• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Luca Barbieri
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file lower_jumps.cpp
26  *
27  * This pass lowers jumps (break, continue, and return) to if/else structures.
28  *
29  * It can be asked to:
30  * 1. Pull jumps out of ifs where possible
31  * 2. Remove all "continue"s, replacing them with an "execute flag"
32  * 3. Replace all "break" with a single conditional one at the end of the loop
33  * 4. Replace all "return"s with a single return at the end of the function,
34  *    for the main function and/or other functions
35  *
36  * Applying this pass gives several benefits:
37  * 1. All functions can be inlined.
38  * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39  * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40  *    supported
41  *
42  * Continues are lowered by adding a per-loop "execute flag", initialized to
43  * true, that when cleared inhibits all execution until the end of the loop.
44  *
45  * Breaks are lowered to continues, plus setting a "break flag" that is checked
46  * at the end of the loop, and trigger the unique "break".
47  *
48  * Returns are lowered to breaks/continues, plus adding a "return flag" that
49  * causes loops to break again out of their enclosing loops until all the
50  * loops are exited: then the "execute flag" logic will ignore everything
51  * until the end of the function.
52  *
53  * Note that "continue" and "return" can also be implemented by adding
54  * a dummy loop and using break.
55  * However, this is bad for hardware with limited nesting depth, and
56  * prevents further optimization, and thus is not currently performed.
57  */
58 
59 #include "compiler/glsl_types.h"
60 #include <string.h>
61 #include "ir.h"
62 
63 /**
64  * Enum recording the result of analyzing how control flow might exit
65  * an IR node.
66  *
67  * Each possible value of jump_strength indicates a strictly stronger
68  * guarantee on control flow than the previous value.
69  *
70  * The ordering of strengths roughly reflects the way jumps are
71  * lowered: jumps with higher strength tend to be lowered to jumps of
72  * lower strength.  Accordingly, strength is used as a heuristic to
73  * determine which lowering to perform first.
74  *
75  * This enum is also used by get_jump_strength() to categorize
76  * instructions as either break, continue, return, or other.  When
77  * used in this fashion, strength_always_clears_execute_flag is not
78  * used.
79  *
80  * The control flow analysis made by this optimization pass makes two
81  * simplifying assumptions:
82  *
83  * - It ignores discard instructions, since they are lowered by a
84  *   separate pass (lower_discard.cpp).
85  *
86  * - It assumes it is always possible for control to flow from a loop
87  *   to the instruction immediately following it.  Technically, this
88  *   is not true (since all execution paths through the loop might
89  *   jump back to the top, or return from the function).
90  *
91  * Both of these simplifying assumptions are safe, since they can never
92  * cause reachable code to be incorrectly classified as unreachable;
93  * they can only do the opposite.
94  */
95 enum jump_strength
96 {
97    /**
98     * Analysis has produced no guarantee on how control flow might
99     * exit this IR node.  It might fall out the bottom (with or
100     * without clearing the execute flag, if present), or it might
101     * continue to the top of the innermost enclosing loop, break out
102     * of it, or return from the function.
103     */
104    strength_none,
105 
106    /**
107     * The only way control can fall out the bottom of this node is
108     * through a code path that clears the execute flag.  It might also
109     * continue to the top of the innermost enclosing loop, break out
110     * of it, or return from the function.
111     */
112    strength_always_clears_execute_flag,
113 
114    /**
115     * Control cannot fall out the bottom of this node.  It might
116     * continue to the top of the innermost enclosing loop, break out
117     * of it, or return from the function.
118     */
119    strength_continue,
120 
121    /**
122     * Control cannot fall out the bottom of this node, or continue the
123     * top of the innermost enclosing loop.  It can only break out of
124     * it or return from the function.
125     */
126    strength_break,
127 
128    /**
129     * Control cannot fall out the bottom of this node, continue to the
130     * top of the innermost enclosing loop, or break out of it.  It can
131     * only return from the function.
132     */
133    strength_return
134 };
135 
136 namespace {
137 
138 struct block_record
139 {
140    /* minimum jump strength (of lowered IR, not pre-lowering IR)
141     *
142     * If the block ends with a jump, must be the strength of the jump.
143     * Otherwise, the jump would be dead and have been deleted before)
144     *
145     * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
146     * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
147     * Note that identical jumps are usually unified though.
