1 // Copyright 2023 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Utilities for palette analysis.
11 //
12 // Author: Vincent Rabaud (vrabaud@google.com)
13
14 #include "src/utils/palette.h"
15
16 #include <assert.h>
17 #include <stdlib.h>
18
19 #include "src/dsp/lossless_common.h"
20 #include "src/utils/color_cache_utils.h"
21 #include "src/utils/utils.h"
22 #include "src/webp/encode.h"
23 #include "src/webp/format_constants.h"
24
25 // -----------------------------------------------------------------------------
26
27 // Palette reordering for smaller sum of deltas (and for smaller storage).
28
PaletteCompareColorsForQsort(const void * p1,const void * p2)29 static int PaletteCompareColorsForQsort(const void* p1, const void* p2) {
30 const uint32_t a = WebPMemToUint32((uint8_t*)p1);
31 const uint32_t b = WebPMemToUint32((uint8_t*)p2);
32 assert(a != b);
33 return (a < b) ? -1 : 1;
34 }
35
PaletteComponentDistance(uint32_t v)36 static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) {
37 return (v <= 128) ? v : (256 - v);
38 }
39
40 // Computes a value that is related to the entropy created by the
41 // palette entry diff.
42 //
43 // Note that the last & 0xff is a no-operation in the next statement, but
44 // removed by most compilers and is here only for regularity of the code.
PaletteColorDistance(uint32_t col1,uint32_t col2)45 static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) {
46 const uint32_t diff = VP8LSubPixels(col1, col2);
47 const int kMoreWeightForRGBThanForAlpha = 9;
48 uint32_t score;
49 score = PaletteComponentDistance((diff >> 0) & 0xff);
50 score += PaletteComponentDistance((diff >> 8) & 0xff);
51 score += PaletteComponentDistance((diff >> 16) & 0xff);
52 score *= kMoreWeightForRGBThanForAlpha;
53 score += PaletteComponentDistance((diff >> 24) & 0xff);
54 return score;
55 }
56
SwapColor(uint32_t * const col1,uint32_t * const col2)57 static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) {
58 const uint32_t tmp = *col1;
59 *col1 = *col2;
60 *col2 = tmp;
61 }
62
SearchColorNoIdx(const uint32_t sorted[],uint32_t color,int num_colors)63 int SearchColorNoIdx(const uint32_t sorted[], uint32_t color, int num_colors) {
64 int low = 0, hi = num_colors;
65 if (sorted[low] == color) return low; // loop invariant: sorted[low] != color
66 while (1) {
67 const int mid = (low + hi) >> 1;
68 if (sorted[mid] == color) {
69 return mid;
70 } else if (sorted[mid] < color) {
71 low = mid;
72 } else {
73 hi = mid;
74 }
75 }
76 assert(0);
77 return 0;
78 }
79
PrepareMapToPalette(const uint32_t palette[],uint32_t num_colors,uint32_t sorted[],uint32_t idx_map[])80 void PrepareMapToPalette(const uint32_t palette[], uint32_t num_colors,
81 uint32_t sorted[], uint32_t idx_map[]) {
82 uint32_t i;
83 memcpy(sorted, palette, num_colors * sizeof(*sorted));
84 qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
85 for (i = 0; i < num_colors; ++i) {
86 idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
87 }
88 }
89
90 //------------------------------------------------------------------------------
91
92 #define COLOR_HASH_SIZE (MAX_PALETTE_SIZE * 4)
93 #define COLOR_HASH_RIGHT_SHIFT 22 // 32 - log2(COLOR_HASH_SIZE).
94
GetColorPalette(const WebPPicture * const pic,uint32_t * const palette)95 int GetColorPalette(const WebPPicture* const pic, uint32_t* const palette) {
96 int i;
97 int x, y;
98 int num_colors = 0;
99 uint8_t in_use[COLOR_HASH_SIZE] = {0};
100 uint32_t colors[COLOR_HASH_SIZE] = {0};
101 const uint32_t* argb = pic->argb;
102 const int width = pic->width;
103 const int height = pic->height;
104 uint32_t last_pix = ~argb[0]; // so we're sure that last_pix != argb[0]
105 assert(pic != NULL);
106 assert(pic->use_argb);
107
108 for (y = 0; y < height; ++y) {
109 for (x = 0; x < width; ++x) {
110 int key;
111 if (argb[x] == last_pix) {
112 continue;
113 }
114 last_pix = argb[x];
115 key = VP8LHashPix(last_pix, COLOR_HASH_RIGHT_SHIFT);
116 while (1) {
117 if (!in_use[key]) {
118 colors[key] = last_pix;
119 in_use[key] = 1;
120 ++num_colors;
121 if (num_colors > MAX_PALETTE_SIZE) {
122 return MAX_PALETTE_SIZE + 1; // Exact count not needed.
