTreeMap<usize, Vec<u32>>,
384 pub delay_rt: bool,
385 pub dynamic_power_coefficient: BTreeMap<usize, u32>,
386 pub extra_kernel_params: Vec<String>,
387 #[cfg(target_arch = "x86_64")]
388 pub force_s2idle: bool,
389 pub fw_cfg_enable: bool,
390 pub fw_cfg_parameters: Vec<FwCfgParameters>,
391 pub host_cpu_topology: bool,
392 pub hugepages: bool,
393 pub hv_cfg: hypervisor::Config,
394 pub initrd_image: Option<File>,
395 pub itmt: bool,
396 pub memory_size: u64,
397 pub no_i8042: bool,
398 pub no_rtc: bool,
399 pub no_smt: bool,
400 #[cfg(all(
401 any(target_arch = "arm", target_arch = "aarch64"),
402 any(target_os = "android", target_os = "linux")
403 ))]
404 pub normalized_cpu_ipc_ratios: BTreeMap<usize, u32>,
405 pub pci_config: PciConfig,
406 pub pflash_block_size: u32,
407 pub pflash_image: Option<File>,
408 pub pstore: Option<Pstore>,
409 /// A file to load as pVM firmware. Must be `Some` iff
410 /// `hv_cfg.protection_type == ProtectionType::UnprotectedWithFirmware`.
411 pub pvm_fw: Option<File>,
412 pub rt_cpus: CpuSet,
413 #[cfg(target_arch = "x86_64")]
414 pub smbios: SmbiosOptions,
415 #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
416 pub sve_config: SveConfig,
417 pub swiotlb: Option<u64>,
418 pub vcpu_affinity: Option<VcpuAffinity>,
419 pub vcpu_count: usize,
420 #[cfg(all(
421 any(target_arch = "arm", target_arch = "aarch64"),
422 any(target_os = "android", target_os = "linux")
423 ))]
424 pub vcpu_domain_paths: BTreeMap<usize, PathBuf>,
425 #[cfg(all(
426 any(target_arch = "arm", target_arch = "aarch64"),
427 any(target_os = "android", target_os = "linux")
428 ))]
429 pub vcpu_domains: BTreeMap<usize, u32>,
430 #[cfg(all(
431 any(target_arch = "arm", target_arch = "aarch64"),
432 any(target_os = "android", target_os = "linux")
433 ))]
434 pub virt_cpufreq_v2: bool,
435 pub vm_image: VmImage,
436 }
437
438 /// Holds the elements needed to run a Linux VM. Created by `build_vm`.
439 #[sorted]
440 pub struct RunnableLinuxVm<V: VmArch, Vcpu: VcpuArch> {
441 pub bat_control: Option<BatControl>,
442 pub delay_rt: bool,
443 pub devices_thread: Option<std::thread::JoinHandle<()>>,
444 pub hotplug_bus: BTreeMap<u8, Arc<Mutex<dyn HotPlugBus>>>,
445 pub io_bus: Arc<Bus>,
446 pub irq_chip: Box<dyn IrqChipArch>,
447 pub mmio_bus: Arc<Bus>,
448 pub no_smt: bool,
449 pub pid_debug_label_map: BTreeMap<u32, String>,
450 #[cfg(any(target_os = "android", target_os = "linux"))]
451 pub platform_devices: Vec<Arc<Mutex<dyn BusDevice>>>,
452 pub pm: Option<Arc<Mutex<dyn PmResource + Send>>>,
453 /// Devices to be notified before the system resumes from the S3 suspended state.
454 pub resume_notify_devices: Vec<Arc<Mutex<dyn BusResumeDevice>>>,
455 pub root_config: Arc<Mutex<PciRoot>>,
456 pub rt_cpus: CpuSet,
457 pub suspend_tube: (Arc<Mutex<SendTube>>, RecvTube),
458 pub vcpu_affinity: Option<VcpuAffinity>,
459 pub vcpu_count: usize,
460 pub vcpu_init: Vec<VcpuInitArch>,
461 /// If vcpus is None, then it's the responsibility of the vcpu thread to create vcpus.
462 /// If it's Some, then `build_vm` already created the vcpus.
463 pub vcpus: Option<Vec<Vcpu>>,
464 pub vm: V,
465 pub vm_request_tubes: Vec<Tube>,
466 }
467
468 /// The device and optional jail.
469 pub struct VirtioDeviceStub {
470 pub dev: Box<dyn VirtioDevice>,
471 pub jail: Option<Minijail>,
472 }
473
474 /// Trait which is implemented for each Linux Architecture in order to
475 /// set up the memory, cpus, and system devices and to boot the kernel.
476 pub trait LinuxArch {
477 type Error: StdError;
478 type ArchMemoryLayout;
479
480 /// Decide architecture specific memory layout details to be used by later stages of the VM
481 /// setup.
arch_memory_layout( components: &VmComponents, ) -> std::result::Result<Self::ArchMemoryLayout, Self::Error>482 fn arch_memory_layout(
483 components: &VmComponents,
484 ) -> std::result::Result<Self::ArchMemoryLayout, Self::Error>;
485
486 /// Returns a Vec of the valid memory addresses as pairs of address and length. These should be
487 /// used to configure the `GuestMemory` structure for the platform.
488 ///
489 /// # Arguments
490 ///
491 /// * `components` - Parts used to determine the memory layout.
guest_memory_layout( components: &VmComponents, arch_memory_layout: &Self::ArchMemoryLayout, hypervisor: &impl hypervisor::Hypervisor, ) -> std::result::Result<Vec<(GuestAddress, u64, MemoryRegionOptions)>, Self::Error>492 fn guest_memory_layout(
493 components: &VmComponents,
494 arch_memory_layout: &Self::ArchMemoryLayout,
495 hypervisor: &impl hypervisor::Hypervisor,
496 ) -> std::result::Result<Vec<(GuestAddress, u64, MemoryRegionOptions)>, Self::Error>;
497
498 /// Gets the configuration for a new `SystemAllocator` that fits the given `Vm`'s memory layout.
499 ///
500 /// This is the per-architecture template for constructing the `SystemAllocator`. Platform
501 /// agnostic modifications may be made to this configuration, but the final `SystemAllocator`
502 /// will be at least as strict as this configuration.
503 ///
504 /// # Arguments
505 ///
506 /// * `vm` - The virtual machine to be used as a template for the `SystemAllocator`.
get_system_allocator_config<V: Vm>( vm: &V, arch_memory_layout: &Self::ArchMemoryLayout, ) -> SystemAllocatorConfig507 fn get_system_allocator_config<V: Vm>(
508 vm: &V,
509 arch_memory_layout: &Self::ArchMemoryLayout,
510 ) -> SystemAllocatorConfig;
511
512 /// Takes `VmComponents` and generates a `RunnableLinuxVm`.
