/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Dalvik.h" #include "libdex/OpCode.h" #include "dexdump/OpCodeNames.h" #include "../../CompilerInternals.h" #include "ArmLIR.h" #include <unistd.h> /* for cacheflush */ /* * opcode: ArmOpCode enum * skeleton: pre-designated bit-pattern for this opcode * k0: key to applying ds/de * ds: dest start bit position * de: dest end bit position * k1: key to applying s1s/s1e * s1s: src1 start bit position * s1e: src1 end bit position * k2: key to applying s2s/s2e * s2s: src2 start bit position * s2e: src2 end bit position * operands: number of operands (for sanity check purposes) * name: mnemonic name * fmt: for pretty-prining */ #define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \ operands, name, fmt, size) \ {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}}, \ opcode, operands, name, fmt, size} /* Instruction dump string format keys: !pf, where "!" is the start * of the key, "p" is which numeric operand to use and "f" is the * print format. * * [p]ositions: * 0 -> operands[0] (dest) * 1 -> operands[1] (src1) * 2 -> operands[2] (src2) * * [f]ormats: * h -> 4-digit hex * d -> decimal * D -> decimal+8 (used to convert 3-bit regnum field to high reg) * E -> decimal*4 * F -> decimal*2 * c -> branch condition (beq, bne, etc.) * t -> pc-relative target * u -> 1st half of bl[x] target * v -> 2nd half ob bl[x] target * R -> register list * s -> single precision floating point register * S -> double precision floating point register * m -> Thumb2 modified immediate * M -> Thumb2 16-bit zero-extended immediate * * [!] escape. To insert "!", use "!!" */ /* NOTE: must be kept in sync with enum ArmOpcode from ArmLIR.h */ ArmEncodingMap EncodingMap[ARM_LAST] = { ENCODING_MAP(ARM_16BIT_DATA, 0x0000, BITBLT, 15, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP, "data", "0x!0h(!0d)", 1), ENCODING_MAP(THUMB_ADC, 0x4140, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "adc", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_ADD_RRI3, 0x1c00, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP | CLOBBER_DEST, "add", "r!0d, r!1d, #!2d", 1), ENCODING_MAP(THUMB_ADD_RI8, 0x3000, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "add", "r!0d, r!0d, #!1d", 1), ENCODING_MAP(THUMB_ADD_RRR, 0x1800, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP | CLOBBER_DEST, "add", "r!0d, r!1d, r!2d", 1), ENCODING_MAP(THUMB_ADD_RR_LH, 0x4440, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "add", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_ADD_RR_HL, 0x4480, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "add", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_ADD_RR_HH, 0x44c0, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "add", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_ADD_PC_REL, 0xa000, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_TERTIARY_OP | CLOBBER_DEST, "add", "r!0d, pc, #!1E", 1), ENCODING_MAP(THUMB_ADD_SP_REL, 0xa800, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "add", "r!0d, sp, #!1E", 1), ENCODING_MAP(THUMB_ADD_SPI7, 0xb000, BITBLT, 6, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP | CLOBBER_DEST, "add", "sp, #!0d*4", 1), ENCODING_MAP(THUMB_AND_RR, 0x4000, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "and", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_ASR, 0x1000, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6, IS_TERTIARY_OP | CLOBBER_DEST, "asr", "r!0d, r!1d, #!2d", 1), ENCODING_MAP(THUMB_ASRV, 0x4100, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "asr", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_B_COND, 0xd000, BITBLT, 7, 0, BITBLT, 11, 8, UNUSED, -1, -1, IS_BINARY_OP | IS_BRANCH, "!1c", "!0t", 1), ENCODING_MAP(THUMB_B_UNCOND, 0xe000, BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1, NO_OPERAND | IS_BRANCH, "b", "!0t", 1), ENCODING_MAP(THUMB_BIC, 0x4380, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "bic", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_BKPT, 0xbe00, BITBLT, 7, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP | IS_BRANCH, "bkpt", "!0d", 1), ENCODING_MAP(THUMB_BLX_1, 0xf000, BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_BINARY_OP | IS_BRANCH, "blx_1", "!0u", 1), ENCODING_MAP(THUMB_BLX_2, 0xe800, BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_BINARY_OP | IS_BRANCH, "blx_2", "!0v", 1), ENCODING_MAP(THUMB_BL_1, 0xf000, BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP | IS_BRANCH, "bl_1", "!0u", 