
hg

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

March 13, 2009

© 2009 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0

http://www.apache.org/licenses/LICENSE-2.0

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Table of Contents
1 Introduction .. 7
2 Overview ... 7

2.1 Controls .. 7
2.2 PVMI Interfaces used by MIO Components ... 8
2.3 Active and Passive MIO Components .. 9
2.4 Capability and Configuration Exchange ... 10
2.5 Media Transfer .. 10
2.6 Event Reporting .. 10

3 Role in the PVMF Architecture ... 11
3.1 Overall Architecture of PVPlayer .. 11
3.2 Overall Architecture of PVAuthor ... 12

4 PVPlayer APIs .. 15
4.1 PVPlayer AddDataSink ... 15
4.2 PVPlayer Prepare ... 16

4.2.1 MIO connect .. 16
4.2.2 MIO QueryInterface ... 16
4.2.3 MIO Init .. 16
4.2.4 MIO Start ... 16
4.2.5 MIO DiscardData ... 18

4.3 PVPlayer Start .. 18
4.4 PVPlayer SetPlaybackRange ... 19
4.5 PVPlayer Pause – Resume .. 20
4.6 PVPlayer Stop and Reset ... 21

4.6.1 MIO Stop ... 22
4.6.2 MIO Reset ... 22

4.7 PVPlayer Cancel Commands ... 22
4.7.1 MIO CancelCommand ... 22
4.7.2 MIO CancelAllCommands ... 22

5 PVAuthor APIs ... 23
5.1 PVAuthorEngine AddDataSource .. 23

5.1.1 MIO connect .. 23
5.1.2 MIO QueryInterface ... 23

5.2 PVAuthorEngine AddMediaTrack ... 25
5.3 PVAuthorEngine Init ... 25

5.3.1 MIO Init ... 25
5.4 PVAuthorEngine Start .. 25

5.4.1 MIO Start ... 25
5.5 PVAuthor Pause – Resume .. 26

 - Page 2 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

5.6 PVAuthor Stop ... 27
5.6.1 MIO Stop ... 27

5.7 PVAuthor Cancel Commands .. 27
5.7.1 MIO CancelCommand ... 28
5.7.2 MIO CancelAllCommands ... 28

6 Common Interface API’s. .. 28
6.1.1 ThreadLogon() ... 29
6.1.2 ThreadLogoff() ... 29
6.1.3 connect() .. 29
6.1.4 disconnect() ... 29
6.1.5 QueryUUID() ... 29
6.1.6 QueryInterface() .. 29
6.1.7 createMediaTransfer() ... 29

7 Capability and Configuration Exchange ... 30
7.1 Capability and Configuration Exchange for PVPlayer 30

7.1.1 getParametersSync ... 30
7.1.2 releaseParameters .. 30
7.1.3 setParametersSync ... 30

7.1.3.1 Audio-related Capabilities .. 30
7.1.3.2 Video-related Capabilities .. 31
7.1.3.3 Text-related Capabilities .. 34
7.1.3.4 Other Capabilities .. 34

7.1.4 verifyParametersSync ... 34
7.2 Capability and Configuration Exchange for PVAuthor 36

7.2.1 getParametersSync ... 36
7.2.1.1 File Format-related Capabilities ... 36
7.2.1.2 Video-related Capabilities .. 36
7.2.1.3 Audio-related Capabilities .. 38

7.2.2 releaseParameters .. 38
7.2.3 setParametersSync ... 38
7.2.4 verifyParametersSync ... 39

8 Media Transfer ... 39
8.1 Media Transfer in PVPlayer .. 39

8.1.1 setPeer .. 39
8.1.2 writeAsync ... 40
8.1.3 Format Specific Information .. 40
8.1.4 Media Data .. 40

8.1.4.1 Transfer Media Data to the Hardware ... 41
8.1.4.2 Media Data Frame Reconstruction .. 42
8.1.4.3 Flow Control ... 43
8.1.4.4 Media Timestamp .. 44

8.1.5 End of Data Notification .. 44

 - Page 3 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

8.1.6 Reconfig Notification ... 45
8.1.7 Event Reporting from MIO to PVPlayer datapath 46
8.1.8 writeComplete ... 47
8.1.9 Unsupported APIs ... 47

8.2 Media Transfer in PVAuthor ... 47
8.2.1 SetPeer .. 48
8.2.2 WriteAsync call on MIONode .. 49
8.2.3 Format-Specific Information .. 49
8.2.4 Media Data .. 49

8.2.4.1 Capturing Media Data .. 50
8.2.4.2 Flow Control ... 52
8.2.4.3 Media Timestamp .. 53
8.2.4.4 Media Data Frame Reconstruction .. 54

8.2.5 writeComplete of MIO Component .. 54
8.2.6 UseMemoryAllocators ... 54
8.2.7 Unsupported APIs ... 54

9 Temporal Synchronization for Playback ... 55
9.1 Role of PVPlayer SDK Modules in Synchronization 55

9.1.1 Providing Media Clock to MIO ... 56
9.1.2 Providing Playback Progress to Application 57

9.2 Audio Synchronization ... 57
9.2.1 Synchronize With the Start of Audio Rendering 57
9.2.2 Synchronize After Repositioning ... 59
9.2.3 Synchronize During Playback ... 60

9.3 Video Synchronization .. 61
9.3.1 Video Rendering Without Hardware Assistance 62
9.3.2 Video Rendering With Hardware Assistance 62

9.4 Audio-Video Synchronization ... 63
10 Appendix ... 63

10.1 Media clock facts and properties. ... 63
10.2 Video dimensions passed to MIO comp ... 64

 - Page 4 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

List of Figures
Figure 1: Sequence diagram showing asynchronous MIO commands...8
Figure 2: Diagram of interfaces implemented by MIO components..9
Figure 3: Sequence diagram showing the propagation of error events...11
Figure 4: A diagram of the interaction between MIO components and player components..........12
Figure 5: A diagram of the interaction between MIO components and author components..........13
Figure 6: Author flow graph with uncompressed input..14
Figure 7: Author flow graph with compressed input..15
Figure 8: Sequence diagram of the player prepare command..17
Figure 9: Sequence diagram showing active MIO interaction with clock at start of playback........19
Figure 10: Sequence diagram of repositioning use-case..20
Figure 11: Sequence diagram of the pause/resume use-case..21
Figure 12: Sequence diagram of stop and reset...21
Figure 13: Sequence diagram of CancelAllCommands..23
Figure 14: Sequence diagram of PVAuthor and MIO component initialization..............................24
Figure 15: PVAuthor and MIO interaction for pause and resume..26
Figure 16: PVAuthor and MIO interaction for stop..27
Figure 17: PVAuthor and MIO interaction for CancelAllCommands..28
Figure 18: Sequence showing media transfer setup between PVPlayer and the MIO component.
..39
Figure 19: Media transfer sequence between PVPlayer and the MIO component........................41
Figure 20: Sequence diagram showing use of the marker bit for frame reconstruction................43
Figure 21: Sequence diagram showing the use of flow control of the media data........................44
Figure 22: Sequence diagram showing end of data notification..45
Figure 23: Sequence diagram showing error event propagation...47
Figure 24: Sequence showing media transfer setup between PVAuthor and the MIO component.
..48
Figure 25: Media transfer sequence between PVAuthor and the MIO component.......................50
Figure 26: Illustration of media data flow control between PVAuthor and the MIO component.....53
Figure 27: Class diagram synchronization-related classes within PVPlayer.................................56
Figure 28: Initialization of the clock reference for active MIO components...................................57
Figure 29: One method of handling initial rendering latency in an active MIO component............58
Figure 30: Synchronization after repositioning..60
Figure 31: Sequence diagram showing clock adjustments during playback to account for drift....61
Figure 32: Sequence diagram of video rendering scheduling...62
Figure 33: A diagram of the interactions involved in A/V synchronization.....................................63

 - Page 5 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

References
1 OpenMAX Integration Layer Application Programming Interface Specification. Version

1.1.2, http://www.khronos.org/openmax/
2 PVPlayer SDK Developer's Guide. OHA 1.0, rev. 2. http://android.git.kernel.org/?

p=platform/external/opencore.git;a=summary
3 Guide to Supplying Decoder Buffers from the MIO Component. OpenCORE 2.02, rev 1.

http://android.git.kernel.org/?p=platform/external/opencore.git;a=summary

 - Page 6 of 64 -

http://android.git.kernel.org/?p=platform/external/opencore.git;a=summary
http://android.git.kernel.org/?p=platform/external/opencore.git;a=summary
http://android.git.kernel.org/?p=platform/external/opencore.git;a=summary
http://www.khronos.org/openmax/

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

1 Introduction
In the PV multimedia framework (PVMF) architecture, the Media I/O (MIO) component is a data
sink or source at either the beginning or end of the datapath for media data. It is responsible for
rendering media data in the case of playback or capturing media data in the case of authoring..
As access to media rendering functionalities are different for every platform that PV software
works on, the MIO component also serves as a glue layer between PV modules and the media
decoder and renderer hardware. MIO component can also function as a pass through module for
media rendering to be done by the application. MIO components can contain logic to support
application level features that involves renderer control.

In order to act as an adapter between PV modules and underlying hardware, an MIO component
has several responsibilities.
• Control the underlying hardware based on commands from other PV modules.
• Exchange capabilities information of the underlying hardware with other PV modules.
• Provide media data to the underlying hardware for the data to be rendered to user at the

appropriate time.

The purpose of this document is to provide detailed but platform agnostic guidance for MIO
component developers. Developers are expected to derive from this platform agnostic guidance
to design and implement MIO components customized for a specific target platform and
hardware. Developers using this document are expected to have reasonable prior knowledge
about overall architecture of PVPlayer integration, and PV core technologies such as OSCL and
PVMI framework. For further information about PV core technologies, please consult the
documents listed in the Reference section of this document.

2 Overview

2.1 Controls
The PV multimedia framework defines the PvmiMIOControl interface to allow other modules to
control the MIO based on control commands from the end user. This section explains how the
MIO is controlled based on application level commands, and how MIO in turn controls the
hardware.

The PvmiMIOControl interface has a number of asynchronous commands, and therefore the MIO
component is expected to maintain a command queue of incoming control commands, and
process them in a FIFO order. The only exception to the FIFO order is handling of
CancelCommands and CancelAllCommands which will be discussed in sections 4.7 and 5.7 .
When the processing of asynchronous control commands is completed, the MIO component
should call the RequestCompleted callback defined in PvmiMIOObserver to complete the control
command.

The sequence diagram in Figure 1 below illustrates the general sequence of handling
asynchronous PvmiMIOControl commands.

 - Page 7 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 1: Sequence diagram showing asynchronous MIO
commands.

2.2 PVMI Interfaces used by MIO Components
PVMF defines several interfaces for an MIO component to implement such that it can provide the
necessary functionality to adapt between various PV modules and the underlying hardware.

• PvmiMIOControl interface allows other PV modules to issue control commands to MIO.
• PvmiCapabilityAndConfig interface facilitates capability and configuration exchange

between other PV modules and MIO.
• PvmiMediaTransfer interface defines methods for media data transfer to and from MIO.
• PvmiClockExtensionInterface interface (used only for rendering) allows other PV modules

to provide OsclClock object to MIO component, which is necessary for synchronization of
media rendering. It is optional for an MIO component to implement this interface. If the
MIO component implements this interface, PVPlayer Engine will defer the responsibility
of time synchronization of media rendering to the MIO component. Typically, all MIO
components that receives compressed media data types and uses decoding functionality
provided by hardware components under the MIO should implement this interface.

• If an MIO component implements the optional PvmiClockExtensionInterface (used only
for rendering), it should also implement the OsclClockStateObserver interface that allows
MIO to receive notification when OsclClock state is changed. It is necessary for the MIO
to receive such notifications to handle time synchronization of media rendering.

• The HWObserver interface would define the callbacks that the hardware interface would
use to interact with MIO component e.g. MDevSoundObserver for Symbian OS.

The class diagram below illustrates the relationship between MIO component and the various
PVMI interfaces that it implements

 - Page 8 of 64 -

App PV SDK MIO HW

Control Cmd1

cmdId=1

Control Cmd2

cmdId=2

RequestCompleted(cmdId=1)

RequestCompleted(cmdId=2)

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Media IO

«interface»
PvmiMIOControl

«interface»
PvmiCapabilityAndConfig

«interface»
PvmiMediaTransfer

«interface»
PvmiClockExtensionInterface

«interface»
OsclClockStateObserver

«interface»
HWObserver

Figure 2: Diagram of interfaces implemented by MIO components.