513 ///
514 /// # Arguments
515 ///
516 /// * `components` - Parts to use to build the VM.
517 /// * `vm_evt_wrtube` - Tube used by sub-devices to request that crosvm exit because guest wants
518 /// to stop/shut down or requested reset.
519 /// * `system_allocator` - Allocator created by this trait's implementation of
520 /// `get_system_allocator_config`.
521 /// * `serial_parameters` - Definitions for how the serial devices should be configured.
522 /// * `serial_jail` - Jail used for serial devices created here.
523 /// * `battery` - Defines what battery device will be created.
524 /// * `vm` - A VM implementation to build upon.
525 /// * `ramoops_region` - Region allocated for ramoops.
526 /// * `devices` - The devices to be built into the VM.
527 /// * `irq_chip` - The IRQ chip implemention for the VM.
528 /// * `debugcon_jail` - Jail used for debugcon devices created here.
529 /// * `pflash_jail` - Jail used for pflash device created here.
530 /// * `fw_cfg_jail` - Jail used for fw_cfg device created here.
531 /// * `device_tree_overlays` - Device tree overlay binaries
build_vm<V, Vcpu>( components: VmComponents, arch_memory_layout: &Self::ArchMemoryLayout, vm_evt_wrtube: &SendTube, system_allocator: &mut SystemAllocator, serial_parameters: &BTreeMap<(SerialHardware, u8), SerialParameters>, serial_jail: Option<Minijail>, battery: (Option<BatteryType>, Option<Minijail>), vm: V, ramoops_region: Option<pstore::RamoopsRegion>, devices: Vec<(Box<dyn BusDeviceObj>, Option<Minijail>)>, irq_chip: &mut dyn IrqChipArch, vcpu_ids: &mut Vec<usize>, dump_device_tree_blob: Option<PathBuf>, debugcon_jail: Option<Minijail>, #[cfg(target_arch = "x86_64")] pflash_jail: Option<Minijail>, #[cfg(target_arch = "x86_64")] fw_cfg_jail: Option<Minijail>, #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>, guest_suspended_cvar: Option<Arc<(Mutex<bool>, Condvar)>>, device_tree_overlays: Vec<DtbOverlay>, fdt_position: Option<FdtPosition>, no_pmu: bool, ) -> std::result::Result<RunnableLinuxVm<V, Vcpu>, Self::Error> where V: VmArch, Vcpu: VcpuArch532 fn build_vm<V, Vcpu>(
533 components: VmComponents,
534 arch_memory_layout: &Self::ArchMemoryLayout,
535 vm_evt_wrtube: &SendTube,
536 system_allocator: &mut SystemAllocator,
537 serial_parameters: &BTreeMap<(SerialHardware, u8), SerialParameters>,
538 serial_jail: Option<Minijail>,
539 battery: (Option<BatteryType>, Option<Minijail>),
540 vm: V,
541 ramoops_region: Option<pstore::RamoopsRegion>,
542 devices: Vec<(Box<dyn BusDeviceObj>, Option<Minijail>)>,
543 irq_chip: &mut dyn IrqChipArch,
544 vcpu_ids: &mut Vec<usize>,
545 dump_device_tree_blob: Option<PathBuf>,
546 debugcon_jail: Option<Minijail>,
547 #[cfg(target_arch = "x86_64")] pflash_jail: Option<Minijail>,
548 #[cfg(target_arch = "x86_64")] fw_cfg_jail: Option<Minijail>,
549 #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>,
550 guest_suspended_cvar: Option<Arc<(Mutex<bool>, Condvar)>>,
551 device_tree_overlays: Vec<DtbOverlay>,
552 fdt_position: Option<FdtPosition>,
553 no_pmu: bool,
554 ) -> std::result::Result<RunnableLinuxVm<V, Vcpu>, Self::Error>
555 where
556 V: VmArch,
557 Vcpu: VcpuArch;
558
559 /// Configures the vcpu and should be called once per vcpu from the vcpu's thread.
560 ///
561 /// # Arguments
562 ///
563 /// * `vm` - The virtual machine object.
564 /// * `hypervisor` - The `Hypervisor` that created the vcpu.
565 /// * `irq_chip` - The `IrqChip` associated with this vm.
566 /// * `vcpu` - The VCPU object to configure.
567 /// * `vcpu_init` - The data required to initialize VCPU registers and other state.
568 /// * `vcpu_id` - The id of the given `vcpu`.
569 /// * `num_cpus` - Number of virtual CPUs the guest will have.
570 /// * `cpu_config` - CPU feature configurations.
configure_vcpu<V: Vm>( vm: &V, hypervisor: &dyn HypervisorArch, irq_chip: &mut dyn IrqChipArch, vcpu: &mut dyn VcpuArch, vcpu_init: VcpuInitArch, vcpu_id: usize, num_cpus: usize, cpu_config: Option<CpuConfigArch>, ) -> Result<(), Self::Error>571 fn configure_vcpu<V: Vm>(
572 vm: &V,
573 hypervisor: &dyn HypervisorArch,
574 irq_chip: &mut dyn IrqChipArch,
575 vcpu: &mut dyn VcpuArch,
576 vcpu_init: VcpuInitArch,
577 vcpu_id: usize,
578 num_cpus: usize,
579 cpu_config: Option<CpuConfigArch>,
580 ) -> Result<(), Self::Error>;
581
582 /// Configures and add a pci device into vm
register_pci_device<V: VmArch, Vcpu: VcpuArch>( linux: &mut RunnableLinuxVm<V, Vcpu>, device: Box<dyn PciDevice>, #[cfg(any(target_os = "android", target_os = "linux"))] minijail: Option<Minijail>, resources: &mut SystemAllocator, hp_control_tube: &mpsc::Sender<PciRootCommand>, #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>, ) -> Result<PciAddress, Self::Error>583 fn register_pci_device<V: VmArch, Vcpu: VcpuArch>(
584 linux: &mut RunnableLinuxVm<V, Vcpu>,
585 device: Box<dyn PciDevice>,
586 #[cfg(any(target_os = "android", target_os = "linux"))] minijail: Option<Minijail>,
587 resources: &mut SystemAllocator,
588 hp_control_tube: &mpsc::Sender<PciRootCommand>,
589 #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>,
590 ) -> Result<PciAddress, Self::Error>;
591
592 /// Returns frequency map for each of the host's logical cores.