1), ENCODING_MAP(THUMB_BL_2, 0xf800, BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP | IS_BRANCH, "bl_2", "!0v", 1), ENCODING_MAP(THUMB_BLX_R, 0x4780, BITBLT, 6, 3, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP | IS_BRANCH, "blx", "r!0d", 1), ENCODING_MAP(THUMB_BX, 0x4700, BITBLT, 6, 3, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP | IS_BRANCH, "bx", "r!0d", 1), ENCODING_MAP(THUMB_CMN, 0x42c0, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP, "cmn", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_CMP_RI8, 0x2800, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_BINARY_OP, "cmp", "r!0d, #!1d", 1), ENCODING_MAP(THUMB_CMP_RR, 0x4280, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP, "cmp", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_CMP_LH, 0x4540, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP, "cmp", "r!0d, r!1D", 1), ENCODING_MAP(THUMB_CMP_HL, 0x4580, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP, "cmp", "r!0D, r!1d", 1), ENCODING_MAP(THUMB_CMP_HH, 0x45c0, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP, "cmp", "r!0D, r!1D", 1), ENCODING_MAP(THUMB_EOR, 0x4040, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "eor", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_LDMIA, 0xc800, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST | CLOBBER_SRC1, "ldmia", "r!0d!!, <!1R>", 1), ENCODING_MAP(THUMB_LDR_RRI5, 0x6800, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6, IS_TERTIARY_OP | CLOBBER_DEST, "ldr", "r!0d, [r!1d, #!2E]", 1), ENCODING_MAP(THUMB_LDR_RRR, 0x5800, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP | CLOBBER_DEST, "ldr", "r!0d, [r!1d, r!2d]", 1), ENCODING_MAP(THUMB_LDR_PC_REL, 0x4800, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_TERTIARY_OP | CLOBBER_DEST, "ldr", "r!0d, [pc, #!1E]", 1), ENCODING_MAP(THUMB_LDR_SP_REL, 0x9800, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "ldr", "r!0d, [sp, #!1E]", 1), ENCODING_MAP(THUMB_LDRB_RRI5, 0x7800, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6, IS_TERTIARY_OP | CLOBBER_DEST, "ldrb", "r!0d, [r!1d, #2d]", 1), ENCODING_MAP(THUMB_LDRB_RRR, 0x5c00, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP | CLOBBER_DEST, "ldrb", "r!0d, [r!1d, r!2d]", 1), ENCODING_MAP(THUMB_LDRH_RRI5, 0x8800, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6, IS_TERTIARY_OP | CLOBBER_DEST, "ldrh", "r!0d, [r!1d, #!2F]", 1), ENCODING_MAP(THUMB_LDRH_RRR, 0x5a00, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP | CLOBBER_DEST, "ldrh", "r!0d, [r!1d, r!2d]", 1), ENCODING_MAP(THUMB_LDRSB_RRR, 0x5600, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP | CLOBBER_DEST, "ldrsb", "r!0d, [r!1d, r!2d]", 1), ENCODING_MAP(THUMB_LDRSH_RRR, 0x5e00, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP | CLOBBER_DEST, "ldrsh", "r!0d, [r!1d, r!2d]", 1), ENCODING_MAP(THUMB_LSL, 0x0000, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6, IS_TERTIARY_OP | CLOBBER_DEST, "lsl", "r!0d, r!1d, #!2d", 1), ENCODING_MAP(THUMB_LSLV, 0x4080, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "lsl", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_LSR, 0x0800, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6, IS_TERTIARY_OP | CLOBBER_DEST, "lsr", "r!0d, r!1d, #!2d", 1), ENCODING_MAP(THUMB_LSRV, 0x40c0, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "lsr", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_MOV_IMM, 0x2000, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "mov", "r!0d, #!1d", 1), ENCODING_MAP(THUMB_MOV_RR, 0x1c00, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "mov", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_MOV_RR_H2H, 0x46c0, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "mov", "r!0D, r!1D", 1), ENCODING_MAP(THUMB_MOV_RR_H2L, 0x4640, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "mov", "r!0d, r!1D", 1), ENCODING_MAP(THUMB_MOV_RR_L2H, 0x4680, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "mov", "r!0D, r!1d", 1), ENCODING_MAP(THUMB_MUL, 0x4340, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "mul", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_MVN, 0x43c0, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "mvn", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_NEG, 0x4240, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "neg", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_ORR, 0x4300, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "orr", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_POP, 