• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file ast_to_hir.c
26  * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27  *
28  * During the conversion to HIR, the majority of the symantic checking is
29  * preformed on the program.  This includes:
30  *
31  *    * Symbol table management
32  *    * Type checking
33  *    * Function binding
34  *
35  * The majority of this work could be done during parsing, and the parser could
36  * probably generate HIR directly.  However, this results in frequent changes
37  * to the parser code.  Since we do not assume that every system this complier
38  * is built on will have Flex and Bison installed, we have to store the code
39  * generated by these tools in our version control system.  In other parts of
40  * the system we've seen problems where a parser was changed but the generated
41  * code was not committed, merge conflicts where created because two developers
42  * had slightly different versions of Bison installed, etc.
43  *
44  * I have also noticed that running Bison generated parsers in GDB is very
45  * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46  * well 'print $1' in GDB.
47  *
48  * As a result, my preference is to put as little C code as possible in the
49  * parser (and lexer) sources.
50  */
51 
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/consts_exts.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "linker_util.h"
63 #include "builtin_functions.h"
64 
65 using namespace ir_builder;
66 
67 static void
68 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
69                                exec_list *instructions);
70 static void
71 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
72 
73 static void
74 remove_per_vertex_blocks(exec_list *instructions,
75                          _mesa_glsl_parse_state *state, ir_variable_mode mode);
76 
77 /**
78  * Visitor class that finds the first instance of any write-only variable that
79  * is ever read, if any
80  */
81 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
82 {
83 public:
read_from_write_only_variable_visitor()84    read_from_write_only_variable_visitor() : found(NULL)
85    {
86    }
87 
visit(ir_dereference_variable * ir)88    virtual ir_visitor_status visit(ir_dereference_variable *ir)
89    {
90       if (this->in_assignee)
91          return visit_continue;
92 
93       ir_variable *var = ir->variable_referenced();
94       /* We can have memory_write_only set on both images and buffer variables,
95        * but in the former there is a distinction between reads from
96        * the variable itself (write_only) and from the memory they point to
97        * (memory_write_only), while in the case of buffer variables there is
98        * no such distinction, that is why this check here is limited to
99        * buffer variables alone.
100        */
101       if (!var || var->data.mode != ir_var_shader_storage)
102          return visit_continue;
103 
104       if (var->data.memory_write_only) {
105          found = var;
106          return visit_stop;
107       }
108 
109       return visit_continue;
110    }
111 
get_variable()112    ir_variable *get_variable() {
113       return found;
114    }
115 
visit_enter(ir_expression * ir)116    virtual ir_visitor_status visit_enter(ir_expression *ir)
117    {
118       /* .length() doesn't actually read anything */
119       if (ir->operation == ir_unop_ssbo_unsized_array_length)
120          return visit_continue_with_parent;
121 
122       return visit_continue;
123    }
124 
125 private:
126    ir_variable *found;
127 };
128 
129 void
_mesa_ast_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)130 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
131 {
132    _mesa_glsl_initialize_variables(instructions, state);
133 
134    state->symbols->separate_function_namespace = state->language_version == 110;
135 
136    state->current_function = NULL;
137 
138    state->toplevel_ir = instructions;
139 
140    state->gs_input_prim_type_specified = false;
141    state->tcs_output_vertices_specified = false;
142    state->cs_input_local_size_specified = false;
143 
144    /* Section 4.2 of the GLSL 1.20 specification states:
145     * "The built-in functions are scoped in a scope outside the global scope
146     *  users declare global variables in.  That is, a shader's global scope,
147     *  available for user-defined functions and global variables, is nested
148     *  inside the scope containing the built-in functions."
149     *
150     * Since built-in functions like ftransform() access built-in variables,
151     * it follows that those must be in the outer scope as well.
152     *
153     * We push scope here to create this nesting effect...but don't pop.
154     * This way, a shader's globals are still in the symbol table for use
155     * by the linker.
156     */
157    state->symbols->push_scope();
158 
159    foreach_list_typed (ast_node, ast, link, & state->translation_unit)
160       ast->hir(instructions, state);
161 
162    verify_subroutine_associated_funcs(state);
163    detect_recursion_unlinked(state, instructions);
164    detect_conflicting_assignments(state, instructions);
165 
166    state->toplevel_ir = NULL;
167 
168    /* Move all of the variable declarations to the front of the IR list, and
169     * reverse the order.  This has the (intended!) side effect that vertex
170     * shader inputs and fragment shader outputs will appear in the IR in the
171     * same order that they appeared in the shader code.  This results in the
172     * locations being assigned in the declared order.  Many (arguably buggy)
173     * applications depend on this behavior, and it matches what nearly all
174     * other drivers do.
175     */
176    foreach_in_list_safe(ir_instruction, node, instructions) {
177       ir_variable *const var = node->as_variable();
178 
179       if (var == NULL)
180          continue;
181 
182       var->remove();
183       instructions->push_head(var);
184    }
185 
186    /* Figure out if gl_FragCoord is actually used in fragment shader */
187    ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
188    if (var != NULL)
189       state->fs_uses_gl_fragcoord = var->data.used;
190 
191    /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
192     *
193     *     If multiple shaders using members of a built-in block belonging to
194     *     the same interface are linked together in the same program, they
195     *     must all redeclare the built-in block in the same way, as described
196     *     in section 4.3.7 "Interface Blocks" for interface block matching, or
197     *     a link error will result.
198     *
199     * The phrase "using members of a built-in block" implies that if two
200     * shaders are linked together and one of them *does not use* any members
201     * of the built-in block, then that shader does not need to have a matching
202     * redeclaration of the built-in block.
203     *
204     * This appears to be a clarification to the behaviour established for
205     * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
206     * version.
207     *
208     * The definition of "interface" in section 4.3.7 that applies here is as
209     * follows:
210     *
211     *     The boundary between adjacent programmable pipeline stages: This
212     *     spans all the outputs in all compilation units of the first stage
213     *     and all the inputs in all compilation units of the second stage.
214     *
215     * Therefore this rule applies to both inter- and intra-stage linking.
216     *
217     * The easiest way to implement this is to check whether the shader uses
218     * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
219     * remove all the relevant variable declaration from the IR, so that the
220     * linker won't see them and complain about mismatches.
221     */
222    remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
223    remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
224 
225    /* Check that we don't have reads from write-only variables */
226    read_from_write_only_variable_visitor v;
227    v.run(instructions);
228    ir_variable *error_var = v.get_variable();
229    if (error_var) {
230       /* It would be nice to have proper location information, but for that
231        * we would need to check this as we process each kind of AST node
232        */
233       YYLTYPE loc;
234       memset(&loc, 0, sizeof(loc));
235       _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
236                        error_var->name);
237    }
238 }
239 
240 
241 static ir_expression_operation
get_implicit_conversion_operation(const glsl_type * to,const glsl_type * from,struct _mesa_glsl_parse_state * state)242 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
243                                   struct _mesa_glsl_parse_state *state)
244 {
245    switch (to->base_type) {
246    case GLSL_TYPE_FLOAT16:
247       switch (from->base_type) {
248       case GLSL_TYPE_INT: return ir_unop_i2f16;
249       case GLSL_TYPE_UINT: return ir_unop_u2f16;
250       default: return (ir_expression_operation)0;
251       }
252 
253    case GLSL_TYPE_FLOAT:
254       switch (from->base_type) {
255       case GLSL_TYPE_INT: return ir_unop_i2f;
256       case GLSL_TYPE_UINT: return ir_unop_u2f;
257       case GLSL_TYPE_FLOAT16: return ir_unop_f162f;
258       default: return (ir_expression_operation)0;
259       }
260 
261    case GLSL_TYPE_UINT:
262       if (!state->has_implicit_int_to_uint_conversion())
263          return (ir_expression_operation)0;
264       switch (from->base_type) {
265          case GLSL_TYPE_INT: return ir_unop_i2u;
266          default: return (ir_expression_operation)0;
267       }
268 
269    case GLSL_TYPE_DOUBLE:
270       if (!state->has_double())
271          return (ir_expression_operation)0;
272       switch (from->base_type) {
273       case GLSL_TYPE_INT: return ir_unop_i2d;
274       case GLSL_TYPE_UINT: return ir_unop_u2d;
275       case GLSL_TYPE_FLOAT16: return ir_unop_f162d;
276       case GLSL_TYPE_FLOAT: return ir_unop_f2d;
277       case GLSL_TYPE_INT64: return ir_unop_i642d;
278       case GLSL_TYPE_UINT64: return ir_unop_u642d;
279       default: return (ir_expression_operation)0;
280       }
281 
282    case GLSL_TYPE_UINT64:
283       if (!state->has_int64())
284          return (ir_expression_operation)0;
285       switch (from->base_type) {
286       case GLSL_TYPE_INT: return ir_unop_i2u64;
287       case GLSL_TYPE_UINT: return ir_unop_u2u64;
288       case GLSL_TYPE_INT64: return ir_unop_i642u64;
289       default: return (ir_expression_operation)0;
290       }
291 
292    case GLSL_TYPE_INT64:
293       if (!state->has_int64())
294          return (ir_expression_operation)0;
295       switch (from->base_type) {
296       case GLSL_TYPE_INT: return ir_unop_i2i64;
297       default: return (ir_expression_operation)0;
298       }
299 
300    default: return (ir_expression_operation)0;
301    }
302 }
303 
304 
305 /**
306  * If a conversion is available, convert one operand to a different type
307  *
308  * The \c from \c ir_rvalue is converted "in place".
309  *
310  * \param to     Type that the operand it to be converted to
311  * \param from   Operand that is being converted
312  * \param state  GLSL compiler state
313  *
314  * \return
315  * If a conversion is possible (or unnecessary), \c true is returned.
316  * Otherwise \c false is returned.
317  */
318 static bool
apply_implicit_conversion(const glsl_type * to,ir_rvalue * & from,struct _mesa_glsl_parse_state * state)319 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
320                           struct _mesa_glsl_parse_state *state)
321 {
322    void *ctx = state;
323    if (to->base_type == from->type->base_type)
324       return true;
325 
326    /* Prior to GLSL 1.20, there are no implicit conversions */
327    if (!state->has_implicit_conversions())
328       return false;
329 
330    /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
331     *
332     *    "There are no implicit array or structure conversions. For
333     *    example, an array of int cannot be implicitly converted to an
334     *    array of float.
335     */
336    if (!glsl_type_is_numeric(to) || !glsl_type_is_numeric(from->type))
337       return false;
338 
339    /* We don't actually want the specific type `to`, we want a type
340     * with the same base type as `to`, but the same vector width as
341     * `from`.
342     */
343    to = glsl_simple_type(to->base_type, from->type->vector_elements,
344                          from->type->matrix_columns);
345 
346    ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
347    if (op) {
348       from = new(ctx) ir_expression(op, to, from, NULL);
349       return true;
350    } else {
351       return false;
352    }
353 }
354 
355 
356 static const struct glsl_type *
arithmetic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,bool multiply,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)357 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
358                        bool multiply,
359                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361    const glsl_type *type_a = value_a->type;
362    const glsl_type *type_b = value_b->type;
363 
364    /* From GLSL 1.50 spec, page 56:
365     *
366     *    "The arithmetic binary operators add (+), subtract (-),
367     *    multiply (*), and divide (/) operate on integer and
368     *    floating-point scalars, vectors, and matrices."
369     */
370    if (!glsl_type_is_numeric(type_a) || !glsl_type_is_numeric(type_b)) {
371       _mesa_glsl_error(loc, state,
372                        "operands to arithmetic operators must be numeric");
373       return &glsl_type_builtin_error;
374    }
375 
376 
377    /*    "If one operand is floating-point based and the other is
378     *    not, then the conversions from Section 4.1.10 "Implicit
379     *    Conversions" are applied to the non-floating-point-based operand."
380     */
381    if (!apply_implicit_conversion(type_a, value_b, state)
382        && !apply_implicit_conversion(type_b, value_a, state)) {
383       _mesa_glsl_error(loc, state,
384                        "could not implicitly convert operands to "
385                        "arithmetic operator");
386       return &glsl_type_builtin_error;
387    }
388    type_a = value_a->type;
389    type_b = value_b->type;
390 
391    /*    "If the operands are integer types, they must both be signed or
392     *    both be unsigned."
393     *
394     * From this rule and the preceeding conversion it can be inferred that
395     * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
396     * The is_numeric check above already filtered out the case where either
397     * type is not one of these, so now the base types need only be tested for
398     * equality.
399     */
400    if (type_a->base_type != type_b->base_type) {
401       _mesa_glsl_error(loc, state,
402                        "base type mismatch for arithmetic operator");
403       return &glsl_type_builtin_error;
404    }
405 
406    /*    "All arithmetic binary operators result in the same fundamental type
407     *    (signed integer, unsigned integer, or floating-point) as the
408     *    operands they operate on, after operand type conversion. After
409     *    conversion, the following cases are valid
410     *
411     *    * The two operands are scalars. In this case the operation is
412     *      applied, resulting in a scalar."
413     */
414    if (glsl_type_is_scalar(type_a) && glsl_type_is_scalar(type_b))
415       return type_a;
416 
417    /*   "* One operand is a scalar, and the other is a vector or matrix.
418     *      In this case, the scalar operation is applied independently to each
419     *      component of the vector or matrix, resulting in the same size
420     *      vector or matrix."
421     */
422    if (glsl_type_is_scalar(type_a)) {
423       if (!glsl_type_is_scalar(type_b))
424          return type_b;
425    } else if (glsl_type_is_scalar(type_b)) {
426       return type_a;
427    }
428 
429    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
430     * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
431     * handled.
432     */
433    assert(!glsl_type_is_scalar(type_a));
434    assert(!glsl_type_is_scalar(type_b));
435 
436    /*   "* The two operands are vectors of the same size. In this case, the
437     *      operation is done component-wise resulting in the same size
438     *      vector."
439     */
440    if (glsl_type_is_vector(type_a) && glsl_type_is_vector(type_b)) {
441       if (type_a == type_b) {
442          return type_a;
443       } else {
444          _mesa_glsl_error(loc, state,
445                           "vector size mismatch for arithmetic operator");
446          return &glsl_type_builtin_error;
447       }
448    }
449 
450    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
451     * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
452     * <vector, vector> have been handled.  At least one of the operands must
453     * be matrix.  Further, since there are no integer matrix types, the base
454     * type of both operands must be float.
455     */
456    assert(glsl_type_is_matrix(type_a) || glsl_type_is_matrix(type_b));
457    assert(glsl_type_is_float(type_a) || glsl_type_is_double(type_a));
458    assert(glsl_type_is_float(type_b) || glsl_type_is_double(type_b));
459 
460    /*   "* The operator is add (+), subtract (-), or divide (/), and the
461     *      operands are matrices with the same number of rows and the same
462     *      number of columns. In this case, the operation is done component-
463     *      wise resulting in the same size matrix."
464     *    * The operator is multiply (*), where both operands are matrices or
465     *      one operand is a vector and the other a matrix. A right vector
466     *      operand is treated as a column vector and a left vector operand as a
467     *      row vector. In all these cases, it is required that the number of
468     *      columns of the left operand is equal to the number of rows of the
469     *      right operand. Then, the multiply (*) operation does a linear
470     *      algebraic multiply, yielding an object that has the same number of
471     *      rows as the left operand and the same number of columns as the right
472     *      operand. Section 5.10 "Vector and Matrix Operations" explains in
473     *      more detail how vectors and matrices are operated on."
474     */
475    if (! multiply) {
476       if (type_a == type_b)
477          return type_a;
478    } else {
479       const glsl_type *type = glsl_get_mul_type(type_a, type_b);
480 
481       if (type == &glsl_type_builtin_error) {
482          _mesa_glsl_error(loc, state,
483                           "size mismatch for matrix multiplication");
484       }
485 
486       return type;
487    }
488 
489 
490    /*    "All other cases are illegal."
491     */
492    _mesa_glsl_error(loc, state, "type mismatch");
493    return &glsl_type_builtin_error;
494 }
495 
496 
497 static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)498 unary_arithmetic_result_type(const struct glsl_type *type,
499                              struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
500 {
501    /* From GLSL 1.50 spec, page 57:
502     *
503     *    "The arithmetic unary operators negate (-), post- and pre-increment
504     *     and decrement (-- and ++) operate on integer or floating-point
505     *     values (including vectors and matrices). All unary operators work
506     *     component-wise on their operands. These result with the same type
507     *     they operated on."
508     */
509    if (!glsl_type_is_numeric(type)) {
510       _mesa_glsl_error(loc, state,
511                        "operands to arithmetic operators must be numeric");
512       return &glsl_type_builtin_error;
513    }
514 
515    return type;
516 }
517 
518 /**
519  * \brief Return the result type of a bit-logic operation.
520  *
521  * If the given types to the bit-logic operator are invalid, return
522  * &glsl_type_builtin_error.
523  *
524  * \param value_a LHS of bit-logic op
525  * \param value_b RHS of bit-logic op
526  */
527 static const struct glsl_type *
bit_logic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)528 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
529                       ast_operators op,
530                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
531 {
532    const glsl_type *type_a = value_a->type;
533    const glsl_type *type_b = value_b->type;
534 
535    if (!state->check_bitwise_operations_allowed(loc)) {
536       return &glsl_type_builtin_error;
537    }
538 
539    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
540     *
541     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
542     *     (|). The operands must be of type signed or unsigned integers or
543     *     integer vectors."
544     */
545    if (!glsl_type_is_integer_32_64(type_a)) {
546       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
547                         ast_expression::operator_string(op));
548       return &glsl_type_builtin_error;
549    }
550    if (!glsl_type_is_integer_32_64(type_b)) {
551       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
552                        ast_expression::operator_string(op));
553       return &glsl_type_builtin_error;
554    }
555 
556    /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
557     * make sense for bitwise operations, as they don't operate on floats.
558     *
559     * GLSL 4.0 added implicit int -> uint conversions, which are relevant
560     * here.  It wasn't clear whether or not we should apply them to bitwise
561     * operations.  However, Khronos has decided that they should in future
562     * language revisions.  Applications also rely on this behavior.  We opt
563     * to apply them in general, but issue a portability warning.
564     *
565     * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
566     */
567    if (type_a->base_type != type_b->base_type) {
568       if (!apply_implicit_conversion(type_a, value_b, state)
569           && !apply_implicit_conversion(type_b, value_a, state)) {
570          _mesa_glsl_error(loc, state,
571                           "could not implicitly convert operands to "
572                           "`%s` operator",
573                           ast_expression::operator_string(op));
574          return &glsl_type_builtin_error;
575       } else {
576          _mesa_glsl_warning(loc, state,
577                             "some implementations may not support implicit "
578                             "int -> uint conversions for `%s' operators; "
579                             "consider casting explicitly for portability",
580                             ast_expression::operator_string(op));
581       }
582       type_a = value_a->type;
583       type_b = value_b->type;
584    }
585 
586    /*     "The fundamental types of the operands (signed or unsigned) must
587     *     match,"
588     */
589    if (type_a->base_type != type_b->base_type) {
590       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
591                        "base type", ast_expression::operator_string(op));
592       return &glsl_type_builtin_error;
593    }
594 
595    /*     "The operands cannot be vectors of differing size." */
596    if (glsl_type_is_vector(type_a) &&
597        glsl_type_is_vector(type_b) &&
598        type_a->vector_elements != type_b->vector_elements) {
599       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
600                        "different sizes", ast_expression::operator_string(op));
601       return &glsl_type_builtin_error;
602    }
603 
604    /*     "If one operand is a scalar and the other a vector, the scalar is
605     *     applied component-wise to the vector, resulting in the same type as
606     *     the vector. The fundamental types of the operands [...] will be the
607     *     resulting fundamental type."
608     */
609    if (glsl_type_is_scalar(type_a))
610        return type_b;
611    else
612        return type_a;
613 }
614 
615 static const struct glsl_type *
modulus_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)616 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
617                     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
618 {
619    const glsl_type *type_a = value_a->type;
620    const glsl_type *type_b = value_b->type;
621 
622    if (!state->EXT_gpu_shader4_enable &&
623        !state->check_version(130, 300, loc, "operator '%%' is reserved")) {
624       return &glsl_type_builtin_error;
625    }
626 
627    /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
628     *
629     *    "The operator modulus (%) operates on signed or unsigned integers or
630     *    integer vectors."
631     */
632    if (!glsl_type_is_integer_32_64(type_a)) {
633       _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
634       return &glsl_type_builtin_error;
635    }
636    if (!glsl_type_is_integer_32_64(type_b)) {
637       _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
638       return &glsl_type_builtin_error;
639    }
640 
641    /*    "If the fundamental types in the operands do not match, then the
642     *    conversions from section 4.1.10 "Implicit Conversions" are applied
643     *    to create matching types."
644     *
645     * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
646     * int -> uint conversion rules.  Prior to that, there were no implicit
647     * conversions.  So it's harmless to apply them universally - no implicit
648     * conversions will exist.  If the types don't match, we'll receive false,
649     * and raise an error, satisfying the GLSL 1.50 spec, page 56:
650     *
651     *    "The operand types must both be signed or unsigned."
652     */
653    if (!apply_implicit_conversion(type_a, value_b, state) &&
654        !apply_implicit_conversion(type_b, value_a, state)) {
655       _mesa_glsl_error(loc, state,
656                        "could not implicitly convert operands to "
657                        "modulus (%%) operator");
658       return &glsl_type_builtin_error;
659    }
660    type_a = value_a->type;
661    type_b = value_b->type;
662 
663    /*    "The operands cannot be vectors of differing size. If one operand is
664     *    a scalar and the other vector, then the scalar is applied component-
665     *    wise to the vector, resulting in the same type as the vector. If both
666     *    are vectors of the same size, the result is computed component-wise."
667     */
668    if (glsl_type_is_vector(type_a)) {
669       if (!glsl_type_is_vector(type_b)
670           || (type_a->vector_elements == type_b->vector_elements))
671       return type_a;
672    } else
673       return type_b;
674 
675    /*    "The operator modulus (%) is not defined for any other data types
676     *    (non-integer types)."
677     */
678    _mesa_glsl_error(loc, state, "type mismatch");
679    return &glsl_type_builtin_error;
680 }
681 
682 
683 static const struct glsl_type *
relational_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)684 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
685                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
686 {
687    const glsl_type *type_a = value_a->type;
688    const glsl_type *type_b = value_b->type;
689 
690    /* From GLSL 1.50 spec, page 56:
691     *    "The relational operators greater than (>), less than (<), greater
692     *    than or equal (>=), and less than or equal (<=) operate only on
693     *    scalar integer and scalar floating-point expressions."
694     */
695    if (!glsl_type_is_numeric(type_a)
696        || !glsl_type_is_numeric(type_b)
697        || !glsl_type_is_scalar(type_a)
698        || !glsl_type_is_scalar(type_b)) {
699       _mesa_glsl_error(loc, state,
700                        "operands to relational operators must be scalar and "
701                        "numeric");
702       return &glsl_type_builtin_error;
703    }
704 
705    /*    "Either the operands' types must match, or the conversions from
706     *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
707     *    operand, after which the types must match."
708     */
709    if (!apply_implicit_conversion(type_a, value_b, state)
710        && !apply_implicit_conversion(type_b, value_a, state)) {
711       _mesa_glsl_error(loc, state,
712                        "could not implicitly convert operands to "
713                        "relational operator");
714       return &glsl_type_builtin_error;
715    }
716    type_a = value_a->type;
717    type_b = value_b->type;
718 
719    if (type_a->base_type != type_b->base_type) {
720       _mesa_glsl_error(loc, state, "base type mismatch");
721       return &glsl_type_builtin_error;
722    }
723 
724    /*    "The result is scalar Boolean."
725     */
726    return &glsl_type_builtin_bool;
727 }
728 
729 /**
730  * \brief Return the result type of a bit-shift operation.
731  *
732  * If the given types to the bit-shift operator are invalid, return
733  * &glsl_type_builtin_error.
734  *
735  * \param type_a Type of LHS of bit-shift op
736  * \param type_b Type of RHS of bit-shift op
737  */
738 static const struct glsl_type *
shift_result_type(const struct glsl_type * type_a,const struct glsl_type * type_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)739 shift_result_type(const struct glsl_type *type_a,
740                   const struct glsl_type *type_b,
741                   ast_operators op,
742                   struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
743 {
744    if (!state->check_bitwise_operations_allowed(loc)) {
745       return &glsl_type_builtin_error;
746    }
747 
748    /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
749     *
750     *     "The shift operators (<<) and (>>). For both operators, the operands
751     *     must be signed or unsigned integers or integer vectors. One operand
752     *     can be signed while the other is unsigned."
753     */
754    if (!glsl_type_is_integer_32_64(type_a)) {
755       _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
756                        "integer vector", ast_expression::operator_string(op));
757      return &glsl_type_builtin_error;
758 
759    }
760    if (!glsl_type_is_integer_32_64(type_b)) {
761       _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
762                        "integer vector", ast_expression::operator_string(op));
763      return &glsl_type_builtin_error;
764    }
765 
766    /*     "If the first operand is a scalar, the second operand has to be
767     *     a scalar as well."
768     */
769    if (glsl_type_is_scalar(type_a) && !glsl_type_is_scalar(type_b)) {
770       _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
771                        "second must be scalar as well",
772                        ast_expression::operator_string(op));
773      return &glsl_type_builtin_error;
774    }
775 
776    /* If both operands are vectors, check that they have same number of
777     * elements.
778     */
779    if (glsl_type_is_vector(type_a) &&
780       glsl_type_is_vector(type_b) &&
781       type_a->vector_elements != type_b->vector_elements) {
782       _mesa_glsl_error(loc, state, "vector operands to operator %s must "
783                        "have same number of elements",
784                        ast_expression::operator_string(op));
785      return &glsl_type_builtin_error;
786    }
787 
788    /*     "In all cases, the resulting type will be the same type as the left
789     *     operand."
790     */
791    return type_a;
792 }
793 
794 /**
795  * Returns the innermost array index expression in an rvalue tree.
796  * This is the largest indexing level -- if an array of blocks, then
797  * it is the block index rather than an indexing expression for an
798  * array-typed member of an array of blocks.
799  */
800 static ir_rvalue *
find_innermost_array_index(ir_rvalue * rv)801 find_innermost_array_index(ir_rvalue *rv)
802 {
803    ir_dereference_array *last = NULL;
804    while (rv) {
805       if (rv->as_dereference_array()) {
806          last = rv->as_dereference_array();
807          rv = last->array;
808       } else if (rv->as_dereference_record())
809          rv = rv->as_dereference_record()->record;
810       else if (rv->as_swizzle())
811          rv = rv->as_swizzle()->val;
812       else
813          rv = NULL;
814    }
815 
816    if (last)
817       return last->array_index;
818 
819    return NULL;
820 }
821 
822 /**
823  * Validates that a value can be assigned to a location with a specified type
824  *
825  * Validates that \c rhs can be assigned to some location.  If the types are
826  * not an exact match but an automatic conversion is possible, \c rhs will be
827  * converted.
828  *
829  * \return
830  * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
831  * Otherwise the actual RHS to be assigned will be returned.  This may be
832  * \c rhs, or it may be \c rhs after some type conversion.
833  *
834  * \note
835  * In addition to being used for assignments, this function is used to
836  * type-check return values.
837  */
838 static ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_rvalue * lhs,ir_rvalue * rhs,bool is_initializer)839 validate_assignment(struct _mesa_glsl_parse_state *state,
840                     YYLTYPE loc, ir_rvalue *lhs,
841                     ir_rvalue *rhs, bool is_initializer)
842 {
843    /* If there is already some error in the RHS, just return it.  Anything
844     * else will lead to an avalanche of error message back to the user.
845     */
846    if (glsl_type_is_error(rhs->type))
847       return rhs;
848 
849    /* In the Tessellation Control Shader:
850     * If a per-vertex output variable is used as an l-value, it is an error
851     * if the expression indicating the vertex number is not the identifier
852     * `gl_InvocationID`.
853     */
854    if (state->stage == MESA_SHADER_TESS_CTRL && !glsl_type_is_error(lhs->type)) {
855       ir_variable *var = lhs->variable_referenced();
856       if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
857          ir_rvalue *index = find_innermost_array_index(lhs);
858          ir_variable *index_var = index ? index->variable_referenced() : NULL;
859          if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
860             _mesa_glsl_error(&loc, state,
861                              "Tessellation control shader outputs can only "
862                              "be indexed by gl_InvocationID");
863             return NULL;
864          }
865       }
866    }
867 
868    /* If the types are identical, the assignment can trivially proceed.
869     */
870    if (rhs->type == lhs->type)
871       return rhs;
872 
873    /* If the array element types are the same and the LHS is unsized,
874     * the assignment is okay for initializers embedded in variable
875     * declarations.
876     *
877     * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
878     * is handled by ir_dereference::is_lvalue.
879     */
880    const glsl_type *lhs_t = lhs->type;
881    const glsl_type *rhs_t = rhs->type;
882    bool unsized_array = false;
883    while(glsl_type_is_array(lhs_t)) {
884       if (rhs_t == lhs_t)
885          break; /* the rest of the inner arrays match so break out early */
886       if (!glsl_type_is_array(rhs_t)) {
887          unsized_array = false;
888          break; /* number of dimensions mismatch */
889       }
890       if (lhs_t->length == rhs_t->length) {
891          lhs_t = lhs_t->fields.array;
892          rhs_t = rhs_t->fields.array;
893          continue;
894       } else if (glsl_type_is_unsized_array(lhs_t)) {
895          unsized_array = true;
896       } else {
897          unsized_array = false;
898          break; /* sized array mismatch */
899       }
900       lhs_t = lhs_t->fields.array;
901       rhs_t = rhs_t->fields.array;
902    }
903    if (unsized_array) {
904       if (is_initializer) {
905          if (glsl_get_scalar_type(rhs->type) == glsl_get_scalar_type(lhs->type))
906             return rhs;
907       } else {
908          _mesa_glsl_error(&loc, state,
909                           "implicitly sized arrays cannot be assigned");
910          return NULL;
911       }
912    }
913 
914    /* Check for implicit conversion in GLSL 1.20 */
915    if (apply_implicit_conversion(lhs->type, rhs, state)) {
916       if (rhs->type == lhs->type)
917          return rhs;
918    }
919 
920    _mesa_glsl_error(&loc, state,
921                     "%s of type %s cannot be assigned to "
922                     "variable of type %s",
923                     is_initializer ? "initializer" : "value",
924                     glsl_get_type_name(rhs->type), glsl_get_type_name(lhs->type));
925 
926    return NULL;
927 }
928 
929 static void
mark_whole_array_access(ir_rvalue * access)930 mark_whole_array_access(ir_rvalue *access)
931 {
932    ir_dereference_variable *deref = access->as_dereference_variable();
933 
934    if (deref && deref->var) {
935       deref->var->data.max_array_access = deref->type->length - 1;
936    }
937 }
938 
939 static bool
do_assignment(exec_list * instructions,struct _mesa_glsl_parse_state * state,const char * non_lvalue_description,ir_rvalue * lhs,ir_rvalue * rhs,ir_rvalue ** out_rvalue,bool needs_rvalue,bool is_initializer,YYLTYPE lhs_loc)940 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
941               const char *non_lvalue_description,
942               ir_rvalue *lhs, ir_rvalue *rhs,
943               ir_rvalue **out_rvalue, bool needs_rvalue,
944               bool is_initializer,
945               YYLTYPE lhs_loc)
946 {
947    void *ctx = state;
948    bool error_emitted = (glsl_type_is_error(lhs->type) || glsl_type_is_error(rhs->type));
949 
950    ir_variable *lhs_var = lhs->variable_referenced();
951    if (lhs_var)
952       lhs_var->data.assigned = true;
953 
954    bool omit_assignment = false;
955    if (!error_emitted) {
956       if (non_lvalue_description != NULL) {
957          _mesa_glsl_error(&lhs_loc, state,
958                           "assignment to %s",
959                           non_lvalue_description);
960          error_emitted = true;
961       } else if (lhs_var != NULL && (lhs_var->data.read_only ||
962                  (lhs_var->data.mode == ir_var_shader_storage &&
963                   lhs_var->data.memory_read_only))) {
964          /* We can have memory_read_only set on both images and buffer variables,
965           * but in the former there is a distinction between assignments to
966           * the variable itself (read_only) and to the memory they point to
967           * (memory_read_only), while in the case of buffer variables there is
968           * no such distinction, that is why this check here is limited to
969           * buffer variables alone.
970           */
971 
972          if (state->ignore_write_to_readonly_var)
973             omit_assignment = true;
974          else {
975             _mesa_glsl_error(&lhs_loc, state,
976                              "assignment to read-only variable '%s'",
977                              lhs_var->name);
978             error_emitted = true;
979          }
980       } else if (glsl_type_is_array(lhs->type) &&
981                  !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
982                                        300, &lhs_loc,
983                                        "whole array assignment forbidden")) {
984          /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
985           *
986           *    "Other binary or unary expressions, non-dereferenced
987           *     arrays, function names, swizzles with repeated fields,
988           *     and constants cannot be l-values."
989           *
990           * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
991           */
992          error_emitted = true;
993       } else if (!lhs->is_lvalue(state)) {
994          _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
995          error_emitted = true;
996       }
997    }
998 
999    ir_rvalue *new_rhs =
1000       validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
1001    if (new_rhs != NULL) {
1002       rhs = new_rhs;
1003 
1004       /* If the LHS array was not declared with a size, it takes it size from
1005        * the RHS.  If the LHS is an l-value and a whole array, it must be a
1006        * dereference of a variable.  Any other case would require that the LHS
1007        * is either not an l-value or not a whole array.
1008        */
1009       if (glsl_type_is_unsized_array(lhs->type)) {
1010          ir_dereference *const d = lhs->as_dereference();
1011 
1012          assert(d != NULL);
1013 
1014          ir_variable *const var = d->variable_referenced();
1015 
1016          assert(var != NULL);
1017 
1018          if (var->data.max_array_access >= glsl_array_size(rhs->type)) {
1019             /* FINISHME: This should actually log the location of the RHS. */
1020             _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1021                              "previous access",
1022                              var->data.max_array_access);
1023          }
1024 
1025          var->type = glsl_array_type(lhs->type->fields.array,
1026                                      glsl_array_size(rhs->type), 0);
1027          d->type = var->type;
1028       }
1029       if (glsl_type_is_array(lhs->type)) {
1030          mark_whole_array_access(rhs);
1031          mark_whole_array_access(lhs);
1032       }
1033    } else {
1034      error_emitted = true;
1035    }
1036 
1037    if (omit_assignment) {
1038       *out_rvalue = needs_rvalue ? ir_rvalue::error_value(ctx) : NULL;
1039       return error_emitted;
1040    }
1041 
1042    /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1043     * but not post_inc) need the converted assigned value as an rvalue
1044     * to handle things like:
1045     *
1046     * i = j += 1;
1047     */
1048    if (needs_rvalue) {
1049       ir_rvalue *rvalue;
1050       if (!error_emitted) {
1051          ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1052                                                  ir_var_temporary);
1053          instructions->push_tail(var);
1054          instructions->push_tail(assign(var, rhs));
1055 
1056          ir_dereference_variable *deref_var =
1057             new(ctx) ir_dereference_variable(var);
1058          instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1059          rvalue = new(ctx) ir_dereference_variable(var);
1060       } else {
1061          rvalue = ir_rvalue::error_value(ctx);
1062       }
1063       *out_rvalue = rvalue;
1064    } else {
1065       if (!error_emitted)
1066          instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1067       *out_rvalue = NULL;
1068    }
1069 
1070    return error_emitted;
1071 }
1072 
1073 static ir_rvalue *
get_lvalue_copy(exec_list * instructions,ir_rvalue * lvalue)1074 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1075 {
1076    void *ctx = ralloc_parent(lvalue);
1077    ir_variable *var;
1078 
1079    var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1080                               ir_var_temporary);
1081    instructions->push_tail(var);
1082 
1083    instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1084                                                   lvalue));
1085 
1086    return new(ctx) ir_dereference_variable(var);
1087 }
1088 
1089 
1090 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1091 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1092 {
1093    (void) instructions;
1094    (void) state;
1095 
1096    return NULL;
1097 }
1098 
1099 bool
has_sequence_subexpression() const1100 ast_node::has_sequence_subexpression() const
1101 {
1102    return false;
1103 }
1104 
1105 void
set_is_lhs(bool)1106 ast_node::set_is_lhs(bool /* new_value */)
1107 {
1108 }
1109 
1110 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1111 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1112                                        struct _mesa_glsl_parse_state *state)
1113 {
1114    (void)hir(instructions, state);
1115 }
1116 
1117 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1118 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1119                                          struct _mesa_glsl_parse_state *state)
1120 {
1121    (void)hir(instructions, state);
1122 }
1123 
1124 static ir_rvalue *
do_comparison(void * mem_ctx,int operation,ir_rvalue * op0,ir_rvalue * op1)1125 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1126 {
1127    int join_op;
1128    ir_rvalue *cmp = NULL;
1129 
1130    if (operation == ir_binop_all_equal)
1131       join_op = ir_binop_logic_and;
1132    else
1133       join_op = ir_binop_logic_or;
1134 
1135    switch (op0->type->base_type) {
1136    case GLSL_TYPE_FLOAT:
1137    case GLSL_TYPE_FLOAT16:
1138    case GLSL_TYPE_UINT:
1139    case GLSL_TYPE_INT:
1140    case GLSL_TYPE_BOOL:
1141    case GLSL_TYPE_DOUBLE:
1142    case GLSL_TYPE_UINT64:
1143    case GLSL_TYPE_INT64:
1144    case GLSL_TYPE_UINT16:
1145    case GLSL_TYPE_INT16:
1146    case GLSL_TYPE_UINT8:
1147    case GLSL_TYPE_INT8:
1148       return new(mem_ctx) ir_expression(operation, op0, op1);
1149 
1150    case GLSL_TYPE_ARRAY: {
1151       for (unsigned int i = 0; i < op0->type->length; i++) {
1152          ir_rvalue *e0, *e1, *result;
1153 
1154          e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1155                                                 new(mem_ctx) ir_constant(i));
1156          e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1157                                                 new(mem_ctx) ir_constant(i));
1158          result = do_comparison(mem_ctx, operation, e0, e1);
1159 
1160          if (cmp) {
1161             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1162          } else {
1163             cmp = result;
1164          }
1165       }
1166 
1167       mark_whole_array_access(op0);
1168       mark_whole_array_access(op1);
1169       break;
1170    }
1171 
1172    case GLSL_TYPE_STRUCT: {
1173       for (unsigned int i = 0; i < op0->type->length; i++) {
1174          ir_rvalue *e0, *e1, *result;
1175          const char *field_name = op0->type->fields.structure[i].name;
1176 
1177          e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1178                                                  field_name);
1179          e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1180                                                  field_name);
1181          result = do_comparison(mem_ctx, operation, e0, e1);
1182 
1183          if (cmp) {
1184             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1185          } else {
1186             cmp = result;
1187          }
1188       }
1189       break;
1190    }
1191 
1192    case GLSL_TYPE_ERROR:
1193    case GLSL_TYPE_VOID:
1194    case GLSL_TYPE_SAMPLER:
1195    case GLSL_TYPE_TEXTURE:
1196    case GLSL_TYPE_IMAGE:
1197    case GLSL_TYPE_INTERFACE:
1198    case GLSL_TYPE_ATOMIC_UINT:
1199    case GLSL_TYPE_SUBROUTINE:
1200       /* I assume a comparison of a struct containing a sampler just
1201        * ignores the sampler present in the type.
1202        */
1203       break;
1204 
1205    case GLSL_TYPE_COOPERATIVE_MATRIX:
1206       unreachable("unsupported base type cooperative matrix");
1207    }
1208 
1209    if (cmp == NULL)
1210       cmp = new(mem_ctx) ir_constant(true);
1211 
1212    return cmp;
1213 }
1214 
1215 /* For logical operations, we want to ensure that the operands are
1216  * scalar booleans.  If it isn't, emit an error and return a constant
1217  * boolean to avoid triggering cascading error messages.
1218  */
1219 static ir_rvalue *
get_scalar_boolean_operand(exec_list * instructions,struct _mesa_glsl_parse_state * state,ast_expression * parent_expr,int operand,const char * operand_name,bool * error_emitted)1220 get_scalar_boolean_operand(exec_list *instructions,
1221                            struct _mesa_glsl_parse_state *state,
1222                            ast_expression *parent_expr,
1223                            int operand,
1224                            const char *operand_name,
1225                            bool *error_emitted)
1226 {
1227    ast_expression *expr = parent_expr->subexpressions[operand];
1228    void *ctx = state;
1229    ir_rvalue *val = expr->hir(instructions, state);
1230 
1231    if (glsl_type_is_boolean(val->type) && glsl_type_is_scalar(val->type))
1232       return val;
1233 
1234    if (!*error_emitted) {
1235       YYLTYPE loc = expr->get_location();
1236       _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1237                        operand_name,
1238                        parent_expr->operator_string(parent_expr->oper));
1239       *error_emitted = true;
1240    }
1241 
1242    return new(ctx) ir_constant(true);
1243 }
1244 
1245 /**
1246  * If name refers to a builtin array whose maximum allowed size is less than
1247  * size, report an error and return true.  Otherwise return false.