2.3 Active and Passive MIO Components
If an MIO component implements the optional PvmiClockExtensionInterface, the multimedia
framework will defer the responsibility of time synchronization of media rendering to the MIO
component, it is called an active MIO component. An active MIO component should also
implement another interface OsclClockStateObserver. The multimedia framework will query the
MIO component for the PvmiClockExtensionInterface, and if it implements that interface, the MIO
will given a reference to the common clock using those APIs. The MIO is considered active at
that point and responsible for handling rendering synchronization.

If an MIO component does not implement the optional PvmiClockExtensionInterface, PV SDK will
take the responsibility of time synchronization of media rendering to the MIO component, it is
called a passive MIO component. A passive MIO component should not implement interface
OsclClockStateObserver.

Because of the differences in responsibilities for active versus passive MIOs, the detailed
interactions between the MIO component and the multimedia framework can be different in
certain use-cases.

 - Page 9 of 64 -

Optional Interface

Mandatory Interface

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

2.4 Capability and Configuration Exchange
To allow playback and capturing of a wide range of media types with different properties on
various hardware platforms with different capabilities, it is necessary for the MIO to report its
capabilities to other PV modules and to receive the necessary properties of the media data. To
facilitate this information exchange, MIO components need to implement
PvmiCapabilityAndConfig interface, and return a pointer to the implementation when requested in
QueryInterface API call. The PVPlayer and PVAuthor specific capability exchange is explained in
Section 7.1 and 7.2 respectively.

The PvmiCapabilityAndConfig interface defines a flexible way to configure any general capability
and settings between two modules. For the MIO component, based on the current usage of
PvmiCapabilityAndConfig interface by other PV modules, it only needs to implement support for
some APIs defined in that interface. More specifically, all current usage of
PvmiCapabilityAndConfig is restricted to the synchronous calls of the interface, which the MIO
component must implement. The asynchronous APIs are not currently used.

The capability and configuration settings are identified by unique key strings and packaged as
PVMI key-value pair (PvmiKvp) data structures. The PacketVideo Extended MIME String
(PvXms) format is used to specify the key strings. PvXms extends the standard MIME string
format by allowing additional levels of subtype strings all separated by the slash character.
Typically, the MIO component can use the predefined extended MIME strings in the pvmi_kvp.h
header file and use string comparison to identify the capability being set or queried. Optionally for
other strings that are not predefined, the query can be identified by parsing according to the
PvXms syntax.

2.5 Media Transfer
The primary functionality of an MIO component in PVSDK architecture is to be the data sink or
data source for/of media data. The PVMI framework defines the PvmiMediaTransfer interface to
facilitate this exchange of media data. The exchange of media data and commands occurs
between two peer modules implementing PvmiMediaTransfer interface. On one side is PV SDK
datapath, and the other is the MIO component. Besides media data, some “in-data” commands
such as End of Data notification and error events are also exchanged through
PvmiMediaTransfer interface.

2.6 Event Reporting
To report unsolicited error or information events from MIO component to PV SDK datapath, the
MIO component should call the peer’s writeAsync function. To indicate to the peer that the
writeAsync contains event information, the MIO component should call writeAsync with the
following parameters

Parameter Value
format_type PVMI_MEDIAXFER_FMT_TYPE_NOTIFICATION
format_index PVMI_MEDIAXFER_FMT_INDEX_ERROR_EVENT for error events

PVMI_MEDIAXFER_FMT_INDEX_INFO_EVENT for info events
data Pointer to a PVMFAsyncEvent object. If extended errors are defined

 - Page 10 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

for the MIO component, a PVMFBasicErrorInfoMessage object
should be created to contain the extended error event. The
appropriate constructor of PVMFAsyncEvent should be used to pass
the PVMFBasicErrorInfoMessage object as
aEventExtInterface parameter.

data_len Size of PVMFAsyncEvent object

PV SDK datapath would call the MIO component’s writeComplete function after the event is
processed. If the event data is allocated dynamically, it should be deallocated upon
writeComplete is received.

Not all the events are sent to application. Only the events with following EventType (a member of
PVMFAsyncEvent) are sent to application:

For PVMI_MEDIAXFER_FMT_INDEX_ERROR_EVENT
PVMFErrCorrupt PVMFErrOverflow PVMFErrUnderflow
PVMFErrTimeout PVMFErrNoResources PVMFErrResourceConfiguration
PVMFErrResource PVMFErrNoMemory PVMFErrProcessing,

For PVMI_MEDIAXFER_FMT_INDEX_INFO_EVENT for info events
PVMFInfoDataDiscarded PVMFErrNoResources PVMFSuccess

The sequence diagram in Figure 3 below illustrates how an error from the hardware can
propagate up to the application level.

Figure 3: Sequence diagram showing the propagation of error events.

3 Role in the PVMF Architecture

3.1 Overall Architecture of PVPlayer

 - Page 11 of 64 -

App PV SDK MIO HW

Decoder/
Encoder Error

Construct PVMFAsyncEvent and
PVMFBasicErrorInfoMessage objects
to contain extended error code for
the error

writeAsync(Error Event)

writeComplete(cmdId=200)

cmdId=200

HandleErrorEvent(Error Event)

Engine might stop
and reset the playback
session if it is a critical error

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

MIO components are used as data sinks in PVPlayer SDK architecture. The MIO component sits
between the media rendering hardware and the rest of PVPlayer SDK modules, and act as a glue
layer between the two.

Figure 4 illustrates how the MIO component interacts with the components around it.

Figure 4: A diagram of the interaction between MIO
components and player components.

3.2 Overall Architecture of PVAuthor
MIO components are used as data source in PVAuthor SDK architecture. The MIO component
sits between the media capturing devices/hardware and the rest of PVAuthor SDK modules, and
act as a glue layer between the two. Figure 5 shows the High level relationship between MIO
components and PVAuthor SDK.

 - Page 12 of 64 -

PVPlayerEngine

Application

Data Path Consists of PVMF Nodes

controls

controls

controls capability
exchange

media
data

Media IO

controls media
data

Decoder / Renderer Hardware

creates

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 5: A diagram of the interaction between MIO components
and author components.

Figures 6 and 7 illustrate how MIO component interacts with author components in more detailed
diagrams showing the structure of the media data-flow graph. The two cases of compressed and
uncompressed input sources are shown. In the case of uncompressed input encoders are part of
the media data processing in the data-flow graph, while for the compressed input the encoders
are not needed. Note that it is not necessary for both inputs to be the same in terms of providing
compressed or uncompressed data, so for example, the audio could be compressed while the
video is uncompressed. Each MIO component is treated independently in this sense.

 - Page 13 of 64 -

PVAuthorEngine

Application

Data Path Consists of PVMF Nodes

controls

controls

controls capability
exchange

media
data

Media IO

controls media
data

Encoder / Capture Hardware

creates

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 6: Author flow graph with uncompressed input.

 - Page 14 of 64 -

AVI
FILE*

CAMERA* MICROPHONE*

VIDEO MIO AUDIO MIO

VIDEO MIO
NODE

AUDIO MIO
NODE

VIDEO
ENCODER

NODE

AUDIO
ENCODER

NODE

COMPOSER NODE

APPLICATION

PV AUTHOR ENGINE

Us
es

Controls

Controls

Controls

Creates

Controls

Controls

COMPOSER LIB

UnCompressed Input

Compressed Media Data

*Note: : Instead of Camera or Microphone , File ((AVI or WAV) may be used
as Datasource

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 7: Author flow graph with compressed input.

4 PVPlayer APIs
4.1 PVPlayer AddDataSink
Under PVPlayer SDK architecture, the application is responsible for creating the MIO component,
and providing the MIO component as a data sink to PVPlayer using
PVPlayerInterface::AddDataSink API. AddDataSink API itself does not perform any additional
action on MIO component or the hardware. It simply adds the data sink to the list of available
data sinks. Upon the successful completion of AddDataSink command from player engine, the
data sink becomes available for other PV modules to connect to for media playback.

 - Page 15 of 64 -

VIDEO MIO

VIDEO MIO
NODE

AUDIO MIO
NODE

APPLICATION

PV AUTHOR ENGINE

Controls

Controls

Creates

Controls

COMPOSER NODE

sU
S

E
S

COMPOSER LIB

Compressed InputCompressed Input

Compressed Media
Data

AUDIO MIO

AUDIO
CAPTURE
DEVICE

MICROPHONE

VIDEO
CAPTURE
DEVICE

CAMERA

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

4.2 PVPlayer Prepare
Under PVPlayer SDK architecture, the bulk of initialization and configuration of MIO component is
done during the processing of PVPlayerInterface::Prepare. The below sequence diagram
illustrates the interaction with an MIO component during this prepare phase.

4.2.1 MIO connect
Connect is a synchronous API inherited from PvmiMIOControl interface. PVPlayer datapath calls
this function to establish a control session with the MIO component. The caller in this API call
provides an observer object, and the MIO component should use it for making callbacks to
complete control commands.

4.2.2 MIO QueryInterface
QueryInterface is an asynchronous API inherited from PvmiMIOControl interface. Other PV
modules may call this API to retrieve extension interface supported by the MIO. As discussed in
section 2.2 , MIO component must implement PvmiCapabilityAndConfig and optionally
PvmiClockExtensionInterface extension interface (please refer section 2.2). When this API is
called, MIO component needs to provide a pointer to an instance of the implementation of the
requested interface, which other PV modules will use later on. The MIO component should call
RequestCompleted callback to complete the call.

4.2.3 MIO Init
Init is an asynchronous API inherited from PvmiMIOControl interface. MIO should implement this
function to create an instance to hardware driver, and reserve and initialize the hardware driver
as necessary. At the time of Init call, properties and format specific information of the media to be
played should have already been provided through the capability and configuration exchange that
was done before Init. The MIO component should use this information to initialize and reserve
the hardware for playback usage by the MIO component.

Init is an asynchronous API, and the MIO component should call RequestCompleted callback to
complete the call after processing is completed.

4.2.4 MIO Start
Start is an asynchronous API inherited from PvmiMIOControl interface. MIO should prepare itself
and the hardware to receive media data that will arrive soon after Start is completed. Actions
such as memory allocation and requesting hardware driver for shared memory buffers should be
done at this stage. Note that this Start call is not meant to signal the immediate start of media
rendering because media data is not yet available to the MIO component or hardware at this
point.

 - Page 16 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 8: Sequence diagram of the player prepare command.

 - Page 17 of 64 -

App PVPlayer MIO Control HW

Prepare()

AddDataSink()

CommandCompleted()

connect()

QueryInterface(PvmiClockExtensionInterfaceUuid)

RequestCompleted()

Capability and config exchange are done here.
setParametersSync(), verifyParametersSync(),

getParametersSync(), releaseParameters() might be called.
Format Specific Info might be received here.

createMediaTransfer()

Init() Create()

Reserve and Initialize

RequestCompleted()

Start()

RequestCompleted()

Prepare for media data transfer

DiscardData()

RequestCompleted() Clear any previously
buffered data, if anyCommandCompleted()

MIO will start receiving media data

ThreadLogon()

QueryInterface(PVMI_CAPABILITY_AND_CONFIG_PVUUID)

RequestCompleted()

verifyParametersSync
verifyParametersSync is
called for track selectionReset()

disconnect()

ThreadLogoff()

ThreadLogon()

connect()

QueryInterface()

RequestCompleted() One or more extension
interface would be queried

setPeer()

Format Specific Info might be received here too.
setParametersSync() might be called

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

The MIO component should call RequestCompleted callback to complete the call after processing
is completed. The MIO component would need to complete the Start call before incoming media
data flow into the MIO component starts. Handling of incoming media data will be discussed in
Section 8.1 of this document.

Please note that the DiscardData() call may come before or after the Start(). As mentioned in the
next section, no assumption should be made about the order.

4.2.5 MIO DiscardData

DiscardData is an asynchronous API inherited from PvmiMIOControl interface. This API is called
during PVPlayerInterface::Prepare handling to clear any previously buffered data before playback
starts, and when repositioning is requested from end user. There are two versions of
DiscardData API defined in PvmiMIOControl interface, one without a specific timestamp and one
with a timestamp. If a timestamp is provided in DiscardData API call, the MIO component should
not render data up to the requested timestamp; otherwise, all currently queued data in MIO
component should not be rendered. Please note that each data sample can have a duration
associated with it. If timestamp of data plus duration is less than or equal to the requested
timestamp, the sample should not be rendered.

Even for the media data should not be rendered, they should also be released by call the peer’s
writeComplete function. It is necessary to call the peer’s writeComplete function to complete the
appropriate pending writeAsync calls queued by the MIO component and hardware, and clear the
appropriate memory buffers containing copied media data from previous writeAsync calls. The
hardware under MIO component is required to support external request to clear its internal
buffers to support this functionality. Furthermore, it is highly recommended that hardware should
support clearing buffered data based on timestamp to support repositioning use-cases.