0xbc00, BITBLT, 8, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP, "pop", "<!0R>", 1), ENCODING_MAP(THUMB_PUSH, 0xb400, BITBLT, 8, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP, "push", "<!0R>", 1), ENCODING_MAP(THUMB_ROR, 0x41c0, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "ror", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_SBC, 0x4180, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "sbc", "r!0d, r!1d", 1), ENCODING_MAP(THUMB_STMIA, 0xc000, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_SRC1, "stmia", "r!0d!!, <!1R>", 1), ENCODING_MAP(THUMB_STR_RRI5, 0x6000, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6, IS_TERTIARY_OP, "str", "r!0d, [r!1d, #!2E]", 1), ENCODING_MAP(THUMB_STR_RRR, 0x5000, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP, "str", "r!0d, [r!1d, r!2d]", 1), ENCODING_MAP(THUMB_STR_SP_REL, 0x9000, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_BINARY_OP, "str", "r!0d, [sp, #!1E]", 1), ENCODING_MAP(THUMB_STRB_RRI5, 0x7000, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6, IS_TERTIARY_OP, "strb", "r!0d, [r!1d, #!2d]", 1), ENCODING_MAP(THUMB_STRB_RRR, 0x5400, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP, "strb", "r!0d, [r!1d, r!2d]", 1), ENCODING_MAP(THUMB_STRH_RRI5, 0x8000, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6, IS_TERTIARY_OP, "strh", "r!0d, [r!1d, #!2F]", 1), ENCODING_MAP(THUMB_STRH_RRR, 0x5200, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP, "strh", "r!0d, [r!1d, r!2d]", 1), ENCODING_MAP(THUMB_SUB_RRI3, 0x1e00, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP | CLOBBER_DEST, "sub", "r!0d, r!1d, #!2d]", 1), ENCODING_MAP(THUMB_SUB_RI8, 0x3800, BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "sub", "r!0d, #!1d", 1), ENCODING_MAP(THUMB_SUB_RRR, 0x1a00, BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6, IS_TERTIARY_OP | CLOBBER_DEST, "sub", "r!0d, r!1d, r!2d", 1), ENCODING_MAP(THUMB_SUB_SPI7, 0xb080, BITBLT, 6, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP | CLOBBER_DEST, "sub", "sp, #!0d", 1), ENCODING_MAP(THUMB_SWI, 0xdf00, BITBLT, 7, 0, UNUSED, -1, -1, UNUSED, -1, -1, IS_UNARY_OP | IS_BRANCH, "swi", "!0d", 1), ENCODING_MAP(THUMB_TST, 0x4200, BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1, IS_UNARY_OP, "tst", "r!0d, r!1d", 1), ENCODING_MAP(THUMB2_VLDRS, 0xed900a00, SFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0, IS_TERTIARY_OP | CLOBBER_DEST, "vldr", "!0s, [r!1d, #!2E]", 2), ENCODING_MAP(THUMB2_VLDRD, 0xed900b00, DFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0, IS_TERTIARY_OP | CLOBBER_DEST, "vldr", "!0S, [r!1d, #!2E]", 2), ENCODING_MAP(THUMB2_VMULS, 0xee200a00, SFP, 22, 12, SFP, 7, 16, SFP, 5, 0, IS_TERTIARY_OP | CLOBBER_DEST, "vmuls", "!0s, !1s, !2s", 2), ENCODING_MAP(THUMB2_VMULD, 0xee200b00, DFP, 22, 12, DFP, 7, 16, DFP, 5, 0, IS_TERTIARY_OP | CLOBBER_DEST, "vmuld", "!0S, !1S, !2S", 2), ENCODING_MAP(THUMB2_VSTRS, 0xed800a00, SFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0, IS_TERTIARY_OP, "vstr", "!0s, [r!1d, #!2E]", 2), ENCODING_MAP(THUMB2_VSTRD, 0xed800b00, DFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0, IS_TERTIARY_OP, "vstr", "!0S, [r!1d, #!2E]", 2), ENCODING_MAP(THUMB2_VSUBS, 0xee300a40, SFP, 22, 12, SFP, 7, 16, SFP, 5, 0, IS_TERTIARY_OP | CLOBBER_DEST, "vsub", "!0s, !1s, !2s", 2), ENCODING_MAP(THUMB2_VSUBD, 0xee300b40, DFP, 22, 12, DFP, 7, 16, DFP, 5, 0, IS_TERTIARY_OP | CLOBBER_DEST, "vsub", "!0S, !1S, !2S", 2), ENCODING_MAP(THUMB2_VADDS, 0xee300a00, SFP, 22, 12, SFP, 7, 16, SFP, 5, 0, IS_TERTIARY_OP | CLOBBER_DEST, "vadd", "!0s, !1s, !2s", 2), ENCODING_MAP(THUMB2_VADDD, 0xee300b00, DFP, 22, 12, DFP, 7, 16, DFP, 5, 0, IS_TERTIARY_OP | CLOBBER_DEST, "vadd", "!0S, !1S, !2S", 2), ENCODING_MAP(THUMB2_VDIVS, 0xee800a00, SFP, 22, 12, SFP, 7, 16, SFP, 5, 0, IS_TERTIARY_OP | CLOBBER_DEST, "vdivs", "!0s, !1s, !2s", 2), ENCODING_MAP(THUMB2_VDIVD, 0xee800b00, DFP, 22, 12, DFP, 7, 16, DFP, 5, 0, IS_TERTIARY_OP | CLOBBER_DEST, "vdivs", "!0S, !1S, !2S", 2), ENCODING_MAP(THUMB2_VCVTIF, 0xeeb80ac0, SFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "vcvt.f32", "!0s, !1s", 2), ENCODING_MAP(THUMB2_VCVTID, 0xeeb80bc0, DFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "vcvt.f64", "!0S, !1s", 2), ENCODING_MAP(THUMB2_VCVTFI, 0xeebd0ac0, SFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "vcvt.s32.f32 ", "!0s, !1s", 2), ENCODING_MAP(THUMB2_VCVTDI, 0xeebd0bc0, SFP, 22, 12, DFP, 5, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "vcvt.s32.f64 ", "!0s, !1S", 2), ENCODING_MAP(THUMB2_VCVTFD, 0xeeb70ac0, DFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "vcvt.f64.f32 ", "!0S, !1s", 2), ENCODING_MAP(THUMB2_VCVTDF, 0xeeb70bc0, SFP, 22, 12, DFP, 5, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "vcvt.f32.f64 ", "!0s, !1S", 2), ENCODING_MAP(THUMB2_VSQRTS, 0xeeb10ac0, SFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "vsqrt.f32 ", "!0s, !1s", 2), ENCODING_MAP(THUMB2_VSQRTD, 0xeeb10bc0, DFP, 22, 12, DFP, 5, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "vsqrt.f64 ", "!0S, !1S", 2), ENCODING_MAP(THUMB2_MOV_IMM_SHIFT, 0xf04f0000, BITBLT, 11, 8, MODIMM, -1, -1, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "mov", "r!0d, #!1m", 2), ENCODING_MAP(THUMB2_MOV_IMM16, 0xf2400000, BITBLT, 11, 8, IMM16, -1, -1, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "mov", "r!0d, #!1M", 2), ENCODING_MAP(THUMB2_STR_RRI12, 0xf8c00000, BITBLT, 15, 12, BITBLT, 19, 16, BITBLT, 11, 0, IS_TERTIARY_OP, "str", "r!0d,[r!1d, #!2d", 2), ENCODING_MAP(THUMB2_LDR_RRI12, 0xf8d00000, BITBLT, 15, 12, BITBLT, 19, 16, BITBLT, 11, 0, IS_TERTIARY_OP | CLOBBER_DEST, "ldr", "r!0d,[r!1d, #!2d", 2), ENCODING_MAP(THUMB2_STR_RRI8_PREDEC, 0xf8400c00, BITBLT, 15, 12, BITBLT, 19, 16, BITBLT, 8, 0, IS_TERTIARY_OP, "str", "r!0d,[r!1d, #-!2d]", 2), ENCODING_MAP(THUMB2_LDR_RRI8_PREDEC, 0xf8500c00, BITBLT, 15, 12, BITBLT, 19, 16, BITBLT, 8, 0, IS_TERTIARY_OP | CLOBBER_DEST, "ldr", "r!0d,[r!1d, #-!2d]", 2), ENCODING_MAP(THUMB2_CBNZ, 0xb900, BITBLT, 2, 0, IMM6, -1, -1, UNUSED, -1, -1, IS_BINARY_OP, "cbnz", "r!0d,!1t", 1), ENCODING_MAP(THUMB2_CBZ, 0xb100, BITBLT, 2, 0, IMM6, -1, -1, UNUSED, -1, -1, IS_BINARY_OP, "cbz", "r!0d,!1t", 1), ENCODING_MAP(THUMB2_ADD_RRI12, 0xf1000000, BITBLT, 11, 8, BITBLT, 19, 16, IMM12, -1, -1, IS_TERTIARY_OP | CLOBBER_DEST, "add", "r!0d,r!1d,#!2d", 2), ENCODING_MAP(THUMB2_MOV_RR, 0xea4f0000, BITBLT, 11, 8, BITBLT, 3, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "mov", "r!0d, r!1d", 2), ENCODING_MAP(THUMB2_VMOVS, 0xeeb00a40, SFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "vmov.f32 ", "!0s, !1s", 2), ENCODING_MAP(THUMB2_VMOVD, 0xeeb00b40, DFP, 22, 12, DFP, 5, 0, UNUSED, -1, -1, IS_BINARY_OP | CLOBBER_DEST, "vmov.f64 ", "!0s, !1s", 2), }; #define PADDING_MOV_R0_R0 0x1C00 /* Write the numbers in the literal pool to the codegen stream */ static void installDataContent(CompilationUnit *cUnit) { int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset); ArmLIR *dataLIR = (ArmLIR *) cUnit->wordList; while (dataLIR) { *dataPtr++ = dataLIR->operands[0]; dataLIR = NEXT_LIR(dataLIR); } } /* Returns the size of a Jit trace description */ static int jitTraceDescriptionSize(const JitTraceDescription *desc) { int runCount; for (runCount = 0; ; runCount++) { if (desc->trace[runCount].frag.runEnd) break; } return sizeof(JitCodeDesc) + ((runCount+1) * sizeof(JitTraceRun)); } /* Return TRUE if error happens */ static bool assembleInstructions(CompilationUnit *cUnit, intptr_t startAddr) { short *bufferAddr = (short *) cUnit->codeBuffer; ArmLIR *lir; for (lir = (ArmLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) { if (lir->opCode < 0) { if ((lir->opCode == ARM_PSEUDO_ALIGN4) && /* 1 means padding is needed */ (lir->operands[0] == 1)) { *bufferAddr++ = PADDING_MOV_R0_R0; } continue; } if (lir->isNop) { continue; } if (lir->opCode == THUMB_LDR_PC_REL || lir->opCode == THUMB_ADD_PC_REL) { ArmLIR *lirTarget = (ArmLIR *) lir->generic.target; intptr_t pc = (lir->generic.offset + 4) & ~3; /* * Allow an offset (stored in operands[2] to be added to the * PC-relative target. Useful to get to a fixed field inside a * chaining cell. */ intptr_t target = lirTarget->generic.offset + lir->operands[2]; int delta = target - pc; if (delta & 0x3) { LOGE("PC-rel distance is not multiples of 4: %d\n", delta); dvmAbort(); } if (delta > 1023) { return true; } lir->operands[1] = delta >> 2; } else if (lir->opCode == THUMB2_CBNZ || lir->opCode == THUMB2_CBZ) { ArmLIR *targetLIR = (ArmLIR *) lir->generic.target; intptr_t pc = lir->generic.offset + 4; intptr_t target = targetLIR->generic.offset; int delta = target - pc; if (delta > 126 || delta < 0) { return true; } lir->operands[1] = delta >> 1; } else if (lir->opCode == THUMB_B_COND) { ArmLIR *targetLIR = (ArmLIR *) lir->generic.target; intptr_t pc = lir->generic.offset + 4; intptr_t target = targetLIR->generic.offset; int delta = target - pc; if (delta > 254 || delta < -256) { return true; } lir->operands[0] = delta >> 1; } else if (lir->opCode == THUMB_B_UNCOND) { ArmLIR *targetLIR = (ArmLIR *) lir->generic.target; intptr_t pc = lir->generic.offset + 4; intptr_t target = targetLIR->generic.offset; int delta = target - pc; if (delta > 2046 || delta < -2048) { LOGE("Unconditional branch distance out of range: %d\n", delta); dvmAbort(); } lir->operands[0] = delta >> 1; } else if (lir->opCode == THUMB_BLX_1) { assert(NEXT_LIR(lir)->opCode == THUMB_BLX_2); /* curPC is Thumb */ intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3; intptr_t target = lir->operands[1]; /* Match bit[1] in target with base */ if (curPC & 0x2) { target |= 0x2; } int delta = target - curPC; assert((delta >= -(1<<22)) && (delta <= ((1<<22)-2))); lir->operands[0] = (delta >> 12) & 0x7ff; NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff; } ArmEncodingMap *encoder = &EncodingMap[lir->opCode]; u4 bits = encoder->skeleton; int i; for (i = 0; i < 3; i++) { u4 value; switch(encoder->fieldLoc[i].kind) { case UNUSED: break; case IMM6: value = ((lir->operands[i] & 0x20) >> 5) << 9; value |= (lir->operands[i] & 0x1f) << 3; bits |= value; break; case BITBLT: value = (lir->operands[i] << encoder->fieldLoc[i].start) & ((1 << (encoder->fieldLoc[i].end + 1)) - 1); bits |= value; break; case DFP: /* Snag the 1-bit slice and position it */ value = ((lir->operands[i] & 0x10) >> 4) << encoder->fieldLoc[i].end; /* Extract and position the 4-bit slice */ value |= (lir->operands[i] & 0x0f) << encoder->fieldLoc[i].start; bits |= value; break; case SFP: /* Snag the 1-bit slice and position it */ value = (lir->operands[i] & 0x1) << encoder->fieldLoc[i].end; /* Extract and position the 4-bit slice */ value |= ((lir->operands[i] & 0x1e) >> 1) << encoder->fieldLoc[i].start; bits |= value; break; case IMM12: case MODIMM: value = ((lir->operands[i] & 0x800) >> 11) << 26; value |= ((lir->operands[i] & 0x700) >> 8) << 12; value |= lir->operands[i] & 0x0ff; bits |= value; break; case IMM16: value = ((lir->operands[i] & 0x0800) >> 11) << 26; value |= ((lir->operands[i] & 0xf000) >> 12) << 16; value |= ((lir->operands[i] & 0x0700) >> 8) << 12; value |= lir->operands[i] & 0x0ff; bits |= value; break; default: assert(0); } } if (encoder->size == 2) { *bufferAddr++ = (bits >> 16) & 0xffff; } *bufferAddr++ = bits & 0xffff; } return false; } /* * Translation layout in the code cache. Note that the codeAddress pointer * in JitTable will point directly to the code body (field codeAddress). The * chain cell offset codeAddress - 2, and (if present) executionCount is at * codeAddress - 6. * * +----------------------------+ * | Execution count | -> [Optional] 4 bytes * +----------------------------+ * +--| Offset to chain cell counts| -> 2 bytes * | +----------------------------+ * | | Code body | -> Start address for translation * | | | variable in 2-byte chunks * | . . (JitTable's codeAddress points here) * | . . * | | | * | +----------------------------+ * | | Chaining Cells | -> 8 bytes each, must be 4 byte aligned * | . . * | . . * | | | * | +----------------------------+ * +->| Chaining cell counts | -> 4 bytes, chain cell counts by type * +----------------------------+ * | Trace description | -> variable sized * . . * | | * +----------------------------+ * | Literal pool | -> 4-byte aligned, variable size * . . * . . * | | * +----------------------------+ * * Go over each instruction in the list and calculate the offset from the top * before sending them off to the assembler. If out-of-range branch distance is * seen rearrange the instructions a bit to correct it. */ void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info) { LIR *lir; ArmLIR *armLIR; int offset = 0; int i; ChainCellCounts chainCellCounts; int descSize = jitTraceDescriptionSize(cUnit->traceDesc); info->codeAddress = NULL; info->instructionSet = cUnit->instructionSet; /* Beginning offset needs to allow space for chain cell offset */ for (armLIR = (ArmLIR *) cUnit->firstLIRInsn; armLIR; armLIR = NEXT_LIR(armLIR)) { armLIR->generic.offset = offset; if (armLIR->opCode >= 0 && !armLIR->isNop) { armLIR->size = EncodingMap[armLIR->opCode].size * 2; offset += armLIR->size; } else if (armLIR->opCode == ARM_PSEUDO_ALIGN4) { if (offset & 0x2) { offset += 2; armLIR->operands[0] = 1; } else { armLIR->operands[0] = 0; } } /* Pseudo opcodes don't consume space */ } /* Const values have to be word aligned */ offset = (offset + 3) & ~3; /* Add space for chain cell counts & trace description */ u4 chainCellOffset = offset; ArmLIR *chainCellOffsetLIR = (ArmLIR *) cUnit->chainCellOffsetLIR; assert(chainCellOffsetLIR); assert(chainCellOffset < 0x10000); assert(chainCellOffsetLIR->opCode == ARM_16BIT_DATA && chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG); /* * Replace the CHAIN_CELL_OFFSET_TAG with the real value. If trace * profiling is enabled, subtract 4 (occupied by the counter word) from * the absolute offset as the value stored in chainCellOffsetLIR is the * delta from &chainCellOffsetLIR to &ChainCellCounts. */ chainCellOffsetLIR->operands[0] = gDvmJit.profile ? (chainCellOffset - 4) : chainCellOffset; offset += sizeof(chainCellCounts) + descSize; assert((offset & 0x3) == 0); /* Should still be word aligned */ /* Set up offsets for literals */ cUnit->dataOffset = offset; for (lir = cUnit->wordList; lir; lir = lir->next) { lir->offset = offset; offset += 4; } cUnit->totalSize = offset; if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > CODE_CACHE_SIZE) { gDvmJit.codeCacheFull = true; cUnit->baseAddr = NULL; return; } /* Allocate enough space for the code block */ cUnit->codeBuffer = dvmCompilerNew(chainCellOffset, true); if (cUnit->codeBuffer == NULL) { LOGE("Code buffer allocation failure\n"); cUnit->baseAddr = NULL; return; } bool assemblerFailure = assembleInstructions( cUnit, (intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed); /* * Currently the only reason that can cause the assembler to fail is due to * trace length - cut it in half and retry. */ if (assemblerFailure) { cUnit->halveInstCount = true; return; } cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed; gDvmJit.codeCacheByteUsed += offset; /* Install the code block */ memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset); gDvmJit.numCompilations++; /* Install the chaining cell counts */ for (i=0; i< CHAINING_CELL_LAST; i++) { chainCellCounts.u.count[i] = cUnit->numChainingCells[i]; } memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts, sizeof(chainCellCounts)); /* Install the trace description */ memcpy((char*)cUnit->baseAddr + chainCellOffset + sizeof(chainCellCounts), cUnit->traceDesc, descSize); /* Write the literals directly into the code cache */ installDataContent(cUnit); /* Flush dcache and invalidate the icache to maintain coherence */ cacheflush((long)cUnit->baseAddr, (long)((char *) cUnit->baseAddr + offset), 0); /* Record code entry point and instruction set */ info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize; info->instructionSet = cUnit->instructionSet; /* If applicable, mark low bit to denote thumb */ if (info->instructionSet != DALVIK_JIT_ARM) info->codeAddress = (char*)info->codeAddress + 1; } static u4 assembleBXPair(int branchOffset) { u4 thumb1, thumb2; if ((branchOffset < -2048) | (branchOffset > 2046)) { thumb1 = (0xf000 | ((branchOffset>>12) & 0x7ff)); thumb2 = (0xf800 | ((branchOffset>> 1) & 0x7ff)); } else { thumb1 = (0xe000 | ((branchOffset>> 1) & 0x7ff)); thumb2 = 0x4300; /* nop -> or r0, r0 */ } return thumb2<<16 | thumb1; } /* * Perform translation chain operation. * For ARM, we'll use a pair of thumb instructions to generate * an unconditional chaining branch of up to 4MB in distance. * Use a BL, though we don't really need the link. The format is * 111HHooooooooooo * Where HH is 10 for the 1st inst, and 11 for the second and * the "o" field is each instruction's 11-bit contribution to the * 22-bit branch offset. * If the target is nearby, use a single-instruction bl. * If one or more threads is suspended, don't chain. */ void* dvmJitChain(void* tgtAddr, u4* branchAddr) { int baseAddr = (u4) branchAddr + 4; int branchOffset = (int) tgtAddr - baseAddr; u4 newInst; if (gDvm.sumThreadSuspendCount == 0) { assert((branchOffset >= -(1<<22)) && (branchOffset <= ((1<<22)-2))); gDvmJit.translationChains++; COMPILER_TRACE_CHAINING( LOGD("Jit Runtime: chaining 0x%x to 0x%x\n", (int) branchAddr, (int) tgtAddr & -2)); newInst = assembleBXPair(branchOffset); *branchAddr = newInst; cacheflush((long)branchAddr, (long)branchAddr + 4, 0); } return tgtAddr; } /* * This method is called from the invoke templates for virtual and interface * methods to speculatively setup a chain to the callee. The templates are * written in assembly and have setup method, cell, and clazz at r0, r2, and * r3 respectively, so there is a unused argument in the list. Upon return one * of the following three results may happen: * 1) Chain is not setup because the callee is native. Reset the rechain * count to a big