get_host_cpu_frequencies_khz() -> Result<BTreeMap<usize, Vec<u32>>, Self::Error>593 fn get_host_cpu_frequencies_khz() -> Result<BTreeMap<usize, Vec<u32>>, Self::Error>;
594
595 /// Returns max-freq map of the host's logical cores.
get_host_cpu_max_freq_khz() -> Result<BTreeMap<usize, u32>, Self::Error>596 fn get_host_cpu_max_freq_khz() -> Result<BTreeMap<usize, u32>, Self::Error>;
597
598 /// Returns capacity map of the host's logical cores.
get_host_cpu_capacity() -> Result<BTreeMap<usize, u32>, Self::Error>599 fn get_host_cpu_capacity() -> Result<BTreeMap<usize, u32>, Self::Error>;
600
601 /// Returns cluster masks for each of the host's logical cores.
get_host_cpu_clusters() -> Result<Vec<CpuSet>, Self::Error>602 fn get_host_cpu_clusters() -> Result<Vec<CpuSet>, Self::Error>;
603 }
604
605 #[cfg(feature = "gdb")]
606 pub trait GdbOps<T: VcpuArch> {
607 type Error: StdError;
608
609 /// Reads vCPU's registers.
read_registers(vcpu: &T) -> Result<<GdbArch as Arch>::Registers, Self::Error>610 fn read_registers(vcpu: &T) -> Result<<GdbArch as Arch>::Registers, Self::Error>;
611
612 /// Writes vCPU's registers.
write_registers(vcpu: &T, regs: &<GdbArch as Arch>::Registers) -> Result<(), Self::Error>613 fn write_registers(vcpu: &T, regs: &<GdbArch as Arch>::Registers) -> Result<(), Self::Error>;
614
615 /// Reads bytes from the guest memory.
read_memory( vcpu: &T, guest_mem: &GuestMemory, vaddr: GuestAddress, len: usize, ) -> Result<Vec<u8>, Self::Error>616 fn read_memory(
617 vcpu: &T,
618 guest_mem: &GuestMemory,
619 vaddr: GuestAddress,
620 len: usize,
621 ) -> Result<Vec<u8>, Self::Error>;
622
623 /// Writes bytes to the specified guest memory.
write_memory( vcpu: &T, guest_mem: &GuestMemory, vaddr: GuestAddress, buf: &[u8], ) -> Result<(), Self::Error>624 fn write_memory(
625 vcpu: &T,
626 guest_mem: &GuestMemory,
627 vaddr: GuestAddress,
628 buf: &[u8],
629 ) -> Result<(), Self::Error>;
630
631 /// Reads bytes from the guest register.
632 ///
633 /// Returns an empty vector if `reg_id` is valid but the register is not available.
read_register(vcpu: &T, reg_id: <GdbArch as Arch>::RegId) -> Result<Vec<u8>, Self::Error>634 fn read_register(vcpu: &T, reg_id: <GdbArch as Arch>::RegId) -> Result<Vec<u8>, Self::Error>;
635
636 /// Writes bytes to the specified guest register.
write_register( vcpu: &T, reg_id: <GdbArch as Arch>::RegId, data: &[u8], ) -> Result<(), Self::Error>637 fn write_register(
638 vcpu: &T,
639 reg_id: <GdbArch as Arch>::RegId,
640 data: &[u8],
641 ) -> Result<(), Self::Error>;
642
643 /// Make the next vCPU's run single-step.
enable_singlestep(vcpu: &T) -> Result<(), Self::Error>644 fn enable_singlestep(vcpu: &T) -> Result<(), Self::Error>;
645
646 /// Get maximum number of hardware breakpoints.
get_max_hw_breakpoints(vcpu: &T) -> Result<usize, Self::Error>647 fn get_max_hw_breakpoints(vcpu: &T) -> Result<usize, Self::Error>;
648
649 /// Set hardware breakpoints at the given addresses.
set_hw_breakpoints(vcpu: &T, breakpoints: &[GuestAddress]) -> Result<(), Self::Error>650 fn set_hw_breakpoints(vcpu: &T, breakpoints: &[GuestAddress]) -> Result<(), Self::Error>;
651 }
652
653 /// Errors for device manager.
654 #[sorted]
655 #[derive(Error, Debug)]
656 pub enum DeviceRegistrationError {
657 /// No more MMIO space available.
658 #[error("no more addresses are available")]
659 AddrsExhausted,
660 /// Could not allocate device address space for the device.
661 #[error("Allocating device addresses: {0}")]
662 AllocateDeviceAddrs(PciDeviceError),
663 /// Could not allocate IO space for the device.
664 #[error("Allocating IO addresses: {0}")]
665 AllocateIoAddrs(PciDeviceError),
666 /// Could not allocate MMIO or IO resource for the device.
667 #[error("Allocating IO resource: {0}")]
668 AllocateIoResource(resources::Error),
669 /// Could not allocate an IRQ number.
670 #[error("Allocating IRQ number")]
671 AllocateIrq,
672 /// Could not allocate IRQ resource for the device.
673 #[cfg(any(target_os = "android", target_os = "linux"))]
674 #[error("Allocating IRQ resource: {0}")]
675 AllocateIrqResource(devices::vfio::VfioError),
676 /// Broken pci topology
677 #[error("pci topology is broken")]
678 BrokenPciTopology,
679 /// Unable to clone a jail for the device.
680 #[cfg(any(target_os = "android", target_os = "linux"))]
681 #[error("failed to clone jail: {0}")]
682 CloneJail(minijail::Error),
683 /// Appending to kernel command line failed.
684 #[error("unable to add device to kernel command line: {0}")]
685 Cmdline(kernel_cmdline::Error),
686 /// Configure window size failed.
687 #[error("failed to configure window size: {0}")]
688 ConfigureWindowSize(PciDeviceError),
689 // Unable to create a pipe.
690 #[error("failed to create pipe: {0}")]
691 CreatePipe(base::Error),
692 // Unable to create a root.
693 #[error("failed to create pci root: {0}")]
694 CreateRoot(anyhow::Error),
695 // Unable to create serial device from serial parameters
696 #[error("failed to create serial device: {0}")]
697 CreateSerialDevice(devices::SerialError),
698 // Unable to create tube
699 #[error("failed to create tube: {0}")]
700 CreateTube(base::TubeError),
701 /// Could not clone an event.
702 #[error("failed to clone event: {0}")]
703 EventClone(base::Error),
704 /// Could not create an event.
705 #[error("failed to create event: {0}")]
706 EventCreate(base::Error),
707 /// Failed to generate ACPI content.
708 #[error("failed to generate ACPI content")]
709 GenerateAcpi,
710 /// No more IRQs are available.
711 #[error("no more IRQs are available")]
712 IrqsExhausted,
713 /// VFIO device is missing a DT symbol.
