1 /*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11 #ifndef ZSTD_CWKSP_H
12 #define ZSTD_CWKSP_H
13
14 /*-*************************************
15 * Dependencies
16 ***************************************/
17 #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */
18 #include "../common/zstd_internal.h"
19 #include "../common/portability_macros.h"
20 #include "../common/compiler.h" /* ZS2_isPower2 */
21
22 /*-*************************************
23 * Constants
24 ***************************************/
25
26 /* Since the workspace is effectively its own little malloc implementation /
27 * arena, when we run under ASAN, we should similarly insert redzones between
28 * each internal element of the workspace, so ASAN will catch overruns that
29 * reach outside an object but that stay inside the workspace.
30 *
31 * This defines the size of that redzone.
32 */
33 #ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
34 #define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
35 #endif
36
37
38 /* Set our tables and aligneds to align by 64 bytes */
39 #define ZSTD_CWKSP_ALIGNMENT_BYTES 64
40
41 /*-*************************************
42 * Structures
43 ***************************************/
44 typedef enum {
45 ZSTD_cwksp_alloc_objects,
46 ZSTD_cwksp_alloc_aligned_init_once,
47 ZSTD_cwksp_alloc_aligned,
48 ZSTD_cwksp_alloc_buffers
49 } ZSTD_cwksp_alloc_phase_e;
50
51 /**
52 * Used to describe whether the workspace is statically allocated (and will not
53 * necessarily ever be freed), or if it's dynamically allocated and we can
54 * expect a well-formed caller to free this.
55 */
56 typedef enum {
57 ZSTD_cwksp_dynamic_alloc,
58 ZSTD_cwksp_static_alloc
59 } ZSTD_cwksp_static_alloc_e;
60
61 /**
62 * Zstd fits all its internal datastructures into a single continuous buffer,
63 * so that it only needs to perform a single OS allocation (or so that a buffer
64 * can be provided to it and it can perform no allocations at all). This buffer
65 * is called the workspace.
66 *
67 * Several optimizations complicate that process of allocating memory ranges
68 * from this workspace for each internal datastructure:
69 *
70 * - These different internal datastructures have different setup requirements:
71 *
72 * - The static objects need to be cleared once and can then be trivially
73 * reused for each compression.
74 *
75 * - Various buffers don't need to be initialized at all--they are always
76 * written into before they're read.
77 *
78 * - The matchstate tables have a unique requirement that they don't need
79 * their memory to be totally cleared, but they do need the memory to have
80 * some bound, i.e., a guarantee that all values in the memory they've been
81 * allocated is less than some maximum value (which is the starting value
82 * for the indices that they will then use for compression). When this
83 * guarantee is provided to them, they can use the memory without any setup
84 * work. When it can't, they have to clear the area.
85 *
86 * - These buffers also have different alignment requirements.
87 *
88 * - We would like to reuse the objects in the workspace for multiple
89 * compressions without having to perform any expensive reallocation or
90 * reinitialization work.
91 *
92 * - We would like to be able to efficiently reuse the workspace across
93 * multiple compressions **even when the compression parameters change** and
94 * we need to resize some of the objects (where possible).
95 *
96 * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
97 * abstraction was created. It works as follows:
98 *
99 * Workspace Layout:
100 *
101 * [ ... workspace ... ]
102 * [objects][tables ->] free space [<- buffers][<- aligned][<- init once]
103 *
104 * The various objects that live in the workspace are divided into the
105 * following categories, and are allocated separately:
106 *
107 * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
108 * so that literally everything fits in a single buffer. Note: if present,
109 * this must be the first object in the workspace, since ZSTD_customFree{CCtx,
110 * CDict}() rely on a pointer comparison to see whether one or two frees are
111 * required.
112 *
113 * - Fixed size objects: these are fixed-size, fixed-count objects that are
114 * nonetheless "dynamically" allocated in the workspace so that we can
115 * control how they're initialized separately from the broader ZSTD_CCtx.