1248  */
1249 void
check_builtin_array_max_size(const char * name,unsigned size,YYLTYPE loc,struct _mesa_glsl_parse_state * state)1250 check_builtin_array_max_size(const char *name, unsigned size,
1251                              YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1252 {
1253    if ((strcmp("gl_TexCoord", name) == 0)
1254        && (size > state->Const.MaxTextureCoords)) {
1255       /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1256        *
1257        *     "The size [of gl_TexCoord] can be at most
1258        *     gl_MaxTextureCoords."
1259        */
1260       _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1261                        "be larger than gl_MaxTextureCoords (%u)",
1262                        state->Const.MaxTextureCoords);
1263    } else if (strcmp("gl_ClipDistance", name) == 0) {
1264       state->clip_dist_size = size;
1265       if (size > state->Const.MaxClipPlanes) {
1266          /* From section 7.1 (Vertex Shader Special Variables) of the
1267           * GLSL 1.30 spec:
1268           *
1269           *   "The gl_ClipDistance array is predeclared as unsized and
1270           *   must be sized by the shader either redeclaring it with a
1271           *   size or indexing it only with integral constant
1272           *   expressions. ... The size can be at most
1273           *   gl_MaxClipDistances."
1274           */
1275          _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1276                           "be larger than gl_MaxClipDistances (%u)",
1277                           state->Const.MaxClipPlanes);
1278       }
1279    } else if (strcmp("gl_CullDistance", name) == 0) {
1280       state->cull_dist_size = size;
1281       if (size > state->Const.MaxClipPlanes) {
1282          /* From the ARB_cull_distance spec:
1283           *
1284           *   "The gl_CullDistance array is predeclared as unsized and
1285           *    must be sized by the shader either redeclaring it with
1286           *    a size or indexing it only with integral constant
1287           *    expressions. The size determines the number and set of
1288           *    enabled cull distances and can be at most
1289           *    gl_MaxCullDistances."
1290           */
1291          _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1292                           "be larger than gl_MaxCullDistances (%u)",
1293                           state->Const.MaxClipPlanes);
1294       }
1295    }
1296 
1297    /* From the ARB_cull_distance spec:
1298     *
1299     * It is a compile-time or link-time error for the set of shaders forming
1300     * a program to have the sum of the sizes of the gl_ClipDistance and
1301     * gl_CullDistance arrays to be larger than
1302     * gl_MaxCombinedClipAndCullDistances.
1303     */
1304    if (state->clip_dist_size + state->cull_dist_size >
1305        state->Const.MaxClipPlanes) {
1306        _mesa_glsl_error(&loc, state, "The combined size of 'gl_ClipDistance' "
1307                         "and 'gl_CullDistance' size cannot be larger than "
1308                         "gl_MaxCombinedClipAndCullDistances (%u)",
1309                         state->Const.MaxClipPlanes);
1310    }
1311 }
1312 
1313 /**
1314  * Create the constant 1, of a which is appropriate for incrementing and
1315  * decrementing values of the given GLSL type.  For example, if type is vec4,
1316  * this creates a constant value of 1.0 having type float.
1317  *
1318  * If the given type is invalid for increment and decrement operators, return
1319  * a floating point 1--the error will be detected later.
1320  */
1321 static ir_rvalue *
constant_one_for_inc_dec(void * ctx,const glsl_type * type)1322 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1323 {
1324    switch (type->base_type) {
1325    case GLSL_TYPE_UINT:
1326       return new(ctx) ir_constant((unsigned) 1);
1327    case GLSL_TYPE_INT:
1328       return new(ctx) ir_constant(1);
1329    case GLSL_TYPE_UINT64:
1330       return new(ctx) ir_constant((uint64_t) 1);
1331    case GLSL_TYPE_INT64:
1332       return new(ctx) ir_constant((int64_t) 1);
1333    default:
1334    case GLSL_TYPE_FLOAT:
1335       return new(ctx) ir_constant(1.0f);
1336    }
1337 }
1338 
1339 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1340 ast_expression::hir(exec_list *instructions,
1341                     struct _mesa_glsl_parse_state *state)
1342 {
1343    return do_hir(instructions, state, true);
1344 }
1345 
1346 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1347 ast_expression::hir_no_rvalue(exec_list *instructions,
1348                               struct _mesa_glsl_parse_state *state)
1349 {
1350    do_hir(instructions, state, false);
1351 }
1352 
1353 void
set_is_lhs(bool new_value)1354 ast_expression::set_is_lhs(bool new_value)
1355 {
1356    /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1357     * if we lack an identifier we can just skip it.
1358     */
1359    if (this->primary_expression.identifier == NULL)
1360       return;
1361 
1362    this->is_lhs = new_value;
1363 
1364    /* We need to go through the subexpressions tree to cover cases like
1365     * ast_field_selection
1366     */
1367    if (this->subexpressions[0] != NULL)
1368       this->subexpressions[0]->set_is_lhs(new_value);
1369 }
1370 
1371 ir_rvalue *
do_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state,bool needs_rvalue)1372 ast_expression::do_hir(exec_list *instructions,
1373                        struct _mesa_glsl_parse_state *state,
1374                        bool needs_rvalue)
1375 {
1376    void *ctx = state;
1377    static const int operations[AST_NUM_OPERATORS] = {
1378       -1,               /* ast_assign doesn't convert to ir_expression. */
1379       -1,               /* ast_plus doesn't convert to ir_expression. */
1380       ir_unop_neg,
1381       ir_binop_add,
1382       ir_binop_sub,
1383       ir_binop_mul,
1384       ir_binop_div,
1385       ir_binop_mod,
1386       ir_binop_lshift,
1387       ir_binop_rshift,
1388       ir_binop_less,
1389       ir_binop_less,    /* This is correct.  See the ast_greater case below. */
1390       ir_binop_gequal,  /* This is correct.  See the ast_lequal case below. */
1391       ir_binop_gequal,
1392       ir_binop_all_equal,
1393       ir_binop_any_nequal,
1394       ir_binop_bit_and,
1395       ir_binop_bit_xor,
1396       ir_binop_bit_or,
1397       ir_unop_bit_not,
1398       ir_binop_logic_and,
1399       ir_binop_logic_xor,
1400       ir_binop_logic_or,
1401       ir_unop_logic_not,
1402 
1403       /* Note: The following block of expression types actually convert
1404        * to multiple IR instructions.
1405        */
1406       ir_binop_mul,     /* ast_mul_assign */
1407       ir_binop_div,     /* ast_div_assign */
1408       ir_binop_mod,     /* ast_mod_assign */
1409       ir_binop_add,     /* ast_add_assign */
1410       ir_binop_sub,     /* ast_sub_assign */
1411       ir_binop_lshift,  /* ast_ls_assign */
1412       ir_binop_rshift,  /* ast_rs_assign */
1413       ir_binop_bit_and, /* ast_and_assign */
1414       ir_binop_bit_xor, /* ast_xor_assign */
1415       ir_binop_bit_or,  /* ast_or_assign */
1416 
1417       -1,               /* ast_conditional doesn't convert to ir_expression. */
1418       ir_binop_add,     /* ast_pre_inc. */
1419       ir_binop_sub,     /* ast_pre_dec. */
1420       ir_binop_add,     /* ast_post_inc. */
1421       ir_binop_sub,     /* ast_post_dec. */
1422       -1,               /* ast_field_selection doesn't conv to ir_expression. */
1423       -1,               /* ast_array_index doesn't convert to ir_expression. */
1424       -1,               /* ast_function_call doesn't conv to ir_expression. */
1425       -1,               /* ast_identifier doesn't convert to ir_expression. */
1426       -1,               /* ast_int_constant doesn't convert to ir_expression. */
1427       -1,               /* ast_uint_constant doesn't conv to ir_expression. */
1428       -1,               /* ast_float_constant doesn't conv to ir_expression. */
1429       -1,               /* ast_bool_constant doesn't conv to ir_expression. */
1430       -1,               /* ast_sequence doesn't convert to ir_expression. */
1431       -1,               /* ast_aggregate shouldn't ever even get here. */
1432    };
1433    ir_rvalue *result = NULL;
1434    ir_rvalue *op[3];
1435    const struct glsl_type *type, *orig_type;
1436    bool error_emitted = false;
1437    YYLTYPE loc;
1438 
1439    loc = this->get_location();
1440 
1441    switch (this->oper) {
1442    case ast_aggregate:
1443       unreachable("ast_aggregate: Should never get here.");
1444 
1445    case ast_assign: {
1446       this->subexpressions[0]->set_is_lhs(true);
1447       op[0] = this->subexpressions[0]->hir(instructions, state);
1448       op[1] = this->subexpressions[1]->hir(instructions, state);
1449 
1450       error_emitted =
1451          do_assignment(instructions, state,
1452                        this->subexpressions[0]->non_lvalue_description,
1453                        op[0], op[1], &result, needs_rvalue, false,
1454                        this->subexpressions[0]->get_location());
1455       break;
1456    }
1457 
1458    case ast_plus:
1459       op[0] = this->subexpressions[0]->hir(instructions, state);
1460 
1461       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1462 
1463       error_emitted = glsl_type_is_error(type);
1464 
1465       result = op[0];
1466       break;
1467 
1468    case ast_neg:
1469       op[0] = this->subexpressions[0]->hir(instructions, state);
1470 
1471       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1472 
1473       error_emitted = glsl_type_is_error(type);
1474 
1475       result = new(ctx) ir_expression(operations[this->oper], type,
1476                                       op[0], NULL);
1477       break;
1478 
1479    case ast_add:
1480    case ast_sub:
1481    case ast_mul:
1482    case ast_div:
1483       op[0] = this->subexpressions[0]->hir(instructions, state);
1484       op[1] = this->subexpressions[1]->hir(instructions, state);
1485 
1486       type = arithmetic_result_type(op[0], op[1],
1487                                     (this->oper == ast_mul),
1488                                     state, & loc);
1489       error_emitted = glsl_type_is_error(type);
1490 
1491       result = new(ctx) ir_expression(operations[this->oper], type,
1492                                       op[0], op[1]);
1493       break;
1494 
1495    case ast_mod:
1496       op[0] = this->subexpressions[0]->hir(instructions, state);
1497       op[1] = this->subexpressions[1]->hir(instructions, state);
1498 
1499       type = modulus_result_type(op[0], op[1], state, &loc);
1500 
1501       assert(operations[this->oper] == ir_binop_mod);
1502 
1503       result = new(ctx) ir_expression(operations[this->oper], type,
1504                                       op[0], op[1]);
1505       error_emitted = glsl_type_is_error(type);
1506       break;
1507 
1508    case ast_lshift:
1509    case ast_rshift:
1510        if (!state->check_bitwise_operations_allowed(&loc)) {
1511           error_emitted = true;
1512        }
1513 
1514        op[0] = this->subexpressions[0]->hir(instructions, state);
1515        op[1] = this->subexpressions[1]->hir(instructions, state);
1516        type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1517                                 &loc);
1518        result = new(ctx) ir_expression(operations[this->oper], type,
1519                                        op[0], op[1]);
1520        error_emitted = glsl_type_is_error(op[0]->type) || glsl_type_is_error(op[1]->type);
1521        break;
1522 
1523    case ast_less:
1524    case ast_greater:
1525    case ast_lequal:
1526    case ast_gequal:
1527       op[0] = this->subexpressions[0]->hir(instructions, state);
1528       op[1] = this->subexpressions[1]->hir(instructions, state);
1529 
1530       type = relational_result_type(op[0], op[1], state, & loc);
1531 
1532       /* The relational operators must either generate an error or result
1533        * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1534        */
1535       assert(glsl_type_is_error(type)
1536              || (glsl_type_is_boolean(type) && glsl_type_is_scalar(type)));
1537 
1538       /* Like NIR, GLSL IR does not have opcodes for > or <=.  Instead, swap
1539        * the arguments and use < or >=.
1540        */
1541       if (this->oper == ast_greater || this->oper == ast_lequal) {
1542          ir_rvalue *const tmp = op[0];
1543          op[0] = op[1];
1544          op[1] = tmp;
1545       }
1546 
1547       result = new(ctx) ir_expression(operations[this->oper], type,
1548                                       op[0], op[1]);
1549       error_emitted = glsl_type_is_error(type);
1550       break;
1551 
1552    case ast_nequal:
1553    case ast_equal:
1554       op[0] = this->subexpressions[0]->hir(instructions, state);
1555       op[1] = this->subexpressions[1]->hir(instructions, state);
1556 
1557       /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1558        *
1559        *    "The equality operators equal (==), and not equal (!=)
1560        *    operate on all types. They result in a scalar Boolean. If
1561        *    the operand types do not match, then there must be a
1562        *    conversion from Section 4.1.10 "Implicit Conversions"
1563        *    applied to one operand that can make them match, in which
1564        *    case this conversion is done."
1565        */
1566 
1567       if (op[0]->type == &glsl_type_builtin_void || op[1]->type == &glsl_type_builtin_void) {
1568          _mesa_glsl_error(& loc, state, "wrong operand types: "
1569                          "no operation `%s' exists that takes a left-hand "
1570                          "operand of type 'void' or a right operand of type "
1571                          "'void'", (this->oper == ast_equal) ? "==" : "!=");
1572          error_emitted = true;
1573       } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1574            && !apply_implicit_conversion(op[1]->type, op[0], state))
1575           || (op[0]->type != op[1]->type)) {
1576          _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1577                           "type", (this->oper == ast_equal) ? "==" : "!=");
1578          error_emitted = true;
1579       } else if ((glsl_type_is_array(op[0]->type) || glsl_type_is_array(op[1]->type)) &&
1580                  !state->check_version(120, 300, &loc,
1581                                        "array comparisons forbidden")) {
1582          error_emitted = true;
1583       } else if ((glsl_contains_subroutine(op[0]->type) ||
1584                   glsl_contains_subroutine(op[1]->type))) {
1585          _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1586          error_emitted = true;
1587       } else if ((glsl_contains_opaque(op[0]->type) ||
1588                   glsl_contains_opaque(op[1]->type))) {
1589          _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1590          error_emitted = true;
1591       }
1592 
1593       if (error_emitted) {
1594          result = new(ctx) ir_constant(false);
1595       } else {
1596          result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1597          assert(result->type == &glsl_type_builtin_bool);
1598       }
1599       break;
1600 
1601    case ast_bit_and:
1602    case ast_bit_xor:
1603    case ast_bit_or:
1604       op[0] = this->subexpressions[0]->hir(instructions, state);
1605       op[1] = this->subexpressions[1]->hir(instructions, state);
1606       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1607       result = new(ctx) ir_expression(operations[this->oper], type,
1608                                       op[0], op[1]);
1609       error_emitted = glsl_type_is_error(op[0]->type) || glsl_type_is_error(op[1]->type);
1610       break;
1611 
1612    case ast_bit_not:
1613       op[0] = this->subexpressions[0]->hir(instructions, state);
1614 
1615       if (!state->check_bitwise_operations_allowed(&loc)) {
1616          error_emitted = true;
1617       }
1618 
1619       if (!glsl_type_is_integer_32_64(op[0]->type)) {
1620          _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1621          error_emitted = true;
1622       }
1623 
1624       type = error_emitted ? &glsl_type_builtin_error : op[0]->type;
1625       result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1626       break;
1627 
1628    case ast_logic_and: {
1629       exec_list rhs_instructions;
1630       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1631                                          "LHS", &error_emitted);
1632       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1633                                          "RHS", &error_emitted);
1634 
1635       if (rhs_instructions.is_empty()) {
1636          result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1637       } else {
1638          ir_variable *const tmp = new(ctx) ir_variable(&glsl_type_builtin_bool,
1639                                                        "and_tmp",
1640                                                        ir_var_temporary);
1641          instructions->push_tail(tmp);
1642 
1643          ir_if *const stmt = new(ctx) ir_if(op[0]);
1644          instructions->push_tail(stmt);
1645 
1646          stmt->then_instructions.append_list(&rhs_instructions);
1647          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1648          ir_assignment *const then_assign =
1649             new(ctx) ir_assignment(then_deref, op[1]);
1650          stmt->then_instructions.push_tail(then_assign);
1651 
1652          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1653          ir_assignment *const else_assign =
1654             new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1655          stmt->else_instructions.push_tail(else_assign);
1656 
1657          result = new(ctx) ir_dereference_variable(tmp);
1658       }
1659       break;
1660    }
1661 
1662    case ast_logic_or: {
1663       exec_list rhs_instructions;
1664       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1665                                          "LHS", &error_emitted);
1666       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1667                                          "RHS", &error_emitted);
1668 
1669       if (rhs_instructions.is_empty()) {
1670          result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1671       } else {
1672          ir_variable *const tmp = new(ctx) ir_variable(&glsl_type_builtin_bool,
1673                                                        "or_tmp",
1674                                                        ir_var_temporary);
1675          instructions->push_tail(tmp);
1676 
1677          ir_if *const stmt = new(ctx) ir_if(op[0]);
1678          instructions->push_tail(stmt);
1679 
1680          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1681          ir_assignment *const then_assign =
1682             new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1683          stmt->then_instructions.push_tail(then_assign);
1684 
1685          stmt->else_instructions.append_list(&rhs_instructions);
1686          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1687          ir_assignment *const else_assign =
1688             new(ctx) ir_assignment(else_deref, op[1]);
1689          stmt->else_instructions.push_tail(else_assign);
1690 
1691          result = new(ctx) ir_dereference_variable(tmp);
1692       }
1693       break;
1694    }
1695 
1696    case ast_logic_xor:
1697       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1698        *
1699        *    "The logical binary operators and (&&), or ( | | ), and
1700        *     exclusive or (^^). They operate only on two Boolean
1701        *     expressions and result in a Boolean expression."
1702        */
1703       op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1704                                          &error_emitted);
1705       op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1706                                          &error_emitted);
1707 
1708       result = new(ctx) ir_expression(operations[this->oper], &glsl_type_builtin_bool,
1709                                       op[0], op[1]);
1710       break;
1711 
1712    case ast_logic_not:
1713       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1714                                          "operand", &error_emitted);
1715 
1716       result = new(ctx) ir_expression(operations[this->oper], &glsl_type_builtin_bool,
1717                                       op[0], NULL);
1718       break;
1719 
1720    case ast_mul_assign:
1721    case ast_div_assign:
1722    case ast_add_assign:
1723    case ast_sub_assign: {
1724       this->subexpressions[0]->set_is_lhs(true);
1725       op[0] = this->subexpressions[0]->hir(instructions, state);
1726       op[1] = this->subexpressions[1]->hir(instructions, state);
1727 
1728       orig_type = op[0]->type;
1729 
1730       /* Break out if operand types were not parsed successfully. */
1731       if ((op[0]->type == &glsl_type_builtin_error ||
1732            op[1]->type == &glsl_type_builtin_error)) {
1733          error_emitted = true;
1734          result = ir_rvalue::error_value(ctx);
1735          break;
1736       }
1737 
1738       type = arithmetic_result_type(op[0], op[1],
1739                                     (this->oper == ast_mul_assign),
1740                                     state, & loc);
1741 
1742       if (type != orig_type) {
1743          _mesa_glsl_error(& loc, state,
1744                           "could not implicitly convert "
1745                           "%s to %s", glsl_get_type_name(type), glsl_get_type_name(orig_type));
1746          type = &glsl_type_builtin_error;
1747       }
1748 
1749       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1750                                                    op[0], op[1]);
1751 
1752       error_emitted =
1753          do_assignment(instructions, state,
1754                        this->subexpressions[0]->non_lvalue_description,
1755                        op[0]->clone(ctx, NULL), temp_rhs,
1756                        &result, needs_rvalue, false,
1757                        this->subexpressions[0]->get_location());
1758 
1759       /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1760        * explicitly test for this because none of the binary expression
1761        * operators allow array operands either.
1762        */
1763 
1764       break;
1765    }
1766 
1767    case ast_mod_assign: {
1768       this->subexpressions[0]->set_is_lhs(true);
1769       op[0] = this->subexpressions[0]->hir(instructions, state);
1770       op[1] = this->subexpressions[1]->hir(instructions, state);
1771 
1772       /* Break out if operand types were not parsed successfully. */
1773       if ((op[0]->type == &glsl_type_builtin_error ||
1774            op[1]->type == &glsl_type_builtin_error)) {
1775          error_emitted = true;
1776          result = ir_rvalue::error_value(ctx);
1777          break;
1778       }
1779 
1780       orig_type = op[0]->type;
1781       type = modulus_result_type(op[0], op[1], state, &loc);
1782 
1783       if (type != orig_type) {
1784          _mesa_glsl_error(& loc, state,
1785                           "could not implicitly convert "
1786                           "%s to %s", glsl_get_type_name(type), glsl_get_type_name(orig_type));
1787          type = &glsl_type_builtin_error;
1788       }
1789 
1790       assert(operations[this->oper] == ir_binop_mod);
1791 
1792       ir_rvalue *temp_rhs;
1793       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1794                                         op[0], op[1]);
1795 
1796       error_emitted =
1797          do_assignment(instructions, state,
1798                        this->subexpressions[0]->non_lvalue_description,
1799                        op[0]->clone(ctx, NULL), temp_rhs,
1800                        &result, needs_rvalue, false,
1801                        this->subexpressions[0]->get_location());
1802       break;
1803    }
1804 
1805    case ast_ls_assign:
1806    case ast_rs_assign: {
1807       this->subexpressions[0]->set_is_lhs(true);
1808       op[0] = this->subexpressions[0]->hir(instructions, state);
1809       op[1] = this->subexpressions[1]->hir(instructions, state);
1810 
1811       /* Break out if operand types were not parsed successfully. */
1812       if ((op[0]->type == &glsl_type_builtin_error ||
1813            op[1]->type == &glsl_type_builtin_error)) {
1814          error_emitted = true;
1815          result = ir_rvalue::error_value(ctx);
1816          break;
1817       }
1818 
1819       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1820                                &loc);
1821       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1822                                                    type, op[0], op[1]);
1823       error_emitted =
1824          do_assignment(instructions, state,
1825                        this->subexpressions[0]->non_lvalue_description,
1826                        op[0]->clone(ctx, NULL), temp_rhs,
1827                        &result, needs_rvalue, false,
1828                        this->subexpressions[0]->get_location());
1829       break;
1830    }
1831 
1832    case ast_and_assign:
1833    case ast_xor_assign:
1834    case ast_or_assign: {
1835       this->subexpressions[0]->set_is_lhs(true);
1836       op[0] = this->subexpressions[0]->hir(instructions, state);
1837       op[1] = this->subexpressions[1]->hir(instructions, state);
1838 
1839       /* Break out if operand types were not parsed successfully. */
1840       if ((op[0]->type == &glsl_type_builtin_error ||
1841            op[1]->type == &glsl_type_builtin_error)) {
1842          error_emitted = true;
1843          result = ir_rvalue::error_value(ctx);
1844          break;
1845       }
1846 
1847       orig_type = op[0]->type;
1848       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1849 
1850       if (type != orig_type) {
1851          _mesa_glsl_error(& loc, state,
1852                           "could not implicitly convert "
1853                           "%s to %s", glsl_get_type_name(type), glsl_get_type_name(orig_type));
1854          type = &glsl_type_builtin_error;
1855       }
1856 
1857       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1858                                                    type, op[0], op[1]);
1859       error_emitted =
1860          do_assignment(instructions, state,
1861                        this->subexpressions[0]->non_lvalue_description,
1862                        op[0]->clone(ctx, NULL), temp_rhs,
1863                        &result, needs_rvalue, false,
1864                        this->subexpressions[0]->get_location());
1865       break;
1866    }
1867 
1868    case ast_conditional: {
1869       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1870        *
1871        *    "The ternary selection operator (?:). It operates on three
1872        *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1873        *    first expression, which must result in a scalar Boolean."
1874        */
1875       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1876                                          "condition", &error_emitted);
1877 
1878       /* The :? operator is implemented by generating an anonymous temporary
1879        * followed by an if-statement.  The last instruction in each branch of
1880        * the if-statement assigns a value to the anonymous temporary.  This
1881        * temporary is the r-value of the expression.
1882        */
1883       exec_list then_instructions;
1884       exec_list else_instructions;
1885 
1886       op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1887       op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1888 
1889       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1890        *
1891        *     "The second and third expressions can be any type, as
1892        *     long their types match, or there is a conversion in
1893        *     Section 4.1.10 "Implicit Conversions" that can be applied
1894        *     to one of the expressions to make their types match. This
1895        *     resulting matching type is the type of the entire
1896        *     expression."
1897        */
1898       if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1899           && !apply_implicit_conversion(op[2]->type, op[1], state))
1900           || (op[1]->type != op[2]->type)) {
1901          YYLTYPE loc = this->subexpressions[1]->get_location();
1902 
1903          _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1904                           "operator must have matching types");
1905          error_emitted = true;
1906          type = &glsl_type_builtin_error;
1907       } else {
1908          type = op[1]->type;
1909       }
1910 
1911       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1912        *
1913        *    "The second and third expressions must be the same type, but can
1914        *    be of any type other than an array."
1915        */
1916       if (glsl_type_is_array(type) &&
1917           !state->check_version(120, 300, &loc,
1918                                 "second and third operands of ?: operator "
1919                                 "cannot be arrays")) {
1920          error_emitted = true;
1921       }
1922 
1923       /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1924        *
1925        *  "Except for array indexing, structure member selection, and
1926        *   parentheses, opaque variables are not allowed to be operands in
1927        *   expressions; such use results in a compile-time error."
1928        */
1929       if (glsl_contains_opaque(type)) {
1930          if (!(state->has_bindless() && (glsl_type_is_image(type) || glsl_type_is_sampler(type)))) {
1931             _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1932                              "operands of the ?: operator", glsl_get_type_name(type));
1933             error_emitted = true;
1934          }
1935       }
1936 
1937       ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1938 
1939       if (then_instructions.is_empty()
1940           && else_instructions.is_empty()
1941           && cond_val != NULL) {
1942          result = cond_val->value.b[0] ? op[1] : op[2];
1943       } else {
1944          /* The copy to conditional_tmp reads the whole array. */
1945          if (glsl_type_is_array(type)) {
1946             mark_whole_array_access(op[1]);
1947             mark_whole_array_access(op[2]);
1948          }
1949 
1950          ir_variable *const tmp =
1951             new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1952          instructions->push_tail(tmp);
1953 
1954          ir_if *const stmt = new(ctx) ir_if(op[0]);
1955          instructions->push_tail(stmt);
1956 
1957          then_instructions.move_nodes_to(& stmt->then_instructions);
1958          ir_dereference *const then_deref =
1959             new(ctx) ir_dereference_variable(tmp);
1960          ir_assignment *const then_assign =
1961             new(ctx) ir_assignment(then_deref, op[1]);
1962          stmt->then_instructions.push_tail(then_assign);
1963 
1964          else_instructions.move_nodes_to(& stmt->else_instructions);
1965          ir_dereference *const else_deref =
1966             new(ctx) ir_dereference_variable(tmp);
1967          ir_assignment *const else_assign =
1968             new(ctx) ir_assignment(else_deref, op[2]);
1969          stmt->else_instructions.push_tail(else_assign);
1970 
1971          result = new(ctx) ir_dereference_variable(tmp);
1972       }
1973       break;
1974    }
1975 
1976    case ast_pre_inc:
1977    case ast_pre_dec: {
1978       this->non_lvalue_description = (this->oper == ast_pre_inc)
1979          ? "pre-increment operation" : "pre-decrement operation";
1980 
1981       op[0] = this->subexpressions[0]->hir(instructions, state);
1982       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1983 
1984       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1985 
1986       ir_rvalue *temp_rhs;
1987       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1988                                         op[0], op[1]);
1989 
1990       error_emitted =
1991          do_assignment(instructions, state,
1992                        this->subexpressions[0]->non_lvalue_description,
1993                        op[0]->clone(ctx, NULL), temp_rhs,
1994                        &result, needs_rvalue, false,
1995                        this->subexpressions[0]->get_location());
1996       break;
1997    }
1998 
1999    case ast_post_inc:
2000    case ast_post_dec: {
2001       this->non_lvalue_description = (this->oper == ast_post_inc)
2002          ? "post-increment operation" : "post-decrement operation";
2003       op[0] = this->subexpressions[0]->hir(instructions, state);
2004       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
2005 
2006       error_emitted = glsl_type_is_error(op[0]->type) || glsl_type_is_error(op[1]->type);
2007 
2008       if (error_emitted) {
2009          result = ir_rvalue::error_value(ctx);
2010          break;
2011       }
2012 
2013       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
2014 
2015       ir_rvalue *temp_rhs;
2016       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
2017                                         op[0], op[1]);
2018 
2019       /* Get a temporary of a copy of the lvalue before it's modified.
2020        * This may get thrown away later.
2021        */
2022       result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
2023 
2024       ir_rvalue *junk_rvalue;
2025       error_emitted =
2026          do_assignment(instructions, state,
2027                        this->subexpressions[0]->non_lvalue_description,
2028                        op[0]->clone(ctx, NULL), temp_rhs,
2029                        &junk_rvalue, false, false,
2030                        this->subexpressions[0]->get_location());
2031 
2032       break;
2033    }
2034 
2035    case ast_field_selection:
2036       result = _mesa_ast_field_selection_to_hir(this, instructions, state);
2037       break;
2038 
2039    case ast_array_index: {
2040       YYLTYPE index_loc = subexpressions[1]->get_location();
2041 
2042       /* Getting if an array is being used uninitialized is beyond what we get
2043        * from ir_value.data.assigned. Setting is_lhs as true would force to
2044        * not raise a uninitialized warning when using an array
2045        */
2046       subexpressions[0]->set_is_lhs(true);
2047       op[0] = subexpressions[0]->hir(instructions, state);
2048       op[1] = subexpressions[1]->hir(instructions, state);
2049 
2050       result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
2051                                             loc, index_loc);
2052 
2053       if (glsl_type_is_error(result->type))
2054          error_emitted = true;
2055 
2056       break;
2057    }
2058 
2059    case ast_unsized_array_dim:
2060       unreachable("ast_unsized_array_dim: Should never get here.");
2061 
2062    case ast_function_call:
2063       /* Should *NEVER* get here.  ast_function_call should always be handled
2064        * by ast_function_expression::hir.
2065        */
2066       unreachable("ast_function_call: handled elsewhere ");
2067 
2068    case ast_identifier: {
2069       /* ast_identifier can appear several places in a full abstract syntax
2070        * tree.  This particular use must be at location specified in the grammar
2071        * as 'variable_identifier'.
2072        */
2073       ir_variable *var =
2074          state->symbols->get_variable(this->primary_expression.identifier);
2075 
2076       if (var == NULL) {
2077          /* the identifier might be a subroutine name */
2078          char *sub_name;
2079          sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2080          var = state->symbols->get_variable(sub_name);
2081          ralloc_free(sub_name);
2082       }
2083 
2084       if (var != NULL) {
2085          var->data.used = true;
2086          result = new(ctx) ir_dereference_variable(var);
2087 
2088          if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2089              && !this->is_lhs
2090              && result->variable_referenced()->data.assigned != true
2091              && !is_gl_identifier(var->name)) {
2092             _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2093                                this->primary_expression.identifier);
2094          }
2095 
2096          if (var->is_fb_fetch_color_output()) {
2097             /* From the EXT_shader_framebuffer_fetch spec:
2098              *
2099              *   "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2100              *    enabled in addition, it's an error to use gl_LastFragData if it
2101              *    hasn't been explicitly redeclared with layout(noncoherent)."
2102              */
2103             if (var->data.memory_coherent && !state->EXT_shader_framebuffer_fetch_enable) {
2104                _mesa_glsl_error(&loc, state,
2105                                 "invalid use of framebuffer fetch output not "
2106                                 "qualified with layout(noncoherent)");
2107             }
2108          } else if (var->data.fb_fetch_output) {
2109             /* From the ARM_shader_framebuffer_fetch_depth_stencil spec:
2110              *
2111              *   "It is not legal for a fragment shader to read from gl_LastFragDepthARM
2112              *    and gl_LastFragStencilARM if the early_fragment_tests layout qualifier
2113              *    is specified. This will result in a compile-time error."
2114              */
2115             if (state->fs_early_fragment_tests) {
2116                _mesa_glsl_error(&loc, state,
2117                                 "invalid use of depth or stencil fetch "
2118                                 "with early fragment tests enabled");
2119             }
2120          }
2121 
2122       } else {
2123          _mesa_glsl_error(& loc, state, "`%s' undeclared",
2124                           this->primary_expression.identifier);
2125 
2126          result = ir_rvalue::error_value(ctx);
2127          error_emitted = true;
2128       }
2129       break;
2130    }
2131 
2132    case ast_int_constant:
2133       result = new(ctx) ir_constant(this->primary_expression.int_constant);
2134       break;
2135 
2136    case ast_uint_constant:
2137       result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2138       break;
2139 
2140    case ast_float16_constant:
2141       result = new(ctx) ir_constant(float16_t(this->primary_expression.float16_constant));
2142       break;
2143 
2144    case ast_float_constant:
2145       result = new(ctx) ir_constant(this->primary_expression.float_constant);
2146       break;
2147 
2148    case ast_bool_constant:
2149       result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2150       break;
2151 
2152    case ast_double_constant:
2153       result = new(ctx) ir_constant(this->primary_expression.double_constant);
2154       break;
2155 
2156    case ast_uint64_constant:
2157       result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2158       break;
2159 
2160    case ast_int64_constant:
2161       result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2162       break;
2163 
2164    case ast_sequence: {
2165       /* It should not be possible to generate a sequence in the AST without
2166        * any expressions in it.
2167        */
2168       assert(!this->expressions.is_empty());
2169 
2170       /* The r-value of a sequence is the last expression in the sequence.  If
2171        * the other expressions in the sequence do not have side-effects (and
2172        * therefore add instructions to the instruction list), they get dropped
2173        * on the floor.
2174        */
2175       exec_node *previous_tail = NULL;
2176       YYLTYPE previous_operand_loc = loc;
2177 
2178       foreach_list_typed (ast_node, ast, link, &this->expressions) {
2179          /* If one of the operands of comma operator does not generate any
2180           * code, we want to emit a warning.  At each pass through the loop
2181           * previous_tail will point to the last instruction in the stream
2182           * *before* processing the previous operand.  Naturally,
2183           * instructions->get_tail_raw() will point to the last instruction in
2184           * the stream *after* processing the previous operand.  If the two
2185           * pointers match, then the previous operand had no effect.
2186           *
2187           * The warning behavior here differs slightly from GCC.  GCC will
2188           * only emit a warning if none of the left-hand operands have an
2189           * effect.  However, it will emit a warning for each.  I believe that
2190           * there are some cases in C (especially with GCC extensions) where
2191           * it is useful to have an intermediate step in a sequence have no
2192           * effect, but I don't think these cases exist in GLSL.  Either way,
2193           * it would be a giant hassle to replicate that behavior.
2194           */
2195          if (previous_tail == instructions->get_tail_raw()) {
2196             _mesa_glsl_warning(&previous_operand_loc, state,
2197                                "left-hand operand of comma expression has "
2198                                "no effect");
2199          }
2200 
2201          /* The tail is directly accessed instead of using the get_tail()
2202           * method for performance reasons.  get_tail() has extra code to
2203           * return NULL when the list is empty.  We don't care about that
2204           * here, so using get_tail_raw() is fine.
2205           */
2206          previous_tail = instructions->get_tail_raw();
2207          previous_operand_loc = ast->get_location();
2208 
2209          result = ast->hir(instructions, state);
2210       }
2211 
2212       /* Any errors should have already been emitted in the loop above.
2213        */
2214       error_emitted = true;
2215       break;
2216    }
2217    }
2218    type = NULL; /* use result->type, not type. */
2219    assert(error_emitted || (result != NULL || !needs_rvalue));
2220 
2221    if (result && glsl_type_is_error(result->type) && !error_emitted)
2222       _mesa_glsl_error(& loc, state, "type mismatch");
2223 
2224    return result;
2225 }
2226 
2227 bool
has_sequence_subexpression() const2228 ast_expression::has_sequence_subexpression() const
2229 {
2230    switch (this->oper) {
2231    case ast_plus:
2232    case ast_neg:
2233    case ast_bit_not:
2234    case ast_logic_not:
2235    case ast_pre_inc:
2236    case ast_pre_dec:
2237    case ast_post_inc:
2238    case ast_post_dec:
2239       return this->subexpressions[0]->has_sequence_subexpression();
2240 
2241    case ast_assign:
2242    case ast_add:
2243    case ast_sub:
2244    case ast_mul:
2245    case ast_div:
2246    case ast_mod:
2247    case ast_lshift:
2248    case ast_rshift:
2249    case ast_less:
2250    case ast_greater:
2251    case ast_lequal:
2252    case ast_gequal:
2253    case ast_nequal:
2254    case ast_equal:
2255    case ast_bit_and:
2256    case ast_bit_xor:
2257    case ast_bit_or:
2258    case ast_logic_and:
2259    case ast_logic_or:
2260    case ast_logic_xor:
2261    case ast_array_index:
2262    case ast_mul_assign:
2263    case ast_div_assign:
2264    case ast_add_assign:
2265    case ast_sub_assign:
2266    case ast_mod_assign:
2267    case ast_ls_assign:
2268    case ast_rs_assign:
2269    case ast_and_assign:
2270    case ast_xor_assign:
2271    case ast_or_assign:
2272       return this->subexpressions[0]->has_sequence_subexpression() ||
2273              this->subexpressions[1]->has_sequence_subexpression();
2274 
2275    case ast_conditional:
2276       return this->subexpressions[0]->has_sequence_subexpression() ||
2277              this->subexpressions[1]->has_sequence_subexpression() ||
2278              this->subexpressions[2]->has_sequence_subexpression();
2279 
2280    case ast_sequence:
2281       return true;
2282 
2283    case ast_field_selection:
2284    case ast_identifier:
2285    case ast_int_constant:
2286    case ast_uint_constant:
2287    case ast_float16_constant:
2288    case ast_float_constant:
2289    case ast_bool_constant:
2290    case ast_double_constant:
2291    case ast_int64_constant:
2292    case ast_uint64_constant:
2293       return false;
2294 
2295    case ast_aggregate:
2296       return false;
2297 
2298    case ast_function_call:
2299       unreachable("should be handled by ast_function_expression::hir");
2300 
2301    case ast_unsized_array_dim:
2302       unreachable("ast_unsized_array_dim: Should never get here.");
2303    }
2304 
2305    return false;
2306 }
2307 
2308 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2309 ast_expression_statement::hir(exec_list *instructions,
2310                               struct _mesa_glsl_parse_state *state)
2311 {
2312    /* It is possible to have expression statements that don't have an
2313     * expression.  This is the solitary semicolon:
2314     *
2315     * for (i = 0; i < 5; i++)
2316     *     ;
2317     *
2318     * In this case the expression will be NULL.  Test for NULL and don't do
2319     * anything in that case.
2320     */
2321    if (expression != NULL)
2322       expression->hir_no_rvalue(instructions, state);
2323 
2324    /* Statements do not have r-values.
2325     */
2326    return NULL;
2327 }
2328 
2329 
2330 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2331 ast_compound_statement::hir(exec_list *instructions,
2332                             struct _mesa_glsl_parse_state *state)
2333 {
2334    if (new_scope)
2335       state->symbols->push_scope();
2336 
2337    foreach_list_typed (ast_node, ast, link, &this->statements)
2338       ast->hir(instructions, state);
2339 
2340    if (new_scope)
2341       state->symbols->pop_scope();
2342 
2343    /* Compound statements do not have r-values.
2344     */
2345    return NULL;
2346 }
2347 
2348 /**
2349  * Evaluate the given exec_node (which should be an ast_node representing
2350  * a single array dimension) and return its integer value.
2351  */
2352 static unsigned
process_array_size(exec_node * node,struct _mesa_glsl_parse_state * state)2353 process_array_size(exec_node *node,
2354                    struct _mesa_glsl_parse_state *state)
2355 {
2356    void *mem_ctx = state;
2357 
2358    exec_list dummy_instructions;
2359 
2360    ast_node *array_size = exec_node_data(ast_node, node, link);
2361 
2362    /**
2363     * Dimensions other than the outermost dimension can by unsized if they
2364     * are immediately sized by a constructor or initializer.
2365     */
2366    if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2367       return 0;
2368 
2369    ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2370    YYLTYPE loc = array_size->get_location();
2371 
2372    if (ir == NULL) {
2373       _mesa_glsl_error(& loc, state,
2374                        "array size could not be resolved");
2375       return 0;
2376    }
2377 
2378    if (!glsl_type_is_integer_32(ir->type)) {
2379       _mesa_glsl_error(& loc, state,
2380                        "array size must be integer type");
2381       return 0;
2382    }
2383 
2384    if (!glsl_type_is_scalar(ir->type)) {
2385       _mesa_glsl_error(& loc, state,
2386                        "array size must be scalar type");
2387       return 0;
2388    }
2389 
2390    ir_constant *const size = ir->constant_expression_value(mem_ctx);
2391    if (size == NULL ||
2392        (state->is_version(120, 300) &&
2393         array_size->has_sequence_subexpression())) {
2394       _mesa_glsl_error(& loc, state, "array size must be a "
2395                        "constant valued expression");
2396       return 0;
2397    }
2398 
2399    if (size->value.i[0] <= 0) {
2400       _mesa_glsl_error(& loc, state, "array size must be > 0");
2401       return 0;
2402    }
2403 
2404    assert(size->type == ir->type);
2405 
2406    /* If the array size is const (and we've verified that
2407     * it is) then no instructions should have been emitted
2408     * when we converted it to HIR. If they were emitted,
2409     * then either the array size isn't const after all, or
2410     * we are emitting unnecessary instructions.