148     */
149    jump_strength min_strength;
150 
151    /* can anything clear the execute flag? */
152    bool may_clear_execute_flag;
153 
block_record__anona1a049dd0111::block_record154    block_record()
155    {
156       this->min_strength = strength_none;
157       this->may_clear_execute_flag = false;
158    }
159 };
160 
161 struct loop_record
162 {
163    ir_function_signature* signature;
164    ir_loop* loop;
165 
166    /* used to avoid lowering the break used to represent lowered breaks */
167    unsigned nesting_depth;
168    bool in_if_at_the_end_of_the_loop;
169 
170    bool may_set_return_flag;
171 
172    ir_variable* execute_flag; /* cleared to emulate continue */
173 
loop_record__anona1a049dd0111::loop_record174    loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
175    {
176       this->signature = p_signature;
177       this->loop = p_loop;
178       this->nesting_depth = 0;
179       this->in_if_at_the_end_of_the_loop = false;
180       this->may_set_return_flag = false;
181       this->execute_flag = 0;
182    }
183 
get_execute_flag__anona1a049dd0111::loop_record184    ir_variable* get_execute_flag()
185    {
186       /* also supported for the "function loop" */
187       if(!this->execute_flag) {
188          exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
189          this->execute_flag = new(this->signature) ir_variable(&glsl_type_builtin_bool, "execute_flag", ir_var_temporary);
190          list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true)));
191          list.push_head(this->execute_flag);
192       }
193       return this->execute_flag;
194    }
195 };
196 
197 struct function_record
198 {
199    ir_function_signature* signature;
200    ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
201    ir_variable* return_value;
202    unsigned nesting_depth;
203 
function_record__anona1a049dd0111::function_record204    function_record(ir_function_signature* p_signature = 0)
205    {
206       this->signature = p_signature;
207       this->return_flag = 0;
208       this->return_value = 0;
209       this->nesting_depth = 0;
210    }
211 
212 };
213 
214 struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
215    /* Postconditions: on exit of any visit() function:
216     *
217     * ANALYSIS: this->block.min_strength,
218     * this->block.may_clear_execute_flag, and
219     * this->loop.may_set_return_flag are updated to reflect the
220     * characteristics of the visited statement.
221     *
222     * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
223     * strength_none, the visited node is at the end of its exec_list.
224     * In other words, any unreachable statements that follow the
225     * visited statement in its exec_list have been removed.
226     *
227     * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
228     * statements, then should_lower_jump() is false for all of the
229     * return, break, or continue statements it contains.
230     *
231     * Note that visiting a jump does not lower it.  That is the
232     * responsibility of the statement (or function signature) that
233     * contains the jump.
234     */
235 
236    using ir_control_flow_visitor::visit;
237 
238    bool progress;
239 
240    struct function_record function;
241    struct loop_record loop;
242    struct block_record block;
243 
244    bool pull_out_jumps;
245    bool lower_continue;
246 
ir_lower_jumps_visitor__anona1a049dd0111::ir_lower_jumps_visitor247    ir_lower_jumps_visitor()
248       : progress(false),
249         pull_out_jumps(false),
250         lower_continue(false)
251    {
252    }
253 
truncate_after_instruction__anona1a049dd0111::ir_lower_jumps_visitor254    void truncate_after_instruction(exec_node *ir)
255    {
256       if (!ir)
257          return;
258 
259       while (!ir->get_next()->is_tail_sentinel()) {
260          ((ir_instruction *)ir->get_next())->remove();
261          this->progress = true;
262       }
263    }
264 
move_outer_block_inside__anona1a049dd0111::ir_lower_jumps_visitor265    void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
266    {
267       while (!ir->get_next()->is_tail_sentinel()) {
268          ir_instruction *move_ir = (ir_instruction *)ir->get_next();
269 
270          move_ir->remove();
271          inner_block->push_tail(move_ir);
272       }
273    }
274 
visit__anona1a049dd0111::ir_lower_jumps_visitor275    virtual void visit(class ir_loop_jump * ir)
276    {
277       /* Eliminate all instructions after each one, since they are
278        * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
279        * postcondition.
280        */
281       truncate_after_instruction(ir);
282 
283       /* Set this->block.min_strength based on this instruction.  This
284        * satisfies the ANALYSIS postcondition.  It is not necessary to
285        * update this->block.may_clear_execute_flag or
286        * this->loop.may_set_return_flag, because an unlowered jump
287        * instruction can't change any flags.
288        */
289       this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
290 
291       /* The CONTAINED_JUMPS_LOWERED postcondition is already
292        * satisfied, because jump statements can't contain other
293        * statements.