116 * Examples:
117 * - Entropy Workspace
118 * - 2 x ZSTD_compressedBlockState_t
119 * - CDict dictionary contents
120 *
121 * - Tables: these are any of several different datastructures (hash tables,
122 * chain tables, binary trees) that all respect a common format: they are
123 * uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
124 * Their sizes depend on the cparams. These tables are 64-byte aligned.
125 *
126 * - Init once: these buffers require to be initialized at least once before
127 * use. They should be used when we want to skip memory initialization
128 * while not triggering memory checkers (like Valgrind) when reading from
129 * from this memory without writing to it first.
130 * These buffers should be used carefully as they might contain data
131 * from previous compressions.
132 * Buffers are aligned to 64 bytes.
133 *
134 * - Aligned: these buffers don't require any initialization before they're
135 * used. The user of the buffer should make sure they write into a buffer
136 * location before reading from it.
137 * Buffers are aligned to 64 bytes.
138 *
139 * - Buffers: these buffers are used for various purposes that don't require
140 * any alignment or initialization before they're used. This means they can
141 * be moved around at no cost for a new compression.
142 *
143 * Allocating Memory:
144 *
145 * The various types of objects must be allocated in order, so they can be
146 * correctly packed into the workspace buffer. That order is:
147 *
148 * 1. Objects
149 * 2. Init once / Tables
150 * 3. Aligned / Tables
151 * 4. Buffers / Tables
152 *
153 * Attempts to reserve objects of different types out of order will fail.
154 */
155 typedef struct {
156 void* workspace;
157 void* workspaceEnd;
158
159 void* objectEnd;
160 void* tableEnd;
161 void* tableValidEnd;
162 void* allocStart;
163 void* initOnceStart;
164
165 BYTE allocFailed;
166 int workspaceOversizedDuration;
167 ZSTD_cwksp_alloc_phase_e phase;
168 ZSTD_cwksp_static_alloc_e isStatic;
169 } ZSTD_cwksp;
170
171 /*-*************************************
172 * Functions
173 ***************************************/
174
175 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
176 MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws);
177
ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp * ws)178 MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
179 (void)ws;
180 assert(ws->workspace <= ws->objectEnd);
181 assert(ws->objectEnd <= ws->tableEnd);
182 assert(ws->objectEnd <= ws->tableValidEnd);
183 assert(ws->tableEnd <= ws->allocStart);
184 assert(ws->tableValidEnd <= ws->allocStart);
185 assert(ws->allocStart <= ws->workspaceEnd);
186 assert(ws->initOnceStart <= ZSTD_cwksp_initialAllocStart(ws));
187 assert(ws->workspace <= ws->initOnceStart);
188 #if ZSTD_MEMORY_SANITIZER
189 {
190 intptr_t const offset = __msan_test_shadow(ws->initOnceStart,
191 (U8*)ZSTD_cwksp_initialAllocStart(ws) - (U8*)ws->initOnceStart);
192 (void)offset;
193 #if defined(ZSTD_MSAN_PRINT)
194 if(offset!=-1) {
195 __msan_print_shadow((U8*)ws->initOnceStart + offset - 8, 32);
196 }
197 #endif
198 assert(offset==-1);
199 };
200 #endif
201 }
202
203 /**
204 * Align must be a power of 2.
205 */
ZSTD_cwksp_align(size_t size,size_t align)206 MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t align) {
207 size_t const mask = align - 1;
208 assert(ZSTD_isPower2(align));
209 return (size + mask) & ~mask;
210 }
211
212 /**
213 * Use this to determine how much space in the workspace we will consume to
214 * allocate this object. (Normally it should be exactly the size of the object,
215 * but under special conditions, like ASAN, where we pad each object, it might
216 * be larger.)
217 *
218 * Since tables aren't currently redzoned, you don't need to call through this
219 * to figure out how much space you need for the matchState tables. Everything
220 * else is though.
221 *
222 * Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned64_alloc_size().