2411     */
2412    assert(dummy_instructions.is_empty());
2413 
2414    return size->value.u[0];
2415 }
2416 
2417 static const glsl_type *
process_array_type(YYLTYPE * loc,const glsl_type * base,ast_array_specifier * array_specifier,struct _mesa_glsl_parse_state * state)2418 process_array_type(YYLTYPE *loc, const glsl_type *base,
2419                    ast_array_specifier *array_specifier,
2420                    struct _mesa_glsl_parse_state *state)
2421 {
2422    const glsl_type *array_type = base;
2423 
2424    if (array_specifier != NULL) {
2425       if (glsl_type_is_array(base)) {
2426 
2427          /* From page 19 (page 25) of the GLSL 1.20 spec:
2428           *
2429           * "Only one-dimensional arrays may be declared."
2430           */
2431          if (!state->check_arrays_of_arrays_allowed(loc)) {
2432             return &glsl_type_builtin_error;
2433          }
2434       }
2435 
2436       for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2437            !node->is_head_sentinel(); node = node->prev) {
2438          unsigned array_size = process_array_size(node, state);
2439          array_type = glsl_array_type(array_type, array_size, 0);
2440       }
2441    }
2442 
2443    return array_type;
2444 }
2445 
2446 static bool
precision_qualifier_allowed(const glsl_type * type)2447 precision_qualifier_allowed(const glsl_type *type)
2448 {
2449    /* Precision qualifiers apply to floating point, integer and opaque
2450     * types.
2451     *
2452     * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2453     *    "Any floating point or any integer declaration can have the type
2454     *    preceded by one of these precision qualifiers [...] Literal
2455     *    constants do not have precision qualifiers. Neither do Boolean
2456     *    variables.
2457     *
2458     * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2459     * spec also says:
2460     *
2461     *     "Precision qualifiers are added for code portability with OpenGL
2462     *     ES, not for functionality. They have the same syntax as in OpenGL
2463     *     ES."
2464     *
2465     * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2466     *
2467     *     "uniform lowp sampler2D sampler;
2468     *     highp vec2 coord;
2469     *     ...
2470     *     lowp vec4 col = texture2D (sampler, coord);
2471     *                                            // texture2D returns lowp"
2472     *
2473     * From this, we infer that GLSL 1.30 (and later) should allow precision
2474     * qualifiers on sampler types just like float and integer types.
2475     */
2476    const glsl_type *const t = glsl_without_array(type);
2477 
2478    return (glsl_type_is_float(t) || glsl_type_is_integer_32(t) || glsl_contains_opaque(t)) &&
2479           !glsl_type_is_struct(t);
2480 }
2481 
2482 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2483 ast_type_specifier::glsl_type(const char **name,
2484                               struct _mesa_glsl_parse_state *state) const
2485 {
2486    const struct glsl_type *type;
2487 
2488    if (this->type != NULL)
2489       type = this->type;
2490    else if (structure)
2491       type = structure->type;
2492    else
2493       type = state->symbols->get_type(this->type_name);
2494    *name = this->type_name;
2495 
2496    YYLTYPE loc = this->get_location();
2497    type = process_array_type(&loc, type, this->array_specifier, state);
2498 
2499    return type;
2500 }
2501 
2502 /**
2503  * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2504  *
2505  * "The precision statement
2506  *
2507  *    precision precision-qualifier type;
2508  *
2509  *  can be used to establish a default precision qualifier. The type field can
2510  *  be either int or float or any of the sampler types, (...) If type is float,
2511  *  the directive applies to non-precision-qualified floating point type
2512  *  (scalar, vector, and matrix) declarations. If type is int, the directive
2513  *  applies to all non-precision-qualified integer type (scalar, vector, signed,
2514  *  and unsigned) declarations."
2515  *
2516  * We use the symbol table to keep the values of the default precisions for
2517  * each 'type' in each scope and we use the 'type' string from the precision
2518  * statement as key in the symbol table. When we want to retrieve the default
2519  * precision associated with a given glsl_type we need to know the type string
2520  * associated with it. This is what this function returns.
2521  */
2522 static const char *
get_type_name_for_precision_qualifier(const glsl_type * type)2523 get_type_name_for_precision_qualifier(const glsl_type *type)
2524 {
2525    switch (type->base_type) {
2526    case GLSL_TYPE_FLOAT:
2527       return "float";
2528    case GLSL_TYPE_UINT:
2529    case GLSL_TYPE_INT:
2530       return "int";
2531    case GLSL_TYPE_ATOMIC_UINT:
2532       return "atomic_uint";
2533    case GLSL_TYPE_IMAGE:
2534    FALLTHROUGH;
2535    case GLSL_TYPE_SAMPLER: {
2536       const unsigned type_idx =
2537          type->sampler_array + 2 * type->sampler_shadow;
2538       const unsigned offset = glsl_type_is_sampler(type) ? 0 : 4;
2539       assert(type_idx < 4);
2540       switch (type->sampled_type) {
2541       case GLSL_TYPE_FLOAT:
2542          switch (type->sampler_dimensionality) {
2543          case GLSL_SAMPLER_DIM_1D: {
2544             assert(glsl_type_is_sampler(type));
2545             static const char *const names[4] = {
2546               "sampler1D", "sampler1DArray",
2547               "sampler1DShadow", "sampler1DArrayShadow"
2548             };
2549             return names[type_idx];
2550          }
2551          case GLSL_SAMPLER_DIM_2D: {
2552             static const char *const names[8] = {
2553               "sampler2D", "sampler2DArray",
2554               "sampler2DShadow", "sampler2DArrayShadow",
2555               "image2D", "image2DArray", NULL, NULL
2556             };
2557             return names[offset + type_idx];
2558          }
2559          case GLSL_SAMPLER_DIM_3D: {
2560             static const char *const names[8] = {
2561               "sampler3D", NULL, NULL, NULL,
2562               "image3D", NULL, NULL, NULL
2563             };
2564             return names[offset + type_idx];
2565          }
2566          case GLSL_SAMPLER_DIM_CUBE: {
2567             static const char *const names[8] = {
2568               "samplerCube", "samplerCubeArray",
2569               "samplerCubeShadow", "samplerCubeArrayShadow",
2570               "imageCube", NULL, NULL, NULL
2571             };
2572             return names[offset + type_idx];
2573          }
2574          case GLSL_SAMPLER_DIM_MS: {
2575             assert(glsl_type_is_sampler(type));
2576             static const char *const names[4] = {
2577               "sampler2DMS", "sampler2DMSArray", NULL, NULL
2578             };
2579             return names[type_idx];
2580          }
2581          case GLSL_SAMPLER_DIM_RECT: {
2582             assert(glsl_type_is_sampler(type));
2583             static const char *const names[4] = {
2584               "samplerRect", NULL, "samplerRectShadow", NULL
2585             };
2586             return names[type_idx];
2587          }
2588          case GLSL_SAMPLER_DIM_BUF: {
2589             static const char *const names[8] = {
2590               "samplerBuffer", NULL, NULL, NULL,
2591               "imageBuffer", NULL, NULL, NULL
2592             };
2593             return names[offset + type_idx];
2594          }
2595          case GLSL_SAMPLER_DIM_EXTERNAL: {
2596             assert(glsl_type_is_sampler(type));
2597             static const char *const names[4] = {
2598               "samplerExternalOES", NULL, NULL, NULL
2599             };
2600             return names[type_idx];
2601          }
2602          default:
2603             unreachable("Unsupported sampler/image dimensionality");
2604          } /* sampler/image float dimensionality */
2605          break;
2606       case GLSL_TYPE_INT:
2607          switch (type->sampler_dimensionality) {
2608          case GLSL_SAMPLER_DIM_1D: {
2609             assert(glsl_type_is_sampler(type));
2610             static const char *const names[4] = {
2611               "isampler1D", "isampler1DArray", NULL, NULL
2612             };
2613             return names[type_idx];
2614          }
2615          case GLSL_SAMPLER_DIM_2D: {
2616             static const char *const names[8] = {
2617               "isampler2D", "isampler2DArray", NULL, NULL,
2618               "iimage2D", "iimage2DArray", NULL, NULL
2619             };
2620             return names[offset + type_idx];
2621          }
2622          case GLSL_SAMPLER_DIM_3D: {
2623             static const char *const names[8] = {
2624               "isampler3D", NULL, NULL, NULL,
2625               "iimage3D", NULL, NULL, NULL
2626             };
2627             return names[offset + type_idx];
2628          }
2629          case GLSL_SAMPLER_DIM_CUBE: {
2630             static const char *const names[8] = {
2631               "isamplerCube", "isamplerCubeArray", NULL, NULL,
2632               "iimageCube", NULL, NULL, NULL
2633             };
2634             return names[offset + type_idx];
2635          }
2636          case GLSL_SAMPLER_DIM_MS: {
2637             assert(glsl_type_is_sampler(type));
2638             static const char *const names[4] = {
2639               "isampler2DMS", "isampler2DMSArray", NULL, NULL
2640             };
2641             return names[type_idx];
2642          }
2643          case GLSL_SAMPLER_DIM_RECT: {
2644             assert(glsl_type_is_sampler(type));
2645             static const char *const names[4] = {
2646               "isamplerRect", NULL, "isamplerRectShadow", NULL
2647             };
2648             return names[type_idx];
2649          }
2650          case GLSL_SAMPLER_DIM_BUF: {
2651             static const char *const names[8] = {
2652               "isamplerBuffer", NULL, NULL, NULL,
2653               "iimageBuffer", NULL, NULL, NULL
2654             };
2655             return names[offset + type_idx];
2656          }
2657          default:
2658             unreachable("Unsupported isampler/iimage dimensionality");
2659          } /* sampler/image int dimensionality */
2660          break;
2661       case GLSL_TYPE_UINT:
2662          switch (type->sampler_dimensionality) {
2663          case GLSL_SAMPLER_DIM_1D: {
2664             assert(glsl_type_is_sampler(type));
2665             static const char *const names[4] = {
2666               "usampler1D", "usampler1DArray", NULL, NULL
2667             };
2668             return names[type_idx];
2669          }
2670          case GLSL_SAMPLER_DIM_2D: {
2671             static const char *const names[8] = {
2672               "usampler2D", "usampler2DArray", NULL, NULL,
2673               "uimage2D", "uimage2DArray", NULL, NULL
2674             };
2675             return names[offset + type_idx];
2676          }
2677          case GLSL_SAMPLER_DIM_3D: {
2678             static const char *const names[8] = {
2679               "usampler3D", NULL, NULL, NULL,
2680               "uimage3D", NULL, NULL, NULL
2681             };
2682             return names[offset + type_idx];
2683          }
2684          case GLSL_SAMPLER_DIM_CUBE: {
2685             static const char *const names[8] = {
2686               "usamplerCube", "usamplerCubeArray", NULL, NULL,
2687               "uimageCube", NULL, NULL, NULL
2688             };
2689             return names[offset + type_idx];
2690          }
2691          case GLSL_SAMPLER_DIM_MS: {
2692             assert(glsl_type_is_sampler(type));
2693             static const char *const names[4] = {
2694               "usampler2DMS", "usampler2DMSArray", NULL, NULL
2695             };
2696             return names[type_idx];
2697          }
2698          case GLSL_SAMPLER_DIM_RECT: {
2699             assert(glsl_type_is_sampler(type));
2700             static const char *const names[4] = {
2701               "usamplerRect", NULL, "usamplerRectShadow", NULL
2702             };
2703             return names[type_idx];
2704          }
2705          case GLSL_SAMPLER_DIM_BUF: {
2706             static const char *const names[8] = {
2707               "usamplerBuffer", NULL, NULL, NULL,
2708               "uimageBuffer", NULL, NULL, NULL
2709             };
2710             return names[offset + type_idx];
2711          }
2712          default:
2713             unreachable("Unsupported usampler/uimage dimensionality");
2714          } /* sampler/image uint dimensionality */
2715          break;
2716       default:
2717          unreachable("Unsupported sampler/image type");
2718       } /* sampler/image type */
2719       break;
2720    } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2721    break;
2722    default:
2723       unreachable("Unsupported type");
2724    } /* base type */
2725 
2726    return NULL;
2727 }
2728 
2729 static unsigned
select_gles_precision(unsigned qual_precision,const glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)2730 select_gles_precision(unsigned qual_precision,
2731                       const glsl_type *type,
2732                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2733 {
2734    /* Precision qualifiers do not have any meaning in Desktop GLSL.
2735     * In GLES we take the precision from the type qualifier if present,
2736     * otherwise, if the type of the variable allows precision qualifiers at
2737     * all, we look for the default precision qualifier for that type in the
2738     * current scope.
2739     */
2740    assert(state->es_shader);
2741 
2742    unsigned precision = GLSL_PRECISION_NONE;
2743    if (qual_precision) {
2744       precision = qual_precision;
2745    } else if (precision_qualifier_allowed(type)) {
2746       const char *type_name =
2747          get_type_name_for_precision_qualifier(glsl_without_array(type));
2748       assert(type_name != NULL);
2749 
2750       precision =
2751          state->symbols->get_default_precision_qualifier(type_name);
2752       if (precision == ast_precision_none) {
2753          _mesa_glsl_error(loc, state,
2754                           "No precision specified in this scope for type `%s'",
2755                           glsl_get_type_name(type));
2756       }
2757    }
2758 
2759 
2760    /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2761     *
2762     *    "The default precision of all atomic types is highp. It is an error to
2763     *    declare an atomic type with a different precision or to specify the
2764     *    default precision for an atomic type to be lowp or mediump."
2765     */
2766    if (glsl_type_is_atomic_uint(type) && precision != ast_precision_high) {
2767       _mesa_glsl_error(loc, state,
2768                        "atomic_uint can only have highp precision qualifier");
2769    }
2770 
2771    return precision;
2772 }
2773 
2774 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2775 ast_fully_specified_type::glsl_type(const char **name,
2776                                     struct _mesa_glsl_parse_state *state) const
2777 {
2778    return this->specifier->glsl_type(name, state);
2779 }
2780 
2781 /**
2782  * Determine whether a toplevel variable declaration declares a varying.  This
2783  * function operates by examining the variable's mode and the shader target,
2784  * so it correctly identifies linkage variables regardless of whether they are
2785  * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2786  *
2787  * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2788  * this function will produce undefined results.
2789  */
2790 static bool
is_varying_var(ir_variable * var,gl_shader_stage target)2791 is_varying_var(ir_variable *var, gl_shader_stage target)
2792 {
2793    switch (target) {
2794    case MESA_SHADER_VERTEX:
2795       return var->data.mode == ir_var_shader_out;
2796    case MESA_SHADER_FRAGMENT:
2797       return var->data.mode == ir_var_shader_in ||
2798              (var->data.mode == ir_var_system_value &&
2799               var->data.location == SYSTEM_VALUE_FRAG_COORD);
2800    default:
2801       return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2802    }
2803 }
2804 
2805 static bool
is_allowed_invariant(ir_variable * var,struct _mesa_glsl_parse_state * state)2806 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2807 {
2808    if (is_varying_var(var, state->stage))
2809       return true;
2810 
2811    /* ES2 says:
2812     *
2813     * "For the built-in special variables, gl_FragCoord can only be declared
2814     *  invariant if and only if gl_Position is declared invariant. Similarly
2815     *  gl_PointCoord can only be declared invariant if and only if gl_PointSize
2816     *  is declared invariant. It is an error to declare gl_FrontFacing as
2817     *  invariant. The invariance of gl_FrontFacing is the same as the invariance
2818     *  of gl_Position."
2819     *
2820     * ES3.1 says about invariance:
2821     *
2822     * "How does this rule apply to the built-in special variables?
2823     *
2824     *  Option 1: It should be the same as for varyings. But gl_Position is used
2825     *  internally by the rasterizer as well as for gl_FragCoord so there may be
2826     *  cases where rasterization is required to be invariant but gl_FragCoord is
2827     *  not.
2828     *
2829     *  RESOLUTION: Option 1."
2830     *
2831     * and the ES3 spec has similar text but the "RESOLUTION" is missing.
2832     *
2833     * Any system values should be from built-in special variables.
2834     */
2835    if (var->data.mode == ir_var_system_value) {
2836       if (state->is_version(0, 300)) {
2837          return true;
2838       } else {
2839          /* Note: We don't actually have a check that the VS's PointSize is
2840           * invariant, even when it's treated as a varying.
2841           */
2842          if (var->data.location == SYSTEM_VALUE_POINT_COORD)
2843             return true;
2844       }
2845    }
2846 
2847    /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2848     * "Only variables output from a vertex shader can be candidates
2849     * for invariance".
2850     */
2851    if (!state->is_version(130, 100))
2852       return false;
2853 
2854    /*
2855     * Later specs remove this language - so allowed invariant
2856     * on fragment shader outputs as well.
2857     */
2858    if (state->stage == MESA_SHADER_FRAGMENT &&
2859        var->data.mode == ir_var_shader_out)
2860       return true;
2861    return false;
2862 }
2863 
2864 static void
validate_component_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,unsigned qual_component)2865 validate_component_layout_for_type(struct _mesa_glsl_parse_state *state,
2866                                    YYLTYPE *loc, const glsl_type *type,
2867                                    unsigned qual_component)
2868 {
2869    type = glsl_without_array(type);
2870    unsigned components = glsl_get_component_slots(type);
2871 
2872    if (glsl_type_is_matrix(type) || glsl_type_is_struct(type)) {
2873        _mesa_glsl_error(loc, state, "component layout qualifier "
2874                         "cannot be applied to a matrix, a structure, "
2875                         "a block, or an array containing any of these.");
2876    } else if (components > 4 && glsl_type_is_64bit(type)) {
2877       _mesa_glsl_error(loc, state, "component layout qualifier "
2878                        "cannot be applied to dvec%u.",
2879                         components / 2);
2880    } else if (qual_component != 0 && (qual_component + components - 1) > 3) {
2881       _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
2882                        (qual_component + components - 1));
2883    } else if (qual_component == 1 && glsl_type_is_64bit(type)) {
2884       /* We don't bother checking for 3 as it should be caught by the
2885        * overflow check above.
2886        */
2887       _mesa_glsl_error(loc, state, "doubles cannot begin at component 1 or 3");
2888    }
2889 }
2890 
2891 /**
2892  * Matrix layout qualifiers are only allowed on certain types
2893  */
2894 static void
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,ir_variable * var)2895 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2896                                 YYLTYPE *loc,
2897                                 const glsl_type *type,
2898                                 ir_variable *var)
2899 {
2900    if (var && !var->is_in_buffer_block()) {
2901       /* Layout qualifiers may only apply to interface blocks and fields in
2902        * them.
2903        */
2904       _mesa_glsl_error(loc, state,
2905                        "uniform block layout qualifiers row_major and "
2906                        "column_major may not be applied to variables "
2907                        "outside of uniform blocks");
2908    } else if (!glsl_type_is_matrix(glsl_without_array(type))) {
2909       /* The OpenGL ES 3.0 conformance tests did not originally allow
2910        * matrix layout qualifiers on non-matrices.  However, the OpenGL
2911        * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2912        * amended to specifically allow these layouts on all types.  Emit
2913        * a warning so that people know their code may not be portable.
2914        */
2915       _mesa_glsl_warning(loc, state,
2916                          "uniform block layout qualifiers row_major and "
2917                          "column_major applied to non-matrix types may "
2918                          "be rejected by older compilers");
2919    }
2920 }
2921 
2922 static bool
validate_xfb_buffer_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned xfb_buffer)2923 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2924                               struct _mesa_glsl_parse_state *state,
2925                               unsigned xfb_buffer) {
2926    if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2927       _mesa_glsl_error(loc, state,
2928                        "invalid xfb_buffer specified %d is larger than "
2929                        "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2930                        xfb_buffer,
2931                        state->Const.MaxTransformFeedbackBuffers - 1);
2932       return false;
2933    }
2934 
2935    return true;
2936 }
2937 
2938 /* From the ARB_enhanced_layouts spec:
2939  *
2940  *    "Variables and block members qualified with *xfb_offset* can be
2941  *    scalars, vectors, matrices, structures, and (sized) arrays of these.
2942  *    The offset must be a multiple of the size of the first component of
2943  *    the first qualified variable or block member, or a compile-time error
2944  *    results.  Further, if applied to an aggregate containing a double,
2945  *    the offset must also be a multiple of 8, and the space taken in the
2946  *    buffer will be a multiple of 8.
2947  */
2948 static bool
validate_xfb_offset_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,int xfb_offset,const glsl_type * type,unsigned component_size)2949 validate_xfb_offset_qualifier(YYLTYPE *loc,
2950                               struct _mesa_glsl_parse_state *state,
2951                               int xfb_offset, const glsl_type *type,
2952                               unsigned component_size) {
2953   const glsl_type *t_without_array = glsl_without_array(type);
2954 
2955    if (xfb_offset != -1 && glsl_type_is_unsized_array(type)) {
2956       _mesa_glsl_error(loc, state,
2957                        "xfb_offset can't be used with unsized arrays.");
2958       return false;
2959    }
2960 
2961    /* Make sure nested structs don't contain unsized arrays, and validate
2962     * any xfb_offsets on interface members.
2963     */
2964    if (glsl_type_is_struct(t_without_array) || glsl_type_is_interface(t_without_array))
2965       for (unsigned int i = 0; i < t_without_array->length; i++) {
2966          const glsl_type *member_t = t_without_array->fields.structure[i].type;
2967 
2968          /* When the interface block doesn't have an xfb_offset qualifier then
2969           * we apply the component size rules at the member level.
2970           */
2971          if (xfb_offset == -1)
2972             component_size = glsl_contains_double(member_t) ? 8 : 4;
2973 
2974          int xfb_offset = t_without_array->fields.structure[i].offset;
2975          validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2976                                        component_size);
2977       }
2978 
2979   /* Nested structs or interface block without offset may not have had an
2980    * offset applied yet so return.
2981    */
2982    if (xfb_offset == -1) {
2983      return true;
2984    }
2985 
2986    if (xfb_offset % component_size) {
2987       _mesa_glsl_error(loc, state,
2988                        "invalid qualifier xfb_offset=%d must be a multiple "
2989                        "of the first component size of the first qualified "
2990                        "variable or block member. Or double if an aggregate "
2991                        "that contains a double (%d).",
2992                        xfb_offset, component_size);
2993       return false;
2994    }
2995 
2996    return true;
2997 }
2998 
2999 static bool
validate_stream_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned stream)3000 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
3001                           unsigned stream)
3002 {
3003    if (stream >= state->consts->MaxVertexStreams) {
3004       _mesa_glsl_error(loc, state,
3005                        "invalid stream specified %d is larger than "
3006                        "MAX_VERTEX_STREAMS - 1 (%d).",
3007                        stream, state->consts->MaxVertexStreams - 1);
3008       return false;
3009    }
3010 
3011    return true;
3012 }
3013 
3014 static void
apply_explicit_binding(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,ir_variable * var,const glsl_type * type,const ast_type_qualifier * qual)3015 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
3016                        YYLTYPE *loc,
3017                        ir_variable *var,
3018                        const glsl_type *type,
3019                        const ast_type_qualifier *qual)
3020 {
3021    if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
3022       _mesa_glsl_error(loc, state,
3023                        "the \"binding\" qualifier only applies to uniforms and "
3024                        "shader storage buffer objects");
3025       return;
3026    }
3027 
3028    unsigned qual_binding;
3029    if (!process_qualifier_constant(state, loc, "binding", qual->binding,
3030                                    &qual_binding)) {
3031       return;
3032    }
3033 
3034    const struct gl_constants *consts = state->consts;
3035    unsigned elements = glsl_type_is_array(type) ? glsl_get_aoa_size(type) : 1;
3036    unsigned max_index = qual_binding + elements - 1;
3037    const glsl_type *base_type = glsl_without_array(type);
3038 
3039    if (glsl_type_is_interface(base_type)) {
3040       /* UBOs.  From page 60 of the GLSL 4.20 specification:
3041        * "If the binding point for any uniform block instance is less than zero,
3042        *  or greater than or equal to the implementation-dependent maximum
3043        *  number of uniform buffer bindings, a compilation error will occur.
3044        *  When the binding identifier is used with a uniform block instanced as
3045        *  an array of size N, all elements of the array from binding through
3046        *  binding + N – 1 must be within this range."
3047        *
3048        * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
3049        */
3050       if (qual->flags.q.uniform &&
3051          max_index >= consts->MaxUniformBufferBindings) {
3052          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
3053                           "the maximum number of UBO binding points (%d)",
3054                           qual_binding, elements,
3055                           consts->MaxUniformBufferBindings);
3056          return;
3057       }
3058 
3059       /* SSBOs. From page 67 of the GLSL 4.30 specification:
3060        * "If the binding point for any uniform or shader storage block instance
3061        *  is less than zero, or greater than or equal to the
3062        *  implementation-dependent maximum number of uniform buffer bindings, a
3063        *  compile-time error will occur. When the binding identifier is used
3064        *  with a uniform or shader storage block instanced as an array of size
3065        *  N, all elements of the array from binding through binding + N – 1 must
3066        *  be within this range."
3067        */
3068       if (qual->flags.q.buffer &&
3069          max_index >= consts->MaxShaderStorageBufferBindings) {
3070          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
3071                           "the maximum number of SSBO binding points (%d)",
3072                           qual_binding, elements,
3073                           consts->MaxShaderStorageBufferBindings);
3074          return;
3075       }
3076    } else if (glsl_type_is_sampler(base_type)) {
3077       /* Samplers.  From page 63 of the GLSL 4.20 specification:
3078        * "If the binding is less than zero, or greater than or equal to the
3079        *  implementation-dependent maximum supported number of units, a
3080        *  compilation error will occur. When the binding identifier is used
3081        *  with an array of size N, all elements of the array from binding
3082        *  through binding + N - 1 must be within this range."
3083        */
3084       unsigned limit = consts->MaxCombinedTextureImageUnits;
3085 
3086       if (max_index >= limit) {
3087          _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
3088                           "exceeds the maximum number of texture image units "
3089                           "(%u)", qual_binding, elements, limit);
3090 
3091          return;
3092       }
3093    } else if (glsl_contains_atomic(base_type)) {
3094       assert(consts->MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
3095       if (qual_binding >= consts->MaxAtomicBufferBindings) {
3096          _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
3097                           "maximum number of atomic counter buffer bindings "
3098                           "(%u)", qual_binding,
3099                           consts->MaxAtomicBufferBindings);
3100 
3101          return;
3102       }
3103    } else if ((state->is_version(420, 310) ||
3104                state->ARB_shading_language_420pack_enable) &&
3105               glsl_type_is_image(base_type)) {
3106       assert(consts->MaxImageUnits <= MAX_IMAGE_UNITS);
3107       if (max_index >= consts->MaxImageUnits) {
3108          _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
3109                           "maximum number of image units (%d)", max_index,
3110                           consts->MaxImageUnits);
3111          return;
3112       }
3113 
3114    } else {
3115       _mesa_glsl_error(loc, state,
3116                        "the \"binding\" qualifier only applies to uniform "
3117                        "blocks, storage blocks, opaque variables, or arrays "
3118                        "thereof");
3119       return;
3120    }
3121 
3122    var->data.explicit_binding = true;
3123    var->data.binding = qual_binding;
3124 
3125    return;
3126 }
3127 
3128 static void
validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct glsl_type * var_type,ir_variable_mode mode)3129 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
3130                                            YYLTYPE *loc,
3131                                            const glsl_interp_mode interpolation,
3132                                            const struct glsl_type *var_type,
3133                                            ir_variable_mode mode)
3134 {
3135    if (state->stage != MESA_SHADER_FRAGMENT ||
3136        interpolation == INTERP_MODE_FLAT ||
3137        mode != ir_var_shader_in)
3138       return;
3139 
3140    /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
3141     * so must integer vertex outputs.
3142     *
3143     * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3144     *    "Fragment shader inputs that are signed or unsigned integers or
3145     *    integer vectors must be qualified with the interpolation qualifier
3146     *    flat."
3147     *
3148     * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3149     *    "Fragment shader inputs that are, or contain, signed or unsigned
3150     *    integers or integer vectors must be qualified with the
3151     *    interpolation qualifier flat."
3152     *
3153     * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3154     *    "Vertex shader outputs that are, or contain, signed or unsigned
3155     *    integers or integer vectors must be qualified with the
3156     *    interpolation qualifier flat."
3157     *
3158     * Note that prior to GLSL 1.50, this requirement applied to vertex
3159     * outputs rather than fragment inputs.  That creates problems in the
3160     * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3161     * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
3162     * apply the restriction to both vertex outputs and fragment inputs.
3163     *
3164     * Note also that the desktop GLSL specs are missing the text "or
3165     * contain"; this is presumably an oversight, since there is no
3166     * reasonable way to interpolate a fragment shader input that contains
3167     * an integer. See Khronos bug #15671.
3168     */
3169    if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3170        && glsl_contains_integer(var_type)) {
3171       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3172                        "an integer, then it must be qualified with 'flat'");
3173    }
3174 
3175    /* Double fragment inputs must be qualified with 'flat'.
3176     *
3177     * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3178     *    "This extension does not support interpolation of double-precision
3179     *    values; doubles used as fragment shader inputs must be qualified as
3180     *    "flat"."
3181     *
3182     * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3183     *    "Fragment shader inputs that are signed or unsigned integers, integer
3184     *    vectors, or any double-precision floating-point type must be
3185     *    qualified with the interpolation qualifier flat."
3186     *
3187     * Note that the GLSL specs are missing the text "or contain"; this is
3188     * presumably an oversight. See Khronos bug #15671.
3189     *
3190     * The 'double' type does not exist in GLSL ES so far.
3191     */
3192    if (state->has_double()
3193        && glsl_contains_double(var_type)) {
3194       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3195                        "a double, then it must be qualified with 'flat'");
3196    }
3197 
3198    /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3199     *
3200     * From section 4.3.4 of the ARB_bindless_texture spec:
3201     *
3202     *    "(modify last paragraph, p. 35, allowing samplers and images as
3203     *     fragment shader inputs) ... Fragment inputs can only be signed and
3204     *     unsigned integers and integer vectors, floating point scalars,
3205     *     floating-point vectors, matrices, sampler and image types, or arrays
3206     *     or structures of these.  Fragment shader inputs that are signed or
3207     *     unsigned integers, integer vectors, or any double-precision floating-
3208     *     point type, or any sampler or image type must be qualified with the
3209     *     interpolation qualifier "flat"."
3210     */
3211    if (state->has_bindless()
3212        && (glsl_contains_sampler(var_type) || glsl_type_contains_image(var_type))) {
3213       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3214                        "a bindless sampler (or image), then it must be "
3215                        "qualified with 'flat'");
3216    }
3217 }
3218 
3219 static void
validate_interpolation_qualifier(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode)3220 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3221                                  YYLTYPE *loc,
3222                                  const glsl_interp_mode interpolation,
3223                                  const struct ast_type_qualifier *qual,
3224                                  const struct glsl_type *var_type,
3225                                  ir_variable_mode mode)
3226 {
3227    /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3228     * not to vertex shader inputs nor fragment shader outputs.
3229     *
3230     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3231     *    "Outputs from a vertex shader (out) and inputs to a fragment
3232     *    shader (in) can be further qualified with one or more of these
3233     *    interpolation qualifiers"
3234     *    ...
3235     *    "These interpolation qualifiers may only precede the qualifiers in,
3236     *    centroid in, out, or centroid out in a declaration. They do not apply
3237     *    to the deprecated storage qualifiers varying or centroid
3238     *    varying. They also do not apply to inputs into a vertex shader or
3239     *    outputs from a fragment shader."
3240     *
3241     * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3242     *    "Outputs from a shader (out) and inputs to a shader (in) can be
3243     *    further qualified with one of these interpolation qualifiers."
3244     *    ...
3245     *    "These interpolation qualifiers may only precede the qualifiers
3246     *    in, centroid in, out, or centroid out in a declaration. They do
3247     *    not apply to inputs into a vertex shader or outputs from a
3248     *    fragment shader."
3249     */
3250    if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3251        && interpolation != INTERP_MODE_NONE) {
3252       const char *i = interpolation_string(interpolation);
3253       if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3254          _mesa_glsl_error(loc, state,
3255                           "interpolation qualifier `%s' can only be applied to "
3256                           "shader inputs or outputs.", i);
3257 
3258       switch (state->stage) {
3259       case MESA_SHADER_VERTEX:
3260          if (mode == ir_var_shader_in) {
3261             _mesa_glsl_error(loc, state,
3262                              "interpolation qualifier '%s' cannot be applied to "
3263                              "vertex shader inputs", i);
3264          }
3265          break;
3266       case MESA_SHADER_FRAGMENT:
3267          if (mode == ir_var_shader_out) {
3268             _mesa_glsl_error(loc, state,
3269                              "interpolation qualifier '%s' cannot be applied to "
3270                              "fragment shader outputs", i);
3271          }
3272          break;
3273       default:
3274          break;
3275       }
3276    }
3277 
3278    /* Interpolation qualifiers cannot be applied to 'centroid' and
3279     * 'centroid varying'.
3280     *
3281     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3282     *    "interpolation qualifiers may only precede the qualifiers in,
3283     *    centroid in, out, or centroid out in a declaration. They do not apply
3284     *    to the deprecated storage qualifiers varying or centroid varying."
3285     *
3286     * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3287     *
3288     * GL_EXT_gpu_shader4 allows this.
3289     */
3290    if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable
3291        && interpolation != INTERP_MODE_NONE
3292        && qual->flags.q.varying) {
3293 
3294       const char *i = interpolation_string(interpolation);
3295       const char *s;
3296       if (qual->flags.q.centroid)
3297          s = "centroid varying";
3298       else
3299          s = "varying";
3300 
3301       _mesa_glsl_error(loc, state,
3302                        "qualifier '%s' cannot be applied to the "
3303                        "deprecated storage qualifier '%s'", i, s);
3304    }
3305 
3306    validate_fragment_flat_interpolation_input(state, loc, interpolation,
3307                                               var_type, mode);
3308 }
3309 
3310 static glsl_interp_mode
interpret_interpolation_qualifier(const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3311 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3312                                   const struct glsl_type *var_type,
3313                                   ir_variable_mode mode,
3314                                   struct _mesa_glsl_parse_state *state,
3315                                   YYLTYPE *loc)
3316 {
3317    glsl_interp_mode interpolation;
3318    if (qual->flags.q.flat)
3319       interpolation = INTERP_MODE_FLAT;
3320    else if (qual->flags.q.noperspective)
3321       interpolation = INTERP_MODE_NOPERSPECTIVE;
3322    else if (qual->flags.q.smooth)
3323       interpolation = INTERP_MODE_SMOOTH;
3324    else
3325       interpolation = INTERP_MODE_NONE;
3326 
3327    validate_interpolation_qualifier(state, loc,
3328                                     interpolation,
3329                                     qual, var_type, mode);
3330 
3331    return interpolation;
3332 }
3333 
3334 
3335 static void
apply_explicit_location(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3336 apply_explicit_location(const struct ast_type_qualifier *qual,
3337                         ir_variable *var,
3338                         struct _mesa_glsl_parse_state *state,
3339                         YYLTYPE *loc)
3340 {
3341    bool fail = false;
3342 
3343    unsigned qual_location;
3344    if (!process_qualifier_constant(state, loc, "location", qual->location,
3345                                    &qual_location)) {
3346       return;
3347    }
3348 
3349    /* Checks for GL_ARB_explicit_uniform_location. */
3350    if (qual->flags.q.uniform) {
3351       if (!state->check_explicit_uniform_location_allowed(loc, var))
3352          return;
3353 
3354       const struct gl_constants *consts = state->consts;
3355       unsigned max_loc = qual_location + glsl_type_uniform_locations(var->type) - 1;
3356 
3357       if (max_loc >= consts->MaxUserAssignableUniformLocations) {
3358          _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3359                           ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3360                           consts->MaxUserAssignableUniformLocations);
3361          return;
3362       }
3363 
3364       var->data.explicit_location = true;
3365       var->data.location = qual_location;
3366       return;
3367    }
3368 
3369    /* Between GL_ARB_explicit_attrib_location an
3370     * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3371     * stage can be assigned explicit locations.  The checking here associates
3372     * the correct extension with the correct stage's input / output:
3373     *
3374     *                     input            output
3375     *                     -----            ------
3376     * vertex              explicit_loc     sso
3377     * tess control        sso              sso
3378     * tess eval           sso              sso
3379     * geometry            sso              sso
3380     * fragment            sso              explicit_loc
3381     */
3382    switch (state->stage) {
3383    case MESA_SHADER_VERTEX:
3384       if (var->data.mode == ir_var_shader_in) {
3385          if (!state->check_explicit_attrib_location_allowed(loc, var))
3386             return;
3387 
3388          break;
3389       }
3390 
3391       if (var->data.mode == ir_var_shader_out) {
3392          if (!state->check_separate_shader_objects_allowed(loc, var))
3393             return;
3394 
3395          break;
3396       }
3397 
3398       fail = true;
3399       break;
3400 
3401    case MESA_SHADER_TESS_CTRL:
3402    case MESA_SHADER_TESS_EVAL:
3403    case MESA_SHADER_GEOMETRY:
3404       if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3405          if (!state->check_separate_shader_objects_allowed(loc, var))
3406             return;
3407 
3408          break;
3409       }
3410 
3411       fail = true;
3412       break;
3413 
3414    case MESA_SHADER_FRAGMENT:
3415       if (var->data.mode == ir_var_shader_in) {
3416          if (!state->check_separate_shader_objects_allowed(loc, var))
3417             return;
3418 
3419          break;
3420       }
3421 
3422       if (var->data.mode == ir_var_shader_out) {
3423          if (!state->check_explicit_attrib_location_allowed(loc, var))
3424             return;
3425 
3426          break;
3427       }
3428 
3429       fail = true;
3430       break;
3431 
3432    case MESA_SHADER_COMPUTE:
3433       _mesa_glsl_error(loc, state,
3434                        "compute shader variables cannot be given "
3435                        "explicit locations");
3436       return;
3437    default:
3438       fail = true;
3439       break;
3440    };
3441 
3442    if (fail) {
3443       _mesa_glsl_error(loc, state,
3444                        "%s cannot be given an explicit location in %s shader",
3445                        mode_string(var),
3446       _mesa_shader_stage_to_string(state->stage));
3447    } else {
3448       var->data.explicit_location = true;
3449 
3450       switch (state->stage) {
3451       case MESA_SHADER_VERTEX:
3452          var->data.location = (var->data.mode == ir_var_shader_in)
3453             ? (qual_location + VERT_ATTRIB_GENERIC0)
3454             : (qual_location + VARYING_SLOT_VAR0);
3455          break;
3456 
3457       case MESA_SHADER_TESS_CTRL:
3458       case MESA_SHADER_TESS_EVAL:
3459       case MESA_SHADER_GEOMETRY:
3460          if (var->data.patch)
3461             var->data.location = qual_location + VARYING_SLOT_PATCH0;
3462          else
3463             var->data.location = qual_location + VARYING_SLOT_VAR0;
3464          break;
3465 
3466       case MESA_SHADER_FRAGMENT:
3467          var->data.location = (var->data.mode == ir_var_shader_out)
3468             ? (qual_location + FRAG_RESULT_DATA0)
3469             : (qual_location + VARYING_SLOT_VAR0);
3470          break;
3471       default:
3472          assert(!"Unexpected shader type");
3473          break;
3474       }
3475 
3476       /* Check if index was set for the uniform instead of the function */
3477       if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3478          _mesa_glsl_error(loc, state, "an index qualifier can only be "
3479                           "used with subroutine functions");
3480          return;
3481       }
3482 
3483       unsigned qual_index;
3484       if (qual->flags.q.explicit_index &&
3485           process_qualifier_constant(state, loc, "index", qual->index,
3486                                      &qual_index)) {
3487          /* From the GLSL 4.30 specification, section 4.4.2 (Output
3488           * Layout Qualifiers):
3489           *
3490           * "It is also a compile-time error if a fragment shader
3491           *  sets a layout index to less than 0 or greater than 1."
3492           *
3493           * Older specifications don't mandate a behavior; we take
3494           * this as a clarification and always generate the error.
3495           */
3496          if (qual_index > 1) {
3497             _mesa_glsl_error(loc, state,
3498                              "explicit index may only be 0 or 1");
3499          } else {
3500             var->data.explicit_index = true;
3501             var->data.index = qual_index;
3502          }
3503       }
3504    }
3505 }
3506 
3507 static bool
validate_storage_for_sampler_image_types(ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3508 validate_storage_for_sampler_image_types(ir_variable *var,
3509                                          struct _mesa_glsl_parse_state *state,
3510                                          YYLTYPE *loc)
3511 {
3512    /* From section 4.1.7 of the GLSL 4.40 spec:
3513     *
3514     *    "[Opaque types] can only be declared as function
3515     *     parameters or uniform-qualified variables."