714 #[error("cannot match VFIO device to DT node due to a missing symbol")]
715 MissingDeviceTreeSymbol,
716 /// Missing a required serial device.
717 #[error("missing required serial device {0}")]
718 MissingRequiredSerialDevice(u8),
719 /// Could not add a device to the mmio bus.
720 #[error("failed to add to mmio bus: {0}")]
721 MmioInsert(BusError),
722 /// Failed to insert device into PCI root.
723 #[error("failed to insert device into PCI root: {0}")]
724 PciRootAddDevice(PciDeviceError),
725 #[cfg(any(target_os = "android", target_os = "linux"))]
726 /// Failed to initialize proxy device for jailed device.
727 #[error("failed to create proxy device: {0}")]
728 ProxyDeviceCreation(devices::ProxyError),
729 #[cfg(any(target_os = "android", target_os = "linux"))]
730 /// Failed to register battery device.
731 #[error("failed to register battery device to VM: {0}")]
732 RegisterBattery(devices::BatteryError),
733 /// Could not register PCI device to pci root bus
734 #[error("failed to register PCI device to pci root bus")]
735 RegisterDevice(SendError<PciRootCommand>),
736 /// Could not register PCI device capabilities.
737 #[error("could not register PCI device capabilities: {0}")]
738 RegisterDeviceCapabilities(PciDeviceError),
739 /// Failed to register ioevent with VM.
740 #[error("failed to register ioevent to VM: {0}")]
741 RegisterIoevent(base::Error),
742 /// Failed to register irq event with VM.
743 #[error("failed to register irq event to VM: {0}")]
744 RegisterIrqfd(base::Error),
745 /// Could not setup VFIO platform IRQ for the device.
746 #[error("Setting up VFIO platform IRQ: {0}")]
747 SetupVfioPlatformIrq(anyhow::Error),
748 }
749
750 /// Config a PCI device for used by this vm.
configure_pci_device<V: VmArch, Vcpu: VcpuArch>( linux: &mut RunnableLinuxVm<V, Vcpu>, mut device: Box<dyn PciDevice>, #[cfg(any(target_os = "android", target_os = "linux"))] jail: Option<Minijail>, resources: &mut SystemAllocator, hp_control_tube: &mpsc::Sender<PciRootCommand>, #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>, ) -> Result<PciAddress, DeviceRegistrationError>751 pub fn configure_pci_device<V: VmArch, Vcpu: VcpuArch>(
752 linux: &mut RunnableLinuxVm<V, Vcpu>,
753 mut device: Box<dyn PciDevice>,
754 #[cfg(any(target_os = "android", target_os = "linux"))] jail: Option<Minijail>,
755 resources: &mut SystemAllocator,
756 hp_control_tube: &mpsc::Sender<PciRootCommand>,
757 #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>,
758 ) -> Result<PciAddress, DeviceRegistrationError> {
759 // Allocate PCI device address before allocating BARs.
760 let pci_address = device
761 .allocate_address(resources)
762 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
763
764 // Allocate ranges that may need to be in the low MMIO region (MmioType::Low).
765 let mmio_ranges = device
766 .allocate_io_bars(resources)
767 .map_err(DeviceRegistrationError::AllocateIoAddrs)?;
768
769 // Allocate device ranges that may be in low or high MMIO after low-only ranges.
770 let device_ranges = device
771 .allocate_device_bars(resources)
772 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
773
774 // If device is a pcie bridge, add its pci bus to pci root
775 if let Some(pci_bus) = device.get_new_pci_bus() {
776 hp_control_tube
777 .send(PciRootCommand::AddBridge(pci_bus))
778 .map_err(DeviceRegistrationError::RegisterDevice)?;
779 let bar_ranges = Vec::new();
780 device
781 .configure_bridge_window(resources, &bar_ranges)
782 .map_err(DeviceRegistrationError::ConfigureWindowSize)?;
783 }
784
785 // Do not suggest INTx for hot-plug devices.
786 let intx_event = devices::IrqLevelEvent::new().map_err(DeviceRegistrationError::EventCreate)?;
787
788 if let PreferredIrq::Fixed { pin, gsi } = device.preferred_irq() {
789 resources.reserve_irq(gsi);
790
791 device.assign_irq(
792 intx_event
793 .try_clone()
794 .map_err(DeviceRegistrationError::EventClone)?,
795 pin,
796 gsi,
797 );
798
799 linux
800 .irq_chip
801 .as_irq_chip_mut()
802 .register_level_irq_event(gsi, &intx_event, IrqEventSource::from_device(&device))
803 .map_err(DeviceRegistrationError::RegisterIrqfd)?;
804 }
805
806 let mut keep_rds = device.keep_rds();
807 syslog::push_descriptors(&mut keep_rds);
808 cros_tracing::push_descriptors!(&mut keep_rds);
809 metrics::push_descriptors(&mut keep_rds);
810
811 device
812 .register_device_capabilities()
813 .map_err(DeviceRegistrationError::RegisterDeviceCapabilities)?;
814
815 #[cfg(any(target_os = "android", target_os = "linux"))]
816 let arced_dev: Arc<Mutex<dyn BusDevice>> = if let Some(jail) = jail {
817 let proxy = ProxyDevice::new(
818 device,
819 jail,
820 keep_rds,
821 #[cfg(feature = "swap")]
822 swap_controller,
823 )
824 .map_err(DeviceRegistrationError::ProxyDeviceCreation)?;
825 linux
826 .pid_debug_label_map
827 .insert(proxy.pid() as u32, proxy.debug_label());
828 Arc::new(Mutex::new(proxy))
829 } else {
830 device.on_sandboxed();
831 Arc::new(Mutex::new(device))
832 };
833
834 #[cfg(windows)]
835 let arced_dev = {
836 device.on_sandboxed();
837 Arc::new(Mutex::new(device))
838 };
839
840 #[cfg(any(target_os = "android", target_os = "linux"))]
841 hp_control_tube
842 .send(PciRootCommand::Add(pci_address, arced_dev.clone()))
843 .map_err(DeviceRegistrationError::RegisterDevice)?;
844
845 for range in &mmio_ranges {
846 linux
847 .mmio_bus
848 .insert(arced_dev.clone(), range.addr, range.size)
849 .map_err(DeviceRegistrationError::MmioInsert)?;
850 }
851
852 for range in &device_ranges {
853 linux
854 .mmio_bus
855 .insert(arced_dev.clone(), range.addr, range.size)
856 .map_err(DeviceRegistrationError::MmioInsert)?;
857 }
858
859 Ok(pci_address)
860 }
861
862 // Generate pci topology starting from parent bus
generate_pci_topology( parent_bus: Arc<Mutex<PciBus>>, resources: &mut SystemAllocator, io_ranges: &mut BTreeMap<usize, Vec<BarRange>>, device_ranges: &mut BTreeMap<usize, Vec<BarRange>>, device_addrs: &[PciAddress], devices: &mut Vec<(Box<dyn PciDevice>, Option<Minijail>)>, ) -> Result<(Vec<BarRange>, u8), DeviceRegistrationError>863 fn generate_pci_topology(