223 */
ZSTD_cwksp_alloc_size(size_t size)224 MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
225 if (size == 0)
226 return 0;
227 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
228 return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
229 #else
230 return size;
231 #endif
232 }
233
ZSTD_cwksp_aligned_alloc_size(size_t size,size_t alignment)234 MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size, size_t alignment) {
235 return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, alignment));
236 }
237
238 /**
239 * Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes.
240 * Used to determine the number of bytes required for a given "aligned".
241 */
ZSTD_cwksp_aligned64_alloc_size(size_t size)242 MEM_STATIC size_t ZSTD_cwksp_aligned64_alloc_size(size_t size) {
243 return ZSTD_cwksp_aligned_alloc_size(size, ZSTD_CWKSP_ALIGNMENT_BYTES);
244 }
245
246 /**
247 * Returns the amount of additional space the cwksp must allocate
248 * for internal purposes (currently only alignment).
249 */
ZSTD_cwksp_slack_space_required(void)250 MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
251 /* For alignment, the wksp will always allocate an additional 2*ZSTD_CWKSP_ALIGNMENT_BYTES
252 * bytes to align the beginning of tables section and end of buffers;
253 */
254 size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES * 2;
255 return slackSpace;
256 }
257
258
259 /**
260 * Return the number of additional bytes required to align a pointer to the given number of bytes.
261 * alignBytes must be a power of two.
262 */
ZSTD_cwksp_bytes_to_align_ptr(void * ptr,const size_t alignBytes)263 MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) {
264 size_t const alignBytesMask = alignBytes - 1;
265 size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask;
266 assert(ZSTD_isPower2(alignBytes));
267 assert(bytes < alignBytes);
268 return bytes;
269 }
270
271 /**
272 * Returns the initial value for allocStart which is used to determine the position from
273 * which we can allocate from the end of the workspace.
274 */
ZSTD_cwksp_initialAllocStart(ZSTD_cwksp * ws)275 MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws)
276 {
277 char* endPtr = (char*)ws->workspaceEnd;
278 assert(ZSTD_isPower2(ZSTD_CWKSP_ALIGNMENT_BYTES));
279 endPtr = endPtr - ((size_t)endPtr % ZSTD_CWKSP_ALIGNMENT_BYTES);
280 return (void*)endPtr;
281 }
282
283 /**
284 * Internal function. Do not use directly.
285 * Reserves the given number of bytes within the aligned/buffer segment of the wksp,
286 * which counts from the end of the wksp (as opposed to the object/table segment).
287 *
288 * Returns a pointer to the beginning of that space.
289 */
290 MEM_STATIC void*
ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp * ws,size_t const bytes)291 ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes)
292 {
293 void* const alloc = (BYTE*)ws->allocStart - bytes;
294 void* const bottom = ws->tableEnd;
295 DEBUGLOG(5, "cwksp: reserving [0x%p]:%zd bytes; %zd bytes remaining",
296 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
297 ZSTD_cwksp_assert_internal_consistency(ws);
298 assert(alloc >= bottom);
299 if (alloc < bottom) {
300 DEBUGLOG(4, "cwksp: alloc failed!");
301 ws->allocFailed = 1;
302 return NULL;
303 }
304 /* the area is reserved from the end of wksp.
305 * If it overlaps with tableValidEnd, it voids guarantees on values' range */
306 if (alloc < ws->tableValidEnd) {
307 ws->tableValidEnd = alloc;
308 }
309 ws->allocStart = alloc;
310 return alloc;
311 }
312
313 /**
314 * Moves the cwksp to the next phase, and does any necessary allocations.
315 * cwksp initialization must necessarily go through each phase in order.