3516     *
3517     * From section 4.1.7 of the ARB_bindless_texture spec:
3518     *
3519     *    "Samplers may be declared as shader inputs and outputs, as uniform
3520     *     variables, as temporary variables, and as function parameters."
3521     *
3522     * From section 4.1.X of the ARB_bindless_texture spec:
3523     *
3524     *    "Images may be declared as shader inputs and outputs, as uniform
3525     *     variables, as temporary variables, and as function parameters."
3526     */
3527    if (state->has_bindless()) {
3528       if (var->data.mode != ir_var_auto &&
3529           var->data.mode != ir_var_uniform &&
3530           var->data.mode != ir_var_shader_in &&
3531           var->data.mode != ir_var_shader_out &&
3532           var->data.mode != ir_var_function_in &&
3533           var->data.mode != ir_var_function_out &&
3534           var->data.mode != ir_var_function_inout) {
3535          _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3536                          "only be declared as shader inputs and outputs, as "
3537                          "uniform variables, as temporary variables and as "
3538                          "function parameters");
3539          return false;
3540       }
3541    } else {
3542       if (var->data.mode != ir_var_uniform &&
3543           var->data.mode != ir_var_function_in) {
3544          _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3545                           "declared as function parameters or "
3546                           "uniform-qualified global variables");
3547          return false;
3548       }
3549    }
3550    return true;
3551 }
3552 
3553 static bool
validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3554 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3555                                    YYLTYPE *loc,
3556                                    const struct ast_type_qualifier *qual,
3557                                    const glsl_type *type)
3558 {
3559    /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3560     *
3561     * "Memory qualifiers are only supported in the declarations of image
3562     *  variables, buffer variables, and shader storage blocks; it is an error
3563     *  to use such qualifiers in any other declarations.
3564     */
3565    if (!glsl_type_is_image(type) && !qual->flags.q.buffer) {
3566       if (qual->flags.q.read_only ||
3567           qual->flags.q.write_only ||
3568           qual->flags.q.coherent ||
3569           qual->flags.q._volatile ||
3570           qual->flags.q.restrict_flag) {
3571          _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3572                           "in the declarations of image variables, buffer "
3573                           "variables, and shader storage blocks");
3574          return false;
3575       }
3576    }
3577    return true;
3578 }
3579 
3580 static bool
validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3581 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3582                                          YYLTYPE *loc,
3583                                          const struct ast_type_qualifier *qual,
3584                                          const glsl_type *type)
3585 {
3586    /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3587     *
3588     * "Format layout qualifiers can be used on image variable declarations
3589     *  (those declared with a basic type  having “image ” in its keyword)."
3590     */
3591    if (!glsl_type_is_image(type) && qual->flags.q.explicit_image_format) {
3592       _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3593                        "applied to images");
3594       return false;
3595    }
3596    return true;
3597 }
3598 
3599 static void
apply_image_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3600 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3601                                   ir_variable *var,
3602                                   struct _mesa_glsl_parse_state *state,
3603                                   YYLTYPE *loc)
3604 {
3605    const glsl_type *base_type = glsl_without_array(var->type);
3606 
3607    if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3608        !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3609       return;
3610 
3611    if (!glsl_type_is_image(base_type))
3612       return;
3613 
3614    if (!validate_storage_for_sampler_image_types(var, state, loc))
3615       return;
3616 
3617    var->data.memory_read_only |= qual->flags.q.read_only;
3618    var->data.memory_write_only |= qual->flags.q.write_only;
3619    var->data.memory_coherent |= qual->flags.q.coherent;
3620    var->data.memory_volatile |= qual->flags.q._volatile;
3621    var->data.memory_restrict |= qual->flags.q.restrict_flag;
3622 
3623    if (qual->flags.q.explicit_image_format) {
3624       if (var->data.mode == ir_var_function_in) {
3625          _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3626                           "image function parameters");
3627       }
3628 
3629       if (qual->image_base_type != base_type->sampled_type) {
3630          _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3631                           "data type of the image");
3632       }
3633 
3634       var->data.image_format = qual->image_format;
3635    } else if (state->has_image_load_formatted()) {
3636       if (var->data.mode == ir_var_uniform &&
3637           state->EXT_shader_image_load_formatted_warn) {
3638          _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used");
3639       }
3640    } else {
3641       if (var->data.mode == ir_var_uniform) {
3642          if (state->es_shader ||
3643              !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) {
3644             _mesa_glsl_error(loc, state, "all image uniforms must have a "
3645                              "format layout qualifier");
3646          } else if (!qual->flags.q.write_only) {
3647             _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3648                              "`writeonly' must have a format layout qualifier");
3649          }
3650       }
3651       var->data.image_format = PIPE_FORMAT_NONE;
3652    }
3653 
3654    /* From page 70 of the GLSL ES 3.1 specification:
3655     *
3656     * "Except for image variables qualified with the format qualifiers r32f,
3657     *  r32i, and r32ui, image variables must specify either memory qualifier
3658     *  readonly or the memory qualifier writeonly."
3659     */
3660    if (state->es_shader &&
3661        var->data.image_format != PIPE_FORMAT_R32_FLOAT &&
3662        var->data.image_format != PIPE_FORMAT_R32_SINT &&
3663        var->data.image_format != PIPE_FORMAT_R32_UINT &&
3664        !var->data.memory_read_only &&
3665        !var->data.memory_write_only) {
3666       _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3667                        "r32i or r32ui must be qualified `readonly' or "
3668                        "`writeonly'");
3669    }
3670 }
3671 
3672 static inline const char*
get_layout_qualifier_string(bool origin_upper_left,bool pixel_center_integer)3673 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3674 {
3675    if (origin_upper_left && pixel_center_integer)
3676       return "origin_upper_left, pixel_center_integer";
3677    else if (origin_upper_left)
3678       return "origin_upper_left";
3679    else if (pixel_center_integer)
3680       return "pixel_center_integer";
3681    else
3682       return " ";
3683 }
3684 
3685 static inline bool
is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3686 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3687                                        const struct ast_type_qualifier *qual)
3688 {
3689    /* If gl_FragCoord was previously declared, and the qualifiers were
3690     * different in any way, return true.
3691     */
3692    if (state->fs_redeclares_gl_fragcoord) {
3693       return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3694          || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3695    }
3696 
3697    return false;
3698 }
3699 
3700 static inline bool
is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3701 is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state,
3702                                    const struct ast_type_qualifier *qual)
3703 {
3704    if (state->redeclares_gl_layer) {
3705       return state->layer_viewport_relative != qual->flags.q.viewport_relative;
3706    }
3707    return false;
3708 }
3709 
3710 static inline void
validate_array_dimensions(const glsl_type * t,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3711 validate_array_dimensions(const glsl_type *t,
3712                           struct _mesa_glsl_parse_state *state,
3713                           YYLTYPE *loc) {
3714    const glsl_type *top = t;
3715    if (glsl_type_is_array(t)) {
3716       t = t->fields.array;
3717       while (glsl_type_is_array(t)) {
3718          if (glsl_type_is_unsized_array(t)) {
3719             _mesa_glsl_error(loc, state,
3720                              "only the outermost array dimension can "
3721                              "be unsized, but got %s",
3722                              glsl_get_type_name(top));
3723             break;
3724          }
3725          t = t->fields.array;
3726       }
3727    }
3728 }
3729 
3730 static void
apply_bindless_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3731 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3732                                      ir_variable *var,
3733                                      struct _mesa_glsl_parse_state *state,
3734                                      YYLTYPE *loc)
3735 {
3736    bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3737                                qual->flags.q.bindless_image ||
3738                                qual->flags.q.bound_sampler ||
3739                                qual->flags.q.bound_image;
3740 
3741    /* The ARB_bindless_texture spec says:
3742     *
3743     * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3744     *  spec"
3745     *
3746     * "If these layout qualifiers are applied to other types of default block
3747     *  uniforms, or variables with non-uniform storage, a compile-time error
3748     *  will be generated."
3749     */
3750    if (has_local_qualifiers && !qual->flags.q.uniform) {
3751       _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3752                        "can only be applied to default block uniforms or "
3753                        "variables with uniform storage");
3754       return;
3755    }
3756 
3757    /* The ARB_bindless_texture spec doesn't state anything in this situation,
3758     * but it makes sense to only allow bindless_sampler/bound_sampler for
3759     * sampler types, and respectively bindless_image/bound_image for image
3760     * types.
3761     */
3762    if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3763        !glsl_contains_sampler(var->type)) {
3764       _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3765                        "be applied to sampler types");
3766       return;
3767    }
3768 
3769    if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3770        !glsl_type_contains_image(var->type)) {
3771       _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3772                        "applied to image types");
3773       return;
3774    }
3775 
3776    /* The bindless_sampler/bindless_image (and respectively
3777     * bound_sampler/bound_image) layout qualifiers can be set at global and at
3778     * local scope.
3779     */
3780    if (glsl_contains_sampler(var->type) || glsl_type_contains_image(var->type)) {
3781       var->data.bindless = qual->flags.q.bindless_sampler ||
3782                            qual->flags.q.bindless_image ||
3783                            state->bindless_sampler_specified ||
3784                            state->bindless_image_specified;
3785 
3786       var->data.bound = qual->flags.q.bound_sampler ||
3787                         qual->flags.q.bound_image ||
3788                         state->bound_sampler_specified ||
3789                         state->bound_image_specified;
3790    }
3791 
3792    /* ARB_bindless_texture spec says:
3793     *
3794     *    "When used as shader inputs, outputs, uniform block members,
3795     *     or temporaries, the value of the sampler is a 64-bit unsigned
3796     *     integer handle and never refers to a texture image unit."
3797     *
3798     * The spec doesn't reference images defined inside structs but it was
3799     * clarified with the authors that bindless images are allowed in structs.
3800     * So we treat these images as implicitly bindless just like the types
3801     * in the spec quote above.
3802     */
3803    if (!var->data.bindless && glsl_type_is_struct(var->type) &&
3804        glsl_type_contains_image(var->type)) {
3805       var->data.bindless = true;
3806    }
3807 }
3808 
3809 static void
apply_layout_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3810 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3811                                    ir_variable *var,
3812                                    struct _mesa_glsl_parse_state *state,
3813                                    YYLTYPE *loc)
3814 {
3815    if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3816 
3817       /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3818        *
3819        *    "Within any shader, the first redeclarations of gl_FragCoord
3820        *     must appear before any use of gl_FragCoord."
3821        *
3822        * Generate a compiler error if above condition is not met by the
3823        * fragment shader.
3824        */
3825       ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3826       if (earlier != NULL &&
3827           earlier->data.used &&
3828           !state->fs_redeclares_gl_fragcoord) {
3829          _mesa_glsl_error(loc, state,
3830                           "gl_FragCoord used before its first redeclaration "
3831                           "in fragment shader");
3832       }
3833 
3834       /* Make sure all gl_FragCoord redeclarations specify the same layout
3835        * qualifiers.
3836        */
3837       if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3838          const char *const qual_string =
3839             get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3840                                         qual->flags.q.pixel_center_integer);
3841 
3842          const char *const state_string =
3843             get_layout_qualifier_string(state->fs_origin_upper_left,
3844                                         state->fs_pixel_center_integer);
3845 
3846          _mesa_glsl_error(loc, state,
3847                           "gl_FragCoord redeclared with different layout "
3848                           "qualifiers (%s) and (%s) ",
3849                           state_string,
3850                           qual_string);
3851       }
3852       state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3853       state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3854       state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3855          !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3856       state->fs_redeclares_gl_fragcoord =
3857          state->fs_origin_upper_left ||
3858          state->fs_pixel_center_integer ||
3859          state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3860    }
3861 
3862    if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3863        && (strcmp(var->name, "gl_FragCoord") != 0)) {
3864       const char *const qual_string = (qual->flags.q.origin_upper_left)
3865          ? "origin_upper_left" : "pixel_center_integer";
3866 
3867       _mesa_glsl_error(loc, state,
3868                        "layout qualifier `%s' can only be applied to "
3869                        "fragment shader input `gl_FragCoord'",
3870                        qual_string);
3871    }
3872 
3873    if (qual->flags.q.explicit_location) {
3874       apply_explicit_location(qual, var, state, loc);
3875 
3876       if (qual->flags.q.explicit_component) {
3877          unsigned qual_component;
3878          if (process_qualifier_constant(state, loc, "component",
3879                                         qual->component, &qual_component)) {
3880             validate_component_layout_for_type(state, loc, var->type,
3881                                                qual_component);
3882             var->data.explicit_component = true;
3883             var->data.location_frac = qual_component;
3884          }
3885       }
3886    } else if (qual->flags.q.explicit_index) {
3887       if (!qual->subroutine_list)
3888          _mesa_glsl_error(loc, state,
3889                           "explicit index requires explicit location");
3890    } else if (qual->flags.q.explicit_component) {
3891       _mesa_glsl_error(loc, state,
3892                        "explicit component requires explicit location");
3893    }
3894 
3895    if (qual->flags.q.explicit_binding) {
3896       apply_explicit_binding(state, loc, var, var->type, qual);
3897    }
3898 
3899    if (state->stage == MESA_SHADER_GEOMETRY &&
3900        qual->flags.q.out && qual->flags.q.stream) {
3901       unsigned qual_stream;
3902       if (process_qualifier_constant(state, loc, "stream", qual->stream,
3903                                      &qual_stream) &&
3904           validate_stream_qualifier(loc, state, qual_stream)) {
3905          var->data.stream = qual_stream;
3906       }
3907    }
3908 
3909    if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3910       unsigned qual_xfb_buffer;
3911       if (process_qualifier_constant(state, loc, "xfb_buffer",
3912                                      qual->xfb_buffer, &qual_xfb_buffer) &&
3913           validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3914          var->data.xfb_buffer = qual_xfb_buffer;
3915          if (qual->flags.q.explicit_xfb_buffer)
3916             var->data.explicit_xfb_buffer = true;
3917       }
3918    }
3919 
3920    if (qual->flags.q.explicit_xfb_offset) {
3921       unsigned qual_xfb_offset;
3922       unsigned component_size = glsl_contains_double(var->type) ? 8 : 4;
3923 
3924       if (process_qualifier_constant(state, loc, "xfb_offset",
3925                                      qual->offset, &qual_xfb_offset) &&
3926           validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3927                                         var->type, component_size)) {
3928          var->data.offset = qual_xfb_offset;
3929          var->data.explicit_xfb_offset = true;
3930       }
3931    }
3932 
3933    if (qual->flags.q.explicit_xfb_stride) {
3934       unsigned qual_xfb_stride;
3935       if (process_qualifier_constant(state, loc, "xfb_stride",
3936                                      qual->xfb_stride, &qual_xfb_stride)) {
3937          var->data.xfb_stride = qual_xfb_stride;
3938          var->data.explicit_xfb_stride = true;
3939       }
3940    }
3941 
3942    if (glsl_contains_atomic(var->type)) {
3943       if (var->data.mode == ir_var_uniform) {
3944          if (var->data.explicit_binding) {
3945             unsigned *offset =
3946                &state->atomic_counter_offsets[var->data.binding];
3947 
3948             if (*offset % ATOMIC_COUNTER_SIZE)
3949                _mesa_glsl_error(loc, state,
3950                                 "misaligned atomic counter offset");
3951 
3952             if (*offset >= state->Const.MaxAtomicCounterBufferSize)
3953                _mesa_glsl_error(loc, state,
3954                                 "offset > max atomic counter buffer size");
3955 
3956             var->data.offset = *offset;
3957             *offset += glsl_atomic_size(var->type);
3958 
3959          } else {
3960             _mesa_glsl_error(loc, state,
3961                              "atomic counters require explicit binding point");
3962          }
3963       } else if (var->data.mode != ir_var_function_in) {
3964          _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3965                           "function parameters or uniform-qualified "
3966                           "global variables");
3967       }
3968    }
3969 
3970    if (glsl_contains_sampler(var->type) &&
3971        !validate_storage_for_sampler_image_types(var, state, loc))
3972       return;
3973 
3974    /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3975     * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3976     * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3977     * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3978     * These extensions and all following extensions that add the 'layout'
3979     * keyword have been modified to require the use of 'in' or 'out'.
3980     *
3981     * The following extension do not allow the deprecated keywords:
3982     *
3983     *    GL_AMD_conservative_depth
3984     *    GL_ARB_conservative_depth
3985     *    GL_ARB_gpu_shader5
3986     *    GL_ARB_separate_shader_objects
3987     *    GL_ARB_tessellation_shader
3988     *    GL_ARB_transform_feedback3
3989     *    GL_ARB_uniform_buffer_object
3990     *
3991     * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3992     * allow layout with the deprecated keywords.
3993     */
3994    const bool relaxed_layout_qualifier_checking =
3995       state->ARB_fragment_coord_conventions_enable;
3996 
3997    const bool uses_deprecated_qualifier = qual->flags.q.attribute
3998       || qual->flags.q.varying;
3999    if (qual->has_layout() && uses_deprecated_qualifier) {
4000       if (relaxed_layout_qualifier_checking) {
4001          _mesa_glsl_warning(loc, state,
4002                             "`layout' qualifier may not be used with "
4003                             "`attribute' or `varying'");
4004       } else {
4005          _mesa_glsl_error(loc, state,
4006                           "`layout' qualifier may not be used with "
4007                           "`attribute' or `varying'");
4008       }
4009    }
4010 
4011    /* Layout qualifiers for gl_FragDepth, which are enabled by extension
4012     * AMD_conservative_depth.
4013     */
4014    if (qual->flags.q.depth_type
4015        && !state->is_version(420, 0)
4016        && !state->AMD_conservative_depth_enable
4017        && !state->ARB_conservative_depth_enable) {
4018        _mesa_glsl_error(loc, state,
4019                         "extension GL_AMD_conservative_depth or "
4020                         "GL_ARB_conservative_depth must be enabled "
4021                         "to use depth layout qualifiers");
4022    } else if (qual->flags.q.depth_type
4023               && strcmp(var->name, "gl_FragDepth") != 0) {
4024        _mesa_glsl_error(loc, state,
4025                         "depth layout qualifiers can be applied only to "
4026                         "gl_FragDepth");
4027    }
4028 
4029    switch (qual->depth_type) {
4030    case ast_depth_any:
4031       var->data.depth_layout = ir_depth_layout_any;
4032       break;
4033    case ast_depth_greater:
4034       var->data.depth_layout = ir_depth_layout_greater;
4035       break;
4036    case ast_depth_less:
4037       var->data.depth_layout = ir_depth_layout_less;
4038       break;
4039    case ast_depth_unchanged:
4040       var->data.depth_layout = ir_depth_layout_unchanged;
4041       break;
4042    default:
4043       var->data.depth_layout = ir_depth_layout_none;
4044       break;
4045    }
4046 
4047    if (qual->flags.q.std140 ||
4048        qual->flags.q.std430 ||
4049        qual->flags.q.packed ||
4050        qual->flags.q.shared) {
4051       _mesa_glsl_error(loc, state,
4052                        "uniform and shader storage block layout qualifiers "
4053                        "std140, std430, packed, and shared can only be "
4054                        "applied to uniform or shader storage blocks, not "
4055                        "members");
4056    }
4057 
4058    if (qual->flags.q.row_major || qual->flags.q.column_major) {
4059       validate_matrix_layout_for_type(state, loc, var->type, var);
4060    }
4061 
4062    /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
4063     * Inputs):
4064     *
4065     *  "Fragment shaders also allow the following layout qualifier on in only
4066     *   (not with variable declarations)
4067     *     layout-qualifier-id
4068     *        early_fragment_tests
4069     *   [...]"
4070     */
4071    if (qual->flags.q.early_fragment_tests) {
4072       _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
4073                        "valid in fragment shader input layout declaration.");
4074    }
4075 
4076    if (qual->flags.q.inner_coverage) {
4077       _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
4078                        "valid in fragment shader input layout declaration.");
4079    }
4080 
4081    if (qual->flags.q.post_depth_coverage) {
4082       _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
4083                        "valid in fragment shader input layout declaration.");
4084    }
4085 
4086    if (state->has_bindless())
4087       apply_bindless_qualifier_to_variable(qual, var, state, loc);
4088 
4089    if (qual->flags.q.pixel_interlock_ordered ||
4090        qual->flags.q.pixel_interlock_unordered ||
4091        qual->flags.q.sample_interlock_ordered ||
4092        qual->flags.q.sample_interlock_unordered) {
4093       _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
4094                        "pixel_interlock_ordered, pixel_interlock_unordered, "
4095                        "sample_interlock_ordered and sample_interlock_unordered, "
4096                        "only valid in fragment shader input layout declaration.");
4097    }
4098 
4099    if (var->name != NULL && strcmp(var->name, "gl_Layer") == 0) {
4100       if (is_conflicting_layer_redeclaration(state, qual)) {
4101          _mesa_glsl_error(loc, state, "gl_Layer redeclaration with "
4102                           "different viewport_relative setting than earlier");
4103       }
4104       state->redeclares_gl_layer = true;
4105       if (qual->flags.q.viewport_relative) {
4106          state->layer_viewport_relative = true;
4107       }
4108    } else if (qual->flags.q.viewport_relative) {
4109       _mesa_glsl_error(loc, state,
4110                        "viewport_relative qualifier "
4111                        "can only be applied to gl_Layer.");
4112    }
4113 }
4114 
4115 static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc,bool is_parameter)4116 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
4117                                  ir_variable *var,
4118                                  struct _mesa_glsl_parse_state *state,
4119                                  YYLTYPE *loc,
4120                                  bool is_parameter)
4121 {
4122    STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
4123 
4124    if (qual->flags.q.invariant) {
4125       if (var->data.used) {
4126          _mesa_glsl_error(loc, state,
4127                           "variable `%s' may not be redeclared "
4128                           "`invariant' after being used",
4129                           var->name);
4130       } else {
4131          var->data.explicit_invariant = true;
4132          var->data.invariant = true;
4133       }
4134    }
4135 
4136    if (qual->flags.q.precise) {
4137       if (var->data.used) {
4138          _mesa_glsl_error(loc, state,
4139                           "variable `%s' may not be redeclared "
4140                           "`precise' after being used",
4141                           var->name);
4142       } else {
4143          var->data.precise = 1;
4144       }
4145    }
4146 
4147    if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
4148       _mesa_glsl_error(loc, state,
4149                        "`subroutine' may only be applied to uniforms, "
4150                        "subroutine type declarations, or function definitions");
4151    }
4152 
4153    if (qual->flags.q.constant || qual->flags.q.attribute
4154        || qual->flags.q.uniform
4155        || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4156       var->data.read_only = 1;
4157 
4158    if (qual->flags.q.centroid)
4159       var->data.centroid = 1;
4160 
4161    if (qual->flags.q.sample)
4162       var->data.sample = 1;
4163 
4164    /* Precision qualifiers do not hold any meaning in Desktop GLSL */
4165    if (state->es_shader) {
4166       var->data.precision =
4167          select_gles_precision(qual->precision, var->type, state, loc);
4168    }
4169 
4170    if (qual->flags.q.patch)
4171       var->data.patch = 1;
4172 
4173    if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
4174       var->type = &glsl_type_builtin_error;
4175       _mesa_glsl_error(loc, state,
4176                        "`attribute' variables may not be declared in the "
4177                        "%s shader",
4178                        _mesa_shader_stage_to_string(state->stage));
4179    }
4180 
4181    /* Disallow layout qualifiers which may only appear on layout declarations. */
4182    if (qual->flags.q.prim_type) {
4183       _mesa_glsl_error(loc, state,
4184                        "Primitive type may only be specified on GS input or output "
4185                        "layout declaration, not on variables.");
4186    }
4187 
4188    /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4189     *
4190     *     "However, the const qualifier cannot be used with out or inout."
4191     *
4192     * The same section of the GLSL 4.40 spec further clarifies this saying:
4193     *
4194     *     "The const qualifier cannot be used with out or inout, or a
4195     *     compile-time error results."
4196     */
4197    if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4198       _mesa_glsl_error(loc, state,
4199                        "`const' may not be applied to `out' or `inout' "
4200                        "function parameters");
4201    }
4202 
4203    /* If there is no qualifier that changes the mode of the variable, leave
4204     * the setting alone.
4205     */
4206    assert(var->data.mode != ir_var_temporary);
4207    if (qual->flags.q.in && qual->flags.q.out)
4208       var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4209    else if (qual->flags.q.in)
4210       var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4211    else if (qual->flags.q.attribute
4212             || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4213       var->data.mode = ir_var_shader_in;
4214    else if (qual->flags.q.out)
4215       var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4216    else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4217       var->data.mode = ir_var_shader_out;
4218    else if (qual->flags.q.uniform)
4219       var->data.mode = ir_var_uniform;
4220    else if (qual->flags.q.buffer)
4221       var->data.mode = ir_var_shader_storage;
4222    else if (qual->flags.q.shared_storage)
4223       var->data.mode = ir_var_shader_shared;
4224 
4225    if (!is_parameter && state->stage == MESA_SHADER_FRAGMENT) {
4226       if (state->has_framebuffer_fetch()) {
4227          if (state->is_version(130, 300))
4228             var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4229          else
4230             var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4231       }
4232 
4233       if (state->has_framebuffer_fetch_zs() &&
4234           (strcmp(var->name, "gl_LastFragDepthARM") == 0 ||
4235            strcmp(var->name, "gl_LastFragStencilARM") == 0)) {
4236          var->data.fb_fetch_output = 1;
4237       }
4238    }
4239 
4240    if (var->data.fb_fetch_output)
4241       var->data.assigned = true;
4242 
4243    if (var->is_fb_fetch_color_output()) {
4244       var->data.memory_coherent = !qual->flags.q.non_coherent;
4245 
4246       /* From the EXT_shader_framebuffer_fetch spec:
4247        *
4248        *   "It is an error to declare an inout fragment output not qualified
4249        *    with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4250        *    extension hasn't been enabled."
4251        */
4252       if (var->data.memory_coherent &&
4253           !state->EXT_shader_framebuffer_fetch_enable)
4254          _mesa_glsl_error(loc, state,
4255                           "invalid declaration of framebuffer fetch output not "
4256                           "qualified with layout(noncoherent)");
4257 
4258    } else {
4259       /* From the EXT_shader_framebuffer_fetch spec:
4260        *
4261        *   "Fragment outputs declared inout may specify the following layout
4262        *    qualifier: [...] noncoherent"
4263        */
4264       if (qual->flags.q.non_coherent)
4265          _mesa_glsl_error(loc, state,
4266                           "invalid layout(noncoherent) qualifier not part of "
4267                           "framebuffer fetch output declaration");
4268    }
4269 
4270    if (!is_parameter && is_varying_var(var, state->stage)) {
4271       /* User-defined ins/outs are not permitted in compute shaders. */
4272       if (state->stage == MESA_SHADER_COMPUTE) {
4273          _mesa_glsl_error(loc, state,
4274                           "user-defined input and output variables are not "
4275                           "permitted in compute shaders");
4276       }
4277 
4278       /* This variable is being used to link data between shader stages (in
4279        * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
4280        * that is allowed for such purposes.
4281        *
4282        * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4283        *
4284        *     "The varying qualifier can be used only with the data types
4285        *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4286        *     these."
4287        *
4288        * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
4289        * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4290        *
4291        *     "Fragment inputs can only be signed and unsigned integers and
4292        *     integer vectors, float, floating-point vectors, matrices, or
4293        *     arrays of these. Structures cannot be input.
4294        *
4295        * Similar text exists in the section on vertex shader outputs.
4296        *
4297        * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4298        * 3.00 spec allows structs as well.  Varying structs are also allowed
4299        * in GLSL 1.50.
4300        *
4301        * From section 4.3.4 of the ARB_bindless_texture spec:
4302        *
4303        *     "(modify third paragraph of the section to allow sampler and image
4304        *     types) ...  Vertex shader inputs can only be float,
4305        *     single-precision floating-point scalars, single-precision
4306        *     floating-point vectors, matrices, signed and unsigned integers
4307        *     and integer vectors, sampler and image types."
4308        *
4309        * From section 4.3.6 of the ARB_bindless_texture spec:
4310        *
4311        *     "Output variables can only be floating-point scalars,
4312        *     floating-point vectors, matrices, signed or unsigned integers or
4313        *     integer vectors, sampler or image types, or arrays or structures
4314        *     of any these."
4315        */
4316       switch (glsl_without_array(var->type)->base_type) {
4317       case GLSL_TYPE_FLOAT:
4318          /* Ok in all GLSL versions */
4319          break;
4320       case GLSL_TYPE_FLOAT16:
4321          if (state->AMD_gpu_shader_half_float_enable)
4322             break;
4323          _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4324          break;
4325       case GLSL_TYPE_UINT:
4326       case GLSL_TYPE_INT:
4327          if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
4328             break;
4329          _mesa_glsl_error(loc, state,
4330                           "varying variables must be of base type float in %s",
4331                           state->get_version_string());
4332          break;
4333       case GLSL_TYPE_STRUCT:
4334          if (state->is_version(150, 300))
4335             break;
4336          _mesa_glsl_error(loc, state,
4337                           "varying variables may not be of type struct");
4338          break;
4339       case GLSL_TYPE_DOUBLE:
4340       case GLSL_TYPE_UINT64:
4341       case GLSL_TYPE_INT64:
4342          break;
4343       case GLSL_TYPE_SAMPLER:
4344       case GLSL_TYPE_TEXTURE:
4345       case GLSL_TYPE_IMAGE:
4346          if (state->has_bindless())
4347             break;
4348          FALLTHROUGH;
4349       default:
4350          _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4351          break;
4352       }
4353    }
4354 
4355    if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4356       var->data.explicit_invariant = true;
4357       var->data.invariant = true;
4358    }
4359 
4360    var->data.interpolation =
4361       interpret_interpolation_qualifier(qual, var->type,
4362                                         (ir_variable_mode) var->data.mode,
4363                                         state, loc);
4364 
4365    /* Does the declaration use the deprecated 'attribute' or 'varying'
4366     * keywords?
4367     */
4368    const bool uses_deprecated_qualifier = qual->flags.q.attribute
4369       || qual->flags.q.varying;
4370 
4371 
4372    /* Validate auxiliary storage qualifiers */
4373 
4374    /* From section 4.3.4 of the GLSL 1.30 spec:
4375     *    "It is an error to use centroid in in a vertex shader."
4376     *
4377     * From section 4.3.4 of the GLSL ES 3.00 spec:
4378     *    "It is an error to use centroid in or interpolation qualifiers in
4379     *    a vertex shader input."
4380     */
4381 
4382    /* Section 4.3.6 of the GLSL 1.30 specification states:
4383     * "It is an error to use centroid out in a fragment shader."
4384     *
4385     * The GL_ARB_shading_language_420pack extension specification states:
4386     * "It is an error to use auxiliary storage qualifiers or interpolation
4387     *  qualifiers on an output in a fragment shader."
4388     */
4389    if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4390       _mesa_glsl_error(loc, state,
4391                        "sample qualifier may only be used on `in` or `out` "
4392                        "variables between shader stages");
4393    }
4394    if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4395       _mesa_glsl_error(loc, state,
4396                        "centroid qualifier may only be used with `in', "
4397                        "`out' or `varying' variables between shader stages");
4398    }
4399 
4400    if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4401       _mesa_glsl_error(loc, state,
4402                        "the shared storage qualifiers can only be used with "
4403                        "compute shaders");
4404    }
4405 
4406    apply_image_qualifier_to_variable(qual, var, state, loc);
4407 }
4408 
4409 /**
4410  * Get the variable that is being redeclared by this declaration or if it
4411  * does not exist, the current declared variable.
4412  *
4413  * Semantic checks to verify the validity of the redeclaration are also
4414  * performed.  If semantic checks fail, compilation error will be emitted via
4415  * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4416  *
4417  * \returns
4418  * A pointer to an existing variable in the current scope if the declaration
4419  * is a redeclaration, current variable otherwise. \c is_declared boolean
4420  * will return \c true if the declaration is a redeclaration, \c false
4421  * otherwise.
4422  */
4423 static ir_variable *
get_variable_being_redeclared(ir_variable ** var_ptr,YYLTYPE loc,struct _mesa_glsl_parse_state * state,bool allow_all_redeclarations,bool * is_redeclaration)4424 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4425                               struct _mesa_glsl_parse_state *state,
4426                               bool allow_all_redeclarations,
4427                               bool *is_redeclaration)
4428 {
4429    ir_variable *var = *var_ptr;
4430 
4431    /* Check if this declaration is actually a re-declaration, either to
4432     * resize an array or add qualifiers to an existing variable.
4433     *
4434     * This is allowed for variables in the current scope, or when at
4435     * global scope (for built-ins in the implicit outer scope).
4436     */
4437    ir_variable *earlier = state->symbols->get_variable(var->name);
4438    if (earlier == NULL ||
4439        (state->current_function != NULL &&
4440        !state->symbols->name_declared_this_scope(var->name))) {
4441       *is_redeclaration = false;
4442       return var;
4443    }
4444 
4445    *is_redeclaration = true;
4446 
4447    if (earlier->data.how_declared == ir_var_declared_implicitly) {
4448       /* Verify that the redeclaration of a built-in does not change the
4449        * storage qualifier.  There are a couple special cases.
4450        *
4451        * 1. Some built-in variables that are defined as 'in' in the
4452        *    specification are implemented as system values.  Allow
4453        *    ir_var_system_value -> ir_var_shader_in.
4454        *
4455        * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4456        *    specification requires that redeclarations omit any qualifier.
4457        *    Allow ir_var_shader_out -> ir_var_auto for this one variable.
4458        */
4459       if (earlier->data.mode != var->data.mode &&
4460           !(earlier->data.mode == ir_var_system_value &&
4461             var->data.mode == ir_var_shader_in) &&
4462           !(strcmp(var->name, "gl_LastFragData") == 0 &&
4463             var->data.mode == ir_var_auto)) {
4464          _mesa_glsl_error(&loc, state,
4465                           "redeclaration cannot change qualification of `%s'",
4466                           var->name);
4467       }
4468    }
4469 
4470    /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4471     *
4472     * "It is legal to declare an array without a size and then
4473     *  later re-declare the same name as an array of the same
4474     *  type and specify a size."
4475     */
4476    if (glsl_type_is_unsized_array(earlier->type) && glsl_type_is_array(var->type)
4477        && (var->type->fields.array == earlier->type->fields.array)) {
4478       const int size = glsl_array_size(var->type);
4479       check_builtin_array_max_size(var->name, size, loc, state);
4480       if ((size > 0) && (size <= earlier->data.max_array_access)) {
4481          _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4482                           "previous access",
4483                           earlier->data.max_array_access);
4484       }
4485 
4486       earlier->type = var->type;
4487       delete var;
4488       var = NULL;
4489       *var_ptr = NULL;
4490    } else if (earlier->type != var->type) {
4491       _mesa_glsl_error(&loc, state,
4492                        "redeclaration of `%s' has incorrect type",
4493                        var->name);
4494    } else if ((state->ARB_fragment_coord_conventions_enable ||
4495               state->is_version(150, 0))
4496               && strcmp(var->name, "gl_FragCoord") == 0) {
4497       /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4498        * qualifiers.
4499        *
4500        * We don't really need to do anything here, just allow the
4501        * redeclaration. Any error on the gl_FragCoord is handled on the ast
4502        * level at apply_layout_qualifier_to_variable using the
4503        * ast_type_qualifier and _mesa_glsl_parse_state, or later in the
4504        * linker.
4505        */
4506       /* According to section 4.3.7 of the GLSL 1.30 spec,
4507        * the following built-in varaibles can be redeclared with an
4508        * interpolation qualifier:
4509        *    * gl_FrontColor
4510        *    * gl_BackColor
4511        *    * gl_FrontSecondaryColor
4512        *    * gl_BackSecondaryColor
4513        *    * gl_Color
4514        *    * gl_SecondaryColor
4515        */
4516    } else if (state->is_version(130, 0)
4517               && (strcmp(var->name, "gl_FrontColor") == 0
4518                   || strcmp(var->name, "gl_BackColor") == 0
4519                   || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4520                   || strcmp(var->name, "gl_BackSecondaryColor") == 0
4521                   || strcmp(var->name, "gl_Color") == 0
4522                   || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4523       earlier->data.interpolation = var->data.interpolation;
4524 
4525       /* Layout qualifiers for gl_FragDepth. */
4526    } else if ((state->is_version(420, 0) ||
4527                state->AMD_conservative_depth_enable ||
4528                state->ARB_conservative_depth_enable)
4529               && strcmp(var->name, "gl_FragDepth") == 0) {
4530 
4531       /** From the AMD_conservative_depth spec:
4532        *     Within any shader, the first redeclarations of gl_FragDepth
4533        *     must appear before any use of gl_FragDepth.
4534        */
4535       if (earlier->data.used) {
4536          _mesa_glsl_error(&loc, state,
4537                           "the first redeclaration of gl_FragDepth "
4538                           "must appear before any use of gl_FragDepth");
4539       }
4540 
4541       /* Prevent inconsistent redeclaration of depth layout qualifier. */
4542       if (earlier->data.depth_layout != ir_depth_layout_none
4543           && earlier->data.depth_layout != var->data.depth_layout) {
4544             _mesa_glsl_error(&loc, state,
4545                              "gl_FragDepth: depth layout is declared here "
4546                              "as '%s, but it was previously declared as "
4547                              "'%s'",
4548                              depth_layout_string((ir_depth_layout)var->data.depth_layout),
4549                              depth_layout_string((ir_depth_layout)earlier->data.depth_layout));
4550       }
4551 
4552       earlier->data.depth_layout = var->data.depth_layout;
4553 
4554    } else if (state->has_framebuffer_fetch() &&
4555               strcmp(var->name, "gl_LastFragData") == 0 &&
4556               var->data.mode == ir_var_auto) {
4557       /* According to the EXT_shader_framebuffer_fetch spec:
4558        *
4559        *   "By default, gl_LastFragData is declared with the mediump precision
4560        *    qualifier. This can be changed by redeclaring the corresponding
4561        *    variables with the desired precision qualifier."
4562        *
4563        *   "Fragment shaders may specify the following layout qualifier only for
4564        *    redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4565        */
4566       earlier->data.precision = var->data.precision;
4567       earlier->data.memory_coherent = var->data.memory_coherent;
4568 
4569    } else if (state->NV_viewport_array2_enable &&
4570               strcmp(var->name, "gl_Layer") == 0 &&
4571               earlier->data.how_declared == ir_var_declared_implicitly) {
4572       /* No need to do anything, just allow it. Qualifier is stored in state */
4573 
4574    } else if (state->is_version(0, 300) &&
4575               state->has_separate_shader_objects() &&
4576               (strcmp(var->name, "gl_Position") == 0 ||
4577               strcmp(var->name, "gl_PointSize") == 0)) {
4578 
4579        /*  EXT_separate_shader_objects spec says:
4580        *
4581        *  "The following vertex shader outputs may be redeclared
4582        *   at global scope to specify a built-in output interface,
4583        *   with or without special qualifiers:
4584        *
4585        *    gl_Position
4586        *    gl_PointSize
4587        *
4588        *    When compiling shaders using either of the above variables,
4589        *    both such variables must be redeclared prior to use."
4590        */
4591       if (earlier->data.used) {
4592          _mesa_glsl_error(&loc, state, "the first redeclaration of "
4593                          "%s must appear before any use", var->name);
4594       }
4595    } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4596                state->allow_builtin_variable_redeclaration) ||
4597               allow_all_redeclarations) {
4598       /* Allow verbatim redeclarations of built-in variables. Not explicitly
4599        * valid, but some applications do it.
4600        */
4601    } else {
4602       _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4603    }
4604 
4605    return earlier;
4606 }
4607 
4608 /**
4609  * Generate the IR for an initializer in a variable declaration
4610  */
4611 static ir_rvalue *
process_initializer(ir_variable * var,ast_declaration * decl,ast_fully_specified_type * type,exec_list * initializer_instructions,struct _mesa_glsl_parse_state * state)4612 process_initializer(ir_variable *var, ast_declaration *decl,
4613                     ast_fully_specified_type *type,
4614                     exec_list *initializer_instructions,
4615                     struct _mesa_glsl_parse_state *state)
4616 {
4617    void *mem_ctx = state;
4618    ir_rvalue *result = NULL;
4619 
4620    YYLTYPE initializer_loc = decl->initializer->get_location();
4621 
4622    /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4623     *
4624     *    "All uniform variables are read-only and are initialized either
4625     *    directly by an application via API commands, or indirectly by
4626     *    OpenGL."
4627     */
4628    if (var->data.mode == ir_var_uniform) {
4629       state->check_version(120, 0, &initializer_loc,
4630                            "cannot initialize uniform %s",
4631                            var->name);
4632    }
4633 
4634    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4635     *
4636     *    "Buffer variables cannot have initializers."
4637     */
4638    if (var->data.mode == ir_var_shader_storage) {
4639       _mesa_glsl_error(&initializer_loc, state,
4640                        "cannot initialize buffer variable %s",
4641                        var->name);
4642    }
4643 
4644    /* From section 4.1.7 of the GLSL 4.40 spec:
4645     *
4646     *    "Opaque variables [...] are initialized only through the
4647     *     OpenGL API; they cannot be declared with an initializer in a
4648     *     shader."