The MIO component should call RequestCompleted callback to complete the call after processing
is completed. The MIO component would need to complete the DiscardData call before
rendering any data or processing incoming data from the newly requested position.

The DiscardData request may happen at any time after init is complete. The MIO component
should not the DiscardData request even if there is no data to discard; it should simply return
success in that case.

4.3 PVPlayer Start
When application issues Start command to PVPlayer, the datapath should have already been
prepared from the Prepare command, and is ready to start rendering media data. The interaction
with MIO component upon PVPlayer start is different for active/passive MIO component. About
active/passive MIO component, please refer to section 2.3.

If the MIO component is a passive MIO component, incoming media data flow would start after
PVPlayer enters started state, and the MIO component and hardware should render the data as
soon as possible.

 - Page 18 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

If the MIO component is an active MIO component, a callback call
OsclClockStateObserver::ClockStateUpdated() would be called to notify start of the playback
clock. This start of playback clock signals the start of media rendering, and the MIO component
should request the hardware to start rendering as soon as possible. Additional details about the
timing and synchronization of rendering will be discussed in Section 9 .
More about the Media Transfer please refer to section 8 .

Figure 9: Sequence diagram showing active MIO interaction with
clock at start of playback.

4.4 PVPlayer SetPlaybackRange
When application requests repositioning by calling PVPlayerInterface::SetPlaybackRange API,
PVPlayer datapath needs to discard all buffered data along the datapath before starting to
process data from the newly requested position. Therefore, DiscardData API would be called to
MIO, and MIO needs to clear all buffered data in the MIO and in the hardware. Please refer to
section 4.2.5 for details about MIO DiscardData implementation. After DiscardData, the data
source would be repositioned to the newly requested position, and start propagating data from
the new position along the datapath. The MIO would need to appropriately prepare the hardware
to play the data from new position. The active MIO might also need to interact with the playback
clock to synchronize it with the start of rendering of new data (it is not showed in this sequence).
Please refer to section 9 , for details about clock synchronization for repositioning.

 - Page 19 of 64 -

App PV Player MIO HW

Start()

ClockStateUpdated() Start Rendering

CommandCompleted()
Playback clock start is a signal that the hardware should
start rendering media data. This will be discussed in
more details in clock synchronization section

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 10: Sequence diagram of repositioning use-case.

4.5 PVPlayer Pause – Resume
When the application issues pause command to PVPlayer, the MIO component Pause API would
be called. The MIO component should request the hardware to pause playback.

For a passive MIO component, PVPlayer datapath will not send data to the MIO component at
pause state or while the clock is pausing. For an active MIO component, even during the paused
state or while the clock is pausing, the PVPlayer datapath will continue sending data to the MIO
component, and MIO component should continue to buffer the received data. The MIO
component can reject the new data if its internal buffers are full. Any data buffered should be
held until playback is resumed, and rendering would resume at that point. The active MIO might
also need to interact with the playback clock to do the pause/ resume exactly when clock pause/
resume (it is not shown in this sequence). For more details about active versus passive MIO
components, refer to Section 2.3.

 - Page 20 of 64 -

App PV Player OsclClock MIO HW

SetPlaybackRange()

cmdId=21

Pause()

DiscardData()

RequestCompleted()

WriteComplete()

WriteComplete()
Call writeComplete for pending
writeAsync to release the data

CommandCompleted(cmdId=21)

WriteAsync(data 300)

cmdID=300

WriteAsync(data 301)

cmdID=301

Transfer Data to HW

Discard buffered data in MIO and HW

WriteComplete(cmdId=300)

WriteComplete(cmdId=301)

Start()

Rendering is started

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 11: Sequence diagram of the pause/resume use-case.

4.6 PVPlayer Stop and Reset
When application issues Stop command to PVPlayer, playback is stopped and the datapath is
torn down. The MIO should request hardware to stop playback, complete all pending media data
messages in buffer, and release hardware resources at this time. After Stop command is
completed, Application would call Reset to complete the closure of playback session.

Figure 12: Sequence diagram of stop and reset.

 - Page 21 of 64 -

App PV Player MIO HW

Pause() Pause()

RequestCompleted()CommandCompleted()

Pause playback

writeAsync() Only in case of active MIO component, PV Player
Datapath will continue sending data to MIO during paused
state, until MIO buffers are full and responds that it is
busy. MIO should continue to buffer the received data, but
the data should not be rendered until playback is resumed.

Resume() Start()

RequestCompleted()CommandCompleted()

Resume playback

App PV Player MIO HW

Stop() Stop()

RequestCompleted()

Stop Playback / Release HW

deleteMediaTransfer() Release / Cleanup HW

Although PvmiMioControl::Reset() is defined as
asynchronous API, PV Player datapath uses this
API as a synchronous call. Therefore, MIO should
complete Reset synchronously. Depending on the
HW, release / clear of HW might better done in
asynchronous PvmiMioControl::Stop() API.

Reset()

RequestCompleted()

disconnect()

ThreadLogoff()

CommandCompleted()

Reset()

CommandCompleted()

MIO is no longer used by PV Player
after Reset(). The data sink is also
removed internally. Optionally App
can call RemoveDataSink() to
remove data sink before Reset().

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

4.6.1 MIO Stop

Stop is an asynchronous API inherited from PvmiMIOControl interface. Upon receiving this
request, the MIO should request the hardware to stop playback and release any buffers.
Furthermore, the MIO component should release any buffered media data back to the PVPlayer
datapath by calling the writeComplete callback (this will be explained in further details in Section
8). The RequestCompleted callback should be called after all actions described above are
completed.

4.6.2 MIO Reset

Reset is an asynchronous API inherited from PvmiMIOControl interface. The Reset method may
be called in any state, so the component must never return InvalidState. The MIO component
should stop any playback, release any buffers, and clean up all resources and state. If the MIO
has not been initialized then there may not be any cleanup work, so it can trivially return success
in this case. In general, it is expected that the Reset method should not fail. It will certainly be
considered a fatal error, and it would be best to modify the MIO to return success if possible.

4.7 PVPlayer Cancel Commands
The application can cancel all or a particular command through PVPlayerInterface. If the
command to be cancelled requires cancelling of a queued command of MIO component, the MIO
CancelCommand or CancelAllCommands API would be called. Since cancel command has a
higher priority comparing with other control commands, it should be added at the front of the
command queue. If the MIO component is currently processing a command and pending its
completion, the MIO component should complete the command in process first, and then process
the cancel command next.

4.7.1 MIO CancelCommand

CancelCommand is an asynchronous API inherited from PvmiMIOControl interface. The MIO
component should search through its command queue to locate the command requested to be
cancelled, and remove it from the command queue.

4.7.2 MIO CancelAllCommands
CancelAllCommands is an asynchronous API inherited from PvmiMIOControl interface. The MIO
component should remove all pending commands from the command queue asynchronously.
The sequence diagram below illustrates how MIO component should handle this command

 - Page 22 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 13: Sequence diagram of CancelAllCommands.

5 PVAuthor APIs
The APIs invoked from the application and the corresponding activities that are performed on the
MIO end are depicted below via the sequence diagram that follows. Explanation of the same
follows in section 5.1 to 5.4 below:

5.1 PVAuthorEngine AddDataSource
Under the PVAuthor architecture, the application creates media data source objects and provides
them to PVAuthor Engine through the PVAuthorEngine::AddDataSource method. The data
source is integrated to the PVAuthor engine by using media I/O interface and the media input
node. The AddDataSource API itself does not perform any additional action on the MIO
component or the hardware. It simply adds the data source to the list of available data sources.
Upon the successful completion of AddDataSource command from author engine, the data
source becomes available for PV modules to connect for media capturing.

5.1.1 MIO connect
Connect is a synchronous API inherited from PvmiMIOControl interface. PVAuthor datapath calls
this function to establish a control session with the MIO component. The caller in this API call
provides an observer object, and the MIO component should use it for making callbacks to
complete control commands.

5.1.2 MIO QueryInterface
QueryInterface is an asynchronous API inherited from PvmiMIOControl interface. Other PV
modules may call this API to retrieve extension interface supported by the MIO. As discussed in
section 2.2 , MIO component must implement PvmiCapabilityAndConfig. When this API is called,
MIO component needs to provide a pointer to an instance of the implementation of the requested

 - Page 23 of 64 -

App PV Player MIO HW

CancelAllCommands

cmdId=10

CancelAllCommands()

cmdId=30

RequestCompleted(cmdId=30)

MIO should erase all
commands in queue

CommandCompleted(cmdId=10)

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

interface, which other PV modules will use later on. The MIO component should call
RequestCompleted callback to complete the call.

Figure 14: Sequence diagram of PVAuthor and MIO component
initialization.

 - Page 24 of 64 -

App PVAuthor MIO Control HW

()

createMediaTransfer()

connect()

QueryInterface()

RequestCompleted ()

ThreadLogon()

CommandCompleted

AddDataSource

AddMediaTrack()

A/V/T
setParametersSync()

verifyParametersSync()

getParametersSync()

()

()CommandCompleted

Capability and config
exchange are done here

One or multiple extension
interface would be queried

Init() Init()

RequestCompleted ()

Start()

RequestCompleted()

Initialize and Prepare for media
data transfer

MIO will start receiving media data from
HW

Start()

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

5.2 PVAuthorEngine AddMediaTrack
To create a file with multiple media tracks, the client will need to call AddMediaTrack for each of
the track, for example AMR audio with H263 video and text tracks. Adding of media track is done
through the AddMediaTrack method. The client will need to specify the input PVMF node that
provides the source data for this media track, the Mime type of the encoder to be used to encode
the source data, and the file format composer in which a media track is added. At the MIO level,
Capability and config exchange is done during this time and it is decided whether the encoder
would be required or not, depending upon whether the data is compressed or uncompressed. If
data is uncompressed the encoder would be required otherwise encoder can be eliminated from
datapath.

5.3 PVAuthorEngine Init

5.3.1 MIO Init
Init is an asynchronous API inherited from PvmiMIOControl interface. MIO should implement this
function to create an instance to hardware driver, and reserve and initialize the hardware driver
as necessary. At the time of Init call, properties and format specific information of the media to be
captured should have already been provided through the capability and configuration exchange
that was done before Init. The MIO component should use this information to initialize and
reserve the hardware for capturing usage by the MIO component. For compressed input, the init
phase is used to get format-specific information such as decoder configuration information. The
MIO component should call RequestCompleted to signal that processing has been completed.

5.4 PVAuthorEngine Start

5.4.1 MIO Start
Start is an asynchronous API inherited from PvmiMIOControl interface. After its completion, this
API triggers the media data transfer from the hardware to the MIO component. The MIO
component then sends the data to the datapath by calling writeAsync of the media input node.
The detailed description of the process of receiving the media data from hardware and passing it
on to the PVAuthor datapath is given in section 8.2. If the data from the MIO component is
compressed, the encoder is not needed so the media input node is connected directly to the
composer node within the datapth in that case. For uncompressed input, the media input node
provides data to the encoder node, which is connected composer node within the datapath.

In the start phase, the composer node may use the API ‘GetInputParametersFromPeer’ to query
information such as the sampling rate, bitrate etc. In this case, getParametersSync is called on
the MIO component before the data transfer to the composer node begins.

The MIO component should call RequestCompleted after processing the Start request to signal it
finished the request. Once RequestCompleted is called, the MIO component starts sending data
to the datapath.

 - Page 25 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

5.5 PVAuthor Pause – Resume
When the application issues pause command to PVAuthor, the MIO component Pause API would
be called. The MIO component should request the hardware to pause capture. During the
paused state, the hardware would not send any data to the MIO, hence there would be no
exchange of media data between MIO component and PVAuthor datapath. When the application
issues resume command to PVAuthor, the MIO component start API would be called. In the start
API, to resume recording, the MIO should ask the hardware interface to capture more data by
calling the appropriate API (e.g., RecordData in case of Symbian OS). In order to resume the
capture of data, there is no need to initialize the hardware again; calling the API to resume the
capture would suffice.

Figure 15: PVAuthor and MIO interaction for pause and resume.

 - Page 26 of 64 -

App PV author MIO HW

Pause() Pause()

RequestCompleted ()CommandCompleted ()

HW capture device will stop sending data to MIO
component hence the exchange of media data
between PV Author Datapath and MIO will pause .

Resume() Start()

RequestCompleted ()CommandCompleted ()

Pause Recording

Resume Recording

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

5.6 PVAuthor Stop
When application issues Stop command to PVAuthor, capturing is stopped and the datapath is
torn down. The MIO should request hardware to stop capturing, complete all pending media data
messages in buffer, and release the hardware resources at this time.