316 * Returns a 0 on success, or zstd error
317 */
318 MEM_STATIC size_t
ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp * ws,ZSTD_cwksp_alloc_phase_e phase)319 ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase)
320 {
321 assert(phase >= ws->phase);
322 if (phase > ws->phase) {
323 /* Going from allocating objects to allocating initOnce / tables */
324 if (ws->phase < ZSTD_cwksp_alloc_aligned_init_once &&
325 phase >= ZSTD_cwksp_alloc_aligned_init_once) {
326 ws->tableValidEnd = ws->objectEnd;
327 ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws);
328
329 { /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
330 void *const alloc = ws->objectEnd;
331 size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
332 void *const objectEnd = (BYTE *) alloc + bytesToAlign;
333 DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
334 RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
335 "table phase - alignment initial allocation failed!");
336 ws->objectEnd = objectEnd;
337 ws->tableEnd = objectEnd; /* table area starts being empty */
338 if (ws->tableValidEnd < ws->tableEnd) {
339 ws->tableValidEnd = ws->tableEnd;
340 }
341 }
342 }
343 ws->phase = phase;
344 ZSTD_cwksp_assert_internal_consistency(ws);
345 }
346 return 0;
347 }
348
349 /**
350 * Returns whether this object/buffer/etc was allocated in this workspace.
351 */
ZSTD_cwksp_owns_buffer(const ZSTD_cwksp * ws,const void * ptr)352 MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
353 {
354 return (ptr != NULL) && (ws->workspace <= ptr) && (ptr < ws->workspaceEnd);
355 }
356
357 /**
358 * Internal function. Do not use directly.
359 */
360 MEM_STATIC void*
ZSTD_cwksp_reserve_internal(ZSTD_cwksp * ws,size_t bytes,ZSTD_cwksp_alloc_phase_e phase)361 ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase)
362 {
363 void* alloc;
364 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) {
365 return NULL;
366 }
367
368 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
369 /* over-reserve space */
370 bytes += 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
371 #endif
372
373 alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes);
374
375 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
376 /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
377 * either size. */
378 if (alloc) {
379 alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
380 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
381 /* We need to keep the redzone poisoned while unpoisoning the bytes that
382 * are actually allocated. */
383 __asan_unpoison_memory_region(alloc, bytes - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE);
384 }
385 }
386 #endif
387
388 return alloc;
389 }
390
391 /**
392 * Reserves and returns unaligned memory.
393 */
ZSTD_cwksp_reserve_buffer(ZSTD_cwksp * ws,size_t bytes)394 MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
395 {
396 return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
397 }
398
399 /**
400 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
401 * This memory has been initialized at least once in the past.
402 * This doesn't mean it has been initialized this time, and it might contain data from previous
403 * operations.
404 * The main usage is for algorithms that might need read access into uninitialized memory.
405 * The algorithm must maintain safety under these conditions and must make sure it doesn't
406 * leak any of the past data (directly or in side channels).
407 */
ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp * ws,size_t bytes)408 MEM_STATIC void* ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp* ws, size_t bytes)
409 {
410 size_t const alignedBytes = ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES);
411 void* ptr = ZSTD_cwksp_reserve_internal(ws, alignedBytes, ZSTD_cwksp_alloc_aligned_init_once);
412 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
413 if(ptr && ptr < ws->initOnceStart) {
414 /* We assume the memory following the current allocation is either:
415 * 1. Not usable as initOnce memory (end of workspace)
416 * 2. Another initOnce buffer that has been allocated before (and so was previously memset)
417 * 3. An ASAN redzone, in which case we don't want to write on it
418 * For these reasons it should be fine to not explicitly zero every byte up to ws->initOnceStart.
419 * Note that we assume here that MSAN and ASAN cannot run in the same time. */
420 ZSTD_memset(ptr, 0, MIN((size_t)((U8*)ws->initOnceStart - (U8*)ptr), alignedBytes));
421 ws->initOnceStart = ptr;
422 }
423 #if ZSTD_MEMORY_SANITIZER
424 assert(__msan_test_shadow(ptr, bytes) == -1);
425 #endif
426 return ptr;
427 }
428
429 /**
430 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
431 */
ZSTD_cwksp_reserve_aligned64(ZSTD_cwksp * ws,size_t bytes)432 MEM_STATIC void* ZSTD_cwksp_reserve_aligned64(ZSTD_cwksp* ws, size_t bytes)
433 {
434 void* const ptr = ZSTD_cwksp_reserve_internal(ws,
435 ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES),
436 ZSTD_cwksp_alloc_aligned);
437 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
438 return ptr;
439 }
440
441 /**
442 * Aligned on 64 bytes. These buffers have the special property that
443 * their values remain constrained, allowing us to reuse them without
444 * memset()-ing them.