123 }
124 break;
125 } else if (colors[key] == last_pix) {
126 break; // The color is already there.
127 } else {
128 // Some other color sits here, so do linear conflict resolution.
129 ++key;
130 key &= (COLOR_HASH_SIZE - 1); // Key mask.
131 }
132 }
133 }
134 argb += pic->argb_stride;
135 }
136
137 if (palette != NULL) { // Fill the colors into palette.
138 num_colors = 0;
139 for (i = 0; i < COLOR_HASH_SIZE; ++i) {
140 if (in_use[i]) {
141 palette[num_colors] = colors[i];
142 ++num_colors;
143 }
144 }
145 qsort(palette, num_colors, sizeof(*palette), PaletteCompareColorsForQsort);
146 }
147 return num_colors;
148 }
149
150 #undef COLOR_HASH_SIZE
151 #undef COLOR_HASH_RIGHT_SHIFT
152
153 // -----------------------------------------------------------------------------
154
155 // The palette has been sorted by alpha. This function checks if the other
156 // components of the palette have a monotonic development with regards to
157 // position in the palette. If all have monotonic development, there is
158 // no benefit to re-organize them greedily. A monotonic development
159 // would be spotted in green-only situations (like lossy alpha) or gray-scale
160 // images.
PaletteHasNonMonotonousDeltas(const uint32_t * const palette,int num_colors)161 static int PaletteHasNonMonotonousDeltas(const uint32_t* const palette,
162 int num_colors) {
163 uint32_t predict = 0x000000;
164 int i;
165 uint8_t sign_found = 0x00;
166 for (i = 0; i < num_colors; ++i) {
167 const uint32_t diff = VP8LSubPixels(palette[i], predict);
168 const uint8_t rd = (diff >> 16) & 0xff;
169 const uint8_t gd = (diff >> 8) & 0xff;
170 const uint8_t bd = (diff >> 0) & 0xff;
171 if (rd != 0x00) {
172 sign_found |= (rd < 0x80) ? 1 : 2;
173 }
174 if (gd != 0x00) {
175 sign_found |= (gd < 0x80) ? 8 : 16;
176 }
177 if (bd != 0x00) {
178 sign_found |= (bd < 0x80) ? 64 : 128;
179 }
180 predict = palette[i];
181 }
182 return (sign_found & (sign_found << 1)) != 0; // two consequent signs.
183 }
184
PaletteSortMinimizeDeltas(const uint32_t * const palette_sorted,int num_colors,uint32_t * const palette)185 static void PaletteSortMinimizeDeltas(const uint32_t* const palette_sorted,
186 int num_colors, uint32_t* const palette) {
187 uint32_t predict = 0x00000000;
188 int i, k;
189 memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
190 if (!PaletteHasNonMonotonousDeltas(palette_sorted, num_colors)) return;
191 // Find greedily always the closest color of the predicted color to minimize
192 // deltas in the palette. This reduces storage needs since the
193 // palette is stored with delta encoding.
194 if (num_colors > 17) {
195 if (palette[0] == 0) {
196 --num_colors;
197 SwapColor(&palette[num_colors], &palette[0]);
198 }
199 }
200 for (i = 0; i < num_colors; ++i) {
201 int best_ix = i;
202 uint32_t best_score = ~0U;
203 for (k = i; k < num_colors; ++k) {
204 const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
205 if (best_score > cur_score) {
206 best_score = cur_score;
207 best_ix = k;
208 }
209 }
210 SwapColor(&palette[best_ix], &palette[i]);
211 predict = palette[i];
212 }
213 }
214
215 // -----------------------------------------------------------------------------
216 // Modified Zeng method from "A Survey on Palette Reordering
217 // Methods for Improving the Compression of Color-Indexed Images" by Armando J.
218 // Pinho and Antonio J. R. Neves.