864 parent_bus: Arc<Mutex<PciBus>>,
865 resources: &mut SystemAllocator,
866 io_ranges: &mut BTreeMap<usize, Vec<BarRange>>,
867 device_ranges: &mut BTreeMap<usize, Vec<BarRange>>,
868 device_addrs: &[PciAddress],
869 devices: &mut Vec<(Box<dyn PciDevice>, Option<Minijail>)>,
870 ) -> Result<(Vec<BarRange>, u8), DeviceRegistrationError> {
871 let mut bar_ranges = Vec::new();
872 let bus_num = parent_bus.lock().get_bus_num();
873 let mut subordinate_bus = bus_num;
874 for (dev_idx, addr) in device_addrs.iter().enumerate() {
875 // Only target for devices that located on this bus
876 if addr.bus == bus_num {
877 // If this device is a pci bridge (a.k.a., it has a pci bus structure),
878 // create its topology recursively
879 if let Some(child_bus) = devices[dev_idx].0.get_new_pci_bus() {
880 let (child_bar_ranges, child_sub_bus) = generate_pci_topology(
881 child_bus.clone(),
882 resources,
883 io_ranges,
884 device_ranges,
885 device_addrs,
886 devices,
887 )?;
888 let device = &mut devices[dev_idx].0;
889 parent_bus
890 .lock()
891 .add_child_bus(child_bus.clone())
892 .map_err(|_| DeviceRegistrationError::BrokenPciTopology)?;
893 let bridge_window = device
894 .configure_bridge_window(resources, &child_bar_ranges)
895 .map_err(DeviceRegistrationError::ConfigureWindowSize)?;
896 bar_ranges.extend(bridge_window);
897
898 let ranges = device
899 .allocate_io_bars(resources)
900 .map_err(DeviceRegistrationError::AllocateIoAddrs)?;
901 io_ranges.insert(dev_idx, ranges.clone());
902 bar_ranges.extend(ranges);
903
904 let ranges = device
905 .allocate_device_bars(resources)
906 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
907 device_ranges.insert(dev_idx, ranges.clone());
908 bar_ranges.extend(ranges);
909
910 device.set_subordinate_bus(child_sub_bus);
911
912 subordinate_bus = std::cmp::max(subordinate_bus, child_sub_bus);
913 }
914 }
915 }
916
917 for (dev_idx, addr) in device_addrs.iter().enumerate() {
918 if addr.bus == bus_num {
919 let device = &mut devices[dev_idx].0;
920 // Allocate MMIO for non-bridge devices
921 if device.get_new_pci_bus().is_none() {
922 let ranges = device
923 .allocate_io_bars(resources)
924 .map_err(DeviceRegistrationError::AllocateIoAddrs)?;
925 io_ranges.insert(dev_idx, ranges.clone());
926 bar_ranges.extend(ranges);
927
928 let ranges = device
929 .allocate_device_bars(resources)
930 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
931 device_ranges.insert(dev_idx, ranges.clone());
932 bar_ranges.extend(ranges);
933 }
934 }
935 }
936 Ok((bar_ranges, subordinate_bus))
937 }
938
939 /// Ensure all PCI devices have an assigned PCI address.
assign_pci_addresses( devices: &mut [(Box<dyn BusDeviceObj>, Option<Minijail>)], resources: &mut SystemAllocator, ) -> Result<(), DeviceRegistrationError>940 pub fn assign_pci_addresses(
941 devices: &mut [(Box<dyn BusDeviceObj>, Option<Minijail>)],
942 resources: &mut SystemAllocator,
943 ) -> Result<(), DeviceRegistrationError> {
944 // First allocate devices with a preferred address.
945 for pci_device in devices
946 .iter_mut()
947 .filter_map(|(device, _jail)| device.as_pci_device_mut())
948 .filter(|pci_device| pci_device.preferred_address().is_some())
949 {
950 let _ = pci_device
951 .allocate_address(resources)
952 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
953 }
954
955 // Then allocate addresses for the remaining devices.
956 for pci_device in devices
957 .iter_mut()
958 .filter_map(|(device, _jail)| device.as_pci_device_mut())
959 .filter(|pci_device| pci_device.preferred_address().is_none())
960 {
961 let _ = pci_device
962 .allocate_address(resources)
963 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
964 }
965
966 Ok(())
967 }
968
969 /// Creates a root PCI device for use by this Vm.
generate_pci_root( mut devices: Vec<(Box<dyn PciDevice>, Option<Minijail>)>, irq_chip: &mut dyn IrqChip, mmio_bus: Arc<Bus>, mmio_base: GuestAddress, mmio_register_bit_num: usize, io_bus: Arc<Bus>, resources: &mut SystemAllocator, vm: &mut impl Vm, max_irqs: usize, vcfg_base: Option<u64>, #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>, ) -> Result< ( PciRoot, Vec<(PciAddress, u32, PciInterruptPin)>, BTreeMap<u32, String>, BTreeMap<PciAddress, Vec<u8>>, BTreeMap<PciAddress, Vec<u8>>, ), DeviceRegistrationError, >970 pub fn generate_pci_root(
971 mut devices: Vec<(Box<dyn PciDevice>, Option<Minijail>)>,
972 irq_chip: &mut dyn IrqChip,
973 mmio_bus: Arc<Bus>,
974 mmio_base: GuestAddress,
975 mmio_register_bit_num: usize,
976 io_bus: Arc<Bus>,
977 resources: &mut SystemAllocator,
978 vm: &mut impl Vm,
979 max_irqs: usize,
980 vcfg_base: Option<u64>,
981 #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>,
982 ) -> Result<
983 (
984 PciRoot,
985 Vec<(PciAddress, u32, PciInterruptPin)>,
986 BTreeMap<u32, String>,
987 BTreeMap<PciAddress, Vec<u8>>,
988 BTreeMap<PciAddress, Vec<u8>>,
989 ),
990 DeviceRegistrationError,
991 > {
992 let mut device_addrs = Vec::new();
993
994 for (device, _jail) in devices.iter_mut() {
995 let address = device
996 .allocate_address(resources)
997 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
998 device_addrs.push(address);
999 }
1000
1001 let mut device_ranges = BTreeMap::new();
1002 let mut io_ranges = BTreeMap::new();
1003 let root_bus = Arc::new(Mutex::new(PciBus::new(0, 0, false)));
1004
1005 generate_pci_topology(
1006 root_bus.clone(),
1007 resources,
1008 &mut io_ranges,
1009 &mut device_ranges,
1010 &device_addrs,
1011 &mut devices,
1012 )?;
1013
1014 let mut root = PciRoot::new(
1015 vm,
1016 Arc::downgrade(&mmio_bus),
1017 mmio_base,
1018 mmio_register_bit_num,
1019 Arc::downgrade(&io_bus),
1020 root_bus,
1021 )
1022 .map_err(DeviceRegistrationError::CreateRoot)?;
1023 #[cfg_attr(windows, allow(unused_mut))]
1024 let mut pid_labels = BTreeMap::new();
1025
1026 // Allocate legacy INTx
1027 let mut pci_irqs = Vec::new();
1028 let mut irqs: Vec<u32> = Vec::new();
1029
1030 // Mapping of (bus, dev, pin) -> IRQ number.