445 */
ZSTD_cwksp_reserve_table(ZSTD_cwksp * ws,size_t bytes)446 MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
447 {
448 const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned_init_once;
449 void* alloc;
450 void* end;
451 void* top;
452
453 /* We can only start allocating tables after we are done reserving space for objects at the
454 * start of the workspace */
455 if(ws->phase < phase) {
456 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) {
457 return NULL;
458 }
459 }
460 alloc = ws->tableEnd;
461 end = (BYTE *)alloc + bytes;
462 top = ws->allocStart;
463
464 DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
465 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
466 assert((bytes & (sizeof(U32)-1)) == 0);
467 ZSTD_cwksp_assert_internal_consistency(ws);
468 assert(end <= top);
469 if (end > top) {
470 DEBUGLOG(4, "cwksp: table alloc failed!");
471 ws->allocFailed = 1;
472 return NULL;
473 }
474 ws->tableEnd = end;
475
476 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
477 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
478 __asan_unpoison_memory_region(alloc, bytes);
479 }
480 #endif
481
482 assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
483 assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
484 return alloc;
485 }
486
487 /**
488 * Aligned on sizeof(void*).
489 * Note : should happen only once, at workspace first initialization
490 */
ZSTD_cwksp_reserve_object(ZSTD_cwksp * ws,size_t bytes)491 MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes)
492 {
493 size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
494 void* alloc = ws->objectEnd;
495 void* end = (BYTE*)alloc + roundedBytes;
496
497 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
498 /* over-reserve space */
499 end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
500 #endif
501
502 DEBUGLOG(4,
503 "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
504 alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
505 assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0);
506 assert(bytes % ZSTD_ALIGNOF(void*) == 0);
507 ZSTD_cwksp_assert_internal_consistency(ws);
508 /* we must be in the first phase, no advance is possible */
509 if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
510 DEBUGLOG(3, "cwksp: object alloc failed!");
511 ws->allocFailed = 1;
512 return NULL;
513 }
514 ws->objectEnd = end;
515 ws->tableEnd = end;
516 ws->tableValidEnd = end;
517
518 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
519 /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
520 * either size. */
521 alloc = (BYTE*)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
522 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
523 __asan_unpoison_memory_region(alloc, bytes);
524 }
525 #endif
526
527 return alloc;
528 }
529 /**
530 * with alignment control
531 * Note : should happen only once, at workspace first initialization
532 */
ZSTD_cwksp_reserve_object_aligned(ZSTD_cwksp * ws,size_t byteSize,size_t alignment)533 MEM_STATIC void* ZSTD_cwksp_reserve_object_aligned(ZSTD_cwksp* ws, size_t byteSize, size_t alignment)
534 {
535 size_t const mask = alignment - 1;
536 size_t const surplus = (alignment > sizeof(void*)) ? alignment - sizeof(void*) : 0;
537 void* const start = ZSTD_cwksp_reserve_object(ws, byteSize + surplus);
538 if (start == NULL) return NULL;
539 if (surplus == 0) return start;
540 assert(ZSTD_isPower2(alignment));
541 return (void*)(((size_t)start + surplus) & ~mask);
542 }
543
ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp * ws)544 MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
545 {
546 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
547
548 #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
549 /* To validate that the table reuse logic is sound, and that we don't
550 * access table space that we haven't cleaned, we re-"poison" the table
551 * space every time we mark it dirty.