Figure 16: PVAuthor and MIO interaction for stop.

5.6.1 MIO Stop
Stop is an asynchronous API inherited from PvmiMIOControl interface. Upon receiving this
request, the MIO component should request the hardware to stop capturing and release
resources. Furthermore, the media input node should release any buffered media data by calling
writeComplete callback on MIO component (this will be explained in further details in Section 8).
RequestCompleted callback should be called after all actions described above are completed.

5.7 PVAuthor Cancel Commands
The application can cancel all or a particular command through PVAuthorEngine. If the
command to be cancelled requires cancelling of a queued command of MIO component, the MIO
CancelCommand or CancelAllCommands API would be called. Since cancel command has a
higher priority comparing with other control commands, it should be added at the front of the
command queue. If the MIO component is currently processing a command and pending its
completion, the MIO component should complete the command in process first, and then process
the cancel command next.

 - Page 27 of 64 -

App PV Author MIO HW

Stop() Stop()

RequestCompleted()

Stop Capture / Release HW

.

CommandCompleted()

ThreadLogoff()

deleteMediaTransfer() Release / Cleanup HW

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

5.7.1 MIO CancelCommand

CancelCommand is an asynchronous API inherited from PvmiMIOControl interface. The MIO
component should search through its command queue to locate the command requested to be
cancelled, and remove it from the command queue.

5.7.2 MIO CancelAllCommands

CancelAllCommands is an asynchronous API inherited from PvmiMIOControl interface. The MIO
component should remove all pending commands from the command queue asynchronously.
The sequence diagram below illustrates how MIO component should handle this command.

Figure 17: PVAuthor and MIO interaction for CancelAllCommands.

6 Common Interface API’s.
The PVMF node design should allow for multi-thread usage scenarios where the node may be
created and destroyed in one thread, but used in another thread. The ThreadLogon and
ThreadLogoff APIs are the entry and exit points of the usage thread. The node can assume that
all API calls that occur between ThreadLogon and ThreadLogoff come from the same thread—the
primary usage thread.
The thread logon/logoff mechanism allows for separation of the thread-specific initialization and
cleanup operations from the construction and destruction operations. Thread-specific operations
are like adding active objects to the scheduler, doing memory profiling etc. The state machine
reflects the difference between a “Created state” and one that is “logged on”.

 - Page 28 of 64 -

App PV Author MIO HW

CancelAllCommands

cmdId=10

CancelAllCommands()

cmdId=30

RequestCompleted(cmdId=30)

MIO should erase all
commands in queue

CommandCompleted(cmdId=10)

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

6.1.1 ThreadLogon()
ThreadLogon is a synchronous command. It is the entry point to the mio comp usage thread. The
ThreadLogon call must do all thread-specific initialization for the mio such as adding active
objects to the scheduler. ThreadLogon must be allowed in the Created state. After successful
thread logon, the mio comp should change to some other state to distinguishable from “Created
state”

6.1.2 ThreadLogoff()
ThreadLogoff is a synchronous command. It is the exit point for the usage thread. The
ThreadLogoff call must do all thread-specific cleanup such as removing active objects from the
scheduler. In other words, threadLogoff should un-do any operations done by ThreadLogon. After
successful thread logoff, the state should be “Created”. If thread logoff is unsuccessful, the node
may transition to Error state, or may remain in the current state.

6.1.3 connect()
The connect() is also a synchronous command. The observer for MIOControl is set in connect()
API.

6.1.4 disconnect()
The disconnect() is also synchronous command. The disconnect() implies that no more callback
to observer can be made now.

6.1.5 QueryUUID()
The QueryUUID method is an asynchronous call. This API retrieves the UUID or unique identifier
of interfaces supported by mio comp. The call has two modes—normal mode and “exact” mode.
Normal mode interprets the input MIME string as a prefix and returns a list of UUIDs of all
interfaces supported by the node whose MIME string contains the prefix. Exact mode returns
the UUIDs of interfaces whose MIME strings match the input MIME string exactly. Typically, MIO
comp should implement “exact” mode.

6.1.6 QueryInterface()
The QueryInterface() method is an asynchronous call. This API retrieves a pointer to the
implementation of a specific interface, given its UUID. QueryInterface should not cause any node
state change.

6.1.7 createMediaTransfer()
The createMediaTransfer() method is a synchronous call. It creates and initializes mediatransfer
instance and returns its pointer.

 - Page 29 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

7 Capability and Configuration Exchange
7.1 Capability and Configuration Exchange for PVPlayer

7.1.1 getParametersSync
The getParametersSync API allows other PV modules to query for the capability and
configurations supported by the MIO. In current implementations, all MIOs are required to
support INPUT_FORMATS_CAP_QUERY (".../input_formats;attr=cap") capability, and respond
with a list of media formats that can be handled by MIO. PVPlayer Engine uses this information
to construct the datapath. The function plays an important role in track selection.

7.1.2 releaseParameters
The releaseParameters API goes in pair with getParametersSync function to release the data that
is returned by MIO in the previous getParametersSync call. This API is called when the PV
module that requested the information, provided in the previous getParametersSync call, has
finished using the data. If memory is allocated in the corresponding getParametersSync call, it
can be deallocated or reused.

7.1.3 setParametersSync
The setParametersSync method is the key API of PvmiCapabilityAndConfig interface used to
configure the MIO component. Other PV modules call this API to set various settings that are
required typically to initialize the MIO itself as well as the decoder or renderer hardware. Once
the MIO component gets all the parameters it needs for initialization, it should call
ReportInfoEvent() with PVMFMIOConfigurationComplete as the event-type. Typically, this
message is sent after MIO component receives all required parameters in setParametersSync.
But, the MIO component may choose to send this message at a later stage after initialization is
complete. The MIO node will not send any media data to MIO component until it receives
PVMFMIOConfigurationComplete.

7.1.3.1 Audio-related Capabilities
For an MIO component that supports audio media data types, it is required to support setting of
capabilities identified by the key strings described below.

Key String Purpose

MOUT_AUDIO_FORMAT_KEY
("x-
pvmf/audio/render/media_format;valtype
=char*")

PVPlayer datapath uses this setting to inform MIO of the
audio media data format that MIO is expected to receive
after MIO Start is completed. The value provided by the
caller is a MIME string of text media data format type
defined in pvmf_format_types.h header file.

 - Page 30 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

MOUT_AUDIO_SAMPLING_RATE_KEY
("x-
pvmf/audio/render/sampling_rate;valtype
=uint32")

PVPlayer datapath uses this setting to inform MIO of the
sampling rate of audio data that MIO is expected to
receive. The value provided by the caller is a 32 bit integer
in unit of Hz.

MOUT_AUDIO_NUM_CHANNELS_KEY
(“x-
pvmf/audio/render/channels;valtype=uint
32")

PVPlayer datapath uses this setting to inform MIO of the
number of audio channels in the data that MIO is expected
to receive. The value provided by the caller is either 1 for
mono, or 2 for stereo.

PVMF_FORMAT_SPECIFIC_INFO_KEY
("x-
pvmf/media/format_specific_info;valtype=
key_specific_value")

PVPlayer datapath uses this setting to provide media
format specific information, such as codec header, that is
necessary for initialization of decoder or renderer
hardware. MIO is responsible for parsing the format
specific information to retrieve all necessary data from it,
and configure the hardware accordingly. The parsing is
specific for each media format supported by the MIO, and
developers should refer to the individual file format’s
specification for further information on how to perform such
parsing.

PVMF_FORMAT_SPECIFIC_INFO_KEY
_PCM
("x-
pvmf/media/format_specific_info_pcm;val
type=key_specific_value")

PVPlayer datapath uses this setting to provide a structure,
the channelSampleInfo structure, containing information on
the number of channels, sample rate, bits per sample,
buffer size, and number of buffers. The buffer size and
number of buffers contain the requested size and number
for the buffers needed by the upstream decoder. These
are provided to support the case where the MIO will handle
buffer allocation for the decoder. Details of this alternative
buffer allocation method is described in . The individual
keys for the values covered by this structure such as
sample rate, channels, etc may be obsoleted in the future
after a transition period, but the MIO component should be
prepared to handle those individual keys as well as this
combined key currently.

For an audio MIO component that supports AAC format, it is also required to support the following
capability.

Key String Purpose

PVMF_FORMAT_SPECIFIC_INFO_P
LUS_FIRST_SAMPLE_KEY
("x-
pvmf/media/format_specific_info_plus_
first_sample;valtype=uint8*")

PVPlayer datapath uses this setting to provide the codec
header plus the first media sample to MIO. The first media
sample is required to determine the properties of the AAC
bitstream, such as sample rate, number of channels, and
AAC stream type.

7.1.3.2 Video-related Capabilities

 - Page 31 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

For an MIO component that supports video media data types, it is required to support setting of
capabilities identified by the key strings described below.

Key String Purpose

MOUT_VIDEO_FORMAT_KEY
("x-
pvmf/video/render/media_format;valtype=
char*")

PVPlayer datapath uses this setting to inform MIO of the
video media data format that MIO is expected to receive
after MIO Start is completed. The value provided by the
caller is a MIME string of text media data format type
defined in pvmf_format_types.h header file.

MOUT_VIDEO_WIDTH_KEY
("x-
pvmf/video/render/width;valtype=uint32")

PVPlayer datapath uses this setting to inform MIO of the
pixel width of video data that MIO is expected to receive.
The value provided by the caller is a 32 bit integer in unit of
pixels.

MOUT_VIDEO_HEIGHT_KEY
("x-
pvmf/video/render/height;valtype=uint32"
)

PVPlayer datapath uses this setting to inform MIO of the
pixel height of video data that MIO is expected to receive.
The value provided by the caller is a 32 bit integer in unit of
pixels.

MOUT_VIDEO_DISPLAY_WIDTH_KEY
("x-
pvmf/video/render/display_width;valtype=
uint32")

PVPlayer datapath uses this setting to inform MIO of the
pixel width of the display area that MIO is expected to
render to. The value provided by the caller is a 32 bit
integer in unit of pixels.

It is possible that this is different from the value of pixel
width of the video data itself. If the MIO or hardware
supports scaling of video data, this information should be
used to scale the data before displaying accordingly.

MOUT_VIDEO_DISPLAY_HEIGHT_KEY
("x-
pvmf/video/render/display_height;valtype
=uint32")

PVPlayer datapath uses this setting to inform MIO of the
pixel height of the display area that MIO is expected to
render to. The value provided by the caller is a 32-bit
integer in unit of pixels.

It is possible that this is different from the value of pixel
height of the video data itself. If the MIO or hardware
supports scaling of video data, this information should be
used to scale the data before displaying accordingly.

PVMF_FORMAT_SPECIFIC_INFO_KEY
("x-
pvmf/media/format_specific_info;valtype=
key_specific_value")

PVPlayer datapath uses this setting to provide media
format specific information, such as codec header, that is
necessary for initialization of decoder or renderer
hardware. MIO is responsible for parsing the format
specific information to retrieve all necessary data from it,
and configure the hardware accordingly. The parsing is
specific for each media format supported by the MIO, and
developers should refer to codec specification for the
media format for further information on how to perform
such parsing.

 - Page 32 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

PVMF_FORMAT_SPECIFIC_INFO_KEY
_YUV
("x-
pvmf/media/format_specific_info_yuv;valt
ype=key_specific_value")

PVPlayer datapath uses this setting to provide a set of
information in the PVMFYuvFormatSpecificInfo0 class
detailing the dimensions, specific YUV layout, and buffer
size and number of buffers. The buffer size and number
of buffers contain the requested size and number for the
buffers needed by the upstream decoder. These are
provided to support the case where the MIO will handle
buffer allocation for the decoder. Details of this alternative
buffer allocation method is described in [3] . The individual
keys for the values covered by this structure such as
sample rate, channels, etc may be obsoleted in the future
after a transition period, but the MIO component should be
prepared to handle those individual keys as well as this
combined key currently.

 - Page 33 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

7.1.3.3 Text-related Capabilities

For an MIO component that supports text media data types, it is required to support setting of
capabilities identified by the key strings described below.

Key String Purpose

MOUT_TEXT_FORMAT_KEY
("x-
pvmf/text/render/media_format;valtype=c
har*")

PVPlayer datapath uses this setting to inform MIO of the
text media data format that MIO is expected to receive
after MIO Start is completed. The value provided by the
caller is a MIME string of text media data format type
defined in pvmf_format_types.h header file.

7.1.3.4 Other Capabilities

For an MIO component that supports control the output playback rate, it is required to support
setting of capabilities identified by the key strings described below.