4649     *
4650     * From section 4.1.7 of the ARB_bindless_texture spec:
4651     *
4652     *    "Samplers may be declared as shader inputs and outputs, as uniform
4653     *     variables, as temporary variables, and as function parameters."
4654     *
4655     * From section 4.1.X of the ARB_bindless_texture spec:
4656     *
4657     *    "Images may be declared as shader inputs and outputs, as uniform
4658     *     variables, as temporary variables, and as function parameters."
4659     */
4660    if (glsl_contains_atomic(var->type) ||
4661        (!state->has_bindless() && glsl_contains_opaque(var->type))) {
4662       _mesa_glsl_error(&initializer_loc, state,
4663                        "cannot initialize %s variable %s",
4664                        var->name, state->has_bindless() ? "atomic" : "opaque");
4665    }
4666 
4667    if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4668       _mesa_glsl_error(&initializer_loc, state,
4669                        "cannot initialize %s shader input / %s %s",
4670                        _mesa_shader_stage_to_string(state->stage),
4671                        (state->stage == MESA_SHADER_VERTEX)
4672                        ? "attribute" : "varying",
4673                        var->name);
4674    }
4675 
4676    if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4677       _mesa_glsl_error(&initializer_loc, state,
4678                        "cannot initialize %s shader output %s",
4679                        _mesa_shader_stage_to_string(state->stage),
4680                        var->name);
4681    }
4682 
4683    /* If the initializer is an ast_aggregate_initializer, recursively store
4684     * type information from the LHS into it, so that its hir() function can do
4685     * type checking.
4686     */
4687    if (decl->initializer->oper == ast_aggregate)
4688       _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4689 
4690    ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4691    ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4692 
4693    /* Calculate the constant value if this is a const or uniform
4694     * declaration.
4695     *
4696     * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4697     *
4698     *     "Declarations of globals without a storage qualifier, or with
4699     *     just the const qualifier, may include initializers, in which case
4700     *     they will be initialized before the first line of main() is
4701     *     executed.  Such initializers must be a constant expression."
4702     *
4703     * The same section of the GLSL ES 3.00.4 spec has similar language.
4704     */
4705    if (type->qualifier.flags.q.constant
4706        || type->qualifier.flags.q.uniform
4707        || (state->es_shader && state->current_function == NULL)) {
4708       ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4709                                                lhs, rhs, true);
4710       if (new_rhs != NULL) {
4711          rhs = new_rhs;
4712 
4713          /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4714           * says:
4715           *
4716           *     "A constant expression is one of
4717           *
4718           *        ...
4719           *
4720           *        - an expression formed by an operator on operands that are
4721           *          all constant expressions, including getting an element of
4722           *          a constant array, or a field of a constant structure, or
4723           *          components of a constant vector.  However, the sequence
4724           *          operator ( , ) and the assignment operators ( =, +=, ...)
4725           *          are not included in the operators that can create a
4726           *          constant expression."
4727           *
4728           * Section 12.43 (Sequence operator and constant expressions) says:
4729           *
4730           *     "Should the following construct be allowed?
4731           *
4732           *         float a[2,3];
4733           *
4734           *     The expression within the brackets uses the sequence operator
4735           *     (',') and returns the integer 3 so the construct is declaring
4736           *     a single-dimensional array of size 3.  In some languages, the
4737           *     construct declares a two-dimensional array.  It would be
4738           *     preferable to make this construct illegal to avoid confusion.
4739           *
4740           *     One possibility is to change the definition of the sequence
4741           *     operator so that it does not return a constant-expression and
4742           *     hence cannot be used to declare an array size.
4743           *
4744           *     RESOLUTION: The result of a sequence operator is not a
4745           *     constant-expression."
4746           *
4747           * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4748           * contains language almost identical to the section 4.3.3 in the
4749           * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
4750           * versions.
4751           */
4752          ir_constant *constant_value =
4753             rhs->constant_expression_value(mem_ctx);
4754 
4755          if (!constant_value ||
4756              (state->is_version(430, 300) &&
4757               decl->initializer->has_sequence_subexpression())) {
4758             const char *const variable_mode =
4759                (type->qualifier.flags.q.constant)
4760                ? "const"
4761                : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4762 
4763             /* If ARB_shading_language_420pack is enabled, initializers of
4764              * const-qualified local variables do not have to be constant
4765              * expressions. Const-qualified global variables must still be
4766              * initialized with constant expressions.
4767              */
4768             if (!state->has_420pack()
4769                 || state->current_function == NULL) {
4770                _mesa_glsl_error(& initializer_loc, state,
4771                                 "initializer of %s variable `%s' must be a "
4772                                 "constant expression",
4773                                 variable_mode,
4774                                 decl->identifier);
4775                if (glsl_type_is_numeric(var->type)) {
4776                   /* Reduce cascading errors. */
4777                   var->constant_value = type->qualifier.flags.q.constant
4778                      ? ir_constant::zero(state, var->type) : NULL;
4779                }
4780             }
4781          } else {
4782             rhs = constant_value;
4783             var->constant_value = type->qualifier.flags.q.constant
4784                ? constant_value : NULL;
4785          }
4786       } else {
4787          if (glsl_type_is_numeric(var->type)) {
4788             /* Reduce cascading errors. */
4789             rhs = var->constant_value = type->qualifier.flags.q.constant
4790                ? ir_constant::zero(state, var->type) : NULL;
4791          }
4792       }
4793    }
4794 
4795    if (rhs && !glsl_type_is_error(rhs->type)) {
4796       bool temp = var->data.read_only;
4797       if (type->qualifier.flags.q.constant)
4798          var->data.read_only = false;
4799 
4800       /* Never emit code to initialize a uniform.
4801        */
4802       const glsl_type *initializer_type;
4803       bool error_emitted = false;
4804       if (!type->qualifier.flags.q.uniform) {
4805          error_emitted =
4806             do_assignment(initializer_instructions, state,
4807                           NULL, lhs, rhs,
4808                           &result, true, true,
4809                           type->get_location());
4810          initializer_type = result->type;
4811       } else
4812          initializer_type = rhs->type;
4813 
4814       if (!error_emitted) {
4815          var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4816          var->data.has_initializer = true;
4817          var->data.is_implicit_initializer = false;
4818 
4819          /* If the declared variable is an unsized array, it must inherrit
4820          * its full type from the initializer.  A declaration such as
4821          *
4822          *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4823          *
4824          * becomes
4825          *
4826          *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4827          *
4828          * The assignment generated in the if-statement (below) will also
4829          * automatically handle this case for non-uniforms.
4830          *
4831          * If the declared variable is not an array, the types must
4832          * already match exactly.  As a result, the type assignment
4833          * here can be done unconditionally.  For non-uniforms the call
4834          * to do_assignment can change the type of the initializer (via
4835          * the implicit conversion rules).  For uniforms the initializer
4836          * must be a constant expression, and the type of that expression
4837          * was validated above.
4838          */
4839          var->type = initializer_type;
4840       }
4841 
4842       var->data.read_only = temp;
4843    }
4844 
4845    return result;
4846 }
4847 
4848 static void
validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var,unsigned num_vertices,unsigned * size,const char * var_category)4849 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4850                                        YYLTYPE loc, ir_variable *var,
4851                                        unsigned num_vertices,
4852                                        unsigned *size,
4853                                        const char *var_category)
4854 {
4855    if (glsl_type_is_unsized_array(var->type)) {
4856       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4857        *
4858        *   All geometry shader input unsized array declarations will be
4859        *   sized by an earlier input layout qualifier, when present, as per
4860        *   the following table.
4861        *
4862        * Followed by a table mapping each allowed input layout qualifier to
4863        * the corresponding input length.
4864        *
4865        * Similarly for tessellation control shader outputs.
4866        */
4867       if (num_vertices != 0)
4868          var->type = glsl_array_type(var->type->fields.array,
4869                                      num_vertices, 0);
4870    } else {
4871       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4872        * includes the following examples of compile-time errors:
4873        *
4874        *   // code sequence within one shader...
4875        *   in vec4 Color1[];    // size unknown
4876        *   ...Color1.length()...// illegal, length() unknown
4877        *   in vec4 Color2[2];   // size is 2
4878        *   ...Color1.length()...// illegal, Color1 still has no size
4879        *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
4880        *   layout(lines) in;    // legal, input size is 2, matching
4881        *   in vec4 Color4[3];   // illegal, contradicts layout
4882        *   ...
4883        *
4884        * To detect the case illustrated by Color3, we verify that the size of
4885        * an explicitly-sized array matches the size of any previously declared
4886        * explicitly-sized array.  To detect the case illustrated by Color4, we
4887        * verify that the size of an explicitly-sized array is consistent with
4888        * any previously declared input layout.
4889        */
4890       if (num_vertices != 0 && var->type->length != num_vertices) {
4891          _mesa_glsl_error(&loc, state,
4892                           "%s size contradicts previously declared layout "
4893                           "(size is %u, but layout requires a size of %u)",
4894                           var_category, var->type->length, num_vertices);
4895       } else if (*size != 0 && var->type->length != *size) {
4896          _mesa_glsl_error(&loc, state,
4897                           "%s sizes are inconsistent (size is %u, but a "
4898                           "previous declaration has size %u)",
4899                           var_category, var->type->length, *size);
4900       } else {
4901          *size = var->type->length;
4902       }
4903    }
4904 }
4905 
4906 static void
handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4907 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4908                                     YYLTYPE loc, ir_variable *var)
4909 {
4910    unsigned num_vertices = 0;
4911 
4912    if (state->tcs_output_vertices_specified) {
4913       if (!state->out_qualifier->vertices->
4914              process_qualifier_constant(state, "vertices",
4915                                         &num_vertices, false)) {
4916          return;
4917       }
4918 
4919       if (num_vertices > state->Const.MaxPatchVertices) {
4920          _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4921                           "GL_MAX_PATCH_VERTICES", num_vertices);
4922          return;
4923       }
4924    }
4925 
4926    if (!glsl_type_is_array(var->type) && !var->data.patch) {
4927       _mesa_glsl_error(&loc, state,
4928                        "tessellation control shader outputs must be arrays");
4929 
4930       /* To avoid cascading failures, short circuit the checks below. */
4931       return;
4932    }
4933 
4934    if (var->data.patch)
4935       return;
4936 
4937    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4938                                           &state->tcs_output_size,
4939                                           "tessellation control shader output");
4940 }
4941 
4942 /**
4943  * Do additional processing necessary for tessellation control/evaluation shader
4944  * input declarations. This covers both interface block arrays and bare input
4945  * variables.
4946  */
4947 static void
handle_tess_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4948 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4949                               YYLTYPE loc, ir_variable *var)
4950 {
4951    if (!glsl_type_is_array(var->type) && !var->data.patch) {
4952       _mesa_glsl_error(&loc, state,
4953                        "per-vertex tessellation shader inputs must be arrays");
4954       /* Avoid cascading failures. */
4955       return;
4956    }
4957 
4958    if (var->data.patch)
4959       return;
4960 
4961    /* The ARB_tessellation_shader spec says:
4962     *
4963     *    "Declaring an array size is optional.  If no size is specified, it
4964     *     will be taken from the implementation-dependent maximum patch size
4965     *     (gl_MaxPatchVertices).  If a size is specified, it must match the
4966     *     maximum patch size; otherwise, a compile or link error will occur."
4967     *
4968     * This text appears twice, once for TCS inputs, and again for TES inputs.
4969     */
4970    if (glsl_type_is_unsized_array(var->type)) {
4971       var->type = glsl_array_type(var->type->fields.array,
4972             state->Const.MaxPatchVertices, 0);
4973    } else if (var->type->length != state->Const.MaxPatchVertices) {
4974       _mesa_glsl_error(&loc, state,
4975                        "per-vertex tessellation shader input arrays must be "
4976                        "sized to gl_MaxPatchVertices (%d).",
4977                        state->Const.MaxPatchVertices);
4978    }
4979 }
4980 
4981 
4982 /**
4983  * Do additional processing necessary for geometry shader input declarations
4984  * (this covers both interface blocks arrays and bare input variables).
4985  */
4986 static void
handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4987 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4988                                   YYLTYPE loc, ir_variable *var)
4989 {
4990    unsigned num_vertices = 0;
4991 
4992    if (state->gs_input_prim_type_specified) {
4993       GLenum in_prim_type = state->in_qualifier->prim_type;
4994       num_vertices = mesa_vertices_per_prim(gl_to_mesa_prim(in_prim_type));
4995    }
4996 
4997    /* Geometry shader input variables must be arrays.  Caller should have
4998     * reported an error for this.
4999     */
5000    if (!glsl_type_is_array(var->type)) {
5001       assert(state->error);
5002 
5003       /* To avoid cascading failures, short circuit the checks below. */
5004       return;
5005    }
5006 
5007    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
5008                                           &state->gs_input_size,
5009                                           "geometry shader input");
5010 }
5011 
5012 static void
validate_identifier(const char * identifier,YYLTYPE loc,struct _mesa_glsl_parse_state * state)5013 validate_identifier(const char *identifier, YYLTYPE loc,
5014                     struct _mesa_glsl_parse_state *state)
5015 {
5016    /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
5017     *
5018     *   "Identifiers starting with "gl_" are reserved for use by
5019     *   OpenGL, and may not be declared in a shader as either a
5020     *   variable or a function."
5021     */
5022    if (is_gl_identifier(identifier)) {
5023       _mesa_glsl_error(&loc, state,
5024                        "identifier `%s' uses reserved `gl_' prefix",
5025                        identifier);
5026    } else if (strstr(identifier, "__")) {
5027       /* From page 14 (page 20 of the PDF) of the GLSL 1.10
5028        * spec:
5029        *
5030        *     "In addition, all identifiers containing two
5031        *      consecutive underscores (__) are reserved as
5032        *      possible future keywords."
5033        *
5034        * The intention is that names containing __ are reserved for internal
5035        * use by the implementation, and names prefixed with GL_ are reserved
5036        * for use by Khronos.  Names simply containing __ are dangerous to use,
5037        * but should be allowed.
5038        *
5039        * A future version of the GLSL specification will clarify this.
5040        */
5041       _mesa_glsl_warning(&loc, state,
5042                          "identifier `%s' uses reserved `__' string",
5043                          identifier);
5044    }
5045 }
5046 
5047 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5048 ast_declarator_list::hir(exec_list *instructions,
5049                          struct _mesa_glsl_parse_state *state)
5050 {
5051    void *ctx = state;
5052    const struct glsl_type *decl_type;
5053    const char *type_name = NULL;
5054    ir_rvalue *result = NULL;
5055    YYLTYPE loc = this->get_location();
5056 
5057    /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
5058     *
5059     *     "To ensure that a particular output variable is invariant, it is
5060     *     necessary to use the invariant qualifier. It can either be used to
5061     *     qualify a previously declared variable as being invariant
5062     *
5063     *         invariant gl_Position; // make existing gl_Position be invariant"
5064     *
5065     * In these cases the parser will set the 'invariant' flag in the declarator
5066     * list, and the type will be NULL.
5067     */
5068    if (this->invariant) {
5069       assert(this->type == NULL);
5070 
5071       if (state->current_function != NULL) {
5072          _mesa_glsl_error(& loc, state,
5073                           "all uses of `invariant' keyword must be at global "
5074                           "scope");
5075       }
5076 
5077       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5078          assert(decl->array_specifier == NULL);
5079          assert(decl->initializer == NULL);
5080 
5081          ir_variable *const earlier =
5082             state->symbols->get_variable(decl->identifier);
5083          if (earlier == NULL) {
5084             _mesa_glsl_error(& loc, state,
5085                              "undeclared variable `%s' cannot be marked "
5086                              "invariant", decl->identifier);
5087          } else if (!is_allowed_invariant(earlier, state)) {
5088             _mesa_glsl_error(&loc, state,
5089                              "`%s' cannot be marked invariant; interfaces between "
5090                              "shader stages only.", decl->identifier);
5091          } else if (earlier->data.used) {
5092             _mesa_glsl_error(& loc, state,
5093                             "variable `%s' may not be redeclared "
5094                             "`invariant' after being used",
5095                             earlier->name);
5096          } else {
5097             earlier->data.explicit_invariant = true;
5098             earlier->data.invariant = true;
5099          }
5100       }
5101 
5102       /* Invariant redeclarations do not have r-values.
5103        */
5104       return NULL;
5105    }
5106 
5107    if (this->precise) {
5108       assert(this->type == NULL);
5109 
5110       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5111          assert(decl->array_specifier == NULL);
5112          assert(decl->initializer == NULL);
5113 
5114          ir_variable *const earlier =
5115             state->symbols->get_variable(decl->identifier);
5116          if (earlier == NULL) {
5117             _mesa_glsl_error(& loc, state,
5118                              "undeclared variable `%s' cannot be marked "
5119                              "precise", decl->identifier);
5120          } else if (state->current_function != NULL &&
5121                     !state->symbols->name_declared_this_scope(decl->identifier)) {
5122             /* Note: we have to check if we're in a function, since
5123              * builtins are treated as having come from another scope.
5124              */
5125             _mesa_glsl_error(& loc, state,
5126                              "variable `%s' from an outer scope may not be "
5127                              "redeclared `precise' in this scope",
5128                              earlier->name);
5129          } else if (earlier->data.used) {
5130             _mesa_glsl_error(& loc, state,
5131                              "variable `%s' may not be redeclared "
5132                              "`precise' after being used",
5133                              earlier->name);
5134          } else {
5135             earlier->data.precise = true;
5136          }
5137       }
5138 
5139       /* Precise redeclarations do not have r-values either. */
5140       return NULL;
5141    }
5142 
5143    assert(this->type != NULL);
5144    assert(!this->invariant);
5145    assert(!this->precise);
5146 
5147    /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to
5148     * indicate that it needs to be updated later (see glsl_parser.yy).
5149     * This is done here, based on the layout qualifier and the type of the image var
5150     */
5151    if (this->type->qualifier.flags.q.explicit_image_format &&
5152          glsl_type_is_image(this->type->specifier->type) &&
5153          this->type->qualifier.image_base_type == GLSL_TYPE_VOID) {
5154       /*     "The ARB_shader_image_load_store says:
5155        *     If both extensions are enabled in the shading language, the "size*" layout
5156        *     qualifiers are treated as format qualifiers, and are mapped to equivalent
5157        *     format qualifiers in the table below, according to the type of image
5158        *     variable.
5159        *                     image*    iimage*   uimage*
5160        *                     --------  --------  --------
5161        *       size1x8       n/a       r8i       r8ui
5162        *       size1x16      r16f      r16i      r16ui
5163        *       size1x32      r32f      r32i      r32ui
5164        *       size2x32      rg32f     rg32i     rg32ui
5165        *       size4x32      rgba32f   rgba32i   rgba32ui"
5166        */
5167       if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) {
5168          switch (this->type->qualifier.image_format) {
5169          case PIPE_FORMAT_R8_SINT:
5170             /* The GL_EXT_shader_image_load_store spec says:
5171              *    A layout of "size1x8" is illegal for image variables associated
5172              *    with floating-point data types.
5173              */
5174             _mesa_glsl_error(& loc, state,
5175                              "size1x8 is illegal for image variables "
5176                              "with floating-point data types.");
5177             return NULL;
5178          case PIPE_FORMAT_R16_SINT:
5179             this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT;
5180             break;
5181          case PIPE_FORMAT_R32_SINT:
5182             this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT;
5183             break;
5184          case PIPE_FORMAT_R32G32_SINT:
5185             this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT;
5186             break;
5187          case PIPE_FORMAT_R32G32B32A32_SINT:
5188             this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
5189             break;
5190          default:
5191             unreachable("Unknown image format");
5192          }
5193          this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT;
5194       } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) {
5195          switch (this->type->qualifier.image_format) {
5196          case PIPE_FORMAT_R8_SINT:
5197             this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT;
5198             break;
5199          case PIPE_FORMAT_R16_SINT:
5200             this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT;
5201             break;
5202          case PIPE_FORMAT_R32_SINT:
5203             this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT;
5204             break;
5205          case PIPE_FORMAT_R32G32_SINT:
5206             this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT;
5207             break;
5208          case PIPE_FORMAT_R32G32B32A32_SINT:
5209             this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT;
5210             break;
5211          default:
5212             unreachable("Unknown image format");
5213          }
5214          this->type->qualifier.image_base_type = GLSL_TYPE_UINT;
5215       } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) {
5216          this->type->qualifier.image_base_type = GLSL_TYPE_INT;
5217       } else {
5218          assert(false);
5219       }
5220    }
5221 
5222    /* The type specifier may contain a structure definition.  Process that
5223     * before any of the variable declarations.
5224     */
5225    (void) this->type->specifier->hir(instructions, state);
5226 
5227    decl_type = this->type->glsl_type(& type_name, state);
5228 
5229    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
5230     *    "Buffer variables may only be declared inside interface blocks
5231     *    (section 4.3.9 “Interface Blocks”), which are then referred to as
5232     *    shader storage blocks. It is a compile-time error to declare buffer
5233     *    variables at global scope (outside a block)."
5234     */
5235    if (type->qualifier.flags.q.buffer && !glsl_type_is_interface(decl_type)) {
5236       _mesa_glsl_error(&loc, state,
5237                        "buffer variables cannot be declared outside "
5238                        "interface blocks");
5239    }
5240 
5241    /* An offset-qualified atomic counter declaration sets the default
5242     * offset for the next declaration within the same atomic counter
5243     * buffer.
5244     */
5245    if (decl_type && glsl_contains_atomic(decl_type)) {
5246       if (type->qualifier.flags.q.explicit_binding &&
5247           type->qualifier.flags.q.explicit_offset) {
5248          unsigned qual_binding;
5249          unsigned qual_offset;
5250          if (process_qualifier_constant(state, &loc, "binding",
5251                                         type->qualifier.binding,
5252                                         &qual_binding)
5253              && process_qualifier_constant(state, &loc, "offset",
5254                                         type->qualifier.offset,
5255                                         &qual_offset)) {
5256             if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
5257                state->atomic_counter_offsets[qual_binding] = qual_offset;
5258          }
5259       }
5260 
5261       ast_type_qualifier allowed_atomic_qual_mask;
5262       allowed_atomic_qual_mask.flags.i = 0;
5263       allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
5264       allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
5265       allowed_atomic_qual_mask.flags.q.uniform = 1;
5266 
5267       type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
5268                                      "invalid layout qualifier for",
5269                                      "atomic_uint");
5270    }
5271 
5272    if (this->declarations.is_empty()) {
5273       /* If there is no structure involved in the program text, there are two
5274        * possible scenarios:
5275        *
5276        * - The program text contained something like 'vec4;'.  This is an
5277        *   empty declaration.  It is valid but weird.  Emit a warning.
5278        *
5279        * - The program text contained something like 'S;' and 'S' is not the
5280        *   name of a known structure type.  This is both invalid and weird.
5281        *   Emit an error.
5282        *
5283        * - The program text contained something like 'mediump float;'
5284        *   when the programmer probably meant 'precision mediump
5285        *   float;' Emit a warning with a description of what they
5286        *   probably meant to do.
5287        *
5288        * Note that if decl_type is NULL and there is a structure involved,
5289        * there must have been some sort of error with the structure.  In this
5290        * case we assume that an error was already generated on this line of
5291        * code for the structure.  There is no need to generate an additional,
5292        * confusing error.
5293        */
5294       assert(this->type->specifier->structure == NULL || decl_type != NULL
5295              || state->error);
5296 
5297       if (decl_type == NULL) {
5298          _mesa_glsl_error(&loc, state,
5299                           "invalid type `%s' in empty declaration",
5300                           type_name);
5301       } else {
5302          if (glsl_type_is_array(decl_type)) {
5303             /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5304              * spec:
5305              *
5306              *    "... any declaration that leaves the size undefined is
5307              *    disallowed as this would add complexity and there are no
5308              *    use-cases."
5309              */
5310             if (state->es_shader && glsl_type_is_unsized_array(decl_type)) {
5311                _mesa_glsl_error(&loc, state, "array size must be explicitly "
5312                                 "or implicitly defined");
5313             }
5314 
5315             /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5316              *
5317              *    "The combinations of types and qualifiers that cause
5318              *    compile-time or link-time errors are the same whether or not
5319              *    the declaration is empty."
5320              */
5321             validate_array_dimensions(decl_type, state, &loc);
5322          }
5323 
5324          if (glsl_type_is_atomic_uint(decl_type)) {
5325             /* Empty atomic counter declarations are allowed and useful
5326              * to set the default offset qualifier.
5327              */
5328             return NULL;
5329          } else if (this->type->qualifier.precision != ast_precision_none) {
5330             if (this->type->specifier->structure != NULL) {
5331                _mesa_glsl_error(&loc, state,
5332                                 "precision qualifiers can't be applied "
5333                                 "to structures");
5334             } else {
5335                static const char *const precision_names[] = {
5336                   "highp",
5337                   "highp",
5338                   "mediump",
5339                   "lowp"
5340                };
5341 
5342                _mesa_glsl_warning(&loc, state,
5343                                   "empty declaration with precision "
5344                                   "qualifier, to set the default precision, "
5345                                   "use `precision %s %s;'",
5346                                   precision_names[this->type->
5347                                      qualifier.precision],
5348                                   type_name);
5349             }
5350          } else if (this->type->specifier->structure == NULL) {
5351             _mesa_glsl_warning(&loc, state, "empty declaration");
5352          }
5353       }
5354    }
5355 
5356    foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5357       const struct glsl_type *var_type;
5358       ir_variable *var;
5359       const char *identifier = decl->identifier;
5360       /* FINISHME: Emit a warning if a variable declaration shadows a
5361        * FINISHME: declaration at a higher scope.
5362        */
5363 
5364       if ((decl_type == NULL) || glsl_type_is_void(decl_type)) {
5365          if (type_name != NULL) {
5366             _mesa_glsl_error(& loc, state,
5367                              "invalid type `%s' in declaration of `%s'",
5368                              type_name, decl->identifier);
5369          } else {
5370             _mesa_glsl_error(& loc, state,
5371                              "invalid type in declaration of `%s'",
5372                              decl->identifier);
5373          }
5374          continue;
5375       }
5376 
5377       if (this->type->qualifier.is_subroutine_decl()) {
5378          const glsl_type *t;
5379          const char *name;
5380 
5381          t = state->symbols->get_type(this->type->specifier->type_name);
5382          if (!t)
5383             _mesa_glsl_error(& loc, state,
5384                              "invalid type in declaration of `%s'",
5385                              decl->identifier);
5386          name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5387 
5388          identifier = name;
5389 
5390       }
5391       var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5392                                     state);
5393 
5394       var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5395 
5396       /* The 'varying in' and 'varying out' qualifiers can only be used with
5397        * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5398        * yet.
5399        */
5400       if (this->type->qualifier.flags.q.varying) {
5401          if (this->type->qualifier.flags.q.in) {
5402             _mesa_glsl_error(& loc, state,
5403                              "`varying in' qualifier in declaration of "
5404                              "`%s' only valid for geometry shaders using "
5405                              "ARB_geometry_shader4 or EXT_geometry_shader4",
5406                              decl->identifier);
5407          } else if (this->type->qualifier.flags.q.out) {
5408             _mesa_glsl_error(& loc, state,
5409                              "`varying out' qualifier in declaration of "
5410                              "`%s' only valid for geometry shaders using "
5411                              "ARB_geometry_shader4 or EXT_geometry_shader4",
5412                              decl->identifier);
5413          }
5414       }
5415 
5416       /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5417        *
5418        *     "Global variables can only use the qualifiers const,
5419        *     attribute, uniform, or varying. Only one may be
5420        *     specified.
5421        *
5422        *     Local variables can only use the qualifier const."
5423        *
5424        * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
5425        * any extension that adds the 'layout' keyword.
5426        */
5427       if (!state->is_version(130, 300)
5428           && !state->has_explicit_attrib_location()
5429           && !state->has_separate_shader_objects()
5430           && !state->ARB_fragment_coord_conventions_enable) {
5431          /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader
5432           * outputs. (the varying flag is not set by the parser)
5433           */
5434          if (this->type->qualifier.flags.q.out &&
5435              (!state->EXT_gpu_shader4_enable ||
5436               state->stage != MESA_SHADER_FRAGMENT)) {
5437             _mesa_glsl_error(& loc, state,
5438                              "`out' qualifier in declaration of `%s' "
5439                              "only valid for function parameters in %s",
5440                              decl->identifier, state->get_version_string());
5441          }
5442          if (this->type->qualifier.flags.q.in) {
5443             _mesa_glsl_error(& loc, state,
5444                              "`in' qualifier in declaration of `%s' "
5445                              "only valid for function parameters in %s",
5446                              decl->identifier, state->get_version_string());
5447          }
5448          /* FINISHME: Test for other invalid qualifiers. */
5449       }
5450 
5451       apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5452                                        & loc, false);
5453       apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5454                                          &loc);
5455 
5456       if ((state->zero_init & (1u << var->data.mode)) &&
5457           (glsl_type_is_numeric(var->type) || glsl_type_is_boolean(var->type))) {
5458          const ir_constant_data data = { { 0 } };
5459          var->data.has_initializer = true;
5460          var->data.is_implicit_initializer = true;
5461          var->constant_initializer = new(var) ir_constant(var->type, &data);
5462       }
5463 
5464       if (this->type->qualifier.flags.q.invariant) {
5465          if (!is_allowed_invariant(var, state)) {
5466             _mesa_glsl_error(&loc, state,
5467                              "`%s' cannot be marked invariant; interfaces between "
5468                              "shader stages only", var->name);
5469          }
5470       }
5471 
5472       if (state->current_function != NULL) {
5473          const char *mode = NULL;
5474          const char *extra = "";
5475 
5476          /* There is no need to check for 'inout' here because the parser will
5477           * only allow that in function parameter lists.
5478           */
5479          if (this->type->qualifier.flags.q.attribute) {
5480             mode = "attribute";
5481          } else if (this->type->qualifier.is_subroutine_decl()) {
5482             mode = "subroutine uniform";
5483          } else if (this->type->qualifier.flags.q.uniform) {
5484             mode = "uniform";
5485          } else if (this->type->qualifier.flags.q.varying) {
5486             mode = "varying";
5487          } else if (this->type->qualifier.flags.q.in) {
5488             mode = "in";
5489             extra = " or in function parameter list";
5490          } else if (this->type->qualifier.flags.q.out) {
5491             mode = "out";
5492             extra = " or in function parameter list";
5493          }
5494 
5495          if (mode) {
5496             _mesa_glsl_error(& loc, state,
5497                              "%s variable `%s' must be declared at "
5498                              "global scope%s",
5499                              mode, var->name, extra);
5500          }
5501       } else if (var->data.mode == ir_var_shader_in) {
5502          var->data.read_only = true;
5503 
5504          if (state->stage == MESA_SHADER_VERTEX) {
5505             /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5506              *
5507              *    "Vertex shader inputs can only be float, floating-point
5508              *    vectors, matrices, signed and unsigned integers and integer
5509              *    vectors. Vertex shader inputs can also form arrays of these
5510              *    types, but not structures."
5511              *
5512              * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5513              *
5514              *    "Vertex shader inputs can only be float, floating-point
5515              *    vectors, matrices, signed and unsigned integers and integer
5516              *    vectors. They cannot be arrays or structures."
5517              *
5518              * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5519              *
5520              *    "The attribute qualifier can be used only with float,
5521              *    floating-point vectors, and matrices. Attribute variables
5522              *    cannot be declared as arrays or structures."
5523              *
5524              * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5525              *
5526              *    "Vertex shader inputs can only be float, floating-point
5527              *    vectors, matrices, signed and unsigned integers and integer
5528              *    vectors. Vertex shader inputs cannot be arrays or
5529              *    structures."
5530              *
5531              * From section 4.3.4 of the ARB_bindless_texture spec:
5532              *
5533              *    "(modify third paragraph of the section to allow sampler and
5534              *    image types) ...  Vertex shader inputs can only be float,
5535              *    single-precision floating-point scalars, single-precision
5536              *    floating-point vectors, matrices, signed and unsigned
5537              *    integers and integer vectors, sampler and image types."
5538              */
5539             const glsl_type *check_type = glsl_without_array(var->type);
5540 
5541             bool error = false;
5542             switch (check_type->base_type) {
5543             case GLSL_TYPE_FLOAT:
5544                break;
5545             case GLSL_TYPE_UINT64:
5546             case GLSL_TYPE_INT64:
5547                break;
5548             case GLSL_TYPE_UINT:
5549             case GLSL_TYPE_INT:
5550                error = !state->is_version(120, 300) && !state->EXT_gpu_shader4_enable;
5551                break;
5552             case GLSL_TYPE_DOUBLE:
5553                error = !state->is_version(410, 0) && !state->ARB_vertex_attrib_64bit_enable;
5554                break;
5555             case GLSL_TYPE_SAMPLER:
5556             case GLSL_TYPE_TEXTURE:
5557             case GLSL_TYPE_IMAGE:
5558                error = !state->has_bindless();
5559                break;
5560             default:
5561                error = true;
5562             }
5563 
5564             if (error) {
5565                _mesa_glsl_error(& loc, state,
5566                                 "vertex shader input / attribute cannot have "
5567                                 "type %s`%s'",
5568                                 glsl_type_is_array(var->type) ? "array of " : "",
5569                                 glsl_get_type_name(check_type));
5570             } else if (glsl_type_is_array(var->type) &&
5571                 !state->check_version(150, 0, &loc,
5572                                       "vertex shader input / attribute "
5573                                       "cannot have array type")) {
5574             }
5575          } else if (state->stage == MESA_SHADER_GEOMETRY) {
5576             /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5577              *
5578              *     Geometry shader input variables get the per-vertex values
5579              *     written out by vertex shader output variables of the same
5580              *     names. Since a geometry shader operates on a set of
5581              *     vertices, each input varying variable (or input block, see
5582              *     interface blocks below) needs to be declared as an array.
5583              */
5584             if (!glsl_type_is_array(var->type)) {
5585                _mesa_glsl_error(&loc, state,
5586                                 "geometry shader inputs must be arrays");
5587             }
5588 
5589             handle_geometry_shader_input_decl(state, loc, var);
5590          } else if (state->stage == MESA_SHADER_FRAGMENT) {
5591             /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5592              *
5593              *     It is a compile-time error to declare a fragment shader
5594              *     input with, or that contains, any of the following types:
5595              *
5596              *     * A boolean type
5597              *     * An opaque type
5598              *     * An array of arrays
5599              *     * An array of structures
5600              *     * A structure containing an array
5601              *     * A structure containing a structure
5602              */
5603             if (state->es_shader) {
5604                const glsl_type *check_type = glsl_without_array(var->type);
5605                if (glsl_type_is_boolean(check_type) ||
5606                    glsl_contains_opaque(check_type)) {
5607                   _mesa_glsl_error(&loc, state,
5608                                    "fragment shader input cannot have type %s",
5609                                    glsl_get_type_name(check_type));
5610                }
5611                if (glsl_type_is_array(var->type) &&
5612                    glsl_type_is_array(var->type->fields.array)) {
5613                   _mesa_glsl_error(&loc, state,
5614                                    "%s shader output "
5615                                    "cannot have an array of arrays",
5616                                    _mesa_shader_stage_to_string(state->stage));
5617                }
5618                if (glsl_type_is_array(var->type) &&
5619                    glsl_type_is_struct(var->type->fields.array)) {
5620                   _mesa_glsl_error(&loc, state,
5621                                    "fragment shader input "
5622                                    "cannot have an array of structs");
5623                }
5624                if (glsl_type_is_struct(var->type)) {
5625                   for (unsigned i = 0; i < var->type->length; i++) {
5626                      if (glsl_type_is_array(var->type->fields.structure[i].type) ||
5627                          glsl_type_is_struct(var->type->fields.structure[i].type))
5628                         _mesa_glsl_error(&loc, state,
5629                                          "fragment shader input cannot have "
5630                                          "a struct that contains an "
5631                                          "array or struct");
5632                   }
5633                }
5634             }
5635          } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5636                     state->stage == MESA_SHADER_TESS_EVAL) {
5637             handle_tess_shader_input_decl(state, loc, var);
5638          }
5639       } else if (var->data.mode == ir_var_shader_out) {
5640          const glsl_type *check_type = glsl_without_array(var->type);
5641 
5642          /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5643           *
5644           *     It is a compile-time error to declare a fragment shader output
5645           *     that contains any of the following:
5646           *
5647           *     * A Boolean type (bool, bvec2 ...)
5648           *     * A double-precision scalar or vector (double, dvec2 ...)
5649           *     * An opaque type
5650           *     * Any matrix type
5651           *     * A structure
5652           */
5653          if (state->stage == MESA_SHADER_FRAGMENT) {
5654             if (glsl_type_is_struct(check_type) || glsl_type_is_matrix(check_type))
5655                _mesa_glsl_error(&loc, state,
5656                                 "fragment shader output "
5657                                 "cannot have struct or matrix type");
5658             switch (check_type->base_type) {
5659             case GLSL_TYPE_UINT:
5660             case GLSL_TYPE_INT:
5661             case GLSL_TYPE_FLOAT:
5662                break;
5663             default:
5664                _mesa_glsl_error(&loc, state,
5665                                 "fragment shader output cannot have "
5666                                 "type %s", glsl_get_type_name(check_type));
5667             }
5668          }
5669 
5670          /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5671           *
5672           *     It is a compile-time error to declare a vertex shader output
5673           *     with, or that contains, any of the following types:
5674           *
5675           *     * A boolean type
5676           *     * An opaque type
5677           *     * An array of arrays
5678           *     * An array of structures
5679           *     * A structure containing an array
5680           *     * A structure containing a structure
5681           *
5682           *     It is a compile-time error to declare a fragment shader output
5683           *     with, or that contains, any of the following types:
5684           *
5685           *     * A boolean type
5686           *     * An opaque type
5687           *     * A matrix
5688           *     * A structure
5689           *     * An array of array
5690           *
5691           * ES 3.20 updates this to apply to tessellation and geometry shaders
5692           * as well.  Because there are per-vertex arrays in the new stages,
5693           * it strikes the "array of..." rules and replaces them with these:
5694           *
5695           *     * For per-vertex-arrayed variables (applies to tessellation
5696           *       control, tessellation evaluation and geometry shaders):
5697           *
5698           *       * Per-vertex-arrayed arrays of arrays
5699           *       * Per-vertex-arrayed arrays of structures
5700           *
5701           *     * For non-per-vertex-arrayed variables:
5702           *
5703           *       * An array of arrays
5704           *       * An array of structures
5705           *
5706           * which basically says to unwrap the per-vertex aspect and apply
5707           * the old rules.
5708           */
5709          if (state->es_shader) {
5710             if (glsl_type_is_array(var->type) &&
5711                 glsl_type_is_array(var->type->fields.array)) {
5712                _mesa_glsl_error(&loc, state,
5713                                 "%s shader output "
5714                                 "cannot have an array of arrays",
5715                                 _mesa_shader_stage_to_string(state->stage));
5716             }
5717             if (state->stage <= MESA_SHADER_GEOMETRY) {
5718                const glsl_type *type = var->type;
5719 
5720                if (state->stage == MESA_SHADER_TESS_CTRL &&
5721                    !var->data.patch && glsl_type_is_array(var->type)) {
5722                   type = var->type->fields.array;
5723                }
5724 
5725                if (glsl_type_is_array(type) && glsl_type_is_struct(type->fields.array)) {
5726                   _mesa_glsl_error(&loc, state,
5727                                    "%s shader output cannot have "
5728                                    "an array of structs",
5729                                    _mesa_shader_stage_to_string(state->stage));
5730                }
5731                if (glsl_type_is_struct(type)) {
5732                   for (unsigned i = 0; i < type->length; i++) {
5733                      if (glsl_type_is_array(type->fields.structure[i].type) ||
5734                          glsl_type_is_struct(type->fields.structure[i].type))
5735                         _mesa_glsl_error(&loc, state,
5736                                          "%s shader output cannot have a "
5737                                          "struct that contains an "
5738                                          "array or struct",
5739                                          _mesa_shader_stage_to_string(state->stage));
5740                   }
5741                }
5742             }
5743          }
5744 
5745          if (state->stage == MESA_SHADER_TESS_CTRL) {
5746             handle_tess_ctrl_shader_output_decl(state, loc, var);
5747          }
5748       } else if (glsl_contains_subroutine(var->type)) {
5749          /* declare subroutine uniforms as hidden */
5750          var->data.how_declared = ir_var_hidden;
5751       }
5752 
5753       /* From section 4.3.4 of the GLSL 4.00 spec:
5754        *    "Input variables may not be declared using the patch in qualifier
5755        *    in tessellation control or geometry shaders."
5756        *
5757        * From section 4.3.6 of the GLSL 4.00 spec:
5758        *    "It is an error to use patch out in a vertex, tessellation
5759        *    evaluation, or geometry shader."
5760        *
5761        * This doesn't explicitly forbid using them in a fragment shader, but
5762        * that's probably just an oversight.