294        */
295    }
296 
visit__anona1a049dd0111::ir_lower_jumps_visitor297    virtual void visit(class ir_return * ir)
298    {
299       /* Eliminate all instructions after each one, since they are
300        * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
301        * postcondition.
302        */
303       truncate_after_instruction(ir);
304 
305       /* Set this->block.min_strength based on this instruction.  This
306        * satisfies the ANALYSIS postcondition.  It is not necessary to
307        * update this->block.may_clear_execute_flag or
308        * this->loop.may_set_return_flag, because an unlowered return
309        * instruction can't change any flags.
310        */
311       this->block.min_strength = strength_return;
312 
313       /* The CONTAINED_JUMPS_LOWERED postcondition is already
314        * satisfied, because jump statements can't contain other
315        * statements.
316        */
317    }
318 
visit__anona1a049dd0111::ir_lower_jumps_visitor319    virtual void visit(class ir_discard * ir)
320    {
321       /* Nothing needs to be done.  The ANALYSIS and
322        * DEAD_CODE_ELIMINATION postconditions are already satisfied,
323        * because discard statements are ignored by this optimization
324        * pass.  The CONTAINED_JUMPS_LOWERED postcondition is already
325        * satisfied, because discard statements can't contain other
326        * statements.
327        */
328       (void) ir;
329    }
330 
get_jump_strength__anona1a049dd0111::ir_lower_jumps_visitor331    enum jump_strength get_jump_strength(ir_instruction* ir)
332    {
333       if(!ir)
334          return strength_none;
335       else if(ir->ir_type == ir_type_loop_jump) {
336          if(((ir_loop_jump*)ir)->is_break())
337             return strength_break;
338          else
339             return strength_continue;
340       } else
341          return strength_none;
342    }
343 
should_lower_jump__anona1a049dd0111::ir_lower_jumps_visitor344    bool should_lower_jump(ir_jump* ir)
345    {
346       unsigned strength = get_jump_strength(ir);
347       bool lower;
348       switch(strength)
349       {
350       case strength_none:
351          lower = false; /* don't change this, code relies on it */
352          break;
353       case strength_continue:
354          lower = lower_continue;
355          break;
356       case strength_break:
357          lower = false;
358          break;
359       }
360       return lower;
361    }
362 
visit_block__anona1a049dd0111::ir_lower_jumps_visitor363    block_record visit_block(exec_list* list)
364    {
365       /* Note: since visiting a node may change that node's next
366        * pointer, we can't use visit_exec_list(), because
367        * visit_exec_list() caches the node's next pointer before
368        * visiting it.  So we use foreach_in_list() instead.
369        *
370        * foreach_in_list() isn't safe if the node being visited gets
371        * removed, but fortunately this visitor doesn't do that.
372        */
373 
374       block_record saved_block = this->block;
375       this->block = block_record();
376       foreach_in_list(ir_instruction, node, list) {
377          node->accept(this);
378       }
379       block_record ret = this->block;
380       this->block = saved_block;
381       return ret;
382    }
383 
visit__anona1a049dd0111::ir_lower_jumps_visitor384    virtual void visit(ir_if *ir)
385    {
386       if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
387          this->loop.in_if_at_the_end_of_the_loop = true;
388 
389       ++this->function.nesting_depth;
390       ++this->loop.nesting_depth;
391 
392       block_record block_records[2];
393       ir_jump* jumps[2];
394 
395       /* Recursively lower nested jumps.  This satisfies the
396        * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
397        * unconditional jumps at the end of ir->then_instructions and
398        * ir->else_instructions, which are handled below.
399        */
400       block_records[0] = visit_block(&ir->then_instructions);
401       block_records[1] = visit_block(&ir->else_instructions);
402 
403 retry: /* we get here if we put code after the if inside a branch */
404 
405       /* Determine which of ir->then_instructions and
406        * ir->else_instructions end with an unconditional jump.
407        */
408       for(unsigned i = 0; i < 2; ++i) {
409          exec_list& list = i ? ir->else_instructions : ir->then_instructions;
410          jumps[i] = 0;
411          if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
412             jumps[i] = (ir_jump*)list.get_tail();
413       }
414 
415       /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
416        * postcondition by lowering jumps in both then_instructions and
417        * else_instructions.
418        */
419       for(;;) {
420          /* Determine the types of the jumps that terminate
421           * ir->then_instructions and ir->else_instructions.