Key String Purpose

MOUT_MEDIAXFER_OUTPUT_RATE
"x-
pvmf/mediaxfer/output/rate;type=rel;valty
pe=int32"

PVPlayer datapath uses this setting to inform MIO of the
output playback rate that MIO is expected to received after
MIO Start is completed. The value provided by the caller is
a 32 bit integer that “10000” means normal speed and
“30000” means 3 x speeds.

For an MIO that supports allocating buffers for the upstream decoder, the following setting should
be supported for the data path to obtain the buffer allocator.

Key String Purpose

PVMF_BUFFER_ALLOCATOR_KEY
"x-
pvmf/media/buffer_allocator;valtype=key
_specific_value"

PVPlayer datapath uses this in a getParameterSync to
query the MIO component for a buffer allocator object.
The MIO is not required to supply an allocator but this can
be used to allow the renderer to supply buffers to the
decoder. See the following document[3] for information.

7.1.4 verifyParametersSync

This API is called by PVPlayer datapath to verify whether the capability specified is supported by
the MIO component and the hardware. The key strings listed in section 7.1.3 are used to identify
the configuration to be verified. This API should return PVMFSuccess if the capability and value
specified are supported or PVMFErrNotSupported if they’re not supported.

 - Page 34 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

 - Page 35 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

7.2 Capability and Configuration Exchange for PVAuthor

7.2.1 getParametersSync

The getParametersSync API allows other PV modules to query for the capability and
configurations supported by the MIO. .

7.2.1.1 File Format-related Capabilities

An MIO component can be queried for the following capabilities:

Query Purpose

OUTPUT_FORMATS_CAP_QUERY
(".../output_formats;attr=cap")

or
OUTPUT_FORMATS_CUR_QUERY
(".../output_formats;attr=cur")

PVAuthor datapath uses this query to
ask MIO of the list of media formats that
can be provided from the capture
component PVAuthor Engine uses this
information to construct the datapath.

The key returned from MIO would be:
OUTPUT_FORMATS_VALTYPE
(“…/output_formats;valtype=uint32”)

OUTPUT_TIMESCALE_CUR_QUERY
(“…/output/timescale; attr=cur”)

PVAuthor datapath uses this query to
ask MIO about the timescale of the
concerned stream.

The key returned from MIO would be:
OUTPUT_TIMESCALE_CUR_VALUE
(“…/output/timescale; valtype=uint32”)

7.2.1.2 Video-related Capabilities

For an MIO component that supports video media data types, it is required to support querying of
following capabilities.

 - Page 36 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Query Purpose

VIDEO_OUTPUT_WIDTH_CUR_QUERY
(“…/output/width; attr=cur”)

PVAuthor datapath uses this query to
ask MIO of the pixel width of video data
that MIO will send. The value is a 32 bit
integer in unit of pixels.

The key returned from MIO would be:
VIDEO_OUTPUT_WIDTH_CUR_VALU
E
 (“…/output/width;valtype=uint32”)

VIDEO_FRAME_ORIENTATION_CUR_QUERY
(“…/output/frame_orientation; attr=cur”)

PVAuthor datapath uses this query to
ask MIO of the frame orientation of
video data that MIO will send. The
value provided is an 8 bit integer.

The key returned from MIO would be:
VIDEO_FRAME_ORIENTATION_CUR
_VALUE
 (“…/output/frame_orientation;valtype=u
int8”)

VIDEO_OUTPUT_HEIGHT_CUR_QUERY
(“…/output/height; attr=cur”)

PVAuthor datapath uses this query to
ask MIO of the pixel height of video
data that MIO will send. The value
provided is a 32 bit integer in unit of
pixels.

The key returned from MIO would be:
VIDEO_OUTPUT_HEIGHT_CUR_VAL
UE (“…/output/height;valtype=uint32”)

VIDEO_OUTPUT_FRAME_RATE_CUR_QUERY
(“…/output/frame_rate; attr=cur”)

PVAuthor datapath uses this query to
ask MIO of the frame rate of video data
that MIO will send. The value provided
is a 32 bit integer

The key returned from MIO would be:
VIDEO_OUTPUT_FRAME_RATE_CU
R_VALUE
 (“…/output/frame_rate;
valtype=uint32”)

 - Page 37 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

7.2.1.3 Audio-related Capabilities
For an MIO component that supports audio media data types, it is required to support querying of
following capabilities:

Query Purpose

AUDIO_OUTPUT_SAMPLING_RATE_CUR_QUERY
(".../output/sampling_rate;attr=cur")

PVAuthor datapath uses this query to
ask MIO of the sampling-rate (in Hz)
of the capture device. The value is a
32 bit integer.

The key returned from MIO would be:
AUDIO_OUTPUT_SAMPLING_RATE
_CUR_VALUE
(".../output/sampling_rate;valtype=uin
t32)

AUDIO_OUTPUT_NUM_CHANNELS_CUR_QUERY
(".../num_channels;attr=cur")

PVAuthor datapath uses this query to
ask MIO of number of channels of the
audio stream, capture device is
sending. The value provided is a 32
bit integer.

The key returned from MIO would be:
AUDIO_OUTPUT_NUM_CHANNELS
_CUR_VALUE
 (".../num_channels;valtype=uint32")

7.2.2 releaseParameters

The releaseParameters API goes in pair with getParametersSync function to release the data that
is returned by MIO in the previous getParametersSync call. This API is called when the PV
module that requested the information, provided in the previous getParametersSync call, has
finished using the data. If memory is allocated in the corresponding getParametersSync call, it
can be deallocated or reused.

7.2.3 setParametersSync
The setParametersSync method is the key API of PvmiCapabilityAndConfig interface in today’s
usage. Other PV modules call this API to set various settings that are required typically to
initialize the MIO itself as well as the hardware encoder or capture hardware.
-

 - Page 38 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

7.2.4 verifyParametersSync
This API is called by PVAuthor datapath to verify whether the capability specified is supported by
the MIO component and the hardware. The query strings listed in section 7.2.1 are used to
identify the configuration to be verified. This API should return PVMFSuccess if the capability
and value specified are supported or PVMFErrNotSupported if they’re not supported.

8 Media Transfer

8.1 Media Transfer in PVPlayer
The MIO component receives media data from PVPlayer datapath, repackages the data into data
structures that can be understood by decoder or renderer, and sends it downstream for further
processing and rendering.

Figure 18: Sequence showing media transfer setup between
PVPlayer and the MIO component.

8.1.1 setPeer

setPeer is an API inherited from PvmiMediaTransfer interface. This is the API that connects two
peer modules that would be exchanging media data. The MIO component should store the peer
pointer provided, and use that to communicate with the peer module.

 - Page 39 of 64 -

App PV Player MIO HW

writeAsync(msg 1)

MIO should call
writeComplete() after
processing the data / cmd

writeAsync(msg 1)

cmdId 1 MIO could call its peer’s
writeAsync() to send
event messages

setPeer()
PVPlayer Datapath is set
as peer to MIO

cmdId 1

writeComplete(cmdId 1)

writeComplete(cmdId 1)

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

8.1.2 writeAsync
The writeAsync API is inherited from PvmiMediaTransfer interface. From MIO component’s point
of view, the API’s function is to receive media data and commands from PVPlayer datapath and
process them asynchronously. This API is paired with writeComplete, and MIO component
should call writeComplete on the peer module when it is done using the data. This would release
the data provided in the writeAsync call back to PVPlayer datapath. The MIO component must
process and consume the data in a FIFO order. Therefore it is generally necessary for MIO to
maintain a queue of incoming writeAsync calls, and sequentially process them in an
asynchronous fashion.

The MIO component would receive different types of media data and command, and they are
identified by the value specified in the format_type and format_index parameters. The
subsections below describe how the MIO component should handle the different types of data
and command.

8.1.3 Format Specific Information
Format specific information such as the codec configuration data could be sent optionally from
PVPlayer datapath through the writeAsync API. The data can be identified as format specific
information if the following logic is true.

(format_type == PVMI_MEDIAXFER_FMT_TYPE_DATA) &&
(format_index == PVMI_MEDIAXFER_FMT_INDEX_FMT_SPECIFIC_INFO)

Since this information is already sent via setParametersSync(please refer to section 7.1.3),
PVPlayer does not send this information via writeAsync any more.

8.1.4 Media Data
The MIO component can identify data exchanged through writeAsync API as media data if the
following logic is true.

(format_type == PVMI_MEDIAXFER_FMT_TYPE_DATA) &&
(format_index == PVMI_MEDIAXFER_FMT_INDEX_DATA)

In the writeAsync function, in general it is only necessary to buffer up the data to a queue if it is
not full, schedule the data to be processed asynchronously if the MIO and hardware are in the
appropriate states, and return a unique command ID to the caller to identify the writeAsync call.
This command ID should be used when writeComplete is called on the peer to complete the
writeAsync call. If the MIO component is in a state that is ready to receive incoming data but the
hardware is not, the MIO component should still accept and buffer up the data, and send it to
hardware when the hardware enters the appropriate states.

The sequence diagram below describes generally how an MIO component should handle
writeAsync calls, and calling writeComplete on the peer after the data is consumed.

 - Page 40 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 19: Media transfer sequence between PVPlayer and the MIO
component.

Typically only active MIOs would queue multiple buffers before sending them to the hardware
components. In some cases buffers may need to be combined, such as in the case of frame
reconstruction for MIOs taking compressed input. In those cases care should be taken not to
queue too many buffers without returning any or the datapath may run out of buffers to provide
more data. This situation may arise for compressed data in a streaming scenario where an I-
frame is broken into many separate buffers. The MIO component should copy data to an internal
buffer and call writeComplete to return the buffer and avoid a potential deadlock situation.

8.1.4.1 Transfer Media Data to the Hardware
The transfer of media data to the hardware is specific to the target integration platform and can
vary greatly from one platform to another. The MIO component is responsible for any necessary
adaptation of the media data provided by the PVPlayer datapath before sending to the underlying
components. It is expected that it should be possible to negotiate commonly understood data
formats between the datapath and the MIO up-front and any modification of media data should be
minor during steady-state processing.. While this adaptation is platform specific, the following are
some examples of the functions that an MIO component might need to provide to adapt between
the two layers.

• Request the hardware to allocate and provided access to shared memory for MIO
component to write media data to.

• Store the media data and other related information to data structures that can be
accepted by the hardware.

• For an active MIO component, it should manage the timing of providing media data to the
hardware appropriately depending on the state of the datapath, the MIO component, and
the hardware. For a passive MIO component, it should providing media data to the
hardware as soon as possible.

• Manage the amount of data provided to the hardware by grouping a suitable number of
media data buffers before providing it to decoder or renderer. This grouping logic may be
needed to adapt between the different buffer sizes of the datapath and the renderer or to
reconstruct a structural element such as a frame of data before passing it to a decoder in
the case of an MIO taking compressed input.

 - Page 41 of 64 -

App PV Player MIO HW

writeAsync(data 2)

MIO should buffer up the data
and provide to HW sequentially.
MIO could also buffer up data
from multiple writeAsync calls
before providing it to HW.

After the data is consumed, e.g.
copied to HW memory or rendered
to user, writeComplete should be
called to release the data.

writeAsync(data 3)

cmdId 2

cmdId 3

writeComplete(cmdId 2)

writeComplete(cmdId 3)

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

8.1.4.2 Media Data Frame Reconstruction
In cases where the MIO component is acting as a renderer that takes compressed media data as
input (i.e., the MIO is implementing the decoding and rendering directly), it is important to
consider the streaming use-case where the data for a frame may be fragmented into multiple
messages. If the underlying hardware components can accept these partial frames directly, then
the MIO component does not need to do further processing and can pass the media data buffers
without trying to reassemble larger blocks. The OpenMAX IL specification[1] requires
components to be able to handle fragmentation of frames into separate buffers, so an MIO
component interfacing to a compliant OpenMAX component should not need to do any frame
reassembly. If the underlying hardware cannot handle partial frames, then frame reassembly
inside the MIO component is required.

If media data frame reconstruction is required, the MIO component should use the flags field of
the PvmiMediaXferHeader structure provided in data_header_info parameter of writeAsync to
determine whether the data contained in writeAsync completes a media data frame or not. The
flags field is a bitmask that contains a marker bit that is set to 1 if the writeAsync call contains
the last data of a media data frame. The MIO component should use the following logic to check
for frame boundary.

(data_header_info.flags & PVMF_MEDIA_DATA_MARKER_INFO_M_BIT)

If the above logic is true, it means the data is the last data of a media data frame. It is important
to keep in mind that there may be packet loss so it may be necessary to also utilize the sequence
number and timestamp information in the same structure to reliably detect missing data or a
frame boundary. The datapath will deliver the media data ordered by sequence number so gaps
indicate a data loss. The diagram below illustrates a frame reconstruction sequence based on
the marker bit.

 - Page 42 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 20: Sequence diagram showing use of the marker bit for
frame reconstruction.