5763        */
5764       if (state->stage != MESA_SHADER_TESS_EVAL
5765           && this->type->qualifier.flags.q.patch
5766           && this->type->qualifier.flags.q.in) {
5767 
5768          _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5769                           "tessellation evaluation shader");
5770       }
5771 
5772       if (state->stage != MESA_SHADER_TESS_CTRL
5773           && this->type->qualifier.flags.q.patch
5774           && this->type->qualifier.flags.q.out) {
5775 
5776          _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5777                           "tessellation control shader");
5778       }
5779 
5780       /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5781        */
5782       if (this->type->qualifier.precision != ast_precision_none) {
5783          state->check_precision_qualifiers_allowed(&loc);
5784       }
5785 
5786       if (this->type->qualifier.precision != ast_precision_none &&
5787           !precision_qualifier_allowed(var->type)) {
5788          _mesa_glsl_error(&loc, state,
5789                           "precision qualifiers apply only to floating point"
5790                           ", integer and opaque types");
5791       }
5792 
5793       /* From section 4.1.7 of the GLSL 4.40 spec:
5794        *
5795        *    "[Opaque types] can only be declared as function
5796        *     parameters or uniform-qualified variables."
5797        *
5798        * From section 4.1.7 of the ARB_bindless_texture spec:
5799        *
5800        *    "Samplers may be declared as shader inputs and outputs, as uniform
5801        *     variables, as temporary variables, and as function parameters."
5802        *
5803        * From section 4.1.X of the ARB_bindless_texture spec:
5804        *
5805        *    "Images may be declared as shader inputs and outputs, as uniform
5806        *     variables, as temporary variables, and as function parameters."
5807        */
5808       if (!this->type->qualifier.flags.q.uniform &&
5809           (glsl_contains_atomic(var_type) ||
5810            (!state->has_bindless() && glsl_contains_opaque(var_type)))) {
5811          _mesa_glsl_error(&loc, state,
5812                           "%s variables must be declared uniform",
5813                           state->has_bindless() ? "atomic" : "opaque");
5814       }
5815 
5816       /* Process the initializer and add its instructions to a temporary
5817        * list.  This list will be added to the instruction stream (below) after
5818        * the declaration is added.  This is done because in some cases (such as
5819        * redeclarations) the declaration may not actually be added to the
5820        * instruction stream.
5821        */
5822       exec_list initializer_instructions;
5823 
5824       /* Examine var name here since var may get deleted in the next call */
5825       bool var_is_gl_id = is_gl_identifier(var->name);
5826 
5827       bool is_redeclaration;
5828       var = get_variable_being_redeclared(&var, decl->get_location(), state,
5829                                           false /* allow_all_redeclarations */,
5830                                           &is_redeclaration);
5831       if (is_redeclaration) {
5832          if (var_is_gl_id &&
5833              var->data.how_declared == ir_var_declared_in_block) {
5834             _mesa_glsl_error(&loc, state,
5835                              "`%s' has already been redeclared using "
5836                              "gl_PerVertex", var->name);
5837          }
5838          var->data.how_declared = ir_var_declared_normally;
5839       }
5840 
5841       if (decl->initializer != NULL) {
5842          result = process_initializer(var,
5843                                       decl, this->type,
5844                                       &initializer_instructions, state);
5845       } else {
5846          validate_array_dimensions(var_type, state, &loc);
5847       }
5848 
5849       /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5850        *
5851        *     "It is an error to write to a const variable outside of
5852        *      its declaration, so they must be initialized when
5853        *      declared."
5854        */
5855       if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5856          _mesa_glsl_error(& loc, state,
5857                           "const declaration of `%s' must be initialized",
5858                           decl->identifier);
5859       }
5860 
5861       if (state->es_shader) {
5862          const glsl_type *const t = var->type;
5863 
5864          /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5865           *
5866           * The GL_OES_tessellation_shader spec says about inputs:
5867           *
5868           *    "Declaring an array size is optional. If no size is specified,
5869           *     it will be taken from the implementation-dependent maximum
5870           *     patch size (gl_MaxPatchVertices)."
5871           *
5872           * and about TCS outputs:
5873           *
5874           *    "If no size is specified, it will be taken from output patch
5875           *     size declared in the shader."
5876           *
5877           * The GL_OES_geometry_shader spec says:
5878           *
5879           *    "All geometry shader input unsized array declarations will be
5880           *     sized by an earlier input primitive layout qualifier, when
5881           *     present, as per the following table."
5882           */
5883          const bool implicitly_sized =
5884             (var->data.mode == ir_var_shader_in &&
5885              state->stage >= MESA_SHADER_TESS_CTRL &&
5886              state->stage <= MESA_SHADER_GEOMETRY) ||
5887             (var->data.mode == ir_var_shader_out &&
5888              state->stage == MESA_SHADER_TESS_CTRL);
5889 
5890          if (glsl_type_is_unsized_array(t) && !implicitly_sized)
5891             /* Section 10.17 of the GLSL ES 1.00 specification states that
5892              * unsized array declarations have been removed from the language.
5893              * Arrays that are sized using an initializer are still explicitly
5894              * sized.  However, GLSL ES 1.00 does not allow array
5895              * initializers.  That is only allowed in GLSL ES 3.00.
5896              *
5897              * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5898              *
5899              *     "An array type can also be formed without specifying a size
5900              *     if the definition includes an initializer:
5901              *
5902              *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
5903              *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5904              *
5905              *         float a[5];
5906              *         float b[] = a;"
5907              */
5908             _mesa_glsl_error(& loc, state,
5909                              "unsized array declarations are not allowed in "
5910                              "GLSL ES");
5911       }
5912 
5913       /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5914        *
5915        *    "It is a compile-time error to declare an unsized array of
5916        *     atomic_uint"
5917        */
5918       if (glsl_type_is_unsized_array(var->type) &&
5919           glsl_without_array(var->type)->base_type == GLSL_TYPE_ATOMIC_UINT) {
5920          _mesa_glsl_error(& loc, state,
5921                           "Unsized array of atomic_uint is not allowed");
5922       }
5923 
5924       /* If the declaration is not a redeclaration, there are a few additional
5925        * semantic checks that must be applied.  In addition, variable that was
5926        * created for the declaration should be added to the IR stream.
5927        */
5928       if (!is_redeclaration) {
5929          validate_identifier(decl->identifier, loc, state);
5930 
5931          /* Add the variable to the symbol table.  Note that the initializer's
5932           * IR was already processed earlier (though it hasn't been emitted
5933           * yet), without the variable in scope.
5934           *
5935           * This differs from most C-like languages, but it follows the GLSL
5936           * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
5937           * spec:
5938           *
5939           *     "Within a declaration, the scope of a name starts immediately
5940           *     after the initializer if present or immediately after the name
5941           *     being declared if not."
5942           */
5943          if (!state->symbols->add_variable(var)) {
5944             YYLTYPE loc = this->get_location();
5945             _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5946                              "current scope", decl->identifier);
5947             continue;
5948          }
5949 
5950          /* Push the variable declaration to the top.  It means that all the
5951           * variable declarations will appear in a funny last-to-first order,
5952           * but otherwise we run into trouble if a function is prototyped, a
5953           * global var is decled, then the function is defined with usage of
5954           * the global var.  See glslparsertest's CorrectModule.frag.
5955           */
5956          instructions->push_head(var);
5957       }
5958 
5959       instructions->append_list(&initializer_instructions);
5960    }
5961 
5962 
5963    /* Generally, variable declarations do not have r-values.  However,
5964     * one is used for the declaration in
5965     *
5966     * while (bool b = some_condition()) {
5967     *   ...
5968     * }
5969     *
5970     * so we return the rvalue from the last seen declaration here.
5971     */
5972    return result;
5973 }
5974 
5975 
5976 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5977 ast_parameter_declarator::hir(exec_list *instructions,
5978                               struct _mesa_glsl_parse_state *state)
5979 {
5980    void *ctx = state;
5981    const struct glsl_type *type;
5982    const char *name = NULL;
5983    YYLTYPE loc = this->get_location();
5984 
5985    type = this->type->glsl_type(& name, state);
5986 
5987    if (type == NULL) {
5988       if (name != NULL) {
5989          _mesa_glsl_error(& loc, state,
5990                           "invalid type `%s' in declaration of `%s'",
5991                           name, this->identifier);
5992       } else {
5993          _mesa_glsl_error(& loc, state,
5994                           "invalid type in declaration of `%s'",
5995                           this->identifier);
5996       }
5997 
5998       type = &glsl_type_builtin_error;
5999    }
6000 
6001    /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
6002     *
6003     *    "Functions that accept no input arguments need not use void in the
6004     *    argument list because prototypes (or definitions) are required and
6005     *    therefore there is no ambiguity when an empty argument list "( )" is
6006     *    declared. The idiom "(void)" as a parameter list is provided for
6007     *    convenience."
6008     *
6009     * Placing this check here prevents a void parameter being set up
6010     * for a function, which avoids tripping up checks for main taking
6011     * parameters and lookups of an unnamed symbol.
6012     */
6013    if (glsl_type_is_void(type)) {
6014       if (this->identifier != NULL)
6015          _mesa_glsl_error(& loc, state,
6016                           "named parameter cannot have type `void'");
6017 
6018       is_void = true;
6019       return NULL;
6020    }
6021 
6022    if (formal_parameter && (this->identifier == NULL)) {
6023       _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
6024       return NULL;
6025    }
6026 
6027    /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
6028     * call already handled the "vec4[..] foo" case.
6029     */
6030    type = process_array_type(&loc, type, this->array_specifier, state);
6031 
6032    if (!glsl_type_is_error(type) && glsl_type_is_unsized_array(type)) {
6033       _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
6034                        "a declared size");
6035       type = &glsl_type_builtin_error;
6036    }
6037 
6038    is_void = false;
6039    ir_variable *var = new(ctx)
6040       ir_variable(type, this->identifier, ir_var_function_in);
6041 
6042    /* Apply any specified qualifiers to the parameter declaration.  Note that
6043     * for function parameters the default mode is 'in'.
6044     */
6045    apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
6046                                     true);
6047 
6048    if (((1u << var->data.mode) & state->zero_init) &&
6049        (glsl_type_is_numeric(var->type) || glsl_type_is_boolean(var->type))) {
6050          const ir_constant_data data = { { 0 } };
6051          var->data.has_initializer = true;
6052          var->data.is_implicit_initializer = true;
6053          var->constant_initializer = new(var) ir_constant(var->type, &data);
6054    }
6055 
6056    /* From section 4.1.7 of the GLSL 4.40 spec:
6057     *
6058     *   "Opaque variables cannot be treated as l-values; hence cannot
6059     *    be used as out or inout function parameters, nor can they be
6060     *    assigned into."
6061     *
6062     * From section 4.1.7 of the ARB_bindless_texture spec:
6063     *
6064     *   "Samplers can be used as l-values, so can be assigned into and used
6065     *    as "out" and "inout" function parameters."
6066     *
6067     * From section 4.1.X of the ARB_bindless_texture spec:
6068     *
6069     *   "Images can be used as l-values, so can be assigned into and used as
6070     *    "out" and "inout" function parameters."
6071     */
6072    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
6073        && (glsl_contains_atomic(type) ||
6074            (!state->has_bindless() && glsl_contains_opaque(type)))) {
6075       _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
6076                        "contain %s variables",
6077                        state->has_bindless() ? "atomic" : "opaque");
6078       type = &glsl_type_builtin_error;
6079    }
6080 
6081    /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
6082     *
6083     *    "When calling a function, expressions that do not evaluate to
6084     *     l-values cannot be passed to parameters declared as out or inout."
6085     *
6086     * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
6087     *
6088     *    "Other binary or unary expressions, non-dereferenced arrays,
6089     *     function names, swizzles with repeated fields, and constants
6090     *     cannot be l-values."
6091     *
6092     * So for GLSL 1.10, passing an array as an out or inout parameter is not
6093     * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
6094     */
6095    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
6096        && glsl_type_is_array(type)
6097        && !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120, 100, &loc,
6098                                 "arrays cannot be out or inout parameters")) {
6099       type = &glsl_type_builtin_error;
6100    }
6101 
6102    instructions->push_tail(var);
6103 
6104    /* Parameter declarations do not have r-values.
6105     */
6106    return NULL;
6107 }
6108 
6109 
6110 void
parameters_to_hir(exec_list * ast_parameters,bool formal,exec_list * ir_parameters,_mesa_glsl_parse_state * state)6111 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
6112                                             bool formal,
6113                                             exec_list *ir_parameters,
6114                                             _mesa_glsl_parse_state *state)
6115 {
6116    ast_parameter_declarator *void_param = NULL;
6117    unsigned count = 0;
6118 
6119    foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
6120       param->formal_parameter = formal;
6121       param->hir(ir_parameters, state);
6122 
6123       if (param->is_void)
6124          void_param = param;
6125 
6126       count++;
6127    }
6128 
6129    if ((void_param != NULL) && (count > 1)) {
6130       YYLTYPE loc = void_param->get_location();
6131 
6132       _mesa_glsl_error(& loc, state,
6133                        "`void' parameter must be only parameter");
6134    }
6135 }
6136 
6137 
6138 void
emit_function(_mesa_glsl_parse_state * state,ir_function * f)6139 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
6140 {
6141    /* IR invariants disallow function declarations or definitions
6142     * nested within other function definitions.  But there is no
6143     * requirement about the relative order of function declarations
6144     * and definitions with respect to one another.  So simply insert
6145     * the new ir_function block at the end of the toplevel instruction
6146     * list.
6147     */
6148    state->toplevel_ir->push_tail(f);
6149 }
6150 
6151 
6152 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6153 ast_function::hir(exec_list *instructions,
6154                   struct _mesa_glsl_parse_state *state)
6155 {
6156    void *ctx = state;
6157    ir_function *f = NULL;
6158    ir_function_signature *sig = NULL;
6159    exec_list hir_parameters;
6160    YYLTYPE loc = this->get_location();
6161 
6162    const char *const name = identifier;
6163 
6164    /* New functions are always added to the top-level IR instruction stream,
6165     * so this instruction list pointer is ignored.  See also emit_function
6166     * (called below).
6167     */
6168    (void) instructions;
6169 
6170    /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
6171     *
6172     *   "Function declarations (prototypes) cannot occur inside of functions;
6173     *   they must be at global scope, or for the built-in functions, outside
6174     *   the global scope."
6175     *
6176     * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
6177     *
6178     *   "User defined functions may only be defined within the global scope."
6179     *
6180     * Note that this language does not appear in GLSL 1.10.
6181     */
6182    if ((state->current_function != NULL) &&
6183        state->is_version(120, 100)) {
6184       YYLTYPE loc = this->get_location();
6185       _mesa_glsl_error(&loc, state,
6186                        "declaration of function `%s' not allowed within "
6187                        "function body", name);
6188    }
6189 
6190    validate_identifier(name, this->get_location(), state);
6191 
6192    /* Convert the list of function parameters to HIR now so that they can be
6193     * used below to compare this function's signature with previously seen
6194     * signatures for functions with the same name.
6195     */
6196    ast_parameter_declarator::parameters_to_hir(& this->parameters,
6197                                                is_definition,
6198                                                & hir_parameters, state);
6199 
6200    const char *return_type_name;
6201    const glsl_type *return_type =
6202       this->return_type->glsl_type(& return_type_name, state);
6203 
6204    if (!return_type) {
6205       YYLTYPE loc = this->get_location();
6206       _mesa_glsl_error(&loc, state,
6207                        "function `%s' has undeclared return type `%s'",
6208                        name, return_type_name);
6209       return_type = &glsl_type_builtin_error;
6210    }
6211 
6212    /* ARB_shader_subroutine states:
6213     *  "Subroutine declarations cannot be prototyped. It is an error to prepend
6214     *   subroutine(...) to a function declaration."
6215     */
6216    if (this->return_type->qualifier.subroutine_list && !is_definition) {
6217       YYLTYPE loc = this->get_location();
6218       _mesa_glsl_error(&loc, state,
6219                        "function declaration `%s' cannot have subroutine prepended",
6220                        name);
6221    }
6222 
6223    /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
6224     * "No qualifier is allowed on the return type of a function."
6225     */
6226    if (this->return_type->has_qualifiers(state)) {
6227       YYLTYPE loc = this->get_location();
6228       _mesa_glsl_error(& loc, state,
6229                        "function `%s' return type has qualifiers", name);
6230    }
6231 
6232    /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
6233     *
6234     *     "Arrays are allowed as arguments and as the return type. In both
6235     *     cases, the array must be explicitly sized."
6236     */
6237    if (glsl_type_is_unsized_array(return_type)) {
6238       YYLTYPE loc = this->get_location();
6239       _mesa_glsl_error(& loc, state,
6240                        "function `%s' return type array must be explicitly "
6241                        "sized", name);
6242    }
6243 
6244    /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
6245     *
6246     *     "Arrays are allowed as arguments, but not as the return type. [...]
6247     *      The return type can also be a structure if the structure does not
6248     *      contain an array."
6249     */
6250    if (state->language_version == 100 && glsl_contains_array(return_type)) {
6251       YYLTYPE loc = this->get_location();
6252       _mesa_glsl_error(& loc, state,
6253                        "function `%s' return type contains an array", name);
6254    }
6255 
6256    /* From section 4.1.7 of the GLSL 4.40 spec:
6257     *
6258     *    "[Opaque types] can only be declared as function parameters
6259     *     or uniform-qualified variables."
6260     *
6261     * The ARB_bindless_texture spec doesn't clearly state this, but as it says
6262     * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
6263     * (Images)", this should be allowed.
6264     */
6265    if (glsl_contains_atomic(return_type) ||
6266        (!state->has_bindless() && glsl_contains_opaque(return_type))) {
6267       YYLTYPE loc = this->get_location();
6268       _mesa_glsl_error(&loc, state,
6269                        "function `%s' return type can't contain an %s type",
6270                        name, state->has_bindless() ? "atomic" : "opaque");
6271    }
6272 
6273    /**/
6274    if (glsl_type_is_subroutine(return_type)) {
6275       YYLTYPE loc = this->get_location();
6276       _mesa_glsl_error(&loc, state,
6277                        "function `%s' return type can't be a subroutine type",
6278                        name);
6279    }
6280 
6281    /* Get the precision for the return type */
6282    unsigned return_precision;
6283 
6284    if (state->es_shader) {
6285       YYLTYPE loc = this->get_location();
6286       return_precision =
6287          select_gles_precision(this->return_type->qualifier.precision,
6288                                return_type,
6289                                state,
6290                                &loc);
6291    } else {
6292       return_precision = GLSL_PRECISION_NONE;
6293    }
6294 
6295    /* Create an ir_function if one doesn't already exist. */
6296    f = state->symbols->get_function(name);
6297    if (f == NULL) {
6298       f = new(ctx) ir_function(name);
6299       if (!this->return_type->qualifier.is_subroutine_decl()) {
6300          if (!state->symbols->add_function(f)) {
6301             /* This function name shadows a non-function use of the same name. */
6302             YYLTYPE loc = this->get_location();
6303             _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
6304                              "non-function", name);
6305             return NULL;
6306          }
6307       }
6308       emit_function(state, f);
6309    }
6310 
6311    /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
6312     *
6313     * "A shader cannot redefine or overload built-in functions."
6314     *
6315     * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
6316     *
6317     * "User code can overload the built-in functions but cannot redefine
6318     * them."
6319     */
6320    if (state->es_shader) {
6321       /* Local shader has no exact candidates; check the built-ins. */
6322       if (state->language_version >= 300 &&
6323           _mesa_glsl_has_builtin_function(state, name)) {
6324          YYLTYPE loc = this->get_location();
6325          _mesa_glsl_error(& loc, state,
6326                           "A shader cannot redefine or overload built-in "
6327                           "function `%s' in GLSL ES 3.00", name);
6328          return NULL;
6329       }
6330 
6331       if (state->language_version == 100) {
6332          ir_function_signature *sig =
6333             _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6334          if (sig && sig->is_builtin()) {
6335             _mesa_glsl_error(& loc, state,
6336                              "A shader cannot redefine built-in "
6337                              "function `%s' in GLSL ES 1.00", name);
6338          }
6339       }
6340    }
6341 
6342    /* Verify that this function's signature either doesn't match a previously
6343     * seen signature for a function with the same name, or, if a match is found,
6344     * that the previously seen signature does not have an associated definition.
6345     */
6346    if (state->es_shader || f->has_user_signature()) {
6347       sig = f->exact_matching_signature(state, &hir_parameters);
6348       if (sig != NULL) {
6349          const char *badvar = sig->qualifiers_match(&hir_parameters);
6350          if (badvar != NULL) {
6351             YYLTYPE loc = this->get_location();
6352 
6353             _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6354                              "qualifiers don't match prototype", name, badvar);
6355          }
6356 
6357          if (sig->return_type != return_type) {
6358             YYLTYPE loc = this->get_location();
6359 
6360             _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6361                              "match prototype", name);
6362          }
6363 
6364          if (sig->return_precision != return_precision) {
6365             YYLTYPE loc = this->get_location();
6366 
6367             _mesa_glsl_error(&loc, state, "function `%s' return type precision "
6368                              "doesn't match prototype", name);
6369          }
6370 
6371          if (sig->is_defined) {
6372             if (is_definition) {
6373                YYLTYPE loc = this->get_location();
6374                _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6375             } else {
6376                /* We just encountered a prototype that exactly matches a
6377                 * function that's already been defined.  This is redundant,
6378                 * and we should ignore it.
6379                 */
6380                return NULL;
6381             }
6382          } else if (state->language_version == 100 && !is_definition) {
6383             /* From the GLSL 1.00 spec, section 4.2.7:
6384              *
6385              *     "A particular variable, structure or function declaration
6386              *      may occur at most once within a scope with the exception
6387              *      that a single function prototype plus the corresponding
6388              *      function definition are allowed."
6389              */
6390             YYLTYPE loc = this->get_location();
6391             _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6392          }
6393       }
6394    }
6395 
6396    /* Verify the return type of main() */
6397    if (strcmp(name, "main") == 0) {
6398       if (! glsl_type_is_void(return_type)) {
6399          YYLTYPE loc = this->get_location();
6400 
6401          _mesa_glsl_error(& loc, state, "main() must return void");
6402       }
6403 
6404       if (!hir_parameters.is_empty()) {
6405          YYLTYPE loc = this->get_location();
6406 
6407          _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6408       }
6409    }
6410 
6411    /* Finish storing the information about this new function in its signature.
6412     */
6413    if (sig == NULL) {
6414       sig = new(ctx) ir_function_signature(return_type);
6415       sig->return_precision = return_precision;
6416       f->add_signature(sig);
6417    }
6418 
6419    sig->replace_parameters(&hir_parameters);
6420    signature = sig;
6421 
6422    if (this->return_type->qualifier.subroutine_list) {
6423       int idx;
6424 
6425       if (this->return_type->qualifier.flags.q.explicit_index) {
6426          unsigned qual_index;
6427          if (process_qualifier_constant(state, &loc, "index",
6428                                         this->return_type->qualifier.index,
6429                                         &qual_index)) {
6430             if (!state->has_explicit_uniform_location()) {
6431                _mesa_glsl_error(&loc, state, "subroutine index requires "
6432                                 "GL_ARB_explicit_uniform_location or "
6433                                 "GLSL 4.30");
6434             } else if (qual_index >= MAX_SUBROUTINES) {
6435                _mesa_glsl_error(&loc, state,
6436                                 "invalid subroutine index (%d) index must "
6437                                 "be a number between 0 and "
6438                                 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6439                                 MAX_SUBROUTINES - 1);
6440             } else {
6441                f->subroutine_index = qual_index;
6442             }
6443          }
6444       }
6445 
6446       f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6447       f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6448                                          f->num_subroutine_types);
6449       idx = 0;
6450       foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6451          const struct glsl_type *type;
6452          /* the subroutine type must be already declared */
6453          type = state->symbols->get_type(decl->identifier);
6454          if (!type) {
6455             _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6456          }
6457 
6458          for (int i = 0; i < state->num_subroutine_types; i++) {
6459             ir_function *fn = state->subroutine_types[i];
6460             ir_function_signature *tsig = NULL;
6461 
6462             if (strcmp(fn->name, decl->identifier))
6463                continue;
6464 
6465             tsig = fn->matching_signature(state, &sig->parameters,
6466                                           state->has_implicit_conversions(),
6467                                           state->has_implicit_int_to_uint_conversion(),
6468                                           false);
6469             if (!tsig) {
6470                _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6471             } else {
6472                if (tsig->return_type != sig->return_type) {
6473                   _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6474                }
6475             }
6476          }
6477          f->subroutine_types[idx++] = type;
6478       }
6479       state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6480                                                     ir_function *,
6481                                                     state->num_subroutines + 1);
6482       state->subroutines[state->num_subroutines] = f;
6483       state->num_subroutines++;
6484 
6485    }
6486 
6487    if (this->return_type->qualifier.is_subroutine_decl()) {
6488       if (!state->symbols->add_type(this->identifier, glsl_subroutine_type(this->identifier))) {
6489          _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6490          return NULL;
6491       }
6492       state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6493                                                          ir_function *,
6494                                                          state->num_subroutine_types + 1);
6495       state->subroutine_types[state->num_subroutine_types] = f;
6496       state->num_subroutine_types++;
6497 
6498       f->is_subroutine = true;
6499    }
6500 
6501    /* Function declarations (prototypes) do not have r-values.
6502     */
6503    return NULL;
6504 }
6505 
6506 
6507 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6508 ast_function_definition::hir(exec_list *instructions,
6509                              struct _mesa_glsl_parse_state *state)
6510 {
6511    prototype->is_definition = true;
6512    prototype->hir(instructions, state);
6513 
6514    ir_function_signature *signature = prototype->signature;
6515    if (signature == NULL)
6516       return NULL;
6517 
6518    assert(state->current_function == NULL);
6519    state->current_function = signature;
6520    state->found_return = false;
6521    state->found_begin_interlock = false;
6522    state->found_end_interlock = false;
6523 
6524    /* Duplicate parameters declared in the prototype as concrete variables.
6525     * Add these to the symbol table.
6526     */
6527    state->symbols->push_scope();
6528    foreach_in_list(ir_variable, var, &signature->parameters) {
6529       assert(var->as_variable() != NULL);
6530 
6531       /* The only way a parameter would "exist" is if two parameters have
6532        * the same name.
6533        */
6534       if (state->symbols->name_declared_this_scope(var->name)) {
6535          YYLTYPE loc = this->get_location();
6536 
6537          _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6538       } else {
6539          state->symbols->add_variable(var);
6540       }
6541    }
6542 
6543    /* Convert the body of the function to HIR. */
6544    this->body->hir(&signature->body, state);
6545    signature->is_defined = true;
6546 
6547    state->symbols->pop_scope();
6548 
6549    assert(state->current_function == signature);
6550    state->current_function = NULL;
6551 
6552    if (!glsl_type_is_void(signature->return_type) && !state->found_return) {
6553       YYLTYPE loc = this->get_location();
6554       _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6555                        "%s, but no return statement",
6556                        signature->function_name(),
6557                        glsl_get_type_name(signature->return_type));
6558    }
6559 
6560    /* Function definitions do not have r-values.
6561     */
6562    return NULL;
6563 }
6564 
6565 
6566 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6567 ast_jump_statement::hir(exec_list *instructions,
6568                         struct _mesa_glsl_parse_state *state)
6569 {
6570    void *ctx = state;
6571 
6572    switch (mode) {
6573    case ast_return: {
6574       ir_return *inst;
6575       assert(state->current_function);
6576 
6577       if (opt_return_value) {
6578          ir_rvalue *ret = opt_return_value->hir(instructions, state);
6579 
6580          /* The value of the return type can be NULL if the shader says
6581           * 'return foo();' and foo() is a function that returns void.
6582           *
6583           * NOTE: The GLSL spec doesn't say that this is an error.  The type
6584           * of the return value is void.  If the return type of the function is
6585           * also void, then this should compile without error.  Seriously.
6586           */
6587          const glsl_type *const ret_type =
6588             (ret == NULL) ? &glsl_type_builtin_void : ret->type;
6589 
6590          /* Implicit conversions are not allowed for return values prior to
6591           * ARB_shading_language_420pack.
6592           */
6593          if (state->current_function->return_type != ret_type) {
6594             YYLTYPE loc = this->get_location();
6595 
6596             if (state->has_420pack()) {
6597                if (!apply_implicit_conversion(state->current_function->return_type,
6598                                               ret, state)
6599                    || (ret->type != state->current_function->return_type)) {
6600                   _mesa_glsl_error(& loc, state,
6601                                    "could not implicitly convert return value "
6602                                    "to %s, in function `%s'",
6603                                    glsl_get_type_name(state->current_function->return_type),
6604                                    state->current_function->function_name());
6605                }
6606             } else {
6607                _mesa_glsl_error(& loc, state,
6608                                 "`return' with wrong type %s, in function `%s' "
6609                                 "returning %s",
6610                                 glsl_get_type_name(ret_type),
6611                                 state->current_function->function_name(),
6612                                 glsl_get_type_name(state->current_function->return_type));
6613             }
6614          } else if (state->current_function->return_type->base_type ==
6615                     GLSL_TYPE_VOID) {
6616             YYLTYPE loc = this->get_location();
6617 
6618             /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6619              * specs add a clarification:
6620              *
6621              *    "A void function can only use return without a return argument, even if
6622              *     the return argument has void type. Return statements only accept values:
6623              *
6624              *         void func1() { }
6625              *         void func2() { return func1(); } // illegal return statement"
6626              */
6627             _mesa_glsl_error(& loc, state,
6628                              "void functions can only use `return' without a "
6629                              "return argument");
6630          }
6631 
6632          inst = new(ctx) ir_return(ret);
6633       } else {
6634          if (state->current_function->return_type->base_type !=
6635              GLSL_TYPE_VOID) {
6636             YYLTYPE loc = this->get_location();
6637 
6638             _mesa_glsl_error(& loc, state,
6639                              "`return' with no value, in function %s returning "
6640                              "non-void",
6641             state->current_function->function_name());
6642          }
6643          inst = new(ctx) ir_return;
6644       }
6645 
6646       state->found_return = true;
6647       instructions->push_tail(inst);
6648       break;
6649    }
6650 
6651    case ast_discard:
6652       if (state->stage != MESA_SHADER_FRAGMENT) {
6653          YYLTYPE loc = this->get_location();
6654 
6655          _mesa_glsl_error(& loc, state,
6656                           "`discard' may only appear in a fragment shader");
6657       }
6658       instructions->push_tail(new(ctx) ir_discard);
6659       break;
6660 
6661    case ast_break:
6662    case ast_continue:
6663       if (mode == ast_continue &&
6664           state->loop_nesting_ast == NULL) {
6665          YYLTYPE loc = this->get_location();
6666 
6667          _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6668       } else if (mode == ast_break &&
6669          state->loop_nesting_ast == NULL &&
6670          state->switch_state.switch_nesting_ast == NULL) {
6671          YYLTYPE loc = this->get_location();
6672 
6673          _mesa_glsl_error(& loc, state,
6674                           "break may only appear in a loop or a switch");
6675       } else {
6676          /* For a loop, inline the for loop expression again, since we don't
6677           * know where near the end of the loop body the normal copy of it is
6678           * going to be placed.  Same goes for the condition for a do-while
6679           * loop.
6680           */
6681          if (state->loop_nesting_ast != NULL &&
6682              mode == ast_continue && !state->switch_state.is_switch_innermost) {
6683             if (state->loop_nesting_ast->rest_expression) {
6684                clone_ir_list(ctx, instructions,
6685                              &state->loop_nesting_ast->rest_instructions);
6686             }
6687             if (state->loop_nesting_ast->mode ==
6688                 ast_iteration_statement::ast_do_while) {
6689                state->loop_nesting_ast->condition_to_hir(instructions, state);
6690             }
6691          }
6692 
6693          if (state->switch_state.is_switch_innermost &&
6694              mode == ast_continue) {
6695             /* Set 'continue_inside' to true. */
6696             ir_rvalue *const true_val = new (ctx) ir_constant(true);
6697             ir_dereference_variable *deref_continue_inside_var =
6698                new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6699             instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6700                                                            true_val));
6701 
6702             /* Break out from the switch, continue for the loop will
6703              * be called right after switch. */
6704             ir_loop_jump *const jump =
6705                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6706             instructions->push_tail(jump);
6707 
6708          } else if (state->switch_state.is_switch_innermost &&
6709              mode == ast_break) {
6710             /* Force break out of switch by inserting a break. */
6711             ir_loop_jump *const jump =
6712                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6713             instructions->push_tail(jump);
6714          } else {
6715             ir_loop_jump *const jump =
6716                new(ctx) ir_loop_jump((mode == ast_break)
6717                   ? ir_loop_jump::jump_break
6718                   : ir_loop_jump::jump_continue);
6719             instructions->push_tail(jump);
6720          }
6721       }
6722 
6723       break;
6724    }
6725 
6726    /* Jump instructions do not have r-values.
6727     */
6728    return NULL;
6729 }
6730 
6731 
6732 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6733 ast_demote_statement::hir(exec_list *instructions,
6734                           struct _mesa_glsl_parse_state *state)
6735 {
6736    void *ctx = state;
6737 
6738    if (state->stage != MESA_SHADER_FRAGMENT) {
6739       YYLTYPE loc = this->get_location();
6740 
6741       _mesa_glsl_error(& loc, state,
6742                        "`demote' may only appear in a fragment shader");
6743    }
6744 
6745    instructions->push_tail(new(ctx) ir_demote);
6746 
6747    return NULL;
6748 }
6749 
6750 
6751 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6752 ast_selection_statement::hir(exec_list *instructions,
6753                              struct _mesa_glsl_parse_state *state)
6754 {
6755    void *ctx = state;
6756 
6757    ir_rvalue *const condition = this->condition->hir(instructions, state);
6758 
6759    /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6760     *
6761     *    "Any expression whose type evaluates to a Boolean can be used as the
6762     *    conditional expression bool-expression. Vector types are not accepted
6763     *    as the expression to if."
6764     *
6765     * The checks are separated so that higher quality diagnostics can be
6766     * generated for cases where both rules are violated.
6767     */
6768    if (!glsl_type_is_boolean(condition->type) || !glsl_type_is_scalar(condition->type)) {
6769       YYLTYPE loc = this->condition->get_location();
6770 
6771       _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6772                        "boolean");
6773    }
6774 
6775    ir_if *const stmt = new(ctx) ir_if(condition);
6776 
6777    if (then_statement != NULL) {
6778       state->symbols->push_scope();
6779       then_statement->hir(& stmt->then_instructions, state);
6780       state->symbols->pop_scope();
6781    }
6782 
6783    if (else_statement != NULL) {
6784       state->symbols->push_scope();
6785       else_statement->hir(& stmt->else_instructions, state);
6786       state->symbols->pop_scope();
6787    }
6788 
6789    instructions->push_tail(stmt);
6790 
6791    /* if-statements do not have r-values.
6792     */
6793    return NULL;
6794 }
6795 
6796 
6797 struct case_label {
6798    /** Value of the case label. */
6799    unsigned value;
6800 
6801    /** Does this label occur after the default? */
6802    bool after_default;
6803 
6804    /**
6805     * AST for the case label.
6806     *
6807     * This is only used to generate error messages for duplicate labels.
6808     */
6809    ast_expression *ast;
6810 };
6811 
6812 /* Used for detection of duplicate case values, compare
6813  * given contents directly.
6814  */
6815 static bool
compare_case_value(const void * a,const void * b)6816 compare_case_value(const void *a, const void *b)
6817 {
6818    return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6819 }
6820 
6821 
6822 /* Used for detection of duplicate case values, just
6823  * returns key contents as is.
6824  */
6825 static unsigned
key_contents(const void * key)6826 key_contents(const void *key)
6827 {
6828    return ((struct case_label *) key)->value;
6829 }
6830 
6831 void
eval_test_expression(exec_list * instructions,struct _mesa_glsl_parse_state * state)6832 ast_switch_statement::eval_test_expression(exec_list *instructions,
6833                                            struct _mesa_glsl_parse_state *state)
6834 {
6835    if (test_val == NULL)
6836       test_val = this->test_expression->hir(instructions, state);
6837 }
6838 
6839 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6840 ast_switch_statement::hir(exec_list *instructions,
6841                           struct _mesa_glsl_parse_state *state)
6842 {
6843    void *ctx = state;
6844 
6845    this->eval_test_expression(instructions, state);
6846 
6847    /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6848     *
6849     *    "The type of init-expression in a switch statement must be a
6850     *     scalar integer."
6851     */
6852    if (!glsl_type_is_scalar(test_val->type) ||
6853        !glsl_type_is_integer_32(test_val->type)) {
6854       YYLTYPE loc = this->test_expression->get_location();
6855 
6856       _mesa_glsl_error(& loc,
6857                        state,
6858                        "switch-statement expression must be scalar "
6859                        "integer");
6860       return NULL;
6861    }
6862 
6863    /* Track the switch-statement nesting in a stack-like manner.
6864     */
6865    struct glsl_switch_state saved = state->switch_state;
6866 
6867    state->switch_state.is_switch_innermost = true;
6868    state->switch_state.switch_nesting_ast = this;
6869    state->switch_state.labels_ht =
6870          _mesa_hash_table_create(NULL, key_contents,
6871                                  compare_case_value);
6872    state->switch_state.previous_default = NULL;
6873 
6874    /* Initalize is_fallthru state to false.
6875     */
6876    ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6877    state->switch_state.is_fallthru_var =
6878       new(ctx) ir_variable(&glsl_type_builtin_bool,
6879                            "switch_is_fallthru_tmp",
6880                            ir_var_temporary);
6881    instructions->push_tail(state->switch_state.is_fallthru_var);
6882 
6883    ir_dereference_variable *deref_is_fallthru_var =
6884       new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6885    instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6886                                                   is_fallthru_val));
6887 
6888    /* Initialize continue_inside state to false.
6889     */
6890    state->switch_state.continue_inside =
6891       new(ctx) ir_variable(&glsl_type_builtin_bool,
6892                            "continue_inside_tmp",
6893                            ir_var_temporary);
6894    instructions->push_tail(state->switch_state.continue_inside);
6895 
6896    ir_rvalue *const false_val = new (ctx) ir_constant(false);
6897    ir_dereference_variable *deref_continue_inside_var =
6898       new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6899    instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6900                                                   false_val));
6901 
6902    state->switch_state.run_default =
6903       new(ctx) ir_variable(&glsl_type_builtin_bool,
6904                              "run_default_tmp",
6905                              ir_var_temporary);
6906    instructions->push_tail(state->switch_state.run_default);
6907 
6908    /* Loop around the switch is used for flow control. */
6909    ir_loop * loop = new(ctx) ir_loop();
6910    instructions->push_tail(loop);
6911 
6912    /* Cache test expression.
6913     */
6914    test_to_hir(&loop->body_instructions, state);
6915 
6916    /* Emit code for body of switch stmt.
6917     */
6918    body->hir(&loop->body_instructions, state);
6919 
6920    /* Insert a break at the end to exit loop. */
6921    ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6922    loop->body_instructions.push_tail(jump);
6923 
6924    /* If we are inside loop, check if continue got called inside switch. */
6925    if (state->loop_nesting_ast != NULL) {
6926       ir_dereference_variable *deref_continue_inside =
6927          new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6928       ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6929       ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6930 
6931       if (state->loop_nesting_ast != NULL) {
6932          if (state->loop_nesting_ast->rest_expression) {
6933             clone_ir_list(ctx, &irif->then_instructions,
6934                           &state->loop_nesting_ast->rest_instructions);
6935          }
6936          if (state->loop_nesting_ast->mode ==
6937              ast_iteration_statement::ast_do_while) {
6938             state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6939          }
6940       }
6941       irif->then_instructions.push_tail(jump);
6942       instructions->push_tail(irif);
6943    }
6944 
6945    _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6946 
6947    state->switch_state = saved;
6948 
6949    /* Switch statements do not have r-values. */
6950    return NULL;
6951 }
6952 
6953 
6954 void
test_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6955 ast_switch_statement::test_to_hir(exec_list *instructions,
6956                                   struct _mesa_glsl_parse_state *state)
6957 {
6958    void *ctx = state;
6959 
6960    /* set to true to avoid a duplicate "use of uninitialized variable" warning
6961     * on the switch test case. The first one would be already raised when
6962     * getting the test_expression at ast_switch_statement::hir
6963     */
6964    test_expression->set_is_lhs(true);
6965    /* Cache value of test expression. */
6966    this->eval_test_expression(instructions, state);
6967 
6968    state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6969                                                        "switch_test_tmp",
6970                                                        ir_var_temporary);
6971    ir_dereference_variable *deref_test_var =
6972       new(ctx) ir_dereference_variable(state->switch_state.test_var);
6973 
6974    instructions->push_tail(state->switch_state.test_var);
6975    instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6976 }
6977 
6978 
6979 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6980 ast_switch_body::hir(exec_list *instructions,
6981                      struct _mesa_glsl_parse_state *state)
6982 {
6983    if (stmts != NULL) {
6984       state->symbols->push_scope();
6985       stmts->hir(instructions, state);
6986       state->symbols->pop_scope();
6987    }
6988 
6989    /* Switch bodies do not have r-values. */
6990    return NULL;
6991 }
6992 
6993 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6994 ast_case_statement_list::hir(exec_list *instructions,
6995                              struct _mesa_glsl_parse_state *state)
6996 {
6997    exec_list default_case, after_default, tmp;
6998 
6999    foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
7000       case_stmt->hir(&tmp, state);
7001 
7002       /* Default case. */
7003       if (state->switch_state.previous_default && default_case.is_empty()) {
7004          default_case.append_list(&tmp);
7005          continue;
7006       }
7007 
7008       /* If default case found, append 'after_default' list. */
7009       if (!default_case.is_empty())
7010          after_default.append_list(&tmp);
7011       else
7012          instructions->append_list(&tmp);
7013    }
7014 
7015    /* Handle the default case. This is done here because default might not be
7016     * the last case. We need to add checks against following cases first to see
7017     * if default should be chosen or not.