422           */
423          jump_strength jump_strengths[2];
424 
425          for(unsigned i = 0; i < 2; ++i) {
426             if(jumps[i]) {
427                jump_strengths[i] = block_records[i].min_strength;
428                assert(jump_strengths[i] == get_jump_strength(jumps[i]));
429             } else
430                jump_strengths[i] = strength_none;
431          }
432 
433          /* If both code paths end in a jump, and the jumps are the
434           * same, and we are pulling out jumps, replace them with a
435           * single jump that comes after the if instruction.  The new
436           * jump will be visited next, and it will be lowered if
437           * necessary by the loop or conditional that encloses it.
438           */
439          if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
440             bool unify = true;
441             if(jump_strengths[0] == strength_continue)
442                ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
443             else if(jump_strengths[0] == strength_break)
444                ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
445             /* FINISHME: unify returns with identical expressions */
446             else if(jump_strengths[0] == strength_return && glsl_type_is_void(this->function.signature->return_type))
447                ir->insert_after(new(ir) ir_return(NULL));
448 	    else
449 	       unify = false;
450 
451             if(unify) {
452                jumps[0]->remove();
453                jumps[1]->remove();
454                this->progress = true;
455 
456                /* Update jumps[] to reflect the fact that the jumps
457                 * are gone, and update block_records[] to reflect the
458                 * fact that control can now flow to the next
459                 * instruction.
460                 */
461                jumps[0] = 0;
462                jumps[1] = 0;
463                block_records[0].min_strength = strength_none;
464                block_records[1].min_strength = strength_none;
465 
466                /* The CONTAINED_JUMPS_LOWERED postcondition is now
467                 * satisfied, so we can break out of the loop.
468                 */
469                break;
470             }
471          }
472 
473          /* lower a jump: if both need to lowered, start with the strongest one, so that
474           * we might later unify the lowered version with the other one
475           */
476          bool should_lower[2];
477          for(unsigned i = 0; i < 2; ++i)
478             should_lower[i] = should_lower_jump(jumps[i]);
479 
480          int lower;
481          if(should_lower[1] && should_lower[0])
482             lower = jump_strengths[1] > jump_strengths[0];
483          else if(should_lower[0])
484             lower = 0;
485          else if(should_lower[1])
486             lower = 1;
487          else
488             /* Neither code path ends in a jump that needs to be
489              * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
490              * is satisfied and we can break out of the loop.
491              */
492             break;
493 
494          if(jump_strengths[lower] == strength_break) {
495             unreachable("no lowering of breaks any more");
496          } else if(jump_strengths[lower] == strength_continue) {
497             /* To lower a continue, we create an execute flag (if the
498              * loop doesn't have one already) and replace the continue
499              * with an instruction that clears it.
500              *
501              * Note that this code path gets exercised when lowering
502              * return statements that are not inside a loop, so
503              * this->loop must be initialized even outside of loops.
504              */
505             ir_variable* execute_flag = this->loop.get_execute_flag();
506             jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false)));
507             /* Note: we must update block_records and jumps to reflect
508              * the fact that the control path has been altered to an
509              * instruction that clears the execute flag.
510              */
511             jumps[lower] = 0;
512             block_records[lower].min_strength = strength_always_clears_execute_flag;
513             block_records[lower].may_clear_execute_flag = true;
514             this->progress = true;
515 
516             /* Let the loop run again, in case the other branch of the
517              * if needs to be lowered too.
518              */
519          }
520       }
521 
522       /* move out a jump out if possible */
523       if(pull_out_jumps) {
524          /* If one of the branches ends in a jump, and control cannot
525           * fall out the bottom of the other branch, then we can move
526           * the jump after the if.
527           *
528           * Set move_out to the branch we are moving a jump out of.
529           */
530          int move_out = -1;
531          if(jumps[0] && block_records[1].min_strength >= strength_continue)
532             move_out = 0;
533          else if(jumps[1] && block_records[0].min_strength >= strength_continue)
534             move_out = 1;
535 
536          if(move_out >= 0)
537          {
538             jumps[move_out]->remove();
539             ir->insert_after(jumps[move_out]);
540             /* Note: we must update block_records and jumps to reflect
541              * the fact that the jump has been moved out of the if.
542              */
543             jumps[move_out] = 0;
544             block_records[move_out].min_strength = strength_none;
545             this->progress = true;
546          }
547       }
548 
549       /* Now satisfy the ANALYSIS postcondition by setting
550        * this->block.min_strength and
551        * this->block.may_clear_execute_flag based on the
552        * characteristics of the two branches.