8.1.4.3 Flow Control
The processing of writeAsync function has an important role in flow control of media data in
PVPlayer datapath. The MIO component and hardware should define a reasonable maximum
size for the incoming data queue, and accept incoming data for asynchronous processing until
the queue is full. When the MIO component or hardware data queue reaches its maximum size,
the writeAsync call should leave by calling OSCL_LEAVE(OsclErrBusy). This signals to
PVPlayer datapath that MIO component cannot accept incoming data, and would then
temporarily suspend transfer of media data.

When the MIO component can accept new incoming data again, for example, after the hardware
has consumed some buffered data, MIO component should call
statusUpdate(PVMI_MEDIAXFER_STATUS_WRITE) on the peer object to notify PVPlayer
datapath that it can resume transfer of media data. The data that was rejected by the previous
writeAsync call would be sent again, followed by subsequent media data.

This flow control method is only used for Media Data. Mio component should not do any leave for
writeAsync of data notification like End of Data or Reconfig.

 - Page 43 of 64 -

App PV Player MIO HW

writeAsync(data10, marker bit = 0)

cmdId = 10

writeAsync(data11, marker bit = 0)

cmdId = 11

writeAsync(data12, marker bit = 1)

cmdId = 12

Combine data10, 11 and 12
into one contiguous buffer
and provide to HW

writeComplete(cmdId = 10)

writeComplete(cmdId=11)

writeComplete(cmdId=12)

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 21: Sequence diagram showing the use of flow control of
the media data.

8.1.4.4 Media Timestamp
The timestamp provided to MIO component is the presentation timestamp mapped from media
sample timestamp in file format. This presentation timestamp is non-decreasing during a single
playback session, i.e. the timestamp never goes backwards even if the playback repositions
backwards. The purpose of such design in PVPlayer SDK architecture is because rendering is
synchronized to a clock that does not go back in time. It would be impossible for the renderer to
render media data at an accurate time if data timestamp or the clock could jump forward or
backwards. The MIO component does not have access to the media sample timestamp from the
media file format, and should not require this information to process the media data.

8.1.5 End of Data Notification
When playback reaches the end and there is no more media data to be sent to the MIO
component, an end of data notification will be sent to the MIO component through writeAsync
API. The MIO component can identify the end of data notification by the following logic

(format_type == PVMI_MEDIAXFER_FMT_TYPE_NOTIFICATION) &&
(format_index == PVMI_MEDIAXFER_FMT_INDEX_END_OF_STREAM)

 - Page 44 of 64 -

App PV Player MIO HW

writeAsync(data10)

OSCL_LEAVE(OsclErrBusy) MIO buffer queue is full and
cannot accept new data

Queued data is consumed (e.g.
sent to HW or data is rendered)

writeComplete(cmdId 7)

writeComplete(cmdId 8)

writeComplete(cmdId 9)

statusUpdate(PVMI_MEDIAXFER_STATUS_WRITE)

writeAsync(data 10)

cmdId 10 data 10 is buffered
in MIO data queue

PVPlayer Datapath suspends
media data transfer after
getting Busy signal

PVPlayer Datapath resumes
media data transfer after
getting status update

writeAsync(data11)

cmdId 11 data 11 is buffered
in MIO data queue

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

When MIO component receives this notification, it should continue to send data to the hardware
until all data is exhausted and inform the hardware that end of data is reached. The hardware
should finish rendering all provided data and then stop playback. During this time, the MIO
component wait until the hardware indicates that all data has been rendered before calling
writeComplete to the peer for the corresponding writeAsync that provided the end of data
notification. It is important to ensure that the timing of this writeComplete comes after all data has
been rendered.

After the end of data notification is completed, PVPlayer Engine would automatically pause the
datapath, and inform the application that end of data has been reached.

Mio component should not call OSCL_LEAVE(OsclErrBusy)here for end of data notification.

 Figure 22: Sequence diagram showing end of data notification.

8.1.6 Reconfig Notification
When PVPlayer decided to do the stream changing, a reconfig notification will be sent to the MIO
component through writeAsync API. A typical usage is when network condition turns bad,
PVPlayer chooses lower bitrate stream instead of higher one. The MIO component can identify
the reconfig notification by the following logic

(format_type == PVMI_MEDIAXFER_FMT_TYPE_NOTIFICATION) &&
(format_index == PVMI_MEDIAXFER_FMT_INDEX_RE_CONFIG_NOTIFICATION)

When MIO component receives this notification, it should do the following steps
• Continue to send data to the hardware until all data earlier than this notification is

consumed.

 - Page 45 of 64 -

App PV Player MIO HW

writeAsync(data100)

cmdId=100

writeAsync(End of Data)

cmdId=101
Send remaining data to HW
and signal to hardware that
this is the last data in this
playback session

writeComplete(cmdId=100)

HW notifies MIO that all
data is rendered and
playback is completedwriteComplete(cmdId=101)

Pause()

RequestCompleted()
HandleInformationalEvent
(PVMFInfoEndOfData)

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

• Wait until the hardware indicates that all data has been rendered.
• Do necessary steps to config the hardware to a state that ready to receive new data

stream. The necessary steps are hardware dependent and may include Stop, Reset, Init,
Start etc. Some hardware does not need any re-config before receiving new data stream.
If the process to config the hardware is an async process, MIO component should ensure
it could works fine even PVPlayer call pause() or start() of MIO component before the
config process finished,

• Call writeComplete to indicate the re-config of the hardware is finished.
• Starting processing the new data stream.

Mio component should not call OSCL_LEAVE(OsclErrBusy) here for reconfig notification.

8.1.7 Event Reporting from MIO to PVPlayer datapath
To report unsolicited error or information events from MIO component to PVPlayer datapath, the
MIO component should call the peer’s writeAsync function. To indicate to the peer that the
writeAsync contains event information, the MIO component should call writeAsync with the
following parameters

Parameter Value
format_type PVMI_MEDIAXFER_FMT_TYPE_NOTIFICATION
format_index PVMI_MEDIAXFER_FMT_INDEX_ERROR_EVENT for error events

PVMI_MEDIAXFER_FMT_INDEX_INFO_EVENT for info events
data Pointer to an PVMFAsyncEvent object. If extended errors are defined

for the MIO component, a PVMFBasicErrorInfoMessage object
should be created to contain the extended error event. The
appropriate constructor of PVMFAsyncEvent should be used to pass
the PVMFBasicErrorInfoMessage object as
aEventExtInterface parameter.

data_len Size of PVMFAsyncEvent object

PVPlayer datapath would call the MIO component’s writeComplete function after the event is
processed. If the event data is allocated dynamically, it should be deallocated upon
writeComplete is received.

Not all the events are sent to application. Only the events with following EventType (a member of
PVMFAsyncEvent) are sent to application:

For PVMI_MEDIAXFER_FMT_INDEX_ERROR_EVENT
PVMFErrCorrupt PVMFErrOverflow PVMFErrUnderflow
PVMFErrTimeout PVMFErrNoResources PVMFErrResourceConfiguration
PVMFErrResource PVMFErrNoMemory PVMFErrProcessing,

For PVMI_MEDIAXFER_FMT_INDEX_INFO_EVENT for info events
PVMFInfoDataDiscarded PVMFErrNoResources PVMFSuccess

The sequence diagram in Figure 23 below illustrates how an error from hardware can propagate
up to the application level.

 - Page 46 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 23: Sequence diagram showing error event propagation.

8.1.8 writeComplete

The implementation of writeComplete for MIO component should be simple because it would
only be called to complete a previous writeAsync issued by MIO component to send events to
PVPlayer datapath. The writeComplete function of MIO component should deallocate any
memory that was allocated for the writeAsync it is completing. This might include the
PVMFAsyncEvent and PVMFBasicErrorInfoMessage objects that were used in reporting the
event depending on implementation.

8.1.9 Unsupported APIs

There are several APIs defined in PvmiMediaTransfer interface that MIO component for
PVPlayer doesn’t need to support

• UseMemoryAllocators
• ReadAsync
• ReadComplete

For these APIs, the MIO component should call OSCL_LEAVE(OsclErrNotSupported) to
indicate they are not supported.

8.2 Media Transfer in PVAuthor

 - Page 47 of 64 -

App PV Player MIO HW

Decoder Error

Construct PVMFAsyncEvent and
PVMFBasicErrorInfoMessage objects
to contain extended error code for
decoder error

writeAsync(Error Event)

writeComplete(cmdId=200)

cmdId=200

HandleErrorEvent(Error Event)

PVPlayer Engine might stop
and reset the playback
session if it is a critical error

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

PVAuthor datapath sets itself as a peer to the MIO component. MIO gets the data from Hardware
Capture device and sends it back to the PVAuthor datapath by calling the WriteAsync method of
its peer.

Figure 24: Sequence showing media transfer setup between PVAuthor
and the MIO component.

8.2.1 SetPeer

SetPeer is an API inherited from PvmiMediaTransfer interface. This is the API that connects two
peer modules that would be exchanging media data. The MIO component should store the peer
pointer provided, and use that to communicate with the peer module. The peer of MIO component
is the media input node.

 - Page 48 of 64 -

App PV Author MIO HW

writeAsync(msg 1)

cmdId 1 MIO could call its peer’s
writeAsync() to send
event messages/ Data

setPeer()
PVAuthor Datapath is set
as peer to MIO

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

8.2.2 WriteAsync call on MIONode

WriteAsync is an API inherited from PvmiMediaTransfer interface. From the MIO component’s
point of view, the method is used to send the media data and commands to PVAuthor datapath
and process them asynchronously. This API is paired with writeComplete, and media input node
should call writeComplete on the MIO component when it is done using the data. The writeAsync
call returns an ID which can be saved in a queue. Once writeComplete for the corresponding ID is
returned (after writeAsync is processed), the saved ID can be deleted and the corresponding
buffer/data pointer can be deallocated or recycled. The MIO component must provide data in the
order it should be processed downstream.

The MIO component would send different types of media data and command, and they are
identified by the value specified in the format_type and format_index parameters. The
subsections below describe how the MIO component should handle the different types of data
and command.

8.2.3 Format-Specific Information
Format specific information such as codec header, formats and encoders supported by the
capture device could be sent optionally to the PVAuthor datapath through the writeAsync API.
The data can be set as format specific information by making following assignments:

format_type = PVMIPVMI_MEDIAXFER_FMT_TYPE_NOTIFICATION
format_index = PVMI_MEDIAXFER_FMT_INDEX_FMT_SPECIFIC_INFO

Typically the format specific information is already provided to MIO component prior to writeAsync
calls through capability configuration exchange. Therefore the MIO component can call
writeComplete to the peer to release this data without parsing the information here unless the
hardware requires the format specific data. In case that processing of format specific information
is again necessary, the MIO should process the information similar to how it is done in
setParametersSync, and call writeComplete to the peer to release the data after it is consumed.
Please refer to section 7.2.3 and its subsections for more details

8.2.4 Media Data
The MIO component can send media data through the writeAsync API by setting the following
values in format type and format index.

format_type = PVMI_MEDIAXFER_FMT_TYPE_DATA
format_index = PVMI_MEDIAXFER_FMT_INDEX_DATA

The MIO component receives the captured data from the source and sends this received data to
the PVAuthor engine datapath by calling the writeAsync function of its peer. The sequence
diagram below illustrates how an MIO component should call writeAsync, and how it should
handle the writeComplete from the peer after the data is consumed.

 - Page 49 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 25: Media transfer sequence between PVAuthor and the MIO
component.

8.2.4.1 Capturing Media Data

The transfer of media data from the hardware to MIO is specific to the target integration platform
and can vary greatly from one platform to another. The MIO component implementation needs to
adapt to these differences in hardware interfaces. The implementation needs to handle how the
hardware provides media data to MIO (e.g., it could be in form of callbacks to MIO). Then MIO
needs to format the data received in a way so that it can be sent to PVAuthor datapath. While
this adaptation is platform specific, the following are some examples of the functions that an MIO
component might need to provide to adapt between the two layers.

 - Page 50 of 64 -

App PVAuthor MIO
Control HW

Init() Init ()

RequestCompleted ()

Start ()

RequestCompleted ()

Initialize and Prepare for media
data transfer

MIO will start receiving media data from
HW

Start()

Start capturing the Data

Recorded Data
(BufferToBeEmptied)Peer->Writeasync

WriteComplete Record More Data

Recorded Data
(BufferToBeEmptied)Peer->Writeasync

WriteComplete Record More Data

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

• Request the hardware to allocate and provided access to shared memory for MIO
component to read media data from.

• Store the media data and other related information received from hardware interface to
data structures that can be accepted by the PVAuthor datapath.