7018     */
7019    if (!default_case.is_empty()) {
7020       ir_factory body(instructions, state);
7021 
7022       ir_expression *cmp = NULL;
7023 
7024       hash_table_foreach(state->switch_state.labels_ht, entry) {
7025          const struct case_label *const l = (struct case_label *) entry->data;
7026 
7027          /* If the switch init-value is the value of one of the labels that
7028           * occurs after the default case, disable execution of the default
7029           * case.
7030           */
7031          if (l->after_default) {
7032             ir_constant *const cnst =
7033                state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
7034                ? body.constant(unsigned(l->value))
7035                : body.constant(int(l->value));
7036 
7037             cmp = cmp == NULL
7038                ? equal(cnst, state->switch_state.test_var)
7039                : logic_or(cmp, equal(cnst, state->switch_state.test_var));
7040          }
7041       }
7042 
7043       if (cmp != NULL)
7044          body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
7045       else
7046          body.emit(assign(state->switch_state.run_default, body.constant(true)));
7047 
7048       /* Append default case and all cases after it. */
7049       instructions->append_list(&default_case);
7050       instructions->append_list(&after_default);
7051    }
7052 
7053    /* Case statements do not have r-values. */
7054    return NULL;
7055 }
7056 
7057 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7058 ast_case_statement::hir(exec_list *instructions,
7059                         struct _mesa_glsl_parse_state *state)
7060 {
7061    labels->hir(instructions, state);
7062 
7063    /* Guard case statements depending on fallthru state. */
7064    ir_dereference_variable *const deref_fallthru_guard =
7065       new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
7066    ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
7067 
7068    foreach_list_typed (ast_node, stmt, link, & this->stmts)
7069       stmt->hir(& test_fallthru->then_instructions, state);
7070 
7071    instructions->push_tail(test_fallthru);
7072 
7073    /* Case statements do not have r-values. */
7074    return NULL;
7075 }
7076 
7077 
7078 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7079 ast_case_label_list::hir(exec_list *instructions,
7080                          struct _mesa_glsl_parse_state *state)
7081 {
7082    foreach_list_typed (ast_case_label, label, link, & this->labels)
7083       label->hir(instructions, state);
7084 
7085    /* Case labels do not have r-values. */
7086    return NULL;
7087 }
7088 
7089 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7090 ast_case_label::hir(exec_list *instructions,
7091                     struct _mesa_glsl_parse_state *state)
7092 {
7093    ir_factory body(instructions, state);
7094 
7095    ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
7096 
7097    /* If not default case, ... */
7098    if (this->test_value != NULL) {
7099       /* Conditionally set fallthru state based on
7100        * comparison of cached test expression value to case label.
7101        */
7102       ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
7103       ir_constant *label_const =
7104          label_rval->constant_expression_value(body.mem_ctx);
7105 
7106       if (!label_const) {
7107          YYLTYPE loc = this->test_value->get_location();
7108 
7109          _mesa_glsl_error(& loc, state,
7110                           "switch statement case label must be a "
7111                           "constant expression");
7112 
7113          /* Stuff a dummy value in to allow processing to continue. */
7114          label_const = body.constant(0);
7115       } else {
7116          hash_entry *entry =
7117                _mesa_hash_table_search(state->switch_state.labels_ht,
7118                                        &label_const->value.u[0]);
7119 
7120          if (entry) {
7121             const struct case_label *const l =
7122                (struct case_label *) entry->data;
7123             const ast_expression *const previous_label = l->ast;
7124             YYLTYPE loc = this->test_value->get_location();
7125 
7126             _mesa_glsl_error(& loc, state, "duplicate case value");
7127 
7128             loc = previous_label->get_location();
7129             _mesa_glsl_error(& loc, state, "this is the previous case label");
7130          } else {
7131             struct case_label *l = ralloc(state->switch_state.labels_ht,
7132                                           struct case_label);
7133 
7134             l->value = label_const->value.u[0];
7135             l->after_default = state->switch_state.previous_default != NULL;
7136             l->ast = this->test_value;
7137 
7138             _mesa_hash_table_insert(state->switch_state.labels_ht,
7139                                     &label_const->value.u[0],
7140                                     l);
7141          }
7142       }
7143 
7144       /* Create an r-value version of the ir_constant label here (after we may
7145        * have created a fake one in error cases) that can be passed to
7146        * apply_implicit_conversion below.
7147        */
7148       ir_rvalue *label = label_const;
7149 
7150       ir_rvalue *deref_test_var =
7151          new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
7152 
7153       /*
7154        * From GLSL 4.40 specification section 6.2 ("Selection"):
7155        *
7156        *     "The type of the init-expression value in a switch statement must
7157        *     be a scalar int or uint. The type of the constant-expression value
7158        *     in a case label also must be a scalar int or uint. When any pair
7159        *     of these values is tested for "equal value" and the types do not
7160        *     match, an implicit conversion will be done to convert the int to a
7161        *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
7162        *     is done."
7163        */
7164       if (label->type != state->switch_state.test_var->type) {
7165          YYLTYPE loc = this->test_value->get_location();
7166 
7167          const glsl_type *type_a = label->type;
7168          const glsl_type *type_b = state->switch_state.test_var->type;
7169 
7170          /* Check if int->uint implicit conversion is supported. */
7171          bool integer_conversion_supported =
7172             _mesa_glsl_can_implicitly_convert(&glsl_type_builtin_int, &glsl_type_builtin_uint,
7173                                               state->has_implicit_conversions(),
7174                                               state->has_implicit_int_to_uint_conversion());
7175 
7176          if ((!glsl_type_is_integer_32(type_a) || !glsl_type_is_integer_32(type_b)) ||
7177               !integer_conversion_supported) {
7178             _mesa_glsl_error(&loc, state, "type mismatch with switch "
7179                              "init-expression and case label (%s != %s)",
7180                              glsl_get_type_name(type_a), glsl_get_type_name(type_b));
7181          } else {
7182             /* Conversion of the case label. */
7183             if (type_a->base_type == GLSL_TYPE_INT) {
7184                if (!apply_implicit_conversion(&glsl_type_builtin_uint,
7185                                               label, state))
7186                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
7187             } else {
7188                /* Conversion of the init-expression value. */
7189                if (!apply_implicit_conversion(&glsl_type_builtin_uint,
7190                                               deref_test_var, state))
7191                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
7192             }
7193          }
7194 
7195          /* If the implicit conversion was allowed, the types will already be
7196           * the same.  If the implicit conversion wasn't allowed, smash the
7197           * type of the label anyway.  This will prevent the expression
7198           * constructor (below) from failing an assertion.
7199           */
7200          label->type = deref_test_var->type;
7201       }
7202 
7203       body.emit(assign(fallthru_var,
7204                        logic_or(fallthru_var, equal(label, deref_test_var))));
7205    } else { /* default case */
7206       if (state->switch_state.previous_default) {
7207          YYLTYPE loc = this->get_location();
7208          _mesa_glsl_error(& loc, state,
7209                           "multiple default labels in one switch");
7210 
7211          loc = state->switch_state.previous_default->get_location();
7212          _mesa_glsl_error(& loc, state, "this is the first default label");
7213       }
7214       state->switch_state.previous_default = this;
7215 
7216       /* Set fallthru condition on 'run_default' bool. */
7217       body.emit(assign(fallthru_var,
7218                        logic_or(fallthru_var,
7219                                 state->switch_state.run_default)));
7220    }
7221 
7222    /* Case statements do not have r-values. */
7223    return NULL;
7224 }
7225 
7226 void
condition_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7227 ast_iteration_statement::condition_to_hir(exec_list *instructions,
7228                                           struct _mesa_glsl_parse_state *state)
7229 {
7230    void *ctx = state;
7231 
7232    if (condition != NULL) {
7233       ir_rvalue *const cond =
7234          condition->hir(instructions, state);
7235 
7236       if ((cond == NULL)
7237           || !glsl_type_is_boolean(cond->type) || !glsl_type_is_scalar(cond->type)) {
7238          YYLTYPE loc = condition->get_location();
7239 
7240          _mesa_glsl_error(& loc, state,
7241                           "loop condition must be scalar boolean");
7242       } else {
7243          /* As the first code in the loop body, generate a block that looks
7244           * like 'if (!condition) break;' as the loop termination condition.
7245           */
7246          ir_rvalue *const not_cond =
7247             new(ctx) ir_expression(ir_unop_logic_not, cond);
7248 
7249          ir_if *const if_stmt = new(ctx) ir_if(not_cond);
7250 
7251          ir_jump *const break_stmt =
7252             new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
7253 
7254          if_stmt->then_instructions.push_tail(break_stmt);
7255          instructions->push_tail(if_stmt);
7256       }
7257    }
7258 }
7259 
7260 
7261 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7262 ast_iteration_statement::hir(exec_list *instructions,
7263                              struct _mesa_glsl_parse_state *state)
7264 {
7265    void *ctx = state;
7266 
7267    /* For-loops and while-loops start a new scope, but do-while loops do not.
7268     */
7269    if (mode != ast_do_while)
7270       state->symbols->push_scope();
7271 
7272    if (init_statement != NULL)
7273       init_statement->hir(instructions, state);
7274 
7275    ir_loop *const stmt = new(ctx) ir_loop();
7276    instructions->push_tail(stmt);
7277 
7278    /* Track the current loop nesting. */
7279    ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
7280 
7281    state->loop_nesting_ast = this;
7282 
7283    /* Likewise, indicate that following code is closest to a loop,
7284     * NOT closest to a switch.
7285     */
7286    bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
7287    state->switch_state.is_switch_innermost = false;
7288 
7289    if (mode != ast_do_while)
7290       condition_to_hir(&stmt->body_instructions, state);
7291 
7292    if (rest_expression != NULL)
7293       rest_expression->hir(&rest_instructions, state);
7294 
7295    if (body != NULL) {
7296       if (mode == ast_do_while)
7297          state->symbols->push_scope();
7298 
7299       body->hir(& stmt->body_instructions, state);
7300 
7301       if (mode == ast_do_while)
7302          state->symbols->pop_scope();
7303    }
7304 
7305    if (rest_expression != NULL)
7306       stmt->body_instructions.append_list(&rest_instructions);
7307 
7308    if (mode == ast_do_while)
7309       condition_to_hir(&stmt->body_instructions, state);
7310 
7311    if (mode != ast_do_while)
7312       state->symbols->pop_scope();
7313 
7314    /* Restore previous nesting before returning. */
7315    state->loop_nesting_ast = nesting_ast;
7316    state->switch_state.is_switch_innermost = saved_is_switch_innermost;
7317 
7318    /* Loops do not have r-values.
7319     */
7320    return NULL;
7321 }
7322 
7323 
7324 /**
7325  * Determine if the given type is valid for establishing a default precision
7326  * qualifier.
7327  *
7328  * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
7329  *
7330  *     "The precision statement
7331  *
7332  *         precision precision-qualifier type;
7333  *
7334  *     can be used to establish a default precision qualifier. The type field
7335  *     can be either int or float or any of the sampler types, and the
7336  *     precision-qualifier can be lowp, mediump, or highp."
7337  *
7338  * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
7339  * qualifiers on sampler types, but this seems like an oversight (since the
7340  * intention of including these in GLSL 1.30 is to allow compatibility with ES
7341  * shaders).  So we allow int, float, and all sampler types regardless of GLSL
7342  * version.
7343  */
7344 static bool
is_valid_default_precision_type(const struct glsl_type * const type)7345 is_valid_default_precision_type(const struct glsl_type *const type)
7346 {
7347    if (type == NULL)
7348       return false;
7349 
7350    switch (type->base_type) {
7351    case GLSL_TYPE_INT:
7352    case GLSL_TYPE_FLOAT:
7353       /* "int" and "float" are valid, but vectors and matrices are not. */
7354       return type->vector_elements == 1 && type->matrix_columns == 1;
7355    case GLSL_TYPE_SAMPLER:
7356    case GLSL_TYPE_TEXTURE:
7357    case GLSL_TYPE_IMAGE:
7358    case GLSL_TYPE_ATOMIC_UINT:
7359       return true;
7360    default:
7361       return false;
7362    }
7363 }
7364 
7365 
7366 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7367 ast_type_specifier::hir(exec_list *instructions,
7368                         struct _mesa_glsl_parse_state *state)
7369 {
7370    if (this->default_precision == ast_precision_none && this->structure == NULL)
7371       return NULL;
7372 
7373    YYLTYPE loc = this->get_location();
7374 
7375    /* If this is a precision statement, check that the type to which it is
7376     * applied is either float or int.
7377     *
7378     * From section 4.5.3 of the GLSL 1.30 spec:
7379     *    "The precision statement
7380     *       precision precision-qualifier type;
7381     *    can be used to establish a default precision qualifier. The type
7382     *    field can be either int or float [...].  Any other types or
7383     *    qualifiers will result in an error.
7384     */
7385    if (this->default_precision != ast_precision_none) {
7386       if (!state->check_precision_qualifiers_allowed(&loc))
7387          return NULL;
7388 
7389       if (this->structure != NULL) {
7390          _mesa_glsl_error(&loc, state,
7391                           "precision qualifiers do not apply to structures");
7392          return NULL;
7393       }
7394 
7395       if (this->array_specifier != NULL) {
7396          _mesa_glsl_error(&loc, state,
7397                           "default precision statements do not apply to "
7398                           "arrays");
7399          return NULL;
7400       }
7401 
7402       const struct glsl_type *const type =
7403          state->symbols->get_type(this->type_name);
7404       if (!is_valid_default_precision_type(type)) {
7405          _mesa_glsl_error(&loc, state,
7406                           "default precision statements apply only to "
7407                           "float, int, and opaque types");
7408          return NULL;
7409       }
7410 
7411       if (state->es_shader) {
7412          /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7413           * spec says:
7414           *
7415           *     "Non-precision qualified declarations will use the precision
7416           *     qualifier specified in the most recent precision statement
7417           *     that is still in scope. The precision statement has the same
7418           *     scoping rules as variable declarations. If it is declared
7419           *     inside a compound statement, its effect stops at the end of
7420           *     the innermost statement it was declared in. Precision
7421           *     statements in nested scopes override precision statements in
7422           *     outer scopes. Multiple precision statements for the same basic
7423           *     type can appear inside the same scope, with later statements
7424           *     overriding earlier statements within that scope."
7425           *
7426           * Default precision specifications follow the same scope rules as
7427           * variables.  So, we can track the state of the default precision
7428           * qualifiers in the symbol table, and the rules will just work.  This
7429           * is a slight abuse of the symbol table, but it has the semantics
7430           * that we want.
7431           */
7432          state->symbols->add_default_precision_qualifier(this->type_name,
7433                                                          this->default_precision);
7434       }
7435 
7436       /* FINISHME: Translate precision statements into IR. */
7437       return NULL;
7438    }
7439 
7440    /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7441     * process_record_constructor() can do type-checking on C-style initializer
7442     * expressions of structs, but ast_struct_specifier should only be translated
7443     * to HIR if it is declaring the type of a structure.
7444     *
7445     * The ->is_declaration field is false for initializers of variables
7446     * declared separately from the struct's type definition.
7447     *
7448     *    struct S { ... };              (is_declaration = true)
7449     *    struct T { ... } t = { ... };  (is_declaration = true)
7450     *    S s = { ... };                 (is_declaration = false)
7451     */
7452    if (this->structure != NULL && this->structure->is_declaration)
7453       return this->structure->hir(instructions, state);
7454 
7455    return NULL;
7456 }
7457 
7458 
7459 /**
7460  * Process a structure or interface block tree into an array of structure fields
7461  *
7462  * After parsing, where there are some syntax differnces, structures and
7463  * interface blocks are almost identical.  They are similar enough that the
7464  * AST for each can be processed the same way into a set of
7465  * \c glsl_struct_field to describe the members.
7466  *
7467  * If we're processing an interface block, var_mode should be the type of the
7468  * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7469  * ir_var_shader_storage).  If we're processing a structure, var_mode should be
7470  * ir_var_auto.
7471  *
7472  * \return
7473  * The number of fields processed.  A pointer to the array structure fields is
7474  * stored in \c *fields_ret.
7475  */
7476 static unsigned
ast_process_struct_or_iface_block_members(exec_list * instructions,struct _mesa_glsl_parse_state * state,exec_list * declarations,glsl_struct_field ** fields_ret,bool is_interface,enum glsl_matrix_layout matrix_layout,bool allow_reserved_names,ir_variable_mode var_mode,ast_type_qualifier * layout,unsigned block_stream,unsigned block_xfb_buffer,unsigned block_xfb_offset,unsigned expl_location,unsigned expl_align)7477 ast_process_struct_or_iface_block_members(exec_list *instructions,
7478                                           struct _mesa_glsl_parse_state *state,
7479                                           exec_list *declarations,
7480                                           glsl_struct_field **fields_ret,
7481                                           bool is_interface,
7482                                           enum glsl_matrix_layout matrix_layout,
7483                                           bool allow_reserved_names,
7484                                           ir_variable_mode var_mode,
7485                                           ast_type_qualifier *layout,
7486                                           unsigned block_stream,
7487                                           unsigned block_xfb_buffer,
7488                                           unsigned block_xfb_offset,
7489                                           unsigned expl_location,
7490                                           unsigned expl_align)
7491 {
7492    unsigned decl_count = 0;
7493    unsigned next_offset = 0;
7494 
7495    /* Make an initial pass over the list of fields to determine how
7496     * many there are.  Each element in this list is an ast_declarator_list.
7497     * This means that we actually need to count the number of elements in the
7498     * 'declarations' list in each of the elements.
7499     */
7500    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7501       decl_count += decl_list->declarations.length();
7502    }
7503 
7504    /* Allocate storage for the fields and process the field
7505     * declarations.  As the declarations are processed, try to also convert
7506     * the types to HIR.  This ensures that structure definitions embedded in
7507     * other structure definitions or in interface blocks are processed.
7508     */
7509    glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7510                                                    decl_count);
7511 
7512    bool first_member = true;
7513    bool first_member_has_explicit_location = false;
7514 
7515    unsigned i = 0;
7516    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7517       const char *type_name;
7518       YYLTYPE loc = decl_list->get_location();
7519 
7520       decl_list->type->specifier->hir(instructions, state);
7521 
7522       /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7523        *
7524        *    "Anonymous structures are not supported; so embedded structures
7525        *    must have a declarator. A name given to an embedded struct is
7526        *    scoped at the same level as the struct it is embedded in."
7527        *
7528        * The same section of the  GLSL 1.20 spec says:
7529        *
7530        *    "Anonymous structures are not supported. Embedded structures are
7531        *    not supported."
7532        *
7533        * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7534        * embedded structures in 1.10 only.
7535        */
7536       if (state->language_version != 110 &&
7537           decl_list->type->specifier->structure != NULL)
7538          _mesa_glsl_error(&loc, state,
7539                           "embedded structure declarations are not allowed");
7540 
7541       const glsl_type *decl_type =
7542          decl_list->type->glsl_type(& type_name, state);
7543 
7544       const struct ast_type_qualifier *const qual =
7545          &decl_list->type->qualifier;
7546 
7547       /* From section 4.3.9 of the GLSL 4.40 spec:
7548        *
7549        *    "[In interface blocks] opaque types are not allowed."
7550        *
7551        * It should be impossible for decl_type to be NULL here.  Cases that
7552        * might naturally lead to decl_type being NULL, especially for the
7553        * is_interface case, will have resulted in compilation having
7554        * already halted due to a syntax error.
7555        */
7556       assert(decl_type);
7557 
7558       if (is_interface) {
7559          /* From section 4.3.7 of the ARB_bindless_texture spec:
7560           *
7561           *    "(remove the following bullet from the last list on p. 39,
7562           *     thereby permitting sampler types in interface blocks; image
7563           *     types are also permitted in blocks by this extension)"
7564           *
7565           *     * sampler types are not allowed
7566           */
7567          if (glsl_contains_atomic(decl_type) ||
7568              (!state->has_bindless() && glsl_contains_opaque(decl_type))) {
7569             _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7570                              "interface block contains %s variable",
7571                              state->has_bindless() ? "atomic" : "opaque");
7572          }
7573       } else {
7574          if (glsl_contains_atomic(decl_type)) {
7575             /* From section 4.1.7.3 of the GLSL 4.40 spec:
7576              *
7577              *    "Members of structures cannot be declared as atomic counter
7578              *     types."
7579              */
7580             _mesa_glsl_error(&loc, state, "atomic counter in structure");
7581          }
7582 
7583          if (!state->has_bindless() && glsl_type_contains_image(decl_type)) {
7584             /* FINISHME: Same problem as with atomic counters.
7585              * FINISHME: Request clarification from Khronos and add
7586              * FINISHME: spec quotation here.
7587              */
7588             _mesa_glsl_error(&loc, state, "image in structure");
7589          }
7590       }
7591 
7592       if (qual->flags.q.explicit_binding) {
7593          _mesa_glsl_error(&loc, state,
7594                           "binding layout qualifier cannot be applied "
7595                           "to struct or interface block members");
7596       }
7597 
7598       if (is_interface) {
7599          if (!first_member) {
7600             if (!layout->flags.q.explicit_location &&
7601                 ((first_member_has_explicit_location &&
7602                   !qual->flags.q.explicit_location) ||
7603                  (!first_member_has_explicit_location &&
7604                   qual->flags.q.explicit_location))) {
7605                _mesa_glsl_error(&loc, state,
7606                                 "when block-level location layout qualifier "
7607                                 "is not supplied either all members must "
7608                                 "have a location layout qualifier or all "
7609                                 "members must not have a location layout "
7610                                 "qualifier");
7611             }
7612          } else {
7613             first_member = false;
7614             first_member_has_explicit_location =
7615                qual->flags.q.explicit_location;
7616          }
7617       }
7618 
7619       if (qual->flags.q.std140 ||
7620           qual->flags.q.std430 ||
7621           qual->flags.q.packed ||
7622           qual->flags.q.shared) {
7623          _mesa_glsl_error(&loc, state,
7624                           "uniform/shader storage block layout qualifiers "
7625                           "std140, std430, packed, and shared can only be "
7626                           "applied to uniform/shader storage blocks, not "
7627                           "members");
7628       }
7629 
7630       if (qual->flags.q.constant) {
7631          _mesa_glsl_error(&loc, state,
7632                           "const storage qualifier cannot be applied "
7633                           "to struct or interface block members");
7634       }
7635 
7636       validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7637       validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7638 
7639       /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7640        *
7641        *   "A block member may be declared with a stream identifier, but
7642        *   the specified stream must match the stream associated with the
7643        *   containing block."
7644        */
7645       if (qual->flags.q.explicit_stream) {
7646          unsigned qual_stream;
7647          if (process_qualifier_constant(state, &loc, "stream",
7648                                         qual->stream, &qual_stream) &&
7649              qual_stream != block_stream) {
7650             _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7651                              "interface block member does not match "
7652                              "the interface block (%u vs %u)", qual_stream,
7653                              block_stream);
7654          }
7655       }
7656 
7657       int xfb_buffer;
7658       unsigned explicit_xfb_buffer = 0;
7659       if (qual->flags.q.explicit_xfb_buffer) {
7660          unsigned qual_xfb_buffer;
7661          if (process_qualifier_constant(state, &loc, "xfb_buffer",
7662                                         qual->xfb_buffer, &qual_xfb_buffer)) {
7663             explicit_xfb_buffer = 1;
7664             if (qual_xfb_buffer != block_xfb_buffer)
7665                _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7666                                 "interface block member does not match "
7667                                 "the interface block (%u vs %u)",
7668                                 qual_xfb_buffer, block_xfb_buffer);
7669          }
7670          xfb_buffer = (int) qual_xfb_buffer;
7671       } else {
7672          if (layout)
7673             explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7674          xfb_buffer = (int) block_xfb_buffer;
7675       }
7676 
7677       int xfb_stride = -1;
7678       if (qual->flags.q.explicit_xfb_stride) {
7679          unsigned qual_xfb_stride;
7680          if (process_qualifier_constant(state, &loc, "xfb_stride",
7681                                         qual->xfb_stride, &qual_xfb_stride)) {
7682             xfb_stride = (int) qual_xfb_stride;
7683          }
7684       }
7685 
7686       if (qual->flags.q.uniform && qual->has_interpolation()) {
7687          _mesa_glsl_error(&loc, state,
7688                           "interpolation qualifiers cannot be used "
7689                           "with uniform interface blocks");
7690       }
7691 
7692       if ((qual->flags.q.uniform || !is_interface) &&
7693           qual->has_auxiliary_storage()) {
7694          _mesa_glsl_error(&loc, state,
7695                           "auxiliary storage qualifiers cannot be used "
7696                           "in uniform blocks or structures.");
7697       }
7698 
7699       if (qual->flags.q.row_major || qual->flags.q.column_major) {
7700          if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7701             _mesa_glsl_error(&loc, state,
7702                              "row_major and column_major can only be "
7703                              "applied to interface blocks");
7704          } else
7705             validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7706       }
7707 
7708       foreach_list_typed (ast_declaration, decl, link,
7709                           &decl_list->declarations) {
7710          YYLTYPE loc = decl->get_location();
7711 
7712          if (!allow_reserved_names)
7713             validate_identifier(decl->identifier, loc, state);
7714 
7715          const struct glsl_type *field_type =
7716             process_array_type(&loc, decl_type, decl->array_specifier, state);
7717          validate_array_dimensions(field_type, state, &loc);
7718          fields[i].type = field_type;
7719          fields[i].name = decl->identifier;
7720          fields[i].interpolation =
7721             interpret_interpolation_qualifier(qual, field_type,
7722                                               var_mode, state, &loc);
7723          fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7724          fields[i].sample = qual->flags.q.sample ? 1 : 0;
7725          fields[i].patch = qual->flags.q.patch ? 1 : 0;
7726          fields[i].offset = -1;
7727          fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7728          fields[i].xfb_buffer = xfb_buffer;
7729          fields[i].xfb_stride = xfb_stride;
7730 
7731          if (qual->flags.q.explicit_location) {
7732             unsigned qual_location;
7733             if (process_qualifier_constant(state, &loc, "location",
7734                                            qual->location, &qual_location)) {
7735                fields[i].location = qual_location +
7736                   (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7737                expl_location = fields[i].location +
7738                   glsl_count_attribute_slots(fields[i].type, false);
7739             }
7740          } else {
7741             if (layout && layout->flags.q.explicit_location) {
7742                fields[i].location = expl_location;
7743                expl_location += glsl_count_attribute_slots(fields[i].type, false);
7744             } else {
7745                fields[i].location = -1;
7746             }
7747          }
7748 
7749          if (qual->flags.q.explicit_component) {
7750             unsigned qual_component;
7751             if (process_qualifier_constant(state, &loc, "component",
7752                                            qual->component, &qual_component)) {
7753                validate_component_layout_for_type(state, &loc, fields[i].type,
7754                                                   qual_component);
7755                fields[i].component = qual_component;
7756             }
7757          } else {
7758             fields[i].component = -1;
7759          }
7760 
7761          /* Offset can only be used with std430 and std140 layouts an initial
7762           * value of 0 is used for error detection.
7763           */
7764          unsigned base_alignment = 0;
7765          unsigned size = 0;
7766          if (layout) {
7767             bool row_major;
7768             if (qual->flags.q.row_major ||
7769                 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7770                row_major = true;
7771             } else {
7772                row_major = false;
7773             }
7774 
7775             if(layout->flags.q.std140) {
7776                base_alignment = glsl_get_std140_base_alignment(field_type, row_major);
7777                size = glsl_get_std140_size(field_type, row_major);
7778             } else if (layout->flags.q.std430) {
7779                base_alignment = glsl_get_std430_base_alignment(field_type, row_major);
7780                size = glsl_get_std430_size(field_type, row_major);
7781             }
7782          }
7783 
7784          if (qual->flags.q.explicit_offset) {
7785             unsigned qual_offset;
7786             if (process_qualifier_constant(state, &loc, "offset",
7787                                            qual->offset, &qual_offset)) {
7788                if (base_alignment != 0 && size != 0) {
7789                    if (next_offset > qual_offset)
7790                       _mesa_glsl_error(&loc, state, "layout qualifier "
7791                                        "offset overlaps previous member");
7792 
7793                   if (qual_offset % base_alignment) {
7794                      _mesa_glsl_error(&loc, state, "layout qualifier offset "
7795                                       "must be a multiple of the base "
7796                                       "alignment of %s", glsl_get_type_name(field_type));
7797                   }
7798                   fields[i].offset = qual_offset;
7799                   next_offset = qual_offset + size;
7800                } else {
7801                   _mesa_glsl_error(&loc, state, "offset can only be used "
7802                                    "with std430 and std140 layouts");
7803                }
7804             }
7805          }
7806 
7807          if (qual->flags.q.explicit_align || expl_align != 0) {
7808             unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7809                next_offset;
7810             if (base_alignment == 0 || size == 0) {
7811                _mesa_glsl_error(&loc, state, "align can only be used with "
7812                                 "std430 and std140 layouts");
7813             } else if (qual->flags.q.explicit_align) {
7814                unsigned member_align;
7815                if (process_qualifier_constant(state, &loc, "align",
7816                                               qual->align, &member_align)) {
7817                   if (member_align == 0 ||
7818                       member_align & (member_align - 1)) {
7819                      _mesa_glsl_error(&loc, state, "align layout qualifier "
7820                                       "is not a power of 2");
7821                   } else {
7822                      fields[i].offset = align(offset, member_align);
7823                      next_offset = fields[i].offset + size;
7824                   }
7825                }
7826             } else {
7827                fields[i].offset = align(offset, expl_align);
7828                next_offset = fields[i].offset + size;
7829             }
7830          } else if (!qual->flags.q.explicit_offset) {
7831             if (base_alignment != 0 && size != 0)
7832                next_offset = align(next_offset, base_alignment) + size;
7833          }
7834 
7835          /* From the ARB_enhanced_layouts spec:
7836           *
7837           *    "The given offset applies to the first component of the first
7838           *    member of the qualified entity.  Then, within the qualified
7839           *    entity, subsequent components are each assigned, in order, to
7840           *    the next available offset aligned to a multiple of that
7841           *    component's size.  Aggregate types are flattened down to the
7842           *    component level to get this sequence of components."
7843           */
7844          if (qual->flags.q.explicit_xfb_offset) {
7845             unsigned xfb_offset;
7846             if (process_qualifier_constant(state, &loc, "xfb_offset",
7847                                            qual->offset, &xfb_offset)) {
7848                fields[i].offset = xfb_offset;
7849                block_xfb_offset = fields[i].offset +
7850                   4 * glsl_get_component_slots(field_type);
7851             }
7852          } else {
7853             if (layout && layout->flags.q.explicit_xfb_offset) {
7854                unsigned base_alignment = glsl_type_is_64bit(field_type) ? 8 : 4;
7855                fields[i].offset = align(block_xfb_offset, base_alignment);
7856                block_xfb_offset += 4 * glsl_get_component_slots(field_type);
7857             }
7858          }
7859 
7860          /* Propogate row- / column-major information down the fields of the
7861           * structure or interface block.  Structures need this data because
7862           * the structure may contain a structure that contains ... a matrix
7863           * that need the proper layout.
7864           */
7865          if (is_interface && layout &&
7866              (layout->flags.q.uniform || layout->flags.q.buffer) &&
7867              (glsl_type_is_matrix(glsl_without_array(field_type))
7868               || glsl_type_is_struct(glsl_without_array(field_type)))) {
7869             /* If no layout is specified for the field, inherit the layout
7870              * from the block.
7871              */
7872             fields[i].matrix_layout = matrix_layout;
7873 
7874             if (qual->flags.q.row_major)
7875                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7876             else if (qual->flags.q.column_major)
7877                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7878 
7879             /* If we're processing an uniform or buffer block, the matrix
7880              * layout must be decided by this point.
7881              */
7882             assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7883                    || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7884          }
7885 
7886          /* Memory qualifiers are allowed on buffer and image variables, while
7887           * the format qualifier is only accepted for images.
7888           */
7889          if (var_mode == ir_var_shader_storage ||
7890              glsl_type_is_image(glsl_without_array(field_type))) {
7891             /* For readonly and writeonly qualifiers the field definition,
7892              * if set, overwrites the layout qualifier.
7893              */
7894             if (qual->flags.q.read_only || qual->flags.q.write_only) {
7895                fields[i].memory_read_only = qual->flags.q.read_only;
7896                fields[i].memory_write_only = qual->flags.q.write_only;
7897             } else {
7898                fields[i].memory_read_only =
7899                   layout ? layout->flags.q.read_only : 0;
7900                fields[i].memory_write_only =
7901                   layout ? layout->flags.q.write_only : 0;
7902             }
7903 
7904             /* For other qualifiers, we set the flag if either the layout
7905              * qualifier or the field qualifier are set
7906              */
7907             fields[i].memory_coherent = qual->flags.q.coherent ||
7908                                         (layout && layout->flags.q.coherent);
7909             fields[i].memory_volatile = qual->flags.q._volatile ||
7910                                         (layout && layout->flags.q._volatile);
7911             fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7912                                         (layout && layout->flags.q.restrict_flag);
7913 
7914             if (glsl_type_is_image(glsl_without_array(field_type))) {
7915                if (qual->flags.q.explicit_image_format) {
7916                   if (qual->image_base_type !=
7917                       glsl_without_array(field_type)->sampled_type) {
7918                      _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7919                                       "match the base data type of the image");
7920                   }
7921 
7922                   fields[i].image_format = qual->image_format;
7923                } else {
7924                   if (state->has_image_load_formatted()) {
7925                      if (state->EXT_shader_image_load_formatted_warn) {
7926                         _mesa_glsl_warning(&loc, state, "GL_EXT_image_load_formatted used");
7927                      }
7928                   } else if (!qual->flags.q.write_only) {
7929                      _mesa_glsl_error(&loc, state, "image not qualified with "
7930                                       "`writeonly' must have a format layout "
7931                                       "qualifier");
7932                   }
7933 
7934                   fields[i].image_format = PIPE_FORMAT_NONE;
7935                }
7936             }
7937          }
7938 
7939          /* Precision qualifiers do not hold any meaning in Desktop GLSL */
7940          if (state->es_shader) {
7941             fields[i].precision = select_gles_precision(qual->precision,
7942                                                         field_type,
7943                                                         state,
7944                                                         &loc);
7945          } else {
7946             fields[i].precision = qual->precision;
7947          }
7948 
7949          i++;
7950       }
7951    }
7952 
7953    assert(i == decl_count);
7954 
7955    *fields_ret = fields;
7956    return decl_count;
7957 }
7958 
7959 static bool
is_anonymous(const glsl_type * t)7960 is_anonymous(const glsl_type *t)
7961 {
7962    /* See handling for struct_specifier in glsl_parser.yy. */
7963    return !strncmp(glsl_get_type_name(t), "#anon", 5);
7964 }
7965 
7966 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7967 ast_struct_specifier::hir(exec_list *instructions,
7968                           struct _mesa_glsl_parse_state *state)
7969 {
7970    YYLTYPE loc = this->get_location();
7971 
7972    unsigned expl_location = 0;
7973    if (layout && layout->flags.q.explicit_location) {
7974       if (!process_qualifier_constant(state, &loc, "location",
7975                                       layout->location, &expl_location)) {
7976          return NULL;
7977       } else {
7978          expl_location = VARYING_SLOT_VAR0 + expl_location;
7979       }
7980    }
7981 
7982    glsl_struct_field *fields;
7983    unsigned decl_count =
7984       ast_process_struct_or_iface_block_members(instructions,
7985                                                 state,
7986                                                 &this->declarations,
7987                                                 &fields,
7988                                                 false,
7989                                                 GLSL_MATRIX_LAYOUT_INHERITED,
7990                                                 false /* allow_reserved_names */,
7991                                                 ir_var_auto,
7992                                                 layout,
7993                                                 0, /* for interface only */
7994                                                 0, /* for interface only */
7995                                                 0, /* for interface only */
7996                                                 expl_location,
7997                                                 0 /* for interface only */);
7998 
7999    validate_identifier(this->name, loc, state);
8000 
8001    type = glsl_struct_type(fields, decl_count, this->name, false /* packed */);
8002 
8003    if (!is_anonymous(type) && !state->symbols->add_type(name, type)) {
8004       const glsl_type *match = state->symbols->get_type(name);
8005       /* allow struct matching for desktop GL - older UE4 does this */
8006       if (match != NULL && state->is_version(130, 0) && glsl_record_compare(match, type, true, false, true))
8007          _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
8008       else
8009          _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
8010    } else {
8011       const glsl_type **s = reralloc(state, state->user_structures,
8012                                      const glsl_type *,
8013                                      state->num_user_structures + 1);
8014       if (s != NULL) {
8015          s[state->num_user_structures] = type;
8016          state->user_structures = s;
8017          state->num_user_structures++;
8018       }
8019    }
8020 
8021    /* Structure type definitions do not have r-values.
8022     */
8023    return NULL;
8024 }
8025 
8026 
8027 /**
8028  * Visitor class which detects whether a given interface block has been used.
8029  */
8030 class interface_block_usage_visitor : public ir_hierarchical_visitor
8031 {
8032 public:
interface_block_usage_visitor(ir_variable_mode mode,const glsl_type * block)8033    interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
8034       : mode(mode), block(block), found(false)
8035    {
8036    }
8037 
visit(ir_dereference_variable * ir)8038    virtual ir_visitor_status visit(ir_dereference_variable *ir)
8039    {
8040       if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
8041          found = true;
8042          return visit_stop;
8043       }
8044       return visit_continue;
8045    }
8046 
usage_found() const8047    bool usage_found() const
8048    {
8049       return this->found;
8050    }
8051 
8052 private:
8053    ir_variable_mode mode;
8054    const glsl_type *block;
8055    bool found;
8056 };
8057 
8058 static bool
is_unsized_array_last_element(ir_variable * v)8059 is_unsized_array_last_element(ir_variable *v)
8060 {
8061    const glsl_type *interface_type = v->get_interface_type();
8062    int length = interface_type->length;
8063 
8064    assert(glsl_type_is_unsized_array(v->type));
8065 
8066    /* Check if it is the last element of the interface */
8067    if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
8068       return true;
8069    return false;
8070 }
8071 
8072 static void
apply_memory_qualifiers(ir_variable * var,glsl_struct_field field)8073 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
8074 {
8075    var->data.memory_read_only = field.memory_read_only;
8076    var->data.memory_write_only = field.memory_write_only;
8077    var->data.memory_coherent = field.memory_coherent;
8078    var->data.memory_volatile = field.memory_volatile;
8079    var->data.memory_restrict = field.memory_restrict;
8080 }
8081 
8082 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8083 ast_interface_block::hir(exec_list *instructions,
8084                          struct _mesa_glsl_parse_state *state)
8085 {
8086    YYLTYPE loc = this->get_location();
8087 
8088    /* Interface blocks must be declared at global scope */
8089    if (state->current_function != NULL) {
8090       _mesa_glsl_error(&loc, state,
8091                        "Interface block `%s' must be declared "
8092                        "at global scope",
8093                        this->block_name);
8094    }
8095 
8096    /* Validate qualifiers:
8097     *
8098     * - Layout Qualifiers as per the table in Section 4.4
8099     *   ("Layout Qualifiers") of the GLSL 4.50 spec.
8100     *
8101     * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
8102     *   GLSL 4.50 spec:
8103     *
8104     *     "Additionally, memory qualifiers may also be used in the declaration
8105     *      of shader storage blocks"
8106     *
8107     * Note the table in Section 4.4 says std430 is allowed on both uniform and
8108     * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
8109     * Layout Qualifiers) of the GLSL 4.50 spec says:
8110     *
8111     *    "The std430 qualifier is supported only for shader storage blocks;
8112     *    using std430 on a uniform block will result in a compile-time error."