1031 let mut dev_pin_irq = BTreeMap::new();
1032
1033 for (dev_idx, (device, _jail)) in devices.iter_mut().enumerate() {
1034 let pci_address = device_addrs[dev_idx];
1035
1036 let irq = match device.preferred_irq() {
1037 PreferredIrq::Fixed { pin, gsi } => {
1038 // The device reported a preferred IRQ, so use that rather than allocating one.
1039 resources.reserve_irq(gsi);
1040 Some((pin, gsi))
1041 }
1042 PreferredIrq::Any => {
1043 // The device did not provide a preferred IRQ but requested one, so allocate one.
1044
1045 // Choose a pin based on the slot's function number. Function 0 must always use
1046 // INTA# for single-function devices per the PCI spec, and we choose to use INTA#
1047 // for function 0 on multifunction devices and distribute the remaining functions
1048 // evenly across the other pins.
1049 let pin = match pci_address.func % 4 {
1050 0 => PciInterruptPin::IntA,
1051 1 => PciInterruptPin::IntB,
1052 2 => PciInterruptPin::IntC,
1053 _ => PciInterruptPin::IntD,
1054 };
1055
1056 // If an IRQ number has already been assigned for a different function with this
1057 // (bus, device, pin) combination, use it. Otherwise allocate a new one and insert
1058 // it into the map.
1059 let pin_key = (pci_address.bus, pci_address.dev, pin);
1060 let irq_num = if let Some(irq_num) = dev_pin_irq.get(&pin_key) {
1061 *irq_num
1062 } else {
1063 // If we have allocated fewer than `max_irqs` total, add a new irq to the `irqs`
1064 // pool. Otherwise, share one of the existing `irqs`.
1065 let irq_num = if irqs.len() < max_irqs {
1066 let irq_num = resources
1067 .allocate_irq()
1068 .ok_or(DeviceRegistrationError::AllocateIrq)?;
1069 irqs.push(irq_num);
1070 irq_num
1071 } else {
1072 // Pick one of the existing IRQs to share, using `dev_idx` to distribute IRQ
1073 // sharing evenly across devices.
1074 irqs[dev_idx % max_irqs]
1075 };
1076
1077 dev_pin_irq.insert(pin_key, irq_num);
1078 irq_num
1079 };
1080 Some((pin, irq_num))
1081 }
1082 PreferredIrq::None => {
1083 // The device does not want an INTx# IRQ.
1084 None
1085 }
1086 };
1087
1088 if let Some((pin, gsi)) = irq {
1089 let intx_event =
1090 devices::IrqLevelEvent::new().map_err(DeviceRegistrationError::EventCreate)?;
1091
1092 device.assign_irq(
1093 intx_event
1094 .try_clone()
1095 .map_err(DeviceRegistrationError::EventClone)?,
1096 pin,
1097 gsi,
1098 );
1099
1100 irq_chip
1101 .register_level_irq_event(gsi, &intx_event, IrqEventSource::from_device(device))
1102 .map_err(DeviceRegistrationError::RegisterIrqfd)?;
1103
1104 pci_irqs.push((pci_address, gsi, pin));
1105 }
1106 }
1107
1108 // To prevent issues where device's on_sandbox may spawn thread before all
1109 // sandboxed devices are sandboxed we partition iterator to go over sandboxed
1110 // first. This is needed on linux platforms. On windows, this is a no-op since
1111 // jails are always None, even for sandboxed devices.
1112 let devices = {
1113 let (sandboxed, non_sandboxed): (Vec<_>, Vec<_>) = devices
1114 .into_iter()
1115 .enumerate()
1116 .partition(|(_, (_, jail))| jail.is_some());
1117 sandboxed.into_iter().chain(non_sandboxed)
1118 };
1119
1120 let mut amls = BTreeMap::new();
1121 let mut gpe_scope_amls = BTreeMap::new();
1122 for (dev_idx, dev_value) in devices {
1123 #[cfg(any(target_os = "android", target_os = "linux"))]
1124 let (mut device, jail) = dev_value;
1125 #[cfg(windows)]
1126 let (mut device, _) = dev_value;
1127 let address = device_addrs[dev_idx];
1128
1129 let mut keep_rds = device.keep_rds();
1130 syslog::push_descriptors(&mut keep_rds);
1131 cros_tracing::push_descriptors!(&mut keep_rds);
1132 metrics::push_descriptors(&mut keep_rds);
1133 keep_rds.append(&mut vm.get_memory().as_raw_descriptors());
1134
1135 let ranges = io_ranges.remove(&dev_idx).unwrap_or_default();
1136 let device_ranges = device_ranges.remove(&dev_idx).unwrap_or_default();
1137 device
1138 .register_device_capabilities()
1139 .map_err(DeviceRegistrationError::RegisterDeviceCapabilities)?;
1140
1141 if let Some(vcfg_base) = vcfg_base {
1142 let (methods, shm) = device.generate_acpi_methods();
1143 if !methods.is_empty() {
1144 amls.insert(address, methods);
1145 }
1146 if let Some((offset, mmap)) = shm {
1147 let _ = vm.add_memory_region(
1148 GuestAddress(vcfg_base + offset as u64),
1149 Box::new(mmap),
1150 false,
1151 false,
1152 MemCacheType::CacheCoherent,
1153 );
1154 }
1155 }
1156 let gpe_nr = device.set_gpe(resources);
1157
1158 #[cfg(any(target_os = "android", target_os = "linux"))]
1159 let arced_dev: Arc<Mutex<dyn BusDevice>> = if let Some(jail) = jail {
1160 let proxy = ProxyDevice::new(
1161 device,
1162 jail,
1163 keep_rds,
1164 #[cfg(feature = "swap")]
1165 swap_controller,
1166 )
1167 .map_err(DeviceRegistrationError::ProxyDeviceCreation)?;
1168 pid_labels.insert(proxy.pid() as u32, proxy.debug_label());
1169 Arc::new(Mutex::new(proxy))
1170 } else {
1171 device.on_sandboxed();
1172 Arc::new(Mutex::new(device))
1173 };
1174 #[cfg(windows)]
1175 let arced_dev = {
1176 device.on_sandboxed();
1177 Arc::new(Mutex::new(device))
1178 };
1179 root.add_device(address, arced_dev.clone(), vm)
1180 .map_err(DeviceRegistrationError::PciRootAddDevice)?;
1181 for range in &ranges {
1182 mmio_bus
1183 .insert(arced_dev.clone(), range.addr, range.size)
1184 .map_err(DeviceRegistrationError::MmioInsert)?;
1185 }
1186
1187 for range in &device_ranges {
1188 mmio_bus
1189 .insert(arced_dev.clone(), range.addr, range.size)
1190 .map_err(DeviceRegistrationError::MmioInsert)?;
1191 }
1192
1193 if let Some(gpe_nr) = gpe_nr {
1194 if let Some(acpi_path) = root.acpi_path(&address) {
1195 let mut gpe_aml = Vec::new();
1196
1197 GpeScope {}.cast_to_aml_bytes(
1198 &mut gpe_aml,
1199 gpe_nr,
1200 format!("\\{}", acpi_path).as_str(),
1201 );
1202 if !gpe_aml.is_empty() {
1203 gpe_scope_amls.insert(address, gpe_aml);
1204 }
1205 }
1206 }
1207 }
1208
1209 Ok((root, pci_irqs, pid_labels, amls, gpe_scope_amls))
1210 }
1211
1212 /// Errors for image loading.