In the sequence diagram above, taking Symbian OS implementation as an example, Symbian OS
hardware interface is Devsound. MIO derives from Devsound observer. Devsound communicates
with MIO using callback functions in this observer. Devsound supplies data to the MIO using a
handshake mechanism. Data captured by the Devsound is passed to the MIO in a buffer in the
observer callback BufferToBeEmptied. MIO copies the data from the buffer supplied and passes
on to the PVAuthor datapath by calling writeAsync method of the peer. MIO then asks for more
data from Devsound by calling its RecordData function. This handshake mechanism goes on till
authoring process is paused or stopped or some error occurs.

 - Page 51 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

8.2.4.2 Flow Control

The processing of writeAsync function has an important role in flow control of media data in
PVAuthor datapath. The MIO component has to deal with situations when the incoming data
queue of the PVAuthor datapath may be unable to accept any more data because it is already
full. When the PVAuthor datapath data queue accepting data from MIO component reaches its
maximum size, the writeAsync call should leave by calling OSCL_LEAVE(OsclErrBusy). This
signals to MIO component that PVAuthor datapath cannot accept incoming data, and would then
temporarily suspend transfer of media data. MIO component then should delay the callback to
hardware which informs the Hardware to capture more data till the time PVAuthor datapath can
accept more data.

After this there are two ways to find out about the availability of more buffers at the PVAuthor
datapath. One is to try to send more data to PVAuthor datapath every time the PVAuthor
datapath calls writeComplete call back in the MIO component. This way writeAsync call would
succeed when PVAuthor datapath can accept more incoming data.

In the second method, When the PVAuthor datapath can accept new incoming data again, for
example, after PVAuthor has consumed some buffered data, PVAuthor datapath will call
statusUpdate(PVMI_MEDIAXFER_STATUS_WRITE) on the MIO component to notify that it
can resume transfer of media data. The data that was rejected by the previous writeAsync call
needs to be sent again, followed by subsequent media data.

 - Page 52 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 26: Illustration of media data flow control between PVAuthor and
the MIO component.

8.2.4.3 Media Timestamp

The capturing device provides the timestamp associated with the captured data to the input MIO
component. MIO should send these timestamps back to the PVAuthor datapath by updating the
timestamp variable of the PvmiMediaXferHeader while sending the data back in writeAsync calls
to the PVAuthor datapath. The gaps induced in the timestamp due to reasons like error in
capturing or non availability of buffers to fill the data at the PVAuthor datapath needs to be taken
care of by the MIO component.

 - Page 53 of 64 -

App PV Author MIO HW

OSCL_LEAVE(OsclErrBusy)
PV Author Data Path buffer
queue is full and cannot
accept new data

Queued data is consumed (e.g.
sent to Composer or engine)

writeComplete(cmdId 7)

writeComplete(cmdId 8)

writeComplete(cmdId 9)

statusUpdate(PVMI_MEDIAXFER_STATUS_WRITE)

writeAsync(data 10)

cmdId 10 data 10 is buffered in
PV Author data queue

MIO Component suspends
media data transfer after
getting Busy signal

MIO component resumes
media data transfer after
getting status update

writeAsync(data11)

cmdId 11 data 11 is buffered in
PV author data queue

WriteAsync (data 10)

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

8.2.4.4 Media Data Frame Reconstruction

It is possible that some hardware platforms support partial frame processing and that they can
give partial frames to MIO. For such hardware that support processing of partial frame media
data, the MIO component would be required to inform the PVAuthor datapath about the partial
frames.

If media data frame reconstruction is required, the MIO component should use the flags field of
the PvmiMediaXferHeader structure provided in data_header_info parameter of writeAsync to
indicate that the data contained in writeAsync completes a media data frame or not. The flags
field is a bitmask that contains a marker bit that is set to 1 if the writeAsync call contains the last
data of a media data frame. The PVAuthor datapath should use the following logic to check for
frame boundary.

(data_header_info.flags & PVMF_MEDIA_DATA_MARKER_INFO_M_BIT)

If the above logic is true, it means the data is the last data of a media data frame.

8.2.5 writeComplete of MIO Component

The implementation of writeComplete for MIO component should be simple because it would
only be called to complete a previous writeAsync issued by MIO component to send data to
PVAuthor datapath. The writeComplete function of MIO component should deallocate any
memory that was allocated for the writeAsync it is completing. This might include the
PVMFAsyncEvent and PVMFBasicErrorInfoMessage objects that were used in reporting the
event depending on implementation.

8.2.6 UseMemoryAllocators

This API has been deprecated.

8.2.7 Unsupported APIs

There are several APIs defined in PvmiMediaTransfer interface that MIO component for
PVAuthor doesn’t need to support

• ReadAsync
• ReadComplete
• writeAsync

For these APIs, the MIO component should call OSCL_LEAVE(OsclErrNotSupported) to
indicate they are not supported.

 - Page 54 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

9 Temporal Synchronization for Playback
In Section 6 of PVPlayer Developer’s Guide document[2], the PVPlayer SDK is required to render
all the multimedia data that it handles in a temporally synchronized manner also known as “AV
sync”. To achieve AV sync, the data sink in PVPlayer datapath is responsible for synchronization
of media rendering with the playback clock, and the synchronization of the presentation of
different media tracks. PVPlayer Engine owns and manages the playback clock to report
playback progress to the application, and the data sink of each media track uses it to synchronize
rendering of media data. For more information about playback clock and other details about
PVPlayer SDK architecture for temporal synchronization, please refer to Section 6 of PVPlayer
Developer’s Guide document[2].

The MIO component, being a data sink component, can optionally assume the responsibility to
synchronize rendering. And an MIO component that assumes such responsibility is categorized
as an active data sink. If the MIO component is implemented as an active data sink, it should
implement the PvmiClockExtensionInterface and OsclClockStateObserver interfaces.
PVPlayer datapath would recognize through the support of these extensions that the MIO
component is an active data sink, and would defer the responsibility to synchronize rendering to
the MIO component. Typically the MIO component should behave as active data sink if it is going
to render compressed data, as underlying decoders will take some finite time in decoding and
rendering. To achieve better AV-sync, MIO component should behave as active data sink even it
is going to render uncompressed data.

Conversely, an MIO component can defer this responsibility to the data sink node that is a part of
PVPlayer datapath. Such MIO component is categorized as a passive MIO data sink. If the MIO
component is implemented as a passive data sink, it does not need to implement
PvmiClockExtensionInterface and OsclClockStateObserver interfaces. PVPlayer
datapath would recognize that the MIO component is a passive data sink, and would be
responsible for sending data to MIO component at the appropriate time.

This section focuses on describing how to implement an active MIO component that is
responsible for synchronization of rendering.

9.1 Role of PVPlayer SDK Modules in Synchronization
Before examining how to implement an active MIO component, the role of PVPlayer related
modules in synchronization should be explained first. As mentioned in the above introduction for
synchronization, PVPlayer Engine owns and manages the playback clock, which it uses to report
playback progress to the application, and the data sink of each media track uses it to synchronize
rendering of media data. And for an active MIO component, the synchronization is done by the
MIO component. The class diagram below illustrates the relationship between various PVPlayer
modules for synchronization

 - Page 55 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 27: Class diagram
synchronization-related classes within

PVPlayer.

9.1.1 Providing Media Clock to MIO

PVPlayer queries the MIO component for an instance of PvmiClockExtensionInterface, and an
active MIO component should respond with its implementation of PvmiClockExtensionInterface.
PVPlayer would then provide a pointer to the playback clock to MIO component through
PvmiClockExtensionInterface::SetClock API. The MIO component should store the
pointer, as it will be used throughout the playback. The MIO component can use the various
functions in OsclClock class to control, adjust and read the playback clock for synchronization.
All MIO components in the datapath are provided with the same playback clock object to facilitate
synchronization of multiple media tracks. The sequence diagram below illustrates how playback
clock is provided to MIO component.

 - Page 56 of 64 -

PV Player

OsclClockMIO

1

*

1

1

«uses»

«interface»PvmiClockExtensionInterface
«interface»

OsclClockStateObserver

1
*

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 28: Initialization of the clock reference for active MIO
components.

9.1.2 Providing Playback Progress to Application

PVPlayer Engine supports periodic reporting of playback progress to application. PVPlayer
Engine periodically retrieves the playback clock value and calculates the playback position based
on the value. The playback position is then reported to the application in PVMFInfoPositionStatus
events. The application is expected to use the position reported by PVPlayer to display playback
time or progress bar to the user. Therefore, it is important that the playback clock is accurately
synchronized with the actual playback progress, such that accurate information is presented to
users. For details, please refer to Section 11 of PVPlayer Developer’s Guide document[2].

9.2 Audio Synchronization
Audio rendering typically does not need to use an external clock object to synchronize rendering
because the audio device is configured to consume audio data at the sampling rate of incoming
data. Therefore, the rate of audio data consumption should be basically the same as the
playback clock rate. However, for PVPlayer to report accurate playback progress to user, some
logic would required to control and update the playback clock such that it accurately matches with
audio rendering progress.

9.2.1 Synchronize With the Start of Audio Rendering

In Section 4.3 , it was mentioned that during processing of PVPlayerInterface::Start command,
OsclClockStateObserver::ClockStateUpdated() would be called to notify start of the playback
clock. This start of playback clock signals the start of media rendering, and the MIO component

 - Page 57 of 64 -

App PVPlayer MIO HW

Prepare()

connect()

QueryInterface(PvmiClockExtensionInterfaceUuid, aInterfacePtr)

cmdId=3

cmdId=10

ThreadLogon()

RequestCompleted(cmdId=3) aInterfacePtr is set to point to the
PvmiClockExtensionInterface
object implemented by MIO

SetClock(Playback clock)

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

should request the hardware to start rendering as soon as possible. However, it is also typical
that the hardware needs additional time to start rendering, or requires more media data to be
buffered before it can start rendering. In such case, the start of playback clock is not matched
with the actual start of audio rendering, causing an offset in playback progress reported to the
application by PVPlayer and the actual playback progress. Therefore, for most MIO components,
it is necessary for it to pause the playback clock immediately upon getting notified that the clock is
started, and in parallel continue to buffer and request the hardware to start rendering. The
hardware should report to MIO component when the first media data is rendered to user, and the
MIO component should start the playback clock again upon such event. This would ensure the
playback clock is started at the same time as the start of rendering, and eliminate any possible
offset between playback progress reported to application and actual rendering progress.

The function OsclClockStateObserver::ClockStateUpdated() could be called anytime clock state
is changed, even this change is done by MIO itself. The MIO should keep track whether the clock
state change is due to its own clock commands or those from the application/pvPlayer calling
pause/resume/stop on the clock.

The sequence diagram below illustrates one method to synchronize the start of audio rendering
with the start of playback clock in case there is some initial latency.

Figure 29: One method of handling initial rendering latency in an active
MIO component.

For an active MIO component, the PVPlayer datapath continues sending data to the MIO
component when clock state is PAUSED or RUNNING, and MIO component should continue to
buffer the received data and decide when to send data to the hardware.

 - Page 58 of 64 -

App PV Player MIO HW

Start()

cmdId=20

OsclClock

Start() ClockStateUpdated()

Pause()

Clock is in RUNNING state. In
this example, HW does not have
enough data to start rendering
yet. Clock needs to be paused
until rendering is started.

GetState()

writeAsync(data1)

cmdId=1

writeAsync(data2)

cmdId=2
Buffered data is enough for HW to
start rendering. Transfer data to HW.

Rendering is startedStart()

writeComplete(cmdId=1)

writeComplete(cmdId=2)

ClockStateUpdated()

ClockStateUpdated()

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

For a passive MIO component, the PVPlayer datapath sends data to the MIO component only
when clock state is RUNNING, and MIO component should send these data to the hardware as
soon as possible.

Please note that all the operations with OsclClock like Pause(), Start() from the MIO component
must be done within the same thread context as the PVPlayer, where the clock was created

9.2.2 Synchronize After Repositioning

In Section 4.4, it was mentioned that when the application requests for repositioning, buffered
data in MIO component and hardware would be discarded and playback would start from the new
position. Similar to the start of playback described in Section 9.2.1, it is also necessary for an
audio MIO component to control the playback clock such that it is synchronized with the start of
rendering of new data.

Function OsclClockStateObserver::ClockStateUpdated() could be called anytime clock state is
changed, even this change is done by MIO itself. MIO should judge that the clock state change is
due to application/pvPlayer call pause/resume/stop or MIO pause/start the clock.

The sequence diagram illustrates how to synchronize the start of rendering of audio data from
new position with the start of playback clock.

 - Page 59 of 64 -

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

Figure 30: Synchronization after repositioning.