8113     */
8114    ast_type_qualifier allowed_blk_qualifiers;
8115    allowed_blk_qualifiers.flags.i = 0;
8116    if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
8117       allowed_blk_qualifiers.flags.q.shared = 1;
8118       allowed_blk_qualifiers.flags.q.packed = 1;
8119       allowed_blk_qualifiers.flags.q.std140 = 1;
8120       allowed_blk_qualifiers.flags.q.row_major = 1;
8121       allowed_blk_qualifiers.flags.q.column_major = 1;
8122       allowed_blk_qualifiers.flags.q.explicit_align = 1;
8123       allowed_blk_qualifiers.flags.q.explicit_binding = 1;
8124       if (this->layout.flags.q.buffer) {
8125          allowed_blk_qualifiers.flags.q.buffer = 1;
8126          allowed_blk_qualifiers.flags.q.std430 = 1;
8127          allowed_blk_qualifiers.flags.q.coherent = 1;
8128          allowed_blk_qualifiers.flags.q._volatile = 1;
8129          allowed_blk_qualifiers.flags.q.restrict_flag = 1;
8130          allowed_blk_qualifiers.flags.q.read_only = 1;
8131          allowed_blk_qualifiers.flags.q.write_only = 1;
8132       } else {
8133          allowed_blk_qualifiers.flags.q.uniform = 1;
8134       }
8135    } else {
8136       /* Interface block */
8137       assert(this->layout.flags.q.in || this->layout.flags.q.out);
8138 
8139       allowed_blk_qualifiers.flags.q.explicit_location = 1;
8140       if (this->layout.flags.q.out) {
8141          allowed_blk_qualifiers.flags.q.out = 1;
8142          if (state->stage == MESA_SHADER_GEOMETRY ||
8143              state->stage == MESA_SHADER_TESS_CTRL ||
8144              state->stage == MESA_SHADER_TESS_EVAL ||
8145              state->stage == MESA_SHADER_VERTEX ) {
8146             allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
8147             allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
8148             allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
8149             allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
8150             allowed_blk_qualifiers.flags.q.xfb_stride = 1;
8151          }
8152          if (state->stage == MESA_SHADER_GEOMETRY) {
8153             allowed_blk_qualifiers.flags.q.stream = 1;
8154             allowed_blk_qualifiers.flags.q.explicit_stream = 1;
8155          }
8156          if (state->stage == MESA_SHADER_TESS_CTRL) {
8157             allowed_blk_qualifiers.flags.q.patch = 1;
8158          }
8159       } else {
8160          allowed_blk_qualifiers.flags.q.in = 1;
8161          if (state->stage == MESA_SHADER_TESS_EVAL) {
8162             allowed_blk_qualifiers.flags.q.patch = 1;
8163          }
8164       }
8165    }
8166 
8167    this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
8168                                "invalid qualifier for block",
8169                                this->block_name);
8170 
8171    enum glsl_interface_packing packing;
8172    if (this->layout.flags.q.std140) {
8173       packing = GLSL_INTERFACE_PACKING_STD140;
8174    } else if (this->layout.flags.q.packed) {
8175       packing = GLSL_INTERFACE_PACKING_PACKED;
8176    } else if (this->layout.flags.q.std430) {
8177       packing = GLSL_INTERFACE_PACKING_STD430;
8178    } else {
8179       /* The default layout is shared.
8180        */
8181       packing = GLSL_INTERFACE_PACKING_SHARED;
8182    }
8183 
8184    ir_variable_mode var_mode;
8185    const char *iface_type_name;
8186    if (this->layout.flags.q.in) {
8187       var_mode = ir_var_shader_in;
8188       iface_type_name = "in";
8189    } else if (this->layout.flags.q.out) {
8190       var_mode = ir_var_shader_out;
8191       iface_type_name = "out";
8192    } else if (this->layout.flags.q.uniform) {
8193       var_mode = ir_var_uniform;
8194       iface_type_name = "uniform";
8195    } else if (this->layout.flags.q.buffer) {
8196       var_mode = ir_var_shader_storage;
8197       iface_type_name = "buffer";
8198    } else {
8199       var_mode = ir_var_auto;
8200       iface_type_name = "UNKNOWN";
8201       assert(!"interface block layout qualifier not found!");
8202    }
8203 
8204    enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
8205    if (this->layout.flags.q.row_major)
8206       matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
8207    else if (this->layout.flags.q.column_major)
8208       matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
8209 
8210    bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
8211    exec_list declared_variables;
8212    glsl_struct_field *fields;
8213 
8214    /* For blocks that accept memory qualifiers (i.e. shader storage), verify
8215     * that we don't have incompatible qualifiers
8216     */
8217    if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
8218       _mesa_glsl_error(&loc, state,
8219                        "Interface block sets both readonly and writeonly");
8220    }
8221 
8222    unsigned qual_stream;
8223    if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
8224                                    &qual_stream) ||
8225        !validate_stream_qualifier(&loc, state, qual_stream)) {
8226       /* If the stream qualifier is invalid it doesn't make sense to continue
8227        * on and try to compare stream layouts on member variables against it
8228        * so just return early.
8229        */
8230       return NULL;
8231    }
8232 
8233    unsigned qual_xfb_buffer = 0;
8234    if (layout.flags.q.xfb_buffer) {
8235       if (!process_qualifier_constant(state, &loc, "xfb_buffer",
8236                                       layout.xfb_buffer, &qual_xfb_buffer) ||
8237           !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
8238          return NULL;
8239       }
8240    }
8241 
8242    unsigned qual_xfb_offset = 0;
8243    if (layout.flags.q.explicit_xfb_offset) {
8244       if (!process_qualifier_constant(state, &loc, "xfb_offset",
8245                                       layout.offset, &qual_xfb_offset)) {
8246          return NULL;
8247       }
8248    }
8249 
8250    unsigned qual_xfb_stride = 0;
8251    if (layout.flags.q.explicit_xfb_stride) {
8252       if (!process_qualifier_constant(state, &loc, "xfb_stride",
8253                                       layout.xfb_stride, &qual_xfb_stride)) {
8254          return NULL;
8255       }
8256    }
8257 
8258    unsigned expl_location = 0;
8259    if (layout.flags.q.explicit_location) {
8260       if (!process_qualifier_constant(state, &loc, "location",
8261                                       layout.location, &expl_location)) {
8262          return NULL;
8263       } else {
8264          expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
8265                                                      : VARYING_SLOT_VAR0;
8266       }
8267    }
8268 
8269    unsigned expl_align = 0;
8270    if (layout.flags.q.explicit_align) {
8271       if (!process_qualifier_constant(state, &loc, "align",
8272                                       layout.align, &expl_align)) {
8273          return NULL;
8274       } else {
8275          if (expl_align == 0 || expl_align & (expl_align - 1)) {
8276             _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
8277                              "power of 2.");
8278             return NULL;
8279          }
8280       }
8281    }
8282 
8283    unsigned int num_variables =
8284       ast_process_struct_or_iface_block_members(&declared_variables,
8285                                                 state,
8286                                                 &this->declarations,
8287                                                 &fields,
8288                                                 true,
8289                                                 matrix_layout,
8290                                                 redeclaring_per_vertex,
8291                                                 var_mode,
8292                                                 &this->layout,
8293                                                 qual_stream,
8294                                                 qual_xfb_buffer,
8295                                                 qual_xfb_offset,
8296                                                 expl_location,
8297                                                 expl_align);
8298 
8299    if (!redeclaring_per_vertex) {
8300       validate_identifier(this->block_name, loc, state);
8301 
8302       /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
8303        *
8304        *     "Block names have no other use within a shader beyond interface
8305        *     matching; it is a compile-time error to use a block name at global
8306        *     scope for anything other than as a block name."
8307        */
8308       ir_variable *var = state->symbols->get_variable(this->block_name);
8309       if (var && !glsl_type_is_interface(var->type)) {
8310          _mesa_glsl_error(&loc, state, "Block name `%s' is "
8311                           "already used in the scope.",
8312                           this->block_name);
8313       }
8314    }
8315 
8316    const glsl_type *earlier_per_vertex = NULL;
8317    if (redeclaring_per_vertex) {
8318       /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
8319        * the named interface block gl_in, we can find it by looking at the
8320        * previous declaration of gl_in.  Otherwise we can find it by looking
8321        * at the previous decalartion of any of the built-in outputs,
8322        * e.g. gl_Position.
8323        *
8324        * Also check that the instance name and array-ness of the redeclaration
8325        * are correct.
8326        */
8327       switch (var_mode) {
8328       case ir_var_shader_in:
8329          if (ir_variable *earlier_gl_in =
8330              state->symbols->get_variable("gl_in")) {
8331             earlier_per_vertex = earlier_gl_in->get_interface_type();
8332          } else {
8333             _mesa_glsl_error(&loc, state,
8334                              "redeclaration of gl_PerVertex input not allowed "
8335                              "in the %s shader",
8336                              _mesa_shader_stage_to_string(state->stage));
8337          }
8338          if (this->instance_name == NULL ||
8339              strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
8340              !this->array_specifier->is_single_dimension()) {
8341             _mesa_glsl_error(&loc, state,
8342                              "gl_PerVertex input must be redeclared as "
8343                              "gl_in[]");
8344          }
8345          break;
8346       case ir_var_shader_out:
8347          if (ir_variable *earlier_gl_Position =
8348              state->symbols->get_variable("gl_Position")) {
8349             earlier_per_vertex = earlier_gl_Position->get_interface_type();
8350          } else if (ir_variable *earlier_gl_out =
8351                state->symbols->get_variable("gl_out")) {
8352             earlier_per_vertex = earlier_gl_out->get_interface_type();
8353          } else {
8354             _mesa_glsl_error(&loc, state,
8355                              "redeclaration of gl_PerVertex output not "
8356                              "allowed in the %s shader",
8357                              _mesa_shader_stage_to_string(state->stage));
8358          }
8359          if (state->stage == MESA_SHADER_TESS_CTRL) {
8360             if (this->instance_name == NULL ||
8361                 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
8362                _mesa_glsl_error(&loc, state,
8363                                 "gl_PerVertex output must be redeclared as "
8364                                 "gl_out[]");
8365             }
8366          } else {
8367             if (this->instance_name != NULL) {
8368                _mesa_glsl_error(&loc, state,
8369                                 "gl_PerVertex output may not be redeclared with "
8370                                 "an instance name");
8371             }
8372          }
8373          break;
8374       default:
8375          _mesa_glsl_error(&loc, state,
8376                           "gl_PerVertex must be declared as an input or an "
8377                           "output");
8378          break;
8379       }
8380 
8381       if (earlier_per_vertex == NULL) {
8382          /* An error has already been reported.  Bail out to avoid null
8383           * dereferences later in this function.
8384           */
8385          return NULL;
8386       }
8387 
8388       /* Copy locations from the old gl_PerVertex interface block. */
8389       for (unsigned i = 0; i < num_variables; i++) {
8390          int j = glsl_get_field_index(earlier_per_vertex, fields[i].name);
8391          if (j == -1) {
8392             _mesa_glsl_error(&loc, state,
8393                              "redeclaration of gl_PerVertex must be a subset "
8394                              "of the built-in members of gl_PerVertex");
8395          } else {
8396             fields[i].location =
8397                earlier_per_vertex->fields.structure[j].location;
8398             fields[i].offset =
8399                earlier_per_vertex->fields.structure[j].offset;
8400             fields[i].interpolation =
8401                earlier_per_vertex->fields.structure[j].interpolation;
8402             fields[i].centroid =
8403                earlier_per_vertex->fields.structure[j].centroid;
8404             fields[i].sample =
8405                earlier_per_vertex->fields.structure[j].sample;
8406             fields[i].patch =
8407                earlier_per_vertex->fields.structure[j].patch;
8408             fields[i].precision =
8409                earlier_per_vertex->fields.structure[j].precision;
8410             fields[i].explicit_xfb_buffer =
8411                earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8412             fields[i].xfb_buffer =
8413                earlier_per_vertex->fields.structure[j].xfb_buffer;
8414             fields[i].xfb_stride =
8415                earlier_per_vertex->fields.structure[j].xfb_stride;
8416          }
8417       }
8418 
8419       /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8420        * spec:
8421        *
8422        *     If a built-in interface block is redeclared, it must appear in
8423        *     the shader before any use of any member included in the built-in
8424        *     declaration, or a compilation error will result.
8425        *
8426        * This appears to be a clarification to the behaviour established for
8427        * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8428        * regardless of GLSL version.
8429        */
8430       interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8431       v.run(instructions);
8432       if (v.usage_found()) {
8433          _mesa_glsl_error(&loc, state,
8434                           "redeclaration of a built-in interface block must "
8435                           "appear before any use of any member of the "
8436                           "interface block");
8437       }
8438    }
8439 
8440    const glsl_type *block_type =
8441       glsl_interface_type(fields,
8442                           num_variables,
8443                           packing,
8444                           matrix_layout ==
8445                           GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8446                           this->block_name);
8447 
8448    unsigned component_size = glsl_contains_double(block_type) ? 8 : 4;
8449    int xfb_offset =
8450       layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8451    validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8452                                  component_size);
8453 
8454    if (!state->symbols->add_interface(glsl_get_type_name(block_type), block_type, var_mode)) {
8455       YYLTYPE loc = this->get_location();
8456       _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8457                        "already taken in the current scope",
8458                        this->block_name, iface_type_name);
8459    }
8460 
8461    /* Since interface blocks cannot contain statements, it should be
8462     * impossible for the block to generate any instructions.
8463     */
8464    assert(declared_variables.is_empty());
8465 
8466    /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8467     *
8468     *     Geometry shader input variables get the per-vertex values written
8469     *     out by vertex shader output variables of the same names. Since a
8470     *     geometry shader operates on a set of vertices, each input varying
8471     *     variable (or input block, see interface blocks below) needs to be
8472     *     declared as an array.
8473     */
8474    if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8475        var_mode == ir_var_shader_in) {
8476       _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8477    } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8478                state->stage == MESA_SHADER_TESS_EVAL) &&
8479               !this->layout.flags.q.patch &&
8480               this->array_specifier == NULL &&
8481               var_mode == ir_var_shader_in) {
8482       _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8483    } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8484               !this->layout.flags.q.patch &&
8485               this->array_specifier == NULL &&
8486               var_mode == ir_var_shader_out) {
8487       _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8488    }
8489 
8490 
8491    /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8492     * says:
8493     *
8494     *     "If an instance name (instance-name) is used, then it puts all the
8495     *     members inside a scope within its own name space, accessed with the
8496     *     field selector ( . ) operator (analogously to structures)."
8497     */
8498    if (this->instance_name) {
8499       if (redeclaring_per_vertex) {
8500          /* When a built-in in an unnamed interface block is redeclared,
8501           * get_variable_being_redeclared() calls
8502           * check_builtin_array_max_size() to make sure that built-in array
8503           * variables aren't redeclared to illegal sizes.  But we're looking
8504           * at a redeclaration of a named built-in interface block.  So we
8505           * have to manually call check_builtin_array_max_size() for all parts
8506           * of the interface that are arrays.
8507           */
8508          for (unsigned i = 0; i < num_variables; i++) {
8509             if (glsl_type_is_array(fields[i].type)) {
8510                const unsigned size = glsl_array_size(fields[i].type);
8511                check_builtin_array_max_size(fields[i].name, size, loc, state);
8512             }
8513          }
8514       } else {
8515          validate_identifier(this->instance_name, loc, state);
8516       }
8517 
8518       ir_variable *var;
8519 
8520       if (this->array_specifier != NULL) {
8521          const glsl_type *block_array_type =
8522             process_array_type(&loc, block_type, this->array_specifier, state);
8523 
8524          /* From Section 4.4.1 (Input Layout Qualifiers) of the GLSL 4.50 spec:
8525           *
8526           *    "For some blocks declared as arrays, the location can only be applied
8527           *    at the block level: When a block is declared as an array where
8528           *    additional locations are needed for each member for each block array
8529           *    element, it is a compile-time error to specify locations on the block
8530           *    members. That is, when locations would be under specified by applying
8531           *    them on block members, they are not allowed on block members. For
8532           *    arrayed interfaces (those generally having an extra level of
8533           *    arrayness due to interface expansion), the outer array is stripped
8534           *    before applying this rule"
8535           *
8536           * From 4.4.1 (Input Layout Qualifiers) and
8537           * 4.4.2 (Output Layout Qualifiers) of GLSL ES 3.20
8538           *
8539           *    "If an input is declared as an array of blocks, excluding
8540           *     per-vertex-arrays as required for tessellation, it is an error
8541           *     to declare a member of the block with a location qualifier."
8542           *
8543           *    "If an output is declared as an array of blocks, excluding
8544           *     per-vertex-arrays as required for tessellation, it is an error
8545           *     to declare a member of the block with a location qualifier."
8546           */
8547          if (!redeclaring_per_vertex &&
8548              (state->has_enhanced_layouts() || state->has_shader_io_blocks())) {
8549             bool allow_location;
8550             switch (state->stage)
8551             {
8552             case MESA_SHADER_TESS_CTRL:
8553                allow_location = this->array_specifier->is_single_dimension();
8554                break;
8555             case MESA_SHADER_TESS_EVAL:
8556             case MESA_SHADER_GEOMETRY:
8557                allow_location = (this->array_specifier->is_single_dimension()
8558                                  && var_mode == ir_var_shader_in);
8559                break;
8560             default:
8561                allow_location = false;
8562                break;
8563             }
8564 
8565             if (!allow_location) {
8566                for (unsigned i = 0; i < num_variables; i++) {
8567                   if (fields[i].location != -1) {
8568                      _mesa_glsl_error(&loc, state,
8569                                        "explicit member locations are not allowed in "
8570                                        "blocks declared as arrays %s shader",
8571                                        _mesa_shader_stage_to_string(state->stage));
8572                   }
8573                }
8574             }
8575          }
8576 
8577          /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8578           *
8579           *     For uniform blocks declared an array, each individual array
8580           *     element corresponds to a separate buffer object backing one
8581           *     instance of the block. As the array size indicates the number
8582           *     of buffer objects needed, uniform block array declarations
8583           *     must specify an array size.
8584           *
8585           * And a few paragraphs later:
8586           *
8587           *     Geometry shader input blocks must be declared as arrays and
8588           *     follow the array declaration and linking rules for all
8589           *     geometry shader inputs. All other input and output block
8590           *     arrays must specify an array size.
8591           *
8592           * The same applies to tessellation shaders.
8593           *
8594           * The upshot of this is that the only circumstance where an
8595           * interface array size *doesn't* need to be specified is on a
8596           * geometry shader input, tessellation control shader input,
8597           * tessellation control shader output, and tessellation evaluation
8598           * shader input.
8599           */
8600          if (glsl_type_is_unsized_array(block_array_type)) {
8601             bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8602                                 state->stage == MESA_SHADER_TESS_CTRL ||
8603                                 state->stage == MESA_SHADER_TESS_EVAL;
8604             bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8605 
8606             if (this->layout.flags.q.in) {
8607                if (!allow_inputs)
8608                   _mesa_glsl_error(&loc, state,
8609                                    "unsized input block arrays not allowed in "
8610                                    "%s shader",
8611                                    _mesa_shader_stage_to_string(state->stage));
8612             } else if (this->layout.flags.q.out) {
8613                if (!allow_outputs)
8614                   _mesa_glsl_error(&loc, state,
8615                                    "unsized output block arrays not allowed in "
8616                                    "%s shader",
8617                                    _mesa_shader_stage_to_string(state->stage));
8618             } else {
8619                /* by elimination, this is a uniform block array */
8620                _mesa_glsl_error(&loc, state,
8621                                 "unsized uniform block arrays not allowed in "
8622                                 "%s shader",
8623                                 _mesa_shader_stage_to_string(state->stage));
8624             }
8625          }
8626 
8627          /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8628           *
8629           *     * Arrays of arrays of blocks are not allowed
8630           */
8631          if (state->es_shader && glsl_type_is_array(block_array_type) &&
8632              glsl_type_is_array(block_array_type->fields.array)) {
8633             _mesa_glsl_error(&loc, state,
8634                              "arrays of arrays interface blocks are "
8635                              "not allowed");
8636          }
8637 
8638          var = new(state) ir_variable(block_array_type,
8639                                       this->instance_name,
8640                                       var_mode);
8641       } else {
8642          var = new(state) ir_variable(block_type,
8643                                       this->instance_name,
8644                                       var_mode);
8645       }
8646 
8647       var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8648          ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8649 
8650       if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8651          var->data.read_only = true;
8652 
8653       var->data.patch = this->layout.flags.q.patch;
8654 
8655       if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8656          handle_geometry_shader_input_decl(state, loc, var);
8657       else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8658            state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8659          handle_tess_shader_input_decl(state, loc, var);
8660       else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8661          handle_tess_ctrl_shader_output_decl(state, loc, var);
8662 
8663       for (unsigned i = 0; i < num_variables; i++) {
8664          if (var->data.mode == ir_var_shader_storage)
8665             apply_memory_qualifiers(var, fields[i]);
8666       }
8667 
8668       if (ir_variable *earlier =
8669           state->symbols->get_variable(this->instance_name)) {
8670          if (!redeclaring_per_vertex) {
8671             _mesa_glsl_error(&loc, state, "`%s' redeclared",
8672                              this->instance_name);
8673          }
8674          earlier->data.how_declared = ir_var_declared_normally;
8675          earlier->type = var->type;
8676          earlier->reinit_interface_type(block_type);
8677          delete var;
8678       } else {
8679          if (this->layout.flags.q.explicit_binding) {
8680             apply_explicit_binding(state, &loc, var, var->type,
8681                                    &this->layout);
8682          }
8683 
8684          var->data.stream = qual_stream;
8685          if (layout.flags.q.explicit_location) {
8686             var->data.location = expl_location;
8687             var->data.explicit_location = true;
8688          }
8689 
8690          state->symbols->add_variable(var);
8691          instructions->push_tail(var);
8692       }
8693    } else {
8694       /* In order to have an array size, the block must also be declared with
8695        * an instance name.
8696        */
8697       assert(this->array_specifier == NULL);
8698 
8699       for (unsigned i = 0; i < num_variables; i++) {
8700          ir_variable *var =
8701             new(state) ir_variable(fields[i].type,
8702                                    ralloc_strdup(state, fields[i].name),
8703                                    var_mode);
8704          var->data.interpolation = fields[i].interpolation;
8705          var->data.centroid = fields[i].centroid;
8706          var->data.sample = fields[i].sample;
8707          var->data.patch = fields[i].patch;
8708          var->data.stream = qual_stream;
8709          var->data.location = fields[i].location;
8710 
8711          if (fields[i].location != -1)
8712             var->data.explicit_location = true;
8713 
8714          var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8715          var->data.xfb_buffer = fields[i].xfb_buffer;
8716 
8717          if (fields[i].offset != -1)
8718             var->data.explicit_xfb_offset = true;
8719          var->data.offset = fields[i].offset;
8720 
8721          var->init_interface_type(block_type);
8722 
8723          if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8724             var->data.read_only = true;
8725 
8726          /* Precision qualifiers do not have any meaning in Desktop GLSL */
8727          if (state->es_shader) {
8728             var->data.precision =
8729                select_gles_precision(fields[i].precision, fields[i].type,
8730                                      state, &loc);
8731          }
8732 
8733          if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8734             var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8735                ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8736          } else {
8737             var->data.matrix_layout = fields[i].matrix_layout;
8738          }
8739 
8740          if (var->data.mode == ir_var_shader_storage)
8741             apply_memory_qualifiers(var, fields[i]);
8742 
8743          /* Examine var name here since var may get deleted in the next call */
8744          bool var_is_gl_id = is_gl_identifier(var->name);
8745 
8746          if (redeclaring_per_vertex) {
8747             bool is_redeclaration;
8748             var =
8749                get_variable_being_redeclared(&var, loc, state,
8750                                              true /* allow_all_redeclarations */,
8751                                              &is_redeclaration);
8752             if (!var_is_gl_id || !is_redeclaration) {
8753                _mesa_glsl_error(&loc, state,
8754                                 "redeclaration of gl_PerVertex can only "
8755                                 "include built-in variables");
8756             } else if (var->data.how_declared == ir_var_declared_normally) {
8757                _mesa_glsl_error(&loc, state,
8758                                 "`%s' has already been redeclared",
8759                                 var->name);
8760             } else {
8761                var->data.how_declared = ir_var_declared_in_block;
8762                var->reinit_interface_type(block_type);
8763             }
8764             continue;
8765          }
8766 
8767          if (state->symbols->get_variable(var->name) != NULL)
8768             _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8769 
8770          /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8771           * The UBO declaration itself doesn't get an ir_variable unless it
8772           * has an instance name.  This is ugly.
8773           */
8774          if (this->layout.flags.q.explicit_binding) {
8775             apply_explicit_binding(state, &loc, var,
8776                                    var->get_interface_type(), &this->layout);
8777          }
8778 
8779          if (glsl_type_is_unsized_array(var->type)) {
8780             if (var->is_in_shader_storage_block() &&
8781                 is_unsized_array_last_element(var)) {
8782                var->data.from_ssbo_unsized_array = true;
8783             } else {
8784                /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8785                 *
8786                 * "If an array is declared as the last member of a shader storage
8787                 * block and the size is not specified at compile-time, it is
8788                 * sized at run-time. In all other cases, arrays are sized only
8789                 * at compile-time."
8790                 *
8791                 * In desktop GLSL it is allowed to have unsized-arrays that are
8792                 * not last, as long as we can determine that they are implicitly
8793                 * sized.
8794                 */
8795                if (state->es_shader) {
8796                   _mesa_glsl_error(&loc, state, "unsized array `%s' "
8797                                    "definition: only last member of a shader "
8798                                    "storage block can be defined as unsized "
8799                                    "array", fields[i].name);
8800                }
8801             }
8802          }
8803 
8804          state->symbols->add_variable(var);
8805          instructions->push_tail(var);
8806       }
8807 
8808       if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8809          /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8810           *
8811           *     It is also a compilation error ... to redeclare a built-in
8812           *     block and then use a member from that built-in block that was
8813           *     not included in the redeclaration.
8814           *
8815           * This appears to be a clarification to the behaviour established
8816           * for gl_PerVertex by GLSL 1.50, therefore we implement this
8817           * behaviour regardless of GLSL version.
8818           *
8819           * To prevent the shader from using a member that was not included in
8820           * the redeclaration, we disable any ir_variables that are still
8821           * associated with the old declaration of gl_PerVertex (since we've
8822           * already updated all of the variables contained in the new
8823           * gl_PerVertex to point to it).
8824           *
8825           * As a side effect this will prevent
8826           * validate_intrastage_interface_blocks() from getting confused and
8827           * thinking there are conflicting definitions of gl_PerVertex in the
8828           * shader.
8829           */
8830          foreach_in_list_safe(ir_instruction, node, instructions) {
8831             ir_variable *const var = node->as_variable();
8832             if (var != NULL &&
8833                 var->get_interface_type() == earlier_per_vertex &&
8834                 var->data.mode == var_mode) {
8835                if (var->data.how_declared == ir_var_declared_normally) {
8836                   _mesa_glsl_error(&loc, state,
8837                                    "redeclaration of gl_PerVertex cannot "
8838                                    "follow a redeclaration of `%s'",
8839                                    var->name);
8840                }
8841                state->symbols->disable_variable(var->name);
8842                var->remove();
8843             }
8844          }
8845       }
8846    }
8847 
8848    return NULL;
8849 }
8850 
8851 
8852 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8853 ast_tcs_output_layout::hir(exec_list *instructions,
8854                            struct _mesa_glsl_parse_state *state)
8855 {
8856    YYLTYPE loc = this->get_location();
8857 
8858    unsigned num_vertices;
8859    if (!state->out_qualifier->vertices->
8860           process_qualifier_constant(state, "vertices", &num_vertices,
8861                                      false)) {
8862       /* return here to stop cascading incorrect error messages */
8863      return NULL;
8864    }
8865 
8866    /* If any shader outputs occurred before this declaration and specified an
8867     * array size, make sure the size they specified is consistent with the
8868     * primitive type.
8869     */
8870    if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8871       _mesa_glsl_error(&loc, state,
8872                        "this tessellation control shader output layout "
8873                        "specifies %u vertices, but a previous output "
8874                        "is declared with size %u",
8875                        num_vertices, state->tcs_output_size);
8876       return NULL;
8877    }
8878 
8879    state->tcs_output_vertices_specified = true;
8880 
8881    /* If any shader outputs occurred before this declaration and did not
8882     * specify an array size, their size is determined now.
8883     */
8884    foreach_in_list (ir_instruction, node, instructions) {
8885       ir_variable *var = node->as_variable();
8886       if (var == NULL || var->data.mode != ir_var_shader_out)
8887          continue;
8888 
8889       /* Note: Not all tessellation control shader output are arrays. */
8890       if (!glsl_type_is_unsized_array(var->type) || var->data.patch)
8891          continue;
8892 
8893       if (var->data.max_array_access >= (int)num_vertices) {
8894          _mesa_glsl_error(&loc, state,
8895                           "this tessellation control shader output layout "
8896                           "specifies %u vertices, but an access to element "
8897                           "%u of output `%s' already exists", num_vertices,
8898                           var->data.max_array_access, var->name);
8899       } else {
8900          var->type = glsl_array_type(var->type->fields.array,
8901                                      num_vertices, 0);
8902       }
8903    }
8904 
8905    return NULL;
8906 }
8907 
8908 
8909 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8910 ast_gs_input_layout::hir(exec_list *instructions,
8911                          struct _mesa_glsl_parse_state *state)
8912 {
8913    YYLTYPE loc = this->get_location();
8914 
8915    /* Should have been prevented by the parser. */
8916    assert(!state->gs_input_prim_type_specified
8917           || state->in_qualifier->prim_type == this->prim_type);
8918 
8919    /* If any shader inputs occurred before this declaration and specified an
8920     * array size, make sure the size they specified is consistent with the
8921     * primitive type.
8922     */
8923    unsigned num_vertices =
8924       mesa_vertices_per_prim(gl_to_mesa_prim(this->prim_type));
8925    if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8926       _mesa_glsl_error(&loc, state,
8927                        "this geometry shader input layout implies %u vertices"
8928                        " per primitive, but a previous input is declared"
8929                        " with size %u", num_vertices, state->gs_input_size);
8930       return NULL;
8931    }
8932 
8933    state->gs_input_prim_type_specified = true;
8934 
8935    /* If any shader inputs occurred before this declaration and did not
8936     * specify an array size, their size is determined now.
8937     */
8938    foreach_in_list(ir_instruction, node, instructions) {
8939       ir_variable *var = node->as_variable();
8940       if (var == NULL || var->data.mode != ir_var_shader_in)
8941          continue;
8942 
8943       /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8944        * array; skip it.
8945        */
8946 
8947       if (glsl_type_is_unsized_array(var->type)) {
8948          if (var->data.max_array_access >= (int)num_vertices) {
8949             _mesa_glsl_error(&loc, state,
8950                              "this geometry shader input layout implies %u"
8951                              " vertices, but an access to element %u of input"
8952                              " `%s' already exists", num_vertices,
8953                              var->data.max_array_access, var->name);
8954          } else {
8955             var->type = glsl_array_type(var->type->fields.array,
8956                                         num_vertices, 0);
8957          }
8958       }
8959    }
8960 
8961    return NULL;
8962 }
8963 
8964 
8965 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8966 ast_cs_input_layout::hir(exec_list *instructions,
8967                          struct _mesa_glsl_parse_state *state)
8968 {
8969    YYLTYPE loc = this->get_location();
8970 
8971    /* From the ARB_compute_shader specification:
8972     *
8973     *     If the local size of the shader in any dimension is greater
8974     *     than the maximum size supported by the implementation for that
8975     *     dimension, a compile-time error results.
8976     *
8977     * It is not clear from the spec how the error should be reported if
8978     * the total size of the work group exceeds
8979     * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8980     * report it at compile time as well.
8981     */
8982    GLuint64 total_invocations = 1;
8983    unsigned qual_local_size[3];
8984    for (int i = 0; i < 3; i++) {
8985 
8986       char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8987                                              'x' + i);
8988       /* Infer a local_size of 1 for unspecified dimensions */
8989       if (this->local_size[i] == NULL) {
8990          qual_local_size[i] = 1;
8991       } else if (!this->local_size[i]->
8992              process_qualifier_constant(state, local_size_str,
8993                                         &qual_local_size[i], false)) {
8994          ralloc_free(local_size_str);
8995          return NULL;
8996       }
8997       ralloc_free(local_size_str);
8998 
8999       if (qual_local_size[i] > state->consts->MaxComputeWorkGroupSize[i]) {
9000          _mesa_glsl_error(&loc, state,
9001                           "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
9002                           " (%d)", 'x' + i,
9003                           state->consts->MaxComputeWorkGroupSize[i]);
9004          break;
9005       }
9006       total_invocations *= qual_local_size[i];
9007       if (total_invocations >
9008           state->consts->MaxComputeWorkGroupInvocations) {
9009          _mesa_glsl_error(&loc, state,
9010                           "product of local_sizes exceeds "
9011                           "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
9012                           state->consts->MaxComputeWorkGroupInvocations);
9013          break;
9014       }
9015    }
9016 
9017    /* If any compute input layout declaration preceded this one, make sure it
9018     * was consistent with this one.
9019     */
9020    if (state->cs_input_local_size_specified) {
9021       for (int i = 0; i < 3; i++) {
9022          if (state->cs_input_local_size[i] != qual_local_size[i]) {
9023             _mesa_glsl_error(&loc, state,
9024                              "compute shader input layout does not match"
9025                              " previous declaration");
9026             return NULL;
9027          }
9028       }
9029    }
9030 
9031    /* The ARB_compute_variable_group_size spec says:
9032     *
9033     *     If a compute shader including a *local_size_variable* qualifier also
9034     *     declares a fixed local group size using the *local_size_x*,
9035     *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
9036     *     results
9037     */
9038    if (state->cs_input_local_size_variable_specified) {
9039       _mesa_glsl_error(&loc, state,
9040                        "compute shader can't include both a variable and a "
9041                        "fixed local group size");
9042       return NULL;
9043    }
9044 
9045    state->cs_input_local_size_specified = true;
9046    for (int i = 0; i < 3; i++)
9047       state->cs_input_local_size[i] = qual_local_size[i];
9048 
9049    /* We may now declare the built-in constant gl_WorkGroupSize (see
9050     * builtin_variable_generator::generate_constants() for why we didn't
9051     * declare it earlier).
9052     */
9053    ir_variable *var = new(state->symbols)
9054       ir_variable(&glsl_type_builtin_uvec3, "gl_WorkGroupSize", ir_var_auto);
9055    var->data.how_declared = ir_var_declared_implicitly;
9056    var->data.read_only = true;
9057    instructions->push_tail(var);
9058    state->symbols->add_variable(var);
9059    ir_constant_data data;
9060    memset(&data, 0, sizeof(data));
9061    for (int i = 0; i < 3; i++)
9062       data.u[i] = qual_local_size[i];
9063    var->constant_value = new(var) ir_constant(&glsl_type_builtin_uvec3, &data);
9064    var->constant_initializer =
9065       new(var) ir_constant(&glsl_type_builtin_uvec3, &data);
9066    var->data.has_initializer = true;
9067    var->data.is_implicit_initializer = false;
9068 
9069    return NULL;
9070 }
9071 
9072 
9073 static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state * state,exec_list * instructions)9074 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
9075                                exec_list *instructions)
9076 {
9077    bool gl_FragColor_assigned = false;
9078    bool gl_FragData_assigned = false;
9079    bool gl_FragSecondaryColor_assigned = false;
9080    bool gl_FragSecondaryData_assigned = false;
9081    bool user_defined_fs_output_assigned = false;
9082    ir_variable *user_defined_fs_output = NULL;
9083 
9084    /* It would be nice to have proper location information. */
9085    YYLTYPE loc;
9086    memset(&loc, 0, sizeof(loc));
9087 
9088    foreach_in_list(ir_instruction, node, instructions) {
9089       ir_variable *var = node->as_variable();
9090 
9091       if (!var || !var->data.assigned)
9092          continue;
9093 
9094       if (strcmp(var->name, "gl_FragColor") == 0) {
9095          gl_FragColor_assigned = true;
9096          if (!var->constant_initializer && state->zero_init) {
9097             const ir_constant_data data = { { 0 } };
9098             var->data.has_initializer = true;
9099             var->data.is_implicit_initializer = true;
9100             var->constant_initializer = new(var) ir_constant(var->type, &data);
9101          }
9102       }
9103       else if (strcmp(var->name, "gl_FragData") == 0)
9104          gl_FragData_assigned = true;
9105         else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
9106          gl_FragSecondaryColor_assigned = true;
9107         else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
9108          gl_FragSecondaryData_assigned = true;
9109       else if (!is_gl_identifier(var->name)) {
9110          if (state->stage == MESA_SHADER_FRAGMENT &&
9111              var->data.mode == ir_var_shader_out) {
9112             user_defined_fs_output_assigned = true;
9113             user_defined_fs_output = var;
9114          }
9115       }
9116    }
9117 
9118    /* From the GLSL 1.30 spec:
9119     *
9120     *     "If a shader statically assigns a value to gl_FragColor, it
9121     *      may not assign a value to any element of gl_FragData. If a
9122     *      shader statically writes a value to any element of
9123     *      gl_FragData, it may not assign a value to
9124     *      gl_FragColor. That is, a shader may assign values to either
9125     *      gl_FragColor or gl_FragData, but not both. Multiple shaders
9126     *      linked together must also consistently write just one of
9127     *      these variables.  Similarly, if user declared output
9128     *      variables are in use (statically assigned to), then the
9129     *      built-in variables gl_FragColor and gl_FragData may not be
9130     *      assigned to. These incorrect usages all generate compile
9131     *      time errors."
9132     */
9133    if (gl_FragColor_assigned && gl_FragData_assigned) {
9134       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9135                        "`gl_FragColor' and `gl_FragData'");
9136    } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
9137       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9138                        "`gl_FragColor' and `%s'",
9139                        user_defined_fs_output->name);
9140    } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
9141       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9142                        "`gl_FragSecondaryColorEXT' and"
9143                        " `gl_FragSecondaryDataEXT'");
9144    } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
9145       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9146                        "`gl_FragColor' and"
9147                        " `gl_FragSecondaryDataEXT'");
9148    } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
9149       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9150                        "`gl_FragData' and"
9151                        " `gl_FragSecondaryColorEXT'");
9152    } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
9153       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9154                        "`gl_FragData' and `%s'",
9155                        user_defined_fs_output->name);
9156    }
9157 
9158    if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
9159        !state->EXT_blend_func_extended_enable) {
9160       _mesa_glsl_error(&loc, state,
9161                        "Dual source blending requires EXT_blend_func_extended");
9162    }
9163 }
9164 
9165 static void
verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state * state)9166 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
9167 {
9168    YYLTYPE loc;
9169    memset(&loc, 0, sizeof(loc));
9170 
9171    /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
9172     *
9173     *   "A program will fail to compile or link if any shader
9174     *    or stage contains two or more functions with the same
9175     *    name if the name is associated with a subroutine type."
9176     */
9177 
9178    for (int i = 0; i < state->num_subroutines; i++) {
9179       unsigned definitions = 0;
9180       ir_function *fn = state->subroutines[i];
9181       /* Calculate number of function definitions with the same name */
9182       foreach_in_list(ir_function_signature, sig, &fn->signatures) {
9183          if (sig->is_defined) {
9184             if (++definitions > 1) {
9185                _mesa_glsl_error(&loc, state,
9186                      "%s shader contains two or more function "
9187                      "definitions with name `%s', which is "
9188                      "associated with a subroutine type.\n",
9189                      _mesa_shader_stage_to_string(state->stage),
9190                      fn->name);
9191                return;
9192             }
9193          }
9194       }
9195    }
9196 }
9197 
9198 static void
remove_per_vertex_blocks(exec_list * instructions,_mesa_glsl_parse_state * state,ir_variable_mode mode)9199 remove_per_vertex_blocks(exec_list *instructions,
9200                          _mesa_glsl_parse_state *state, ir_variable_mode mode)
9201 {
9202    /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
9203     * if it exists in this shader type.
9204     */
9205    const glsl_type *per_vertex = NULL;
9206    switch (mode) {
9207    case ir_var_shader_in:
9208       if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
9209          per_vertex = gl_in->get_interface_type();
9210       break;
9211    case ir_var_shader_out:
9212       if (ir_variable *gl_Position =
9213           state->symbols->get_variable("gl_Position")) {
9214          per_vertex = gl_Position->get_interface_type();
9215       }
9216       break;
9217    default:
9218       assert(!"Unexpected mode");
9219       break;
9220    }
9221 
9222    /* If we didn't find a built-in gl_PerVertex interface block, then we don't
9223     * need to do anything.
9224     */
9225    if (per_vertex == NULL)
9226       return;
9227 
9228    /* If the interface block is used by the shader, then we don't need to do
9229     * anything.
9230     */
9231    interface_block_usage_visitor v(mode, per_vertex);
9232    v.run(instructions);
9233    if (v.usage_found())
9234       return;
9235 
9236    /* Remove any ir_variable declarations that refer to the interface block
9237     * we're removing.
9238     */
9239    foreach_in_list_safe(ir_instruction, node, instructions) {
9240       ir_variable *const var = node->as_variable();
9241       if (var != NULL && var->get_interface_type() == per_vertex &&
9242           var->data.mode == mode &&
9243           var->data.how_declared == ir_var_declared_implicitly) {
9244          state->symbols->disable_variable(var->name);
9245          var->remove();
9246       }
9247    }
9248 }
9249 
9250 ir_rvalue *
hir(exec_list *,struct _mesa_glsl_parse_state * state)9251 ast_warnings_toggle::hir(exec_list *,
9252                          struct _mesa_glsl_parse_state *state)
9253 {
9254    state->warnings_enabled = enable;
9255    return NULL;
9256 }
9257