552 * Since tableValidEnd space and initOnce space may overlap we don't poison
553 * the initOnce portion as it break its promise. This means that this poisoning
554 * check isn't always applied fully. */
555 {
556 size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
557 assert(__msan_test_shadow(ws->objectEnd, size) == -1);
558 if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) {
559 __msan_poison(ws->objectEnd, size);
560 } else {
561 assert(ws->initOnceStart >= ws->objectEnd);
562 __msan_poison(ws->objectEnd, (BYTE*)ws->initOnceStart - (BYTE*)ws->objectEnd);
563 }
564 }
565 #endif
566
567 assert(ws->tableValidEnd >= ws->objectEnd);
568 assert(ws->tableValidEnd <= ws->allocStart);
569 ws->tableValidEnd = ws->objectEnd;
570 ZSTD_cwksp_assert_internal_consistency(ws);
571 }
572
ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp * ws)573 MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
574 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
575 assert(ws->tableValidEnd >= ws->objectEnd);
576 assert(ws->tableValidEnd <= ws->allocStart);
577 if (ws->tableValidEnd < ws->tableEnd) {
578 ws->tableValidEnd = ws->tableEnd;
579 }
580 ZSTD_cwksp_assert_internal_consistency(ws);
581 }
582
583 /**
584 * Zero the part of the allocated tables not already marked clean.
585 */
ZSTD_cwksp_clean_tables(ZSTD_cwksp * ws)586 MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
587 DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
588 assert(ws->tableValidEnd >= ws->objectEnd);
589 assert(ws->tableValidEnd <= ws->allocStart);
590 if (ws->tableValidEnd < ws->tableEnd) {
591 ZSTD_memset(ws->tableValidEnd, 0, (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd));
592 }
593 ZSTD_cwksp_mark_tables_clean(ws);
594 }
595
596 /**
597 * Invalidates table allocations.
598 * All other allocations remain valid.
599 */
ZSTD_cwksp_clear_tables(ZSTD_cwksp * ws)600 MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws)
601 {
602 DEBUGLOG(4, "cwksp: clearing tables!");
603
604 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
605 /* We don't do this when the workspace is statically allocated, because
606 * when that is the case, we have no capability to hook into the end of the
607 * workspace's lifecycle to unpoison the memory.
608 */
609 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
610 size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
611 __asan_poison_memory_region(ws->objectEnd, size);
612 }
613 #endif
614
615 ws->tableEnd = ws->objectEnd;
616 ZSTD_cwksp_assert_internal_consistency(ws);
617 }
618
619 /**
620 * Invalidates all buffer, aligned, and table allocations.
621 * Object allocations remain valid.
622 */
ZSTD_cwksp_clear(ZSTD_cwksp * ws)623 MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
624 DEBUGLOG(4, "cwksp: clearing!");
625
626 #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
627 /* To validate that the context reuse logic is sound, and that we don't
628 * access stuff that this compression hasn't initialized, we re-"poison"
629 * the workspace except for the areas in which we expect memory reuse
630 * without initialization (objects, valid tables area and init once
631 * memory). */
632 {
633 if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) {
634 size_t size = (BYTE*)ws->initOnceStart - (BYTE*)ws->tableValidEnd;
635 __msan_poison(ws->tableValidEnd, size);
636 }
637 }
638 #endif
639
640 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
641 /* We don't do this when the workspace is statically allocated, because
642 * when that is the case, we have no capability to hook into the end of the
643 * workspace's lifecycle to unpoison the memory.
644 */
645 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
646 size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd;
647 __asan_poison_memory_region(ws->objectEnd, size);
648 }
649 #endif
650
651 ws->tableEnd = ws->objectEnd;
652 ws->allocStart = ZSTD_cwksp_initialAllocStart(ws);
653 ws->allocFailed = 0;
654 if (ws->phase > ZSTD_cwksp_alloc_aligned_init_once) {
655 ws->phase = ZSTD_cwksp_alloc_aligned_init_once;
656 }
657 ZSTD_cwksp_assert_internal_consistency(ws);
658 }
659
ZSTD_cwksp_sizeof(const ZSTD_cwksp * ws)660 MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
661 return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
662 }
663
ZSTD_cwksp_used(const ZSTD_cwksp * ws)664 MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
665 return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
666 + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
667 }
668
669 /**
670 * The provided workspace takes ownership of the buffer [start, start+size).