9.2.3 Synchronize During Playback

Although the rate of audio data consumption should be basically the same as the playback clock
rate, they are still running independently from each other, and hence there are inevitably some
differences between them. In general, the difference between playback clock rate and audio data
consumption rate is very small. However, this difference would accumulate over time, and if the
playback session lasts for a long time, the accumulated difference could become noticeable by
users. Therefore, it is necessary for the hardware to report to MIO component the audio
rendering progress, and MIO component should use it to adjust the playback clock such that the
playback clock is synchronized with audio rendering progress. The audio rendering progress can

 - Page 60 of 64 -

MIOPV Player HWOsclClock

SetPlaybackRange()

cmdId=21

Pause()

DiscardData()

RequestCompleted()

Discard buffered data in MIO and HW

writeComplete()

writeComplete() Call writeComplete for pending
writeAsync to release the data

Start() ClockStateUpdated()

GetState()

Pause()
Pause the clock until HW starts
rendering new data

CommandCompleted(cmdId=21)

writeAsync(data 300)

cmdId=300

writeAsync(data 301)

cmdId = 301
Buffered data is enough for HW to
start rendering. Transfer data to HW.

writeComplete(cmdId=300)

writeComplete(cmdId=301)

Rendering is startedStart()

App

Stop()

ClockStateUpdated() MIO can choose to pause
playback at this time, to pause
HW is also an option here.

ClockStateUpdated()

ClockStateUpdated()

ClockStateUpdated()

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

be reported actively by the hardware or MIO component can passively query the hardware for the
progress. The playback progress can be reported in terms of time or in number of samples
rendered, which the MIO component can convert into time value for comparison with playback
clock value.

As mentioned earlier, the difference between playback clock and audio rendering progress should
be minor over a short period of time as long as the start of playback clock is synchronized with
start of audio rendering. Therefore, this adjustment of playback clock should be done
occasionally and only if the delta between playback clock and audio rendering progress is larger
than a suitable threshold.

The sequence diagram below illustrates an example of playback clock adjustment.

Figure 31: Sequence diagram showing clock adjustments during
playback to account for drift.

9.3 Video Synchronization
Unlike audio rendering, video rendering requires reference to a clock to determine the appropriate
time to render a particular video frame. The video renderer should schedule rendering of a video
frame at the closest possible clock time to the video frame timestamp. As discussed in Sections

 - Page 61 of 64 -

App PV Player MIO HWOsclClock

PV Player Datapath provides media data to MIO and HW throughout this sequence and that is omitted
here. Please refer to Section 5 for details about media data transfer

Progress Event(3000 ms)

GetCurrentTime64()

3001ms

The difference between playback
clock and audio playback progress
(1ms in this example) is too small to
require adjustment of playback clock.

30 minutes later

Progress Event(1803000ms)

GetCurrentTime64()

1803103 ms
If the threshold for clock adjustment to
become necessary is 100 ms, then
the difference between audio
playback progress and playback clock
is now above the threshold, and clock
adjustment is necessary.

AdjustClockTime64(1803000 ms)

Progress Event(1806000 ms)

GetCurrentTime64()

1806001 ms
The difference between playback
clock and audio playback progress
returns to under the 100 ms threshold.

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

9.1 and 9.2, PVPlayer maintains a playback clock object that is synchronized with audio
playback. Therefore, if the video renderer synchronizes video rendering with the same playback
clock, then the video rendering would be properly aligned with audio rendering, presenting a
desired experience to the user.

9.3.1 Video Rendering Without Hardware Assistance

On some platforms, the MIO component receives uncompressed YUV or RGB video data, and
routes the video data to the application for rendering without hardware assistance. It is possible
for such MIO component to be passive and defer to PVPlayer datapath to perform video
synchronization. However, if the MIO component is implemented as an active component, it
should schedule the transfer of video data to the application according to the playback clock. The
sequence below illustrates how the MIO component can synchronize video rendering.

Figure 32: Sequence diagram of video rendering scheduling.

9.3.2 Video Rendering With Hardware Assistance

If a hardware decoder or renderer is used, the hardware must support the necessary APIs for the
MIO component to provide the playback clock object to it. The hardware must use the playback
clock provided for synchronization of video rendering. In this case, the MIO component only

 - Page 62 of 64 -

MIOScheduler AppOsclClock

Transfer video data100 to
application to render ASAP

Schedule rendering of video data
500 ms later, such that the data
would be rendered close to the
specified timestamp of 1000 ms

PV Player

writeAsync(data 100, 1000 ms)

GetCurrentTime64()

500 ms

Run After 500 ms

cmdId=100

Run

writeAsync(data101, 1100 ms)

Schedule rendering of subsquent
data after data100 is renderedcmdId=101

After 500 ms

writeComplete(cmdId=100)

GetCurrentTime64()

1000 ms

Run After 100 ms
Schedule rendering of data101

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

needs to push incoming video data down to the hardware as soon as possible and defer to the
hardware to schedule rendering according to the media clock.

9.4 Audio-Video Synchronization
Audio-video synchronization is the end goal of implementing audio and video synchronization
mechanism described in Sections 9.2 and 9.3. In PVPlayer SDK architecture, the media clock is
adjusted to match with audio rendering progress. On the video rendering side, the video renderer
should schedule video frames to be rendered according to when frame timestamp is close the
value of the media clock. This combination of interactions between playback clock, audio MIO
component and video MIO component results in audio-video synchronization. Figure 33
Illustrates the interactions between the modules that achieves audio-video synchronization.

Figure 33: A diagram of the interactions involved in A/V
synchronization.

10 Appendix

10.1 Media clock facts and properties.
• The media clock is a monotonic non-decreasing clock that will never go backwards, even

when random positioning within a media stream (clip). It is used to make “local”

 - Page 63 of 64 -

PVPlayerEngine

Application

Playback Clock

Controls
clock state

Audio Media IO

Reports rendering
progress

Audio Renderer

Video Media IO

Video Renderer

Adjusts clock
according to
rendering progress

Provides
playback clock

Provides playback clock
value for video renderer to
schedule rendering

Provides playback clock
value to Engine for Normal
Play Time (NPT) calculation

Sends NPT to App as
playback progress

Controls
clock state

Media I/O Developer's Guide
OpenCORE 2.02, rev. 1

decisions, independent of the absolute position in the media stream, about whether it is
time to render specific media samples.

• The instance of the media clock used for rendering (created by pvplayer) does not
represent the actual position in the clip or normal play time (NPT). Pvplayer maintains a
mapping between NPT and the media clock to report NPT to the UI.

• A reference to the common media clock is passed to all MIO components that implement
the clock extension interface.

• Adjustment can be done only in RUNNING State.
• OsclClockStateObserver:: ClockStateUpdated() call will be made if state is changed.
• Any changes to the clock value or clock state must be made within the same thread

context as the player/author engine is running (i.e., the same thread where the clock was
created).

10.2 Video dimensions passed to MIO comp
PV Engine extracts video dimension for various bit stream as follows.

For H263 codecs
Display_Dimension: - It extracts the display information (display width and display height) from
h263sampleentry atom. If these values are equal to 0, then we calculate these values from the
decoder.
Decode_Dimension: - It extracts the decode dimension always from the decoder which is always
a multiple of 16.

For H264 and M4V codecs
Display_Dimension: - It extracts the display information from decoder. These values do not
necessarily be a multiple of 16.
Decode_Dimension: - It extracts the decode dimension always from the decoder which is always
a multiple of 16.
This information is extracted by the source node and provided to various modules in this way

To Video MIO Comp
These two sets of dimensions [Display Dimension and Decode Dimension] are passed from
PVEngine to Video MIO using setParametersSync api during capability exchange

Decode_Dimension
MOUT_VIDEO_WIDTH_KEY "x-pvmf/video/render/width;valtype=uint32"
MOUT_VIDEO_HEIGHT_KEY "x-pvmf/video/render/height;valtype=uint32"

Display_Dimension
MOUT_VIDEO_DISPLAY_WIDTH_KEY
"x-pvmf/video/render/display_width;valtype=uint32"
MOUT_VIDEO_DISPLAY_HEIGHT_KEY
"x-pvmf/video/render/display_height;valtype=uint32"

In case of H263 it will come from h263sampleentry atom if not 0,otherwise from the decoder.

 - Page 64 of 64 -

	1 Introduction
	2 Overview
	2.1 Controls
	2.2 PVMI Interfaces used by MIO Components
	2.3 Active and Passive MIO Components
	2.4 Capability and Configuration Exchange
	2.5 Media Transfer
	2.6 Event Reporting

	3 Role in the PVMF Architecture
	3.1 Overall Architecture of PVPlayer
	3.2 Overall Architecture of PVAuthor

	4 PVPlayer APIs
	4.1 PVPlayer AddDataSink
	4.2 PVPlayer Prepare
	4.2.1 MIO connect
	4.2.2 MIO QueryInterface
	4.2.3 MIO Init
	4.2.4 MIO Start
	4.2.5 MIO DiscardData

	4.3 PVPlayer Start
	4.4 PVPlayer SetPlaybackRange
	4.5 PVPlayer Pause – Resume
	4.6 PVPlayer Stop and Reset
	4.6.1 MIO Stop
	4.6.2 MIO Reset

	4.7 PVPlayer Cancel Commands
	4.7.1 MIO CancelCommand
	4.7.2 MIO CancelAllCommands

	5 PVAuthor APIs
	5.1 PVAuthorEngine AddDataSource
	5.1.1 MIO connect
	5.1.2 MIO QueryInterface

	5.2 PVAuthorEngine AddMediaTrack
	5.3 PVAuthorEngine Init
	5.3.1 MIO Init

	5.4 PVAuthorEngine Start
	5.4.1 MIO Start

	5.5 PVAuthor Pause – Resume
	5.6 PVAuthor Stop
	5.6.1 MIO Stop

	5.7 PVAuthor Cancel Commands
	5.7.1 MIO CancelCommand
	5.7.2 MIO CancelAllCommands

	6 Common Interface API’s.
	6.1.1 ThreadLogon()
	6.1.2 ThreadLogoff()
	6.1.3 connect()
	6.1.4 disconnect()
	6.1.5 QueryUUID()
	6.1.6 QueryInterface()
	6.1.7 createMediaTransfer()

	7 Capability and Configuration Exchange
	7.1 Capability and Configuration Exchange for PVPlayer
	7.1.1 getParametersSync
	7.1.2 releaseParameters
	7.1.3 setParametersSync
	7.1.3.1 Audio-related Capabilities
	7.1.3.2 Video-related Capabilities
	7.1.3.3 Text-related Capabilities
	7.1.3.4 Other Capabilities

	7.1.4 verifyParametersSync

	7.2 Capability and Configuration Exchange for PVAuthor
	7.2.1 getParametersSync
	7.2.1.1 File Format-related Capabilities
	7.2.1.2 Video-related Capabilities
	7.2.1.3 Audio-related Capabilities

	7.2.2 releaseParameters
	7.2.3 setParametersSync
	7.2.4 verifyParametersSync

	8 Media Transfer
	8.1 Media Transfer in PVPlayer
	8.1.1 setPeer
	8.1.2 writeAsync
	8.1.3 Format Specific Information
	8.1.4 Media Data
	8.1.4.1 Transfer Media Data to the Hardware
	8.1.4.2 Media Data Frame Reconstruction
	8.1.4.3 Flow Control
	8.1.4.4 Media Timestamp

	8.1.5 End of Data Notification
	8.1.6 Reconfig Notification
	8.1.7 Event Reporting from MIO to PVPlayer datapath
	8.1.8 writeComplete
	8.1.9 Unsupported APIs

	8.2 Media Transfer in PVAuthor
	8.2.1 SetPeer
	8.2.2 WriteAsync call on MIONode
	8.2.3 Format-Specific Information
	8.2.4 Media Data
	8.2.4.1 Capturing Media Data
	8.2.4.2 Flow Control
	8.2.4.3 Media Timestamp
	8.2.4.4 Media Data Frame Reconstruction

	8.2.5 writeComplete of MIO Component
	8.2.6 UseMemoryAllocators
	8.2.7 Unsupported APIs

	9 Temporal Synchronization for Playback
	9.1 Role of PVPlayer SDK Modules in Synchronization
	9.1.1 Providing Media Clock to MIO
	9.1.2 Providing Playback Progress to Application

	9.2 Audio Synchronization
	9.2.1 Synchronize With the Start of Audio Rendering
	9.2.2 Synchronize After Repositioning
	9.2.3 Synchronize During Playback

	9.3 Video Synchronization
	9.3.1 Video Rendering Without Hardware Assistance
	9.3.2 Video Rendering With Hardware Assistance

	9.4 Audio-Video Synchronization

	10 Appendix
	10.1 Media clock facts and properties.
	10.2 Video dimensions passed to MIO comp