number so that it will take a long time before the next * rechain attempt to happen. * 2) Chain is not setup because the callee has not been created yet. Reset * the rechain count to a small number and retry in the near future. * 3) Ask all other threads to stop before patching this chaining cell. * This is required because another thread may have passed the class check * but hasn't reached the chaining cell yet to follow the chain. If we * patch the content before halting the other thread, there could be a * small window for race conditions to happen that it may follow the new * but wrong chain to invoke a different method. */ const Method *dvmJitToPatchPredictedChain(const Method *method, void *unused, PredictedChainingCell *cell, const ClassObject *clazz) { /* Don't come back here for a long time if the method is native */ if (dvmIsNativeMethod(method)) { cell->counter = PREDICTED_CHAIN_COUNTER_AVOID; cacheflush((long) cell, (long) (cell+1), 0); COMPILER_TRACE_CHAINING( LOGD("Jit Runtime: predicted chain %p to native method %s ignored", cell, method->name)); goto done; } int tgtAddr = (int) dvmJitGetCodeAddr(method->insns); /* * Compilation not made yet for the callee. Reset the counter to a small * value and come back to check soon. */ if (tgtAddr == 0) { /* * Wait for a few invocations (currently set to be 16) before trying * to setup the chain again. */ cell->counter = PREDICTED_CHAIN_COUNTER_DELAY; cacheflush((long) cell, (long) (cell+1), 0); COMPILER_TRACE_CHAINING( LOGD("Jit Runtime: predicted chain %p to method %s delayed", cell, method->name)); goto done; } /* Stop the world */ dvmSuspendAllThreads(SUSPEND_FOR_JIT); int baseAddr = (int) cell + 4; // PC is cur_addr + 4 int branchOffset = tgtAddr - baseAddr; COMPILER_TRACE_CHAINING( LOGD("Jit Runtime: predicted chain %p from %s to %s (%s) patched", cell, cell->clazz ? cell->clazz->descriptor : "NULL", clazz->descriptor, method->name)); cell->branch = assembleBXPair(branchOffset); cell->clazz = clazz; cell->method = method; cell->counter = PREDICTED_CHAIN_COUNTER_RECHAIN; cacheflush((long) cell, (long) (cell+1), 0); /* All done - resume all other threads */ dvmResumeAllThreads(SUSPEND_FOR_JIT); done: return method; } /* * Unchain a trace given the starting address of the translation * in the code cache. Refer to the diagram in dvmCompilerAssembleLIR. * Returns the address following the last cell unchained. Note that * the incoming codeAddr is a thumb code address, and therefore has * the low bit set. */ u4* dvmJitUnchain(void* codeAddr) { u2* pChainCellOffset = (u2*)((char*)codeAddr - 3); u2 chainCellOffset = *pChainCellOffset; ChainCellCounts *pChainCellCounts = (ChainCellCounts*)((char*)codeAddr + chainCellOffset - 3); int cellSize; u4* pChainCells; u4* pStart; u4 thumb1; u4 thumb2; u4 newInst; int i,j; PredictedChainingCell *predChainCell; /* Get total count of chain cells */ for (i = 0, cellSize = 0; i < CHAINING_CELL_LAST; i++) { if (i != CHAINING_CELL_INVOKE_PREDICTED) { cellSize += pChainCellCounts->u.count[i] * 2; } else { cellSize += pChainCellCounts->u.count[i] * 4; } } /* Locate the beginning of the chain cell region */ pStart = pChainCells = ((u4 *) pChainCellCounts) - cellSize; /* The cells are sorted in order - walk through them and reset */ for (i = 0; i < CHAINING_CELL_LAST; i++) { int elemSize = 2; /* Most chaining cell has two words */ if (i == CHAINING_CELL_INVOKE_PREDICTED) { elemSize = 4; } for (j = 0; j < pChainCellCounts->u.count[i]; j++) { int targetOffset; switch(i) { case CHAINING_CELL_NORMAL: targetOffset = offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNormal); break; case CHAINING_CELL_HOT: case CHAINING_CELL_INVOKE_SINGLETON: targetOffset = offsetof(InterpState, jitToInterpEntries.dvmJitToTraceSelect); break; case CHAINING_CELL_INVOKE_PREDICTED: targetOffset = 0; predChainCell = (PredictedChainingCell *) pChainCells; /* Reset the cell to the init state */ predChainCell->branch = PREDICTED_CHAIN_BX_PAIR_INIT; predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT; predChainCell->method = PREDICTED_CHAIN_METHOD_INIT; predChainCell->counter = PREDICTED_CHAIN_COUNTER_INIT; break; default: dvmAbort(); } COMPILER_TRACE_CHAINING( LOGD("Jit Runtime: unchaining 0x%x", (int)pChainCells)); /* * Thumb code sequence for a chaining cell is: * ldr r0, rGLUE, #<word offset> * blx r0 */ if (i != CHAINING_CELL_INVOKE_PREDICTED) { targetOffset = targetOffset >> 2; /* convert to word offset */ thumb1 = 0x6800 | (targetOffset << 