219
220 // Finds the biggest cooccurrence in the matrix.
CoOccurrenceFindMax(const uint32_t * const cooccurrence,uint32_t num_colors,uint8_t * const c1,uint8_t * const c2)221 static void CoOccurrenceFindMax(const uint32_t* const cooccurrence,
222 uint32_t num_colors, uint8_t* const c1,
223 uint8_t* const c2) {
224 // Find the index that is most frequently located adjacent to other
225 // (different) indexes.
226 uint32_t best_sum = 0u;
227 uint32_t i, j, best_cooccurrence;
228 *c1 = 0u;
229 for (i = 0; i < num_colors; ++i) {
230 uint32_t sum = 0;
231 for (j = 0; j < num_colors; ++j) sum += cooccurrence[i * num_colors + j];
232 if (sum > best_sum) {
233 best_sum = sum;
234 *c1 = i;
235 }
236 }
237 // Find the index that is most frequently found adjacent to *c1.
238 *c2 = 0u;
239 best_cooccurrence = 0u;
240 for (i = 0; i < num_colors; ++i) {
241 if (cooccurrence[*c1 * num_colors + i] > best_cooccurrence) {
242 best_cooccurrence = cooccurrence[*c1 * num_colors + i];
243 *c2 = i;
244 }
245 }
246 assert(*c1 != *c2);
247 }
248
249 // Builds the cooccurrence matrix
CoOccurrenceBuild(const WebPPicture * const pic,const uint32_t * const palette,uint32_t num_colors,uint32_t * cooccurrence)250 static int CoOccurrenceBuild(const WebPPicture* const pic,
251 const uint32_t* const palette, uint32_t num_colors,
252 uint32_t* cooccurrence) {
253 uint32_t *lines, *line_top, *line_current, *line_tmp;
254 int x, y;
255 const uint32_t* src = pic->argb;
256 uint32_t prev_pix = ~src[0];
257 uint32_t prev_idx = 0u;
258 uint32_t idx_map[MAX_PALETTE_SIZE] = {0};
259 uint32_t palette_sorted[MAX_PALETTE_SIZE];
260 lines = (uint32_t*)WebPSafeMalloc(2 * pic->width, sizeof(*lines));
261 if (lines == NULL) {
262 return 0;
263 }
264 line_top = &lines[0];
265 line_current = &lines[pic->width];
266 PrepareMapToPalette(palette, num_colors, palette_sorted, idx_map);
267 for (y = 0; y < pic->height; ++y) {
268 for (x = 0; x < pic->width; ++x) {
269 const uint32_t pix = src[x];
270 if (pix != prev_pix) {
271 prev_idx = idx_map[SearchColorNoIdx(palette_sorted, pix, num_colors)];
272 prev_pix = pix;
273 }
274 line_current[x] = prev_idx;
275 // 4-connectivity is what works best as mentioned in "On the relation
276 // between Memon's and the modified Zeng's palette reordering methods".
277 if (x > 0 && prev_idx != line_current[x - 1]) {
278 const uint32_t left_idx = line_current[x - 1];
279 ++cooccurrence[prev_idx * num_colors + left_idx];
280 ++cooccurrence[left_idx * num_colors + prev_idx];
281 }
282 if (y > 0 && prev_idx != line_top[x]) {
283 const uint32_t top_idx = line_top[x];
284 ++cooccurrence[prev_idx * num_colors + top_idx];
285 ++cooccurrence[top_idx * num_colors + prev_idx];
286 }
287 }
288 line_tmp = line_top;
289 line_top = line_current;
290 line_current = line_tmp;
291 src += pic->argb_stride;
292 }
293 WebPSafeFree(lines);
294 return 1;
295 }
296
297 struct Sum {
298 uint8_t index;
299 uint32_t sum;
300 };
301
PaletteSortModifiedZeng(const WebPPicture * const pic,const uint32_t * const palette_in,uint32_t num_colors,uint32_t * const palette)302 static int PaletteSortModifiedZeng(const WebPPicture* const pic,
303 const uint32_t* const palette_in,
304 uint32_t num_colors,
305 uint32_t* const palette) {
306 uint32_t i, j, ind;
307 uint8_t remapping[MAX_PALETTE_SIZE];
308 uint32_t* cooccurrence;
309 struct Sum sums[MAX_PALETTE_SIZE];
310 uint32_t first, last;
311 uint32_t num_sums;
312 // TODO(vrabaud) check whether one color images should use palette or not.