671 * Any existing values in the workspace are ignored (the previously managed
672 * buffer, if present, must be separately freed).
673 */
ZSTD_cwksp_init(ZSTD_cwksp * ws,void * start,size_t size,ZSTD_cwksp_static_alloc_e isStatic)674 MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
675 DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
676 assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
677 ws->workspace = start;
678 ws->workspaceEnd = (BYTE*)start + size;
679 ws->objectEnd = ws->workspace;
680 ws->tableValidEnd = ws->objectEnd;
681 ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws);
682 ws->phase = ZSTD_cwksp_alloc_objects;
683 ws->isStatic = isStatic;
684 ZSTD_cwksp_clear(ws);
685 ws->workspaceOversizedDuration = 0;
686 ZSTD_cwksp_assert_internal_consistency(ws);
687 }
688
ZSTD_cwksp_create(ZSTD_cwksp * ws,size_t size,ZSTD_customMem customMem)689 MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
690 void* workspace = ZSTD_customMalloc(size, customMem);
691 DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
692 RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
693 ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc);
694 return 0;
695 }
696
ZSTD_cwksp_free(ZSTD_cwksp * ws,ZSTD_customMem customMem)697 MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
698 void *ptr = ws->workspace;
699 DEBUGLOG(4, "cwksp: freeing workspace");
700 #if ZSTD_MEMORY_SANITIZER && !defined(ZSTD_MSAN_DONT_POISON_WORKSPACE)
701 if (ptr != NULL && customMem.customFree != NULL) {
702 __msan_unpoison(ptr, ZSTD_cwksp_sizeof(ws));
703 }
704 #endif
705 ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
706 ZSTD_customFree(ptr, customMem);
707 }
708
709 /**
710 * Moves the management of a workspace from one cwksp to another. The src cwksp
711 * is left in an invalid state (src must be re-init()'ed before it's used again).
712 */
ZSTD_cwksp_move(ZSTD_cwksp * dst,ZSTD_cwksp * src)713 MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
714 *dst = *src;
715 ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
716 }
717
ZSTD_cwksp_reserve_failed(const ZSTD_cwksp * ws)718 MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
719 return ws->allocFailed;
720 }
721
722 /*-*************************************
723 * Functions Checking Free Space
724 ***************************************/
725
726 /* ZSTD_alignmentSpaceWithinBounds() :
727 * Returns if the estimated space needed for a wksp is within an acceptable limit of the
728 * actual amount of space used.
729 */
ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp * const ws,size_t const estimatedSpace)730 MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp *const ws, size_t const estimatedSpace) {
731 /* We have an alignment space between objects and tables between tables and buffers, so we can have up to twice
732 * the alignment bytes difference between estimation and actual usage */
733 return (estimatedSpace - ZSTD_cwksp_slack_space_required()) <= ZSTD_cwksp_used(ws) &&
734 ZSTD_cwksp_used(ws) <= estimatedSpace;
735 }
736
737
ZSTD_cwksp_available_space(ZSTD_cwksp * ws)738 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
739 return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
740 }
741
ZSTD_cwksp_check_available(ZSTD_cwksp * ws,size_t additionalNeededSpace)742 MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
743 return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
744 }
745
ZSTD_cwksp_check_too_large(ZSTD_cwksp * ws,size_t additionalNeededSpace)746 MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
747 return ZSTD_cwksp_check_available(
748 ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
749 }
750
ZSTD_cwksp_check_wasteful(ZSTD_cwksp * ws,size_t additionalNeededSpace)751 MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
752 return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
753 && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
754 }
755
ZSTD_cwksp_bump_oversized_duration(ZSTD_cwksp * ws,size_t additionalNeededSpace)756 MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
757 ZSTD_cwksp* ws, size_t additionalNeededSpace) {
758 if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
759 ws->workspaceOversizedDuration++;
760 } else {
761 ws->workspaceOversizedDuration = 0;
762 }
763 }
764
765 #endif /* ZSTD_CWKSP_H */
766