553        */
554       if(block_records[0].min_strength < block_records[1].min_strength)
555          this->block.min_strength = block_records[0].min_strength;
556       else
557          this->block.min_strength = block_records[1].min_strength;
558       this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
559 
560       /* Now we need to clean up the instructions that follow the
561        * if.
562        *
563        * If those instructions are unreachable, then satisfy the
564        * DEAD_CODE_ELIMINATION postcondition by eliminating them.
565        * Otherwise that postcondition is already satisfied.
566        */
567       if(this->block.min_strength)
568          truncate_after_instruction(ir);
569       else if(this->block.may_clear_execute_flag)
570       {
571          /* If the "if" instruction might clear the execute flag, then
572           * we need to guard any instructions that follow so that they
573           * are only executed if the execute flag is set.
574           *
575           * If one of the branches of the "if" always clears the
576           * execute flag, and the other branch never clears it, then
577           * this is easy: just move all the instructions following the
578           * "if" into the branch that never clears it.
579           */
580          int move_into = -1;
581          if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
582             move_into = 1;
583          else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
584             move_into = 0;
585 
586          if(move_into >= 0) {
587             assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
588 
589             exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
590             exec_node* next = ir->get_next();
591             if(!next->is_tail_sentinel()) {
592                move_outer_block_inside(ir, list);
593 
594                /* If any instructions moved, then we need to visit
595                 * them (since they are now inside the "if").  Since
596                 * block_records[move_into] is in its default state
597                 * (see assertion above), we can safely replace
598                 * block_records[move_into] with the result of this
599                 * analysis.
600                 */
601                exec_list list;
602                list.head_sentinel.next = next;
603                block_records[move_into] = visit_block(&list);
604 
605                /*
606                 * Then we need to re-start our jump lowering, since one
607                 * of the instructions we moved might be a jump that
608                 * needs to be lowered.
609                 */
610                this->progress = true;
611                goto retry;
612             }
613          } else {
614             /* If we get here, then the simple case didn't apply; we
615              * need to actually guard the instructions that follow.
616              *
617              * To avoid creating unnecessarily-deep nesting, first
618              * look through the instructions that follow and unwrap
619              * any instructions that that are already wrapped in the
620              * appropriate guard.
621              */
622             exec_node *node;
623             for(node = ir->get_next(); !node->is_tail_sentinel();)
624             {
625                ir_instruction* ir_after = (ir_instruction*)node;
626                ir_if* ir_if = ir_after->as_if();
627                if(ir_if && ir_if->else_instructions.is_empty()) {
628                   ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
629                   if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
630                      ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
631                      ir_after->insert_before(&ir_if->then_instructions);
632                      ir_after->remove();
633                      ir_after = ir_next;
634                      continue;
635                   }
636                }
637                node = ir_after->get_next();
638 
639                /* only set this if we find any unprotected instruction */
640                this->progress = true;
641             }
642 
643             /* Then, wrap all the instructions that follow in a single
644              * guard.
645              */
646             if(!ir->get_next()->is_tail_sentinel()) {
647                assert(this->loop.execute_flag);
648                ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
649                move_outer_block_inside(ir, &if_execute->then_instructions);
650                ir->insert_after(if_execute);
651             }
652          }
653       }
654       --this->loop.nesting_depth;
655       --this->function.nesting_depth;
656    }
657 
visit__anona1a049dd0111::ir_lower_jumps_visitor658    virtual void visit(ir_loop *ir)
659    {
660       /* Visit the body of the loop, with a fresh data structure in
661        * this->loop so that the analysis we do here won't bleed into
662        * enclosing loops.
663        *
664        * We assume that all code after a loop is reachable from the
665        * loop (see comments on enum jump_strength), so the
666        * DEAD_CODE_ELIMINATION postcondition is automatically
667        * satisfied, as is the block.min_strength portion of the
668        * ANALYSIS postcondition.
669        *
670        * The block.may_clear_execute_flag portion of the ANALYSIS
671        * postcondition is automatically satisfied because execute
672        * flags do not propagate outside of loops.
673        *
674        * The loop.may_set_return_flag portion of the ANALYSIS
675        * postcondition is handled below.
676        */
677       ++this->function.nesting_depth;
678       loop_record saved_loop = this->loop;
679       this->loop = loop_record(this->function.signature, ir);
680 
681       /* Recursively lower nested jumps.  This satisfies the
682        * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
683        * an unconditional continue or return at the bottom of the
684        * loop, which are handled below.
685        */
686       block_record body = visit_block(&ir->body_instructions);
687 
688       /* If the loop ends in an unconditional continue, eliminate it
689        * because it is redundant.