1213 #[sorted]
1214 #[derive(Error, Debug)]
1215 pub enum LoadImageError {
1216 #[error("Alignment not a power of two: {0}")]
1217 BadAlignment(u64),
1218 #[error("Getting image size failed: {0}")]
1219 GetLen(io::Error),
1220 #[error("GuestMemory get slice failed: {0}")]
1221 GuestMemorySlice(GuestMemoryError),
1222 #[error("Image size too large: {0}")]
1223 ImageSizeTooLarge(u64),
1224 #[error("No suitable memory region found")]
1225 NoSuitableMemoryRegion,
1226 #[error("Reading image into memory failed: {0}")]
1227 ReadToMemory(io::Error),
1228 #[error("Cannot load zero-sized image")]
1229 ZeroSizedImage,
1230 }
1231
1232 /// Load an image from a file into guest memory.
1233 ///
1234 /// # Arguments
1235 ///
1236 /// * `guest_mem` - The memory to be used by the guest.
1237 /// * `guest_addr` - The starting address to load the image in the guest memory.
1238 /// * `max_size` - The amount of space in bytes available in the guest memory for the image.
1239 /// * `image` - The file containing the image to be loaded.
1240 ///
1241 /// The size in bytes of the loaded image is returned.
load_image<F>( guest_mem: &GuestMemory, image: &mut F, guest_addr: GuestAddress, max_size: u64, ) -> Result<usize, LoadImageError> where F: FileReadWriteAtVolatile + FileGetLen,1242 pub fn load_image<F>(
1243 guest_mem: &GuestMemory,
1244 image: &mut F,
1245 guest_addr: GuestAddress,
1246 max_size: u64,
1247 ) -> Result<usize, LoadImageError>
1248 where
1249 F: FileReadWriteAtVolatile + FileGetLen,
1250 {
1251 let size = image.get_len().map_err(LoadImageError::GetLen)?;
1252
1253 if size > usize::MAX as u64 || size > max_size {
1254 return Err(LoadImageError::ImageSizeTooLarge(size));
1255 }
1256
1257 // This is safe due to the bounds check above.
1258 let size = size as usize;
1259
1260 let guest_slice = guest_mem
1261 .get_slice_at_addr(guest_addr, size)
1262 .map_err(LoadImageError::GuestMemorySlice)?;
1263 image
1264 .read_exact_at_volatile(guest_slice, 0)
1265 .map_err(LoadImageError::ReadToMemory)?;
1266
1267 Ok(size)
1268 }
1269
1270 /// Load an image from a file into guest memory at the highest possible address.
1271 ///
1272 /// # Arguments
1273 ///
1274 /// * `guest_mem` - The memory to be used by the guest.
1275 /// * `image` - The file containing the image to be loaded.
1276 /// * `min_guest_addr` - The minimum address of the start of the image.
1277 /// * `max_guest_addr` - The address to load the last byte of the image.
1278 /// * `region_filter` - The optional filter function for determining if the given guest memory
1279 /// region is suitable for loading the image into it.
1280 /// * `align` - The minimum alignment of the start address of the image in bytes (must be a power of
1281 /// two).
1282 ///
1283 /// The guest address and size in bytes of the loaded image are returned.
load_image_high<F>( guest_mem: &GuestMemory, image: &mut F, min_guest_addr: GuestAddress, max_guest_addr: GuestAddress, region_filter: Option<fn(&MemoryRegionInformation) -> bool>, align: u64, ) -> Result<(GuestAddress, usize), LoadImageError> where F: FileReadWriteAtVolatile + FileGetLen,1284 pub fn load_image_high<F>(
1285 guest_mem: &GuestMemory,
1286 image: &mut F,
1287 min_guest_addr: GuestAddress,
1288 max_guest_addr: GuestAddress,
1289 region_filter: Option<fn(&MemoryRegionInformation) -> bool>,
1290 align: u64,
1291 ) -> Result<(GuestAddress, usize), LoadImageError>
1292 where
1293 F: FileReadWriteAtVolatile + FileGetLen,
1294 {
1295 if !align.is_power_of_two() {
1296 return Err(LoadImageError::BadAlignment(align));
1297 }
1298
1299 let max_size = max_guest_addr.offset_from(min_guest_addr) & !(align - 1);
1300 let size = image.get_len().map_err(LoadImageError::GetLen)?;
1301
1302 if size == 0 {
1303 return Err(LoadImageError::ZeroSizedImage);
1304 }
1305
1306 if size > usize::MAX as u64 || size > max_size {
1307 return Err(LoadImageError::ImageSizeTooLarge(size));
1308 }
1309
1310 // Sort the list of guest memory regions by address so we can iterate over them in reverse order
1311 // (high to low).