313 if (num_colors <= 1) return 1;
314 // Build the co-occurrence matrix.
315 cooccurrence =
316 (uint32_t*)WebPSafeCalloc(num_colors * num_colors, sizeof(*cooccurrence));
317 if (cooccurrence == NULL) {
318 return 0;
319 }
320 if (!CoOccurrenceBuild(pic, palette_in, num_colors, cooccurrence)) {
321 WebPSafeFree(cooccurrence);
322 return 0;
323 }
324
325 // Initialize the mapping list with the two best indices.
326 CoOccurrenceFindMax(cooccurrence, num_colors, &remapping[0], &remapping[1]);
327
328 // We need to append and prepend to the list of remapping. To this end, we
329 // actually define the next start/end of the list as indices in a vector (with
330 // a wrap around when the end is reached).
331 first = 0;
332 last = 1;
333 num_sums = num_colors - 2; // -2 because we know the first two values
334 if (num_sums > 0) {
335 // Initialize the sums with the first two remappings and find the best one
336 struct Sum* best_sum = &sums[0];
337 best_sum->index = 0u;
338 best_sum->sum = 0u;
339 for (i = 0, j = 0; i < num_colors; ++i) {
340 if (i == remapping[0] || i == remapping[1]) continue;
341 sums[j].index = i;
342 sums[j].sum = cooccurrence[i * num_colors + remapping[0]] +
343 cooccurrence[i * num_colors + remapping[1]];
344 if (sums[j].sum > best_sum->sum) best_sum = &sums[j];
345 ++j;
346 }
347
348 while (num_sums > 0) {
349 const uint8_t best_index = best_sum->index;
350 // Compute delta to know if we need to prepend or append the best index.
351 int32_t delta = 0;
352 const int32_t n = num_colors - num_sums;
353 for (ind = first, j = 0; (ind + j) % num_colors != last + 1; ++j) {
354 const uint16_t l_j = remapping[(ind + j) % num_colors];
355 delta += (n - 1 - 2 * (int32_t)j) *
356 (int32_t)cooccurrence[best_index * num_colors + l_j];
357 }
358 if (delta > 0) {
359 first = (first == 0) ? num_colors - 1 : first - 1;
360 remapping[first] = best_index;
361 } else {
362 ++last;
363 remapping[last] = best_index;
364 }
365 // Remove best_sum from sums.
366 *best_sum = sums[num_sums - 1];
367 --num_sums;
368 // Update all the sums and find the best one.
369 best_sum = &sums[0];
370 for (i = 0; i < num_sums; ++i) {
371 sums[i].sum += cooccurrence[best_index * num_colors + sums[i].index];
372 if (sums[i].sum > best_sum->sum) best_sum = &sums[i];
373 }
374 }
375 }
376 assert((last + 1) % num_colors == first);
377 WebPSafeFree(cooccurrence);
378
379 // Re-map the palette.
380 for (i = 0; i < num_colors; ++i) {
381 palette[i] = palette_in[remapping[(first + i) % num_colors]];
382 }
383 return 1;
384 }
385
386 // -----------------------------------------------------------------------------
387
PaletteSort(PaletteSorting method,const struct WebPPicture * const pic,const uint32_t * const palette_sorted,uint32_t num_colors,uint32_t * const palette)388 int PaletteSort(PaletteSorting method, const struct WebPPicture* const pic,
389 const uint32_t* const palette_sorted, uint32_t num_colors,
390 uint32_t* const palette) {
391 switch (method) {
392 case kSortedDefault:
393 if (palette_sorted[0] == 0 && num_colors > 17) {
394 memcpy(palette, palette_sorted + 1,
395 (num_colors - 1) * sizeof(*palette_sorted));
396 palette[num_colors - 1] = 0;
397 } else {
398 memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
399 }
400 return 1;
401 case kMinimizeDelta:
402 PaletteSortMinimizeDeltas(palette_sorted, num_colors, palette);
403 return 1;
404 case kModifiedZeng:
405 return PaletteSortModifiedZeng(pic, palette_sorted, num_colors, palette);
406 case kUnusedPalette:
407 case kPaletteSortingNum:
408 break;
409 }
410
411 assert(0);
412 return 0;
413 }
414