690        */
691       ir_instruction *ir_last
692          = (ir_instruction *) ir->body_instructions.get_tail();
693       if (get_jump_strength(ir_last) == strength_continue) {
694          ir_last->remove();
695       }
696 
697       if(body.min_strength >= strength_break) {
698          /* FINISHME: If the min_strength of the loop body is
699           * strength_break or strength_return, that means that it
700           * isn't a loop at all, since control flow always leaves the
701           * body of the loop via break or return.  In principle the
702           * loop could be eliminated in this case.  This optimization
703           * is not implemented yet.
704           */
705       }
706 
707 
708       /* If the body of the loop may set the return flag, then at
709        * least one return was lowered to a break, so we need to ensure
710        * that the return flag is checked after the body of the loop is
711        * executed.
712        */
713       if(this->loop.may_set_return_flag) {
714          assert(this->function.return_flag);
715          /* Generate the if statement to check the return flag */
716          ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
717          /* Note: we also need to propagate the knowledge that the
718           * return flag may get set to the outer context.  This
719           * satisfies the loop.may_set_return_flag part of the
720           * ANALYSIS postcondition.
721           */
722          saved_loop.may_set_return_flag = true;
723          if(saved_loop.loop)
724             /* If this loop is nested inside another one, then the if
725              * statement that we generated should break out of that
726              * loop if the return flag is set.  Caller will lower that
727              * break statement if necessary.
728              */
729             return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
730          else {
731             /* Otherwise, ensure that the instructions that follow are only
732              * executed if the return flag is clear.  We can do that by moving
733              * those instructions into the else clause of the generated if
734              * statement.
735              */
736             move_outer_block_inside(ir, &return_if->else_instructions);
737 
738             /* In case the loop is embedded inside an if add a new return to
739              * the return flag then branch and let a future pass tidy it up.
740              */
741             if (glsl_type_is_void(this->function.signature->return_type))
742                return_if->then_instructions.push_tail(new(ir) ir_return(NULL));
743             else {
744                assert(this->function.return_value);
745                ir_variable* return_value = this->function.return_value;
746                return_if->then_instructions.push_tail(
747                   new(ir) ir_return(new(ir) ir_dereference_variable(return_value)));
748             }
749          }
750 
751          ir->insert_after(return_if);
752       }
753 
754       this->loop = saved_loop;
755       --this->function.nesting_depth;
756    }
757 
visit__anona1a049dd0111::ir_lower_jumps_visitor758    virtual void visit(ir_function_signature *ir)
759    {
760       /* these are not strictly necessary */
761       assert(!this->function.signature);
762       assert(!this->loop.loop);
763 
764       function_record saved_function = this->function;
765       loop_record saved_loop = this->loop;
766       this->function = function_record(ir);
767       this->loop = loop_record(ir);
768 
769       assert(!this->loop.loop);
770 
771       /* Visit the body of the function to lower any jumps that occur
772        * in it, except possibly an unconditional return statement at
773        * the end of it.
774        */
775       visit_block(&ir->body);
776 
777       /* If the body ended in an unconditional return of non-void,
778        * then we don't need to lower it because it's the one canonical
779        * return.
780        *
781        * If the body ended in a return of void, eliminate it because
782        * it is redundant.
783        */
784       if (glsl_type_is_void(ir->return_type) &&
785           get_jump_strength((ir_instruction *) ir->body.get_tail())) {
786          ir_jump *jump = (ir_jump *) ir->body.get_tail();
787          assert (jump->ir_type == ir_type_return);
788          jump->remove();
789       }
790 
791       if(this->function.return_value)
792          ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
793 
794       this->loop = saved_loop;
795       this->function = saved_function;
796    }
797 
visit__anona1a049dd0111::ir_lower_jumps_visitor798    virtual void visit(class ir_function * ir)
799    {
800       visit_block(&ir->signatures);
801    }
802 };
803 
804 } /* anonymous namespace */
805 
806 bool
do_lower_jumps(exec_list * instructions,bool pull_out_jumps,bool lower_continue)807 do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_continue)
808 {
809    ir_lower_jumps_visitor v;
810    v.pull_out_jumps = pull_out_jumps;
811    v.lower_continue = lower_continue;
812 
813    bool progress_ever = false;
814    do {
815       v.progress = false;
816       visit_exec_list_safe(instructions, &v);
817       progress_ever = v.progress || progress_ever;
818    } while (v.progress);
819 
820    return progress_ever;
821 }
822