6) | (rGLUE << 3) | (r0 << 0); thumb2 = 0x4780 | (r0 << 3); newInst = thumb2<<16 | thumb1; *pChainCells = newInst; } pChainCells += elemSize; /* Advance by a fixed number of words */ } } return pChainCells; } /* Unchain all translation in the cache. */ void dvmJitUnchainAll() { u4* lowAddress = NULL; u4* highAddress = NULL; unsigned int i; if (gDvmJit.pJitEntryTable != NULL) { COMPILER_TRACE_CHAINING(LOGD("Jit Runtime: unchaining all")); dvmLockMutex(&gDvmJit.tableLock); for (i = 0; i < gDvmJit.jitTableSize; i++) { if (gDvmJit.pJitEntryTable[i].dPC && gDvmJit.pJitEntryTable[i].codeAddress) { u4* lastAddress; lastAddress = dvmJitUnchain(gDvmJit.pJitEntryTable[i].codeAddress); if (lowAddress == NULL || (u4*)gDvmJit.pJitEntryTable[i].codeAddress < lowAddress) lowAddress = lastAddress; if (lastAddress > highAddress) highAddress = lastAddress; } } cacheflush((long)lowAddress, (long)highAddress, 0); dvmUnlockMutex(&gDvmJit.tableLock); } } typedef struct jitProfileAddrToLine { u4 lineNum; u4 bytecodeOffset; } jitProfileAddrToLine; /* Callback function to track the bytecode offset/line number relationiship */ static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum) { jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt; /* Best match so far for this offset */ if (addrToLine->bytecodeOffset >= bytecodeOffset) { addrToLine->lineNum = lineNum; } return 0; } char *getTraceBase(const JitEntry *p) { return (char*)p->codeAddress - (6 + (p->u.info.instructionSet == DALVIK_JIT_ARM ? 0 : 1)); } /* Dumps profile info for a single trace */ static int dumpTraceProfile(JitEntry *p) { ChainCellCounts* pCellCounts; char* traceBase; u4* pExecutionCount; u2* pCellOffset; JitTraceDescription *desc; const Method* method; traceBase = getTraceBase(p); if (p->codeAddress == NULL) { LOGD("TRACEPROFILE 0x%08x 0 NULL 0 0", (int)traceBase); return 0; } pExecutionCount = (u4*) (traceBase); pCellOffset = (u2*) (traceBase + 4); pCellCounts = (ChainCellCounts*) ((char *)pCellOffset + *pCellOffset); desc = (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts)); method = desc->method; char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype); jitProfileAddrToLine addrToLine = {0, desc->trace[0].frag.startOffset}; /* * We may end up decoding the debug information for the same method * multiple times, but the tradeoff is we don't need to allocate extra * space to store the addr/line mapping. Since this is a debugging feature * and done infrequently so the slower but simpler mechanism should work * just fine. */ dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile, dvmGetMethodCode(method), method->clazz->descriptor, method->prototype.protoIdx, method->accessFlags, addrToLineCb, NULL, &addrToLine); LOGD("TRACEPROFILE 0x%08x % 10d [%#x(+%d), %d] %s%s;%s", (int)traceBase, *pExecutionCount, desc->trace[0].frag.startOffset, desc->trace[0].frag.numInsts, addrToLine.lineNum, method->clazz->descriptor, method->name, methodDesc); free(methodDesc); return *pExecutionCount; } /* Handy function to retrieve the profile count */ static inline int getProfileCount(const JitEntry *entry) { if (entry->dPC == 0 || entry->codeAddress == 0) return 0; u4 *pExecutionCount = (u4 *) getTraceBase(entry); return *pExecutionCount; } /* qsort callback function */ static int sortTraceProfileCount(const void *entry1, const void *entry2) { const JitEntry *jitEntry1 = entry1; const JitEntry *jitEntry2 = entry2; int count1 = getProfileCount(jitEntry1); int count2 = getProfileCount(jitEntry2); return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1); } /* Sort the trace profile counts and dump them */ void dvmCompilerSortAndPrintTraceProfiles() { JitEntry *sortedEntries; int numTraces = 0; unsigned long counts = 0; unsigned int i; /* Make sure that the table is not changing */ dvmLockMutex(&gDvmJit.tableLock); /* Sort the entries by descending order */ sortedEntries = malloc(sizeof(JitEntry) * gDvmJit.jitTableSize); if (sortedEntries == NULL) goto done; memcpy(sortedEntries, gDvmJit.pJitEntryTable, sizeof(JitEntry) * gDvmJit.jitTableSize); qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry), sortTraceProfileCount); /* Dump the sorted entries */ for (i=0; i < gDvmJit.jitTableSize; i++) { if (sortedEntries[i].dPC != 0) { counts += dumpTraceProfile(&sortedEntries[i]); numTraces++; } } if (numTraces == 0) numTraces = 1; LOGD("JIT: Average execution count -> %d",(int)(counts / numTraces)); free(sortedEntries); done: dvmUnlockMutex(&gDvmJit.tableLock); return; }