1312 let mut regions: Vec<_> = guest_mem
1313 .regions()
1314 .filter(region_filter.unwrap_or(|_| true))
1315 .collect();
1316 regions.sort_unstable_by(|a, b| a.guest_addr.cmp(&b.guest_addr));
1317
1318 // Find the highest valid address inside a guest memory region that satisfies the requested
1319 // alignment and min/max address requirements while having enough space for the image.
1320 let guest_addr = regions
1321 .into_iter()
1322 .rev()
1323 .filter_map(|r| {
1324 // Highest address within this region.
1325 let rgn_max_addr = r
1326 .guest_addr
1327 .checked_add((r.size as u64).checked_sub(1)?)?
1328 .min(max_guest_addr);
1329 // Lowest aligned address within this region.
1330 let rgn_start_aligned = r.guest_addr.align(align)?;
1331 // Hypothetical address of the image if loaded at the end of the region.
1332 let image_addr = rgn_max_addr.checked_sub(size - 1)? & !(align - 1);
1333
1334 // Would the image fit within the region?
1335 if image_addr >= rgn_start_aligned {
1336 Some(image_addr)
1337 } else {
1338 None
1339 }
1340 })
1341 .find(|&addr| addr >= min_guest_addr)
1342 .ok_or(LoadImageError::NoSuitableMemoryRegion)?;
1343
1344 // This is safe due to the bounds check above.
1345 let size = size as usize;
1346
1347 let guest_slice = guest_mem
1348 .get_slice_at_addr(guest_addr, size)
1349 .map_err(LoadImageError::GuestMemorySlice)?;
1350 image
1351 .read_exact_at_volatile(guest_slice, 0)
1352 .map_err(LoadImageError::ReadToMemory)?;
1353
1354 Ok((guest_addr, size))
1355 }
1356
1357 /// SMBIOS table configuration
1358 #[derive(Clone, Debug, Default, Serialize, Deserialize, FromKeyValues, PartialEq, Eq)]
1359 #[serde(deny_unknown_fields, rename_all = "kebab-case")]
1360 pub struct SmbiosOptions {
1361 /// BIOS vendor name.
1362 pub bios_vendor: Option<String>,
1363
1364 /// BIOS version number (free-form string).
1365 pub bios_version: Option<String>,
1366
1367 /// System manufacturer name.
1368 pub manufacturer: Option<String>,
1369
1370 /// System product name.
1371 pub product_name: Option<String>,
1372
1373 /// System serial number (free-form string).
1374 pub serial_number: Option<String>,
1375
1376 /// System UUID.
1377 pub uuid: Option<Uuid>,
1378
1379 /// Additional OEM strings to add to SMBIOS table.
1380 #[serde(default)]
1381 pub oem_strings: Vec<String>,
1382 }
1383
1384 #[cfg(test)]
1385 mod tests {
1386 use serde_keyvalue::from_key_values;
1387 use tempfile::tempfile;
1388
1389 use super::*;
1390
1391 #[test]
parse_pstore()1392 fn parse_pstore() {
1393 let res: Pstore = from_key_values("path=/some/path,size=16384").unwrap();
1394 assert_eq!(
1395 res,
1396 Pstore {
1397 path: "/some/path".into(),
1398 size: 16384,
1399 }
1400 );
1401
1402 let res = from_key_values::<Pstore>("path=/some/path");
1403 assert!(res.is_err());
1404
1405 let res = from_key_values::<Pstore>("size=16384");
1406 assert!(res.is_err());
1407
1408 let res = from_key_values::<Pstore>("");
1409 assert!(res.is_err());
1410 }
1411
1412 #[test]
deserialize_cpuset_serde_kv()1413 fn deserialize_cpuset_serde_kv() {
1414 let res: CpuSet = from_key_values("[0,4,7]").unwrap();
1415 assert_eq!(res, CpuSet::new(vec![0, 4, 7]));
1416
1417 let res: CpuSet = from_key_values("[9-12]").unwrap();
1418 assert_eq!(res, CpuSet::new(vec![9, 10, 11, 12]));
1419
1420 let res: CpuSet = from_key_values("[0,4,7,9-12,15]").unwrap();
1421 assert_eq!(res, CpuSet::new(vec![0, 4, 7, 9, 10, 11, 12, 15]));
1422 }
1423
1424 #[test]
deserialize_serialize_cpuset_json()1425 fn deserialize_serialize_cpuset_json() {
1426 let json_str = "[0,4,7]";
1427 let cpuset = CpuSet::new(vec![0, 4, 7]);
1428 let res: CpuSet = serde_json::from_str(json_str).unwrap();
1429 assert_eq!(res, cpuset);
1430 assert_eq!(serde_json::to_string(&cpuset).unwrap(), json_str);
1431
1432 let json_str = r#"["9-12"]"#;
1433 let cpuset = CpuSet::new(vec![9, 10, 11, 12]);
1434 let res: CpuSet = serde_json::from_str(json_str).unwrap();
1435 assert_eq!(res, cpuset);
1436 assert_eq!(serde_json::to_string(&cpuset).unwrap(), json_str);
1437
1438 let json_str = r#"[0,4,7,"9-12",15]"#;
1439 let cpuset = CpuSet::new(vec![0, 4, 7, 9, 10, 11, 12, 15]);
1440 let res: CpuSet = serde_json::from_str(json_str).unwrap();
1441 assert_eq!(res, cpuset);
1442 assert_eq!(serde_json::to_string(&cpuset).unwrap(), json_str);
1443 }
1444
1445 #[test]
load_image_high_max_4g()1446 fn load_image_high_max_4g() {
1447 let mem = GuestMemory::new(&[
1448 (GuestAddress(0x0000_0000), 0x4000_0000), // 0x00000000..0x40000000
1449 (GuestAddress(0x8000_0000), 0x4000_0000), // 0x80000000..0xC0000000
1450 ])
1451 .unwrap();
1452
1453 const TEST_IMAGE_SIZE: u64 = 1234;
1454 let mut test_image = tempfile().unwrap();
1455 test_image.set_len(TEST_IMAGE_SIZE).unwrap();
1456
1457 const TEST_ALIGN: u64 = 0x8000;
1458 let (addr, size) = load_image_high(
1459 &mem,
1460 &mut test_image,
1461 GuestAddress(0x8000),
1462 GuestAddress(0xFFFF_FFFF), // max_guest_addr beyond highest guest memory region
1463 None,
1464 TEST_ALIGN,
1465 )
1466 .unwrap();
1467
1468 assert_eq!(addr, GuestAddress(0xBFFF_8000));
1469 assert_eq!(addr.offset() % TEST_ALIGN, 0);
1470 assert_eq!(size, TEST_IMAGE_SIZE as usize);
1471 }
